
Apiary: AnOS for theModern FPGA

Katie Lim
katielim@cs.washington.edu
University ofWashington

Matthew Giordano
mgiordan@cs.washington.edu
University ofWashington

Irene Zhang
irene.zhang@microsoft.com

Microsoft Research

Baris Kasikci
baris@cs.washington.edu
University ofWashington

Thomas Anderson
tom@cs.washington.edu
University ofWashington

Abstract
ManydatacenteroperatorshavedeployedFPGAsashardware
accelerators because their reconfigurability allows them to be
repurposed as the applicationmix changes. Directly attaching
the FPGA to the network further reduces latency, improves
cost-performance, and reduces energy use relative to medi-
ating network communications with CPUs. However, build-
ing accelerated applications or services for direct-attached
FPGAs is challenging, especially with the complex I/O and
multi-accelerator capacity of modern FPGAs. To address this,
we proposeApiary, amicrokernel operating system for direct-
attached FPGA accelerators. The key idea in Apiary is to raise
the level of abstraction for accelerated application code, with
security, virtualization, threaded execution, and interprocess
communication provided by the hardware OS layer.

CCS Concepts
•Hardware→Hardware accelerators; • Software and
its engineering→Operating systems.

Keywords
FPGA, Operating System, Hardware accelerators
1 Introduction
Datacenter operators and the research community have in-
creasingly turned to specialized hardware for higher perfor-
mance, lower cost, and better energy efficiency than general-
purpose processors. Twomodels have emerged for commu-
nicationwithaccelerators:host-mediatedversusdirect-attached.
Our focus is on direct-attached accelerators, where the ac-
celerator communicates with the datacenter network via a
hardware network stack. By bypassing the CPU, a direct-
attached accelerator reduces CPU overhead, lowers latencies,
Permission tomakedigitalorhardcopiesofall orpartof thiswork forpersonal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this workmust be honored. For all other uses, contact the owner/author(s).
HOTOS 25, May 14–16, 2025, Banff, AB, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1475-7/25/05
https://doi.org/10.1145/3713082.3730385

and further reduces energy. For example, NVIDIA has in-
troduced GPUDirect, which allows an RDMA smartNIC to
communicate directly with the GPU [33]. Microsoft has de-
ployeddirect-attachedFPGAs to accelerateML inferencewith
significant energy and latency benefits [14].
FPGAs are an especially intriguing option as an accelera-

tion platform for cloud computing due to their reconfigura-
bility. ASICs, although more efficient for a fixed workload,
have a high initial cost and cannot evolve with customer
needs. As a result, many large cloud providers have deployed
FPGAs for their own services [4, 7, 17] and to rent out to
customers [2, 3, 5, 8, 20, 31].

Unfortunately, accelerating applications to take advantage
of the capabilities of FPGAs is challenging, especially with
the complexities introduced by modern FPGAs. Compared to
the software development environment on aCPU, the current
state of FPGAdevelopment infrastructure is like beinghanded
a CPUwith the BIOS and bootloader, and little else - roughly
where application development stood before the development
of operating systems. Developers are exposed directly to low-
level and non-portable interfaces of various I/O devices such
as memory controllers or the Ethernet MACs, and they must
wrestlewith device-specific details in order to build next-level
services, such as memory allocation and network protocols,
that are needed before one can even start to consider applica-
tion logic. Modern FPGAs exacerbate this with a wide range
of potential I/O devices (e.g. Ethernet vs PCIe vs CXL for
accelerator communication). The logic capacity of modern
FPGAs is sufficient to instantiate multiple accelerators on
the same FPGA, but that introduces resource multiplexing,
interprocess communication, and fault isolation issues.While
software application code can leverage a convenient, portable
OS interface that addresses these issues, this does not exist in
the direct-attached hardware setting. In other words, we need
a hardware operating system to support portable, modular
applications fordirect-attachedFPGAs, akin towhat theOSre-
search community achieved for CPU software in the early 70s.
To fill this role, this paper proposes Apiary. Building off

lessons from the OS community, Apiary is structured as a
microkernel with a message passing layer that connects hard-
ware OS services and application logic. The question we ask

https://doi.org/10.1145/3713082.3730385


HOTOS 25, May 14–16, 2025, Banff, AB, Canada Katie Lim, Matthew Giordano, Irene Zhang, Baris Kasikci, and Thomas Anderson

is what hardware primitives do we want for application logic
portability, programmability, and fault isolation in complex,
multi-function network-attached FPGAs that do not rely on
CPUs. Earlier efforts to build FPGA operating systems, such
as Coyote [26] and AmorphOS [25], delegate key operating
system functions such as memory management and virtual-
ization to an attached server CPU. By providing all-hardware
OSprimitives, Apiary can improve latency, latency variability,
resource overhead, and energy efficiency.
Our initial target is services within a microservice appli-

