Combining Detection, Recognition and Segmentation

Presented by:

Ira Kemelmacher-Shlizerman

Sharon Alpert

For the Advanced Topics in Computer Vision course Spring 2006

Words Matching in Ascii

Find the word sleeping in the string:

"I have never taken any exercise except sleeping and resting"

Mark Twain

Simply go over the string and match each substring of length 8.

But what if we want to detect a face?

Detection/recognition challenges (partial list)

- Partial occlusions.
- Variation in pose.
- intra-class variations
- Lighting, scale, deformations, background clutter etc.

Try to find the face in this image

Segmentation

Group homogeneous areas

Use low-level cues:

Intensity Color Texture

Segmentation - where is the edge?

Low-level local cues are not enough to get meaningful segmentation

Segmentation & Recognition

Segmentation **t** recognition

Segmentation helps recognition

Recognized objects constrain segmentation

Labeling & Segmentation

Knowing the image type or the labeling

Can constraint the segmentation

Labeling & Recognition Likely: CAR Unlikely: TOASTER

We will talk about

Recognition/Detection

Scene categories recognition

S. Lazebnik et al.

Given an explicit image of the model

V. Ferrari et al.

Segmentation with Recognition

- E. Borenstein and S. Ullman
- E. Borenstein, E. Sharon and S. Ullman
- A. Levin and Y. Weiss

(From Iccv 2005 tutorial) (From Iccv 2005 tutorial)

Scene and context categorization

The idea

- Represent images as "bags of features"
- Spatial relations between features

• Training:

- 1. Get features from labeled images
- 2. <u>Histogram</u> the features
- 3. Use the histograms to train a classifier

Testing

1. Use classifier to label new image

Training: Extract features

Label: coast

Extract features

Count the features

• Level 0

Multi-scale bag of features Lazebnik *etal*, CVPR06

- Level 0
- Level 1

S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing 18 Natural Scene Categories, CVPR 2006, to appear.

Multi-scale bag of features

- Level 0
- Level 1
- Level 2

S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing 19 Natural Scene Categories, CVPR 2006, to appear.

Matching between 2 images

- For each feature type
- For each pyramid level L = 0, 1, 2

• <u>Note</u>: coarser level matches include the finer level ones

S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing 20 Natural Scene Categories, CVPR 2006, to appear.

•Weight = penalize matches in larger cells.

- The resulting kernel is Mercer kernel.
- Use for the classification

S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing 21 Natural Scene Categories, CVPR 2006, to appear.

Types of Features

Oriented edge points 8 directions * 2 scales = <mark>16 types</mark> SIFT descriptors

Cluster features to a vocabulary = 200 types

S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing 22 Natural Scene Categories, CVPR 2006, to appear.

Classification

- By SVM (support vector machine)
- Train classifier by applying the kernel on labeled images
- Test image is assigned the label of the classifier with the highest response

Main contribution

Multi-scale representation to the "bag of features" approach

Considers spatial relation between features

Caltech 101: 64.6% using multiscale, L=2 41.2% with L=0

53.9% State-of-the-art (Zhang etal.)

S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing 24 Natural Scene Categories, CVPR 2006, to appear.

Results

Inside city

office

mountain forest

city

street

S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing 25 Natural Scene Categories, CVPR 2006, to appear.

Performance

High performance

Poor performance

Coherent scenes, little clutter

Textureless animals, camouflage

S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing 26 Natural Scene Categories, CVPR 2006, to appear.

Recognize this **particular** model:

in this input image

Recognition

Model image

+ get segmentation

Why is it hard?

- Clutter
- Occlusions
- Scale
- Viewpoint
- Non-rigid deformations

Matching solely by affine invariant features is not robust

The Idea Ferrari etal., ECCV 2004

- 1. Find initial set of invariant features
- 2. Expansion Look around them to construct more matching features
- 3. Contraction Leave the correct, and remove mismatches
- 4. Iteratively construct more and more matches, increasingly farther from the initial ones.

Soft Matching

Initial <u>feature extraction</u> in model and image

- 1. Choose point by non-max suppression
- 2. Transfer rays
- 3. Local extremum along the rays

- 4. Calculate moments to get internal ellipse
- 5. Double ellipse size

T. Tuytelaars and L. Van Gool *Wide Baseline Stereo based on Local, Affinely invariant Regions* In Brit. Mach. **31** Vis. Conf., pp. 412-422, 2000.

Initial Matching-cont.

- Every test region matched to 0-3 model regions by thresholding the:
 - Mahalanobis distance (on color moments)
 - Similarity measure (NCC on gray levels + Euclidean distance in RGB space)

Geometric refinement – find affine transf. that maximized the similarity

Early expansion

Coverage of the model image

•Each feature in model gives support for a part of the covering

Early expansion

1. Map a region from the model to image using the transf. defined by the initial matching.

2. Refine the transformation.

3. Keep the matching with the best similarity (which also above a detection threshold).

4. Discard all matches that did not succeed in propagating any region.

Result of the expansion

Model Image

Test Image

Early Contraction

Correct matching = same intersections in test & model

Match (R_m, R_t) is removed if:

$$\sum_{\{N