cation or data processing pipeline. These applications are
already decomposed into loosely-coupled elements, so por-
tions of application can be acceleratedwithout converting the
entire application. At the same time, typical microservices are
more complex than a simple CPU offload. An accelerated ser-
vice could have its own state that it needs tomaintain between
invocations, it may be part of a complex call chain, and de-
bugging/monitoring support is essential in practice. Calls to
other modules may be local or remote, and each module may
be independently scaled up or down to match demand. Mi-
croservices are often throughput or latency-sensitive,making
it valuable to avoid CPUmediation in the common case.
As with microkernels, both internal Apiary services and

application logic use the same interconnection model —mes-
sage passing over a switched interconnection fabric, with
hardware-enforced capabilities for access control to shared
resources suchasmemory regions. Eachmodule iswrapped in
anApiary shell that interfaces to the fabric andmanages capa-
bilitieson themodule’sbehalf similar in style toBarrelfish[12].
Thismodel enables us to support a portable, high-level, device-
independent interface for applications. It also supports mod-
ules being scaled out to meet the specific use case and allows
newOS services and abstractions to be easily inserted and im-
plementations changed without affecting other modules. Im-
plementation errors in one module do not propagate to other
modules except through defined message-passing interfaces.

2 Motivation
FPGAs are on a long-term upward trend in size and board
complexity. This means they are applicable to more use cases,
but this has also resulted in a more complex developer expe-
rience. Consider the variety of different I/O devices available
on FPGA boards from Intel and AMD.Modern boards include
high speed versions of I/O devices present in previous gen-
erations, such as PCIe Gen 5, 100 Gbit networking, and HBM
memory [6, 22]. For any single type of I/O device, developers
are expected to interact through IP cores provided by the ven-
dor, which differ between boards and even between speeds.
Modern boards have also added new types of I/O, such as
storage [9] or CXL[10, 22].

Family Year Released Part Number Logic Cells

Virtex 7 2010 XC7V585T 582,720
2010 XC7VH870T 876,160

Virtex
Ultrascale+

2016 VU3P 862,000
2018 VU29P 3,780,000

Table 1: Logic cell counts for the largest and smallest FPGA parts
in the previous Virtex family and the current Virtex family.

To compare size, we looked at Xilinx FPGAs from the most
recent UltraScale+ and the previous 7 series, as shown in Ta-
ble 1. Comparing the smallest parts, the number of logic cells
has increased by about 50%,while the largest parts have scaled
up by 3x between generations. Using these larger FPGAs is
still a developing field, with work exploringmulti-accelerator
systems [11, 13, 25, 26, 39].

To better illustrate complexities in the design process, con-
sider customizing a video encoding service to accelerate part
of a video processing pipeline. Requests to the service are a
chunk of video, which the service processes and then sends
to the next stage of the pipeline.Wewould like to incorporate
third-party accelerators, such as compression; to reduce re-
source stranding, the FPGA should be sharedwith other users.

The first difficulties are the complexity of FPGA boards and
the variety of I/O devices. These pose challenges related to
programmability and portability and must be overcome to
even run the accelerator on the FPGA. Software OSes provide
portable abstractions for common I/O devices, but typically
there is no equivalentwhen developing for FPGAs. As a result,
developers are exposed to the full complexity of interfaces
and operational details and need to build higher-level ser-
vices which would often be taken for granted in software
(e.g. memory allocation, reliable network protocols). Because
implementations are typically designed for a specific project,
reusing previously developed capabilities often requires sub-
stantial engineering.
Further, when an FPGA board is chosen for development,

the accelerated application is locked into that board. For a
given type of I/O device (e.g. memory, PCIe, networking), in-
terfaces for the IP cores managing those devices often differ
between boards, evenwithin a single vendor. For example, the
interface and reset process forXilinx’s 10GbitEthernet IP core
and100GbitEthernet IP core aredifferent, so additional infras-
tructure is needed to support both 10Gbit and 100Gbit IP cores.
A second set of challenges are in the complexity of the ac-

celerated systems that can be built with larger FPGAs. For ex-
ample, wemight replicate the encoding accelerator to provide
additional encoding throughput. If the encoding accelerator
uses DRAM, there is no subsystem that allows isolation for
sharing theDRAMaddress space. Thismeans that the original
encoding accelerator now must be modified to enable this
sharing. This may not be feasible, e.g., if the accelerator was
originally developed by a third party. Consider if we were to



Apiary: An OS for theModern FPGA HOTOS 25, May 14–16, 2025, Banff, AB, Canada

use the extra FPGAarea to instantiate accelerators specialized
for other functionality. These accelerators could be composed
with existing accelerators on the board or they could be in-
dependent, even belonging to another user. For example, the
encoding accelerator could be composed with a compression
accelerator to produce a compressed, encoded video stream.
Since compression is a common function, we might want to
use a third-party accelerator. This accelerator would not be
designed to participate in a bespoke memory partitioning
setup and would require memory isolation.

Isolation is evenmore important if the FPGA is used to host
accelerators for another user’s application. For example, an-
other usermightwant to use the FPGA tohost an independent
key-value store (KV-store) application. In this case, isolation
is required, both for multiplexing, and also security. Because
of the current lack of infrastructure, every accelerator is by
default considered trusted, but this is not a good model. We
do not want, for example, any accelerator of the KV-store
application to be able to communicate with any accelerator in
the encoding application. This could occur due tomisbehavior
from a bug or maliciously, if the KV-store is attempting to
interfere or snoop on the computation of the encoder.

3 Design Goals
To facilitate implementing complex, multi-accelerator FPGA
systems, Apiary has the following design goals:

• Portability: Apiary should define a stable, standard
interface portable across FPGA boards.

• Programmability:Apiary should simplify the devel-
oper experience by providing common utilities such as
networkingandmemorymanagement, aswell asdebug-
ging and tracing support at the message passing layer.

• Composability:Apiary should support complexmulti-
accelerator applications, including reuse of existing
accelerators.

• Flexibility:Apiary should put as few restrictions on ac-
celerator implementations as possible, including choice
of implementation language and performance goals.

• Simplicity:Apiary subsystems should be designed for
simplicity. Logic resources reserved by Apiary for its
subsystemsarenot subsequently available foruser func-
tionality, regardless of whether the provided functions
are used or not.

• Scalability:Apiary should be designed to easily sup-
port numerous accelerators, and to support scale out
of those elements, without manual optimization.

• Isolation:Apiary should follow the principle of least
privilege and provide isolation to limit the impact of
bugs and reduce security vulnerabilities.

Tile
Logic

Apiary
Monitor

Application 1 (3 tiles)
Untrusted/dynamic region

Application 2 (2 tiles)
1

1 2
NoC

Router

12 1
2

Figure 1:An overview of Apiary’s architecture. This configuration
has two applications composed of multiple accelerators. Each
tile contains a NoC router for communication, Apiary’s monitor
to provide isolation and manage capabilities, and an accelerator
or Apiary service. The monitor and router are trusted, while the
accelerator logic is untrusted and may be dynamically reconfigured.

3.1 Limitations
While we do our best to address isolation problems that occur
at the application level, it is difficult to completely eliminate
circuit-level interference.Addressing these side channels is an
activefield of research.Webrieflydiscuss someexamples here.
In the multitenant setting, there is a potential for power

virus attacks by a malicious accelerator using specific power-
wasting circuits [35]. These are typically mitigated by the
vendor FPGA build tools themselves using design rule check-
ing during bitstream creation or bitstream analysis after the
build process [27]. Multitenant FPGAs can also be vulnerable
to circuit-level side channels where a malicious colocated
accelerator can implement certain sensors that allow it to
characterize the computation of a victim accelerator [16]. Po-
tential mitigations for these types of attacks include design
rule checking or placement constraints.
Ultimately, we consider circuit-level attacks out of scope

for Apiary due to the vast majority of the mitigations requir-
ing modification or participation in the FPGA bitstream build
process itself. However, we believe that providing isolation at
the application level is still valuable when constructing multi-
accelerator systems. These systems can manifest complex
application-level interactions around multiplexing or compo-
sition that Apiary and application-level isolation can address.

4 Apiary Design
Basic OS concepts in software that programmers take for
granted, such as "what is the boundary of isolation" or "how
do processing elements communicate with one another", do
not have agreed upon answers in hardware. In this section,
we discuss hardware versions of commonOS abstractions and
describe howwemight realize these abstractions in Apiary
to accomplish our goals.

4.1 Apiary Architecture
Apiary is a Network-on-Chip (NoC) based hardware micro-
kernel. Each tile on theNoC contains an untrusted accelerator,



HOTOS 25, May 14–16, 2025, Banff, AB, Canada Katie Lim, Matthew Giordano, Irene Zhang, Baris Kasikci, and Thomas Anderson

an Apiary monitor, and a NoC router, as shown in Figure 1.
Theaccelerator slot canbeusedeither byanOSservice suchas
networking or a user accelerator. These untrusted tile slots are
dynamically instantiated regions, while Apiary’s framework
resides in the static area, so accelerators can be reprogrammed
independent of each other and the rest of Apiary’s frame-
work.We omit discussion of scheduling what is configured
into the untrusted slot; AmorphOS and Coyote both explore
scheduling of partial reconfiguration. We instead focus on
inter-accelerator interaction.

Accelerators communicate with each other or services via
message passing over the NoC. The Apiarymonitor serves an
accelerator’s interface to theOS, so all messages go through it.
This allows themonitor to implement the isolation properties
we desire, which we elaborate on in following sections.

In Apiary, an application is one or more accelerators that
communicatewitheachother tocompleteacomputation.This
can be a pipeline as in the example in Section 2, a replicated
acceleratorwith internal load balancing for higher bandwidth,
or it could involve a more complex series of interactions. We
aim to support mutually distrusting applications running on
the same board with the restriction that distrusting applica-
tions may not share the same physical tile because Apiary
cannot prevent data leaks within an accelerator.

4.2 Process Granularity
In hardware, there are no trust boundaries or fault isolation.
This means that all accelerators and OS services in current
systems implicitly trust one another, and any faults that occur
can affect all other processing entities in the system. This is
a difficult model to develop under. Different users will not
trust each other’s applications, and even assuming mutually
trusting users, there are no guarantees on how errors or faults
will be handled. Recall that we want to be agnostic as to ap-
plication implementation choices. In software, the OS uses
a process as a trust and fault isolation boundary. To provide
isolation, we explore how to go about constructing a process
abstraction for Apiary.
For Apiary, we define our process granularity as one user

context running on one accelerator. Applications can span
more than one accelerator and therefore are multi-process.
Processes on different physical accelerators are considered
distrustingunless they specifically establish interprocess com-
munication discussed further in Section 4.5. Processes or con-
texts on the same physical accelerator are mutually trusting,
but should still be fault-isolated.

4.3 Accelerator Interfaces
Accelerators have interfaces at two levels. At the physical
level, the interface refers to the wires, what they represent,
and their topology. Examples include AXI (used often by Xil-
inx) or Avalon (used often by Intel) buses and these have to

do with the mechanics of how two modules exchange data.
The accelerator also has an interface at the "API" level: the
description of what functionality is available from an accel-
erator and what data needs to be passed over the physical
interface to invoke it. We are concerned with Apiary’s phys-
ical interfaces for composability and scalability and its API
interface for programmability and portability.
We want a physical layer for Apiary that can scale to a

large number of different services, both for invoking I/O ser-
vices and for composing with other accelerators. In previous
work [25, 26], the number of physical interfaces is coupled
with the number of services available; one set of module ports
isused forconnecting to thenetworkingstackwhilea separate
set is used for communicating with memory. This means that
when adding or removing services, the number of physical in-
terfaces and the underlying wires are directly impacted. This
is an important consideration as the number of I/O options
on an FPGA board increase.

Apiary’s physical interconnect is aNoC. TheNoCallows us
to move service naming to an API-layer interface by making
the destination ID a message field, so we can use the same
physical interface to communicate with multiple services,
enabling Apiary to scale. Using a NoC is also advantageous
because FPGAshave begun to offer hardenedNoCs that are in-
stantiated in dedicated logic, so they can run more efficiently
and leave more FPGA logic resources for users [1, 21, 36].
At the API level, we are concerned with the interface that

Apiary presents to accelerators. In software, an OS typically
comeswith an established set of syscalls and runtime libraries
which make up the interface. An application can depend on
theOS to provide this interface across a large number of differ-
enthardware configurations (e.g. different x86CPUs, different
speed NICs) and as a result, the application can run on differ-
ent possible hardware configurations without modifcation.
There is simplynot a set of expected services for FPGAacceler-
ators, which as discussed in Section 2 poses programmability
and portability challenges.
Apiary addresses API-level challenges by defining a stan-

dard interface to higher-level system services that is the same
on every tile across FPGAs. The per-tile Apiary module is
responsible for presenting this interface. As part of this in-
terface, the Apiary module provides a table that maps logical
service names to underlying physical units since service iden-
tification is now in the API layer. It also maintains a table of
capabilities for each tile, such as which other physical compo-
nents the application logic is allowed to communicate with
and which memory regions it is allowed to access.

4.4 Fault Handling
Today, it is standard for accelerators to be assumed to always
be correct and trusted, so there is no error-handling infras-
tructure or defined behavior in hardware. This is ultimately



Apiary: An OS for theModern FPGA HOTOS 25, May 14–16, 2025, Banff, AB, Canada

unrealisticwhenbuilding complex applications or oneswhere
features are rolled out to users over time. At minimum in Api-
ary, wewould like to have a fail-stopmodel for an accelerator:
if an accelerator it encounters an error in a process and can-
not complete its computation, it should not be able to affect
other Apiary services or other unrelated accelerators. Ideally
though, wewould like to bring the fault behavior more on par
with software. If an error occurs in one user context within an
accelerator, other independent processes on the accelerator
can keep running. Which model is achievable depends on the
parallel processing model we have for accelerator processes.
In software, processes are typically concurrent and pre-

emptible. The OS can interrupt a process running on a core
and resume it later, because a CPU exposes well-defined ar-
chitectural state to software that captures the context of the
program. This allows the OS to swap out any misbehaving
processes and repurpose the core for another process. In con-
trast, accelerators all have different sets of architectural state
that is not readily available to access, so it is much harder to
capture the context of a process. Previous FPGAOSes [25, 26]
have provided an interface to the accelerator, allowing it to
externalize the state it needs and yield cooperatively. This
interface allows accelerator processes to be concurrent, but
all processes are trusted to yield. If an error is encountered,
the processmay never yield. To dealwith untrusted processes,
accelerators need to be preemptible. Preempting an acceler-
ator means identifying an accelerator’s architectural state for
a particular user’s context, such as a particular network con-
nection, so that it can be stopped at any cycle. This is difficult,
because theremay be intermediate state during an invocation
that would not be externalized in the concurrent setting. One
method used by previous work on FPGA virtualization [29]
was todostaticanalysis to identifyandexposestate thatwould
need to be saved and restored to swap out an accelerator.
If an accelerator is only concurrent, then the best Apiary

(or any FPGA OS) can achieve is a fail-stop model when an
error occurs. The Apiary monitor can prevent it from further
interacting with the rest of the system by draining all out-
going or incoming messages and returning an error to any
accelerator that tries to communicate with it. If an accelerator
is preemptible, then the Apiary module can instead swap out
the process when it detects an error, and the other processes
on the accelerator can continue executing.

4.5 Communication
One of the crucial privileged components in a microkernel is
interprocess communication (IPC). The purpose of IPC is to
allow OS-managed communication between two computa-
tions that may not trust each other. In software, the kernel is
responsible for implementing these channels which should

be performant as well as accessed controlled. For composabil-
ity and isolation, Apiary also needs an accessed controlled
communication primitive.
A form of IPC already exists between accelerators on FP-

GAs in the form of queues that are used to pipeline acceler-
ators [19, 26, 39]. Because accelerator computation is usually
trusted, these queues are not accessed controlled in any way.
With untrusted accelerators, having permissioned access and
rate limiting are necessary to prevent malicious accelerators
from either accessing unauthorized resources or causing re-
source exhaustion. Even in the case where all accelerators
trust each other, rate limiting or access control can help mit-
igate unintentional behavior that degrades performance.
In Apiary, the infrastructure to do message passing and

routing already exists since we use a NoC. The Apiary moni-
tor sits between the accelerator and the NoC, so it can inspect
all communications between the accelerator and the rest of
the system to enforce access control or other policy. By using
a NoC we can take advantage of prior NoC research for im-
plementing our IPC layer, because prior work has addressed
topics such as security [37, 38], application message level
deadlock [30, 32], quality of service guarantees [18, 34], and
other common concerns in software IPC infrastructure.

4.6 Memory isolation
Memory isolation is also an important feature that is not
provided by default on an FPGA. This is in sharp contrast
with page-based address space virtualization for CPUs. Pre-
vious virtual memory systems for FPGAs have focused on
managing shared virtual memory pages between CPUs and
FPGAs [26, 28]. Because CPUmemory translation units are
hardware, thesepagesizeshaveasingleora small, fixedchoice
ofpage sizes. Sharedmemorycanbe implementedbymapping
the same physical pages into multiple address spaces.

However, it is unclear that a fully paged translation system
is necessary inApiary formemory isolation and address trans-
lation between accelerators. Accelerators often gain much of
their performance from specializing to their memory access
patterns, and page sizes limit flexibility in allocation sizes. It
is also unclear that the complexity of a paged system is nec-
essary. Paged systems are good for providing a flat, infinite
address space unified with the CPU, but Apiary’s primary
goal is to provide isolation so that if an accelerator behaves
in an unanticipated way, either maliciously or due to a bug,
it cannot corrupt the memory of unassociated accelerators.

For simplicity and flexibility, we choose to do memory iso-
lation via segmentswith capabilities inApiary [15]. Segments
allow more flexibility in the size of an memory allocation,
reducing resource stranding, while capabilities give us isola-
tion properties. Apiary is responsible for creating capabilities
for memory regions. Capabilities are stored in a partitioned
manner by having the Apiary monitor manage the capability



HOTOS 25, May 14–16, 2025, Banff, AB, Canada Katie Lim, Matthew Giordano, Irene Zhang, Baris Kasikci, and Thomas Anderson

list, so the accelerator can only obtain a reference to the ca-
pability and not the capability itself. To enforce capabilities,
the monitor interposes on every message and checks that the
process has the correct capability to send to the destination.

5 RelatedWork
AmorphOS[25] and Coyote [26] are two closely related FPGA
OSes. Both assume a hostedmodel rather than the standalone
model used by Apiary. AmorphOS is an FPGA OS that dy-
namically recompiles FPGA bitfiles and uses partial reconfig-
uration to multiplex an FPGA between different applications.
AmorphOS does not provide higher-level services or address
inter-accelerator interactions. Coyote is more similar to Api-
ary by providing both higher-level services and multiplexing
for applications, and it provides basic interprocess communi-
cation in the form of queues. However, it does not provide any
isolation for those channels or discuss multi-application in-
teractions in other subsystems. Every accelerator is attached
to a specific CPU process on whose behalf it is acting, with
permissions managed by the host OS.

Other work focuses specifically on hosting multiple users
on a single FPGA. One [24] modifies Caribou [23], an FPGA-
accelerated key-value store, to allow it to support multiple
users. The resulting accelerator is able to support multiple
connections, but only supports Caribou and does not general-
ize to other applications. SYNERGY is a framework for FPGA
virtualization that uses static analysis in order to identify state
that needs to be stored if an accelerator is paused at a given
cycle, so it can be resumed seamlessly at a later time. SYN-
ERGY only runs one application on the FPGA at one time, so
does not address isolation for inter-accelerator interactions.

6 Open Questions & Challenges
Alongside our proposal for Apiary comes a number of open
questions and challenges that come with realizing its imple-
mentation. We discuss some of the main open questions we
have considered frequently:
What is the overhead of the per-tile monitor?One of the
main implementation challenges will be managing the logic
utilization of the Apiary. Much of the functionality and en-
forcement of isolation inApiary is provided in theper-tileApi-
ary monitor. It is important for scalability that this monitor’s
resource utilization remain low since the amount of FPGA
logic resources devoted to Apiary grows with the number of
tiles. The overheadwill also influence the flexibility of Apiary,
because the number of tiles supported determines the granu-
larityof logicwithin the tiles.More tilesmeansApiarycansup-
port decomposing functionality into finer granularity, open-
ing up more opportunities for reuse of functionality through
composition of tiles. Apiary’s design goal of simplicity for its
abstractions will hopefully help keep resource utilization low,
but ultimately we will have to find out via implementation.

What level of abstraction or specialization is needed?
This question is important for all operating systems, but is
especially important for those hosting accelerators. Acceler-
ators gain much of their advantage from specialization to the
application and specific low-level device details, so services
that abstract away enough of the details to ease the developer
experience, but that must be balanced with exposing enough
of the details that the accelerator can specialize to the device.
It is highly likely that different accelerators will need differ-
ent levels of abstraction. Ideally, services themselves can be
flexible enough to support, these different levels, but it may
be possible accelerators require different implementations
of the same service. We would like Apiary would be able to
support multiple versions of the same service, but it is still a
question of how to do this in a generalizable manner.
Canwe reasonably completely avoid an on-node host-
ingCPU?Apiaryaims to implement its primitives completely
in hardware. This is to preserve efficiency gains of the direct-
attached setting and potentially also provide better granular-
ity on datacenter resource allocation since an FPGA could be
provisioned independent of a CPU. However, it may not be
worth implementing certain functionality directly in hard-
ware if it is either rarelyusedor exceptionally complex. Ideally,
we could take advantage of the network capabilities of Apiary
and place the service on any remote CPU, maintaining the
ability to use an FPGA independent of its on-node CPU. How-
ever, there may be cases this is not feasible. We are interested
to see how far we can get in pure hardware.

7 Conclusion
Modern FPGA boards have advanced support for I/O and the
capacity to support multiple accelerators, but FPGA develop-
ers must build a large amount of infrastructure to take full
advantage of these devices. In this paper, we presented Api-
ary, a proposal for a hardware FPGAOS designed for the the
complexity ofmodern FPGAs. Apiary is structured as amicro-
kernel with message passing via a hardware NoC to support
composability, flexibility, and scalability of hardware primi-
tives. Apiary also defines an isolation and threaded execution
model to address multiplexing needs. However, Apiary is an
early attempt at defining a portable OS for standalone FPGAs,
and there are many open questions around the right levels of
abstraction or specialization. We hope this paper encourages
others to also engage with these questions.

Acknowledgments
We thank the anonymous reviewers for their helpful com-
ments and feedback. This workwas supported by grants from
VMware Research, the National Science Foundation (CNS-
2104548, CNS-2213387), the University ofWashington Center
for the Future of Cloud Infrastructure (FOCI), the Intel TSA
center, and the NSF Graduate Research Fellowship.



Apiary: An OS for theModern FPGA HOTOS 25, May 14–16, 2025, Banff, AB, Canada

References
[1] Achronix. [n. d.]. Revolutionary New 2D Network-on-Chip. Accessed:

2022-7-4.
[2] Alibaba. [n. d.]. Deep Dive into Alibaba Cloud F3 FPGA as a Service

Instances. Accessed: 2020-01-29.
[3] Amazon. [n. d.]. Amazon EC2 F1 Instances. Accessed: 2019-10-11.
[4] Amazon. 2021. AQUA (AdvancedQueryAccelerator). Accessed: 2025-1-4.
[5] Amazon. 2021. Deep Dive on Amazon EC2 VT1 Instances. Accessed:

2025-1-5.
[6] AMD. [n. d.]. Alveo V80 Product Brief. Accessed: 2025-1-5.
[7] AMD. 2023. AMD Powers Alibaba Cloud FaaSwith AI Acceleration

Solution for E-Commerce Business. Accessed: 2025-1-5.
[8] AMD. 2023. AMD Provides Twitch with Plug and Play VP9 Transcoding

Solution for Live Video Streaming. Accessed: 2025-1-5.
[9] AMD. 2023. SmartSSD® Computational Storage Drive. Accessed:

2025-1-5.
[10] AMD. 2024. Versal Architecture and Product Data Sheet: Overview.

Accessed: 2025-1-6.
[11] Suhail Basalama, Atefeh Sohrabizadeh, Jie Wang, Licheng Guo, and

Jason Cong. 2023. FlexCNN: An End-to-end Framework for Composing
CNNAccelerators on FPGA. ACM Trans. Reconfigurable Technol. Syst.
16, 2, Article 23 (March 2023), 32 pages. https://doi.org/10.1145/3570928

[12] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The multikernel: a new OS architecture for
scalablemulticore systems. In Proceedings of theACMSIGOPS 22nd Sym-
posium on Operating Systems Principles (SOSP ’09). Association for Com-
puting Machinery, 29–44. https://doi.org/10.1145/1629575.1629579

[13] Andrew Boutros, Mathew Hall, Nicolas Papernot, and Vaughn
Betz. 2020. Neighbors From Hell: Voltage Attacks Against Deep
Learning Accelerators on Multi-Tenant FPGAs. In 2020 International
Conference on Field-Programmable Technology (ICFPT). 103–111.
https://doi.org/10.1109/ICFPT51103.2020.00023

[14] Adrian Caulfield, Eric Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet
Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov,
Michael Papamichael, LisaWoods, Sitaram Lanka, Derek Chiou, and
Doug Burger. 2016. A Cloud-Scale Acceleration Architecture. In
Proceedings of the 49th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 1–13.

[15] Jack B. Dennis and Earl C. Van Horn. 1966. Programming semantics
for multiprogrammed computations. Commun. ACM 9, 3 (March 1966),
143–155. https://doi.org/10.1145/365230.365252

[16] Colin Drewes, Olivia Weng, Keegan Ryan, Bill Hunter, Christopher
McCarty, Ryan Kastner, and Dustin Richmond. 2023. Turn on, Tune
in, Listen up: Maximizing Side-Channel Recovery in Time-to-Digital
Converters. In Proceedings of the 2023 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (Monterey, CA, USA)
(FPGA ’23). Association for Computing Machinery, New York, NY, USA,
111–122. https://doi.org/10.1145/3543622.3573193

[17] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, ToddMassen-
gill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan
Adams,Mahdi Ghandi, StephenHeil, Prerak Patel, AdamSapek, Gabriel
Weisz, LisaWoods, Sitaram Lanka, Steve Reinhardt, Adrian Caulfield,
Eric Chung, and Doug Burger. 2018. A Configurable Cloud-Scale DNN
Processor for Real-Time AI. In Proceedings of the 45th International
Symposium on Computer Architecture, 2018. ACM.

[18] K. Goossens, J. Dielissen, andA. Radulescu. 2005. AEthereal network on
chip: concepts, architectures, and implementations. IEEEDesign&Testof
Computers 22, 5 (2005), 414–421. https://doi.org/10.1109/MDT.2005.99

[19] Licheng Guo, Yuze Chi, Jason Lau, Linghao Song, Xingyu Tian, Moazin
Khatti, Weikang Qiao, Jie Wang, Ecenur Ustun, Zhenman Fang, Zhiru
Zhang, and Jason Cong. 2023. TAPA: A Scalable Task-parallel Dataflow
Programming Framework for Modern FPGAs with Co-optimization
of HLS and Physical Design. ACM Trans. Reconfigurable Technol. Syst.
16, 4, Article 63 (Dec. 2023), 31 pages. https://doi.org/10.1145/3609335

[20] Huawei. [n. d.]. FPGA Development Suite. Accessed: 2025-1-5.
[21] Intel. [n. d.]. Intel Agilex 7 M-Series Hard Memory NoC Subsystem.

Accessed: 2025-1-9.
[22] Intel. 2024. Key Features and Innovations in Agilex™ 7 FPGAs and SoCs.

Accessed: 2025-1-5.
[23] Zsolt István, David Sidler, and Gustavo Alonso. 2017. Caribou:

Intelligent Distributed Storage. Proc. VLDB Endow. 10, 11 (Aug. 2017),
1202–1213. https://doi.org/10.14778/3137628.3137632

[24] Zsolt István, Gustavo Alonso, and Ankit Singla. 2018. Providing
Multi-tenant Services with FPGAs: Case Study on a Key-Value Store.
In 2018 28th International Conference on Field Programmable Logic and
Applications (FPL). 119–1195. https://doi.org/10.1109/FPL.2018.00029

[25] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric
Schkufza, and Christopher J. Rossbach. 2018. Sharing, Protection,
and Compatibility for Reconfigurable Fabric with AmorphOS. In
13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18). USENIX Association, Carlsbad, CA, 107–127.
https://www.usenix.org/conference/osdi18/presentation/khawaja

[26] Dario Korolija, Timothy Roscoe, and Gustavo Alonso.
2020. Do OS abstractions make sense on FPGAs?. In 14th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 20). USENIX Association, 991–1010.
https://www.usenix.org/conference/osdi20/presentation/roscoe

[27] Jonas Krautter, Dennis R. E. Gnad, and Mehdi B. Tahoori. 2019.
Mitigating Electrical-level Attacks towards SecureMulti-Tenant FPGAs
in the Cloud. ACM Trans. Reconfigurable Technol. Syst. 12, 3, Article
12 (Aug. 2019), 26 pages. https://doi.org/10.1145/3328222

[28] Joshua Landgraf, Matthew Giordano, Esther Yoon, and Christopher J.
Rossbach. 2023. Reconfigurable Virtual Memory for FPGA-Driven
I/O. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 3 (Vancouver, BC, Canada) (ASPLOS 2023). Asso-
ciation for Computing Machinery, New York, NY, USA, 556–571.
https://doi.org/10.1145/3582016.3582048

[29] Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J. Rossbach,
and Eric Schkufza. 2021. Compiler-driven FPGA virtualization with
SYNERGY. InProceedings of the 26thACMInternationalConference onAr-
chitectural Support for Programming Languages and Operating Systems
(Virtual, USA) (ASPLOS ’21). Association for Computing Machinery,
New York, NY, USA, 818–831. https://doi.org/10.1145/3445814.3446755

[30] Andreas Lankes, ThomasWild, Andreas Herkersdorf, Soeren Sonntag,
and Helmut Reinig. 2010. Comparison of Deadlock Recovery and
Avoidance Mechanisms to Approach Message Dependent Deadlocks in
On-chip Networks. In 2010 Fourth ACM/IEEE International Symposium
on Networks-on-Chip. 17–24. https://doi.org/10.1109/NOCS.2010.11

[31] Microsoft. [n. d.]. FPGAWeb Service: DeployModels on FPGAs. Accessed:
2020-01-29.

[32] Srinivasan Murali, Paolo Meloni, Federico Angiolini, David Atienza,
Salvatore Carta, Luca Benini, Giovanni De Micheli, and Luigi Raffo.
2006. Designing Message-Dependent Deadlock Free Networks
on Chips for Application-Specific Systems on Chips. In 2006 IFIP
International Conference on Very Large Scale Integration. 158–163.
https://doi.org/10.1109/VLSISOC.2006.313226

[33] NVIDIA. [n. d.]. NVIDIA GPUDirect. Accessed: 2025-1-4.
[34] Jin Ouyang and Yuan Xie. 2010. LOFT: A High Performance Network-

on-Chip Providing Quality-of-Service Support. In 2010 43rd Annual

https://doi.org/10.1145/3570928
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1109/ICFPT51103.2020.00023
https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/3543622.3573193
https://doi.org/10.1109/MDT.2005.99
https://doi.org/10.1145/3609335
https://doi.org/10.14778/3137628.3137632
https://doi.org/10.1109/FPL.2018.00029
https://www.usenix.org/conference/osdi18/presentation/khawaja
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://doi.org/10.1145/3328222
https://doi.org/10.1145/3582016.3582048
https://doi.org/10.1145/3445814.3446755
https://doi.org/10.1109/NOCS.2010.11
https://doi.org/10.1109/VLSISOC.2006.313226


HOTOS 25, May 14–16, 2025, Banff, AB, Canada Katie Lim, Matthew Giordano, Irene Zhang, Baris Kasikci, and Thomas Anderson

IEEE/ACM International Symposium on Microarchitecture. 409–420.
https://doi.org/10.1109/MICRO.2010.21

[35] George Provelengios, Daniel Holcomb, and Russell Tessier. 2020. Power
Wasting Circuits for Cloud FPGA Attacks. In 2020 30th International
Conference on Field-Programmable Logic and Applications (FPL).
231–235. https://doi.org/10.1109/FPL50879.2020.00046

[36] Ian Swarbrick, Dinesh Gaitonde, Sagheer Ahmad, Brian Gaide, and Ygal
Arbel. 2019. Network-on-Chip Programmable Platform in VersalTM
ACAPArchitecture. In Proceedings of the 2019ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (Seaside, CA, USA)
(FPGA ’19). Association for Computing Machinery, New York, NY, USA,
212–221. https://doi.org/10.1145/3289602.3293908

[37] YaoWangandG.EdwardSuh.2012. EfficientTimingChannelProtection
forOn-ChipNetworks. In2012 IEEE/ACMSixth International Symposium
on Networks-on-Chip. 142–151. https://doi.org/10.1109/NOCS.2012.24

[38] Hassan M.G. Wassel, Ying Gao, Jason K. Oberg, Ted Huffmire, Ryan
Kastner, Frederic T. Chong, and Timothy Sherwood. 2014. Networks
on Chip with Provable Security Properties. IEEE Micro 34, 3 (2014),
57–68. https://doi.org/10.1109/MM.2014.46

[39] Jinming Zhuang, Jason Lau, Hanchen Ye, Zhuoping Yang, Shixin Ji,
Jack Lo, Kristof Denolf, Stephen Neuendorffer, Alex Jones, Jingtong Hu,
Yiyu Shi, Deming Chen, Jason Cong, and Peipei Zhou. 2024. CHARM
2.0: Composing Heterogeneous Accelerators for Deep Learning on
Versal ACAP Architecture. ACM Trans. Reconfigurable Technol. Syst.
17, 3, Article 51 (Sept. 2024), 31 pages. https://doi.org/10.1145/3686163

https://doi.org/10.1109/MICRO.2010.21
https://doi.org/10.1109/FPL50879.2020.00046
https://doi.org/10.1145/3289602.3293908
https://doi.org/10.1109/NOCS.2012.24
https://doi.org/10.1109/MM.2014.46
https://doi.org/10.1145/3686163

	Abstract
	1 Introduction
	2 Motivation
	3 Design Goals
	3.1 Limitations

	4 Apiary Design
	4.1 Apiary Architecture
	4.2 Process Granularity
	4.3 Accelerator Interfaces
	4.4 Fault Handling
	4.5 Communication
	4.6 Memory isolation

	5 Related Work
	6 Open Questions & Challenges
	7 Conclusion
	Acknowledgments
	References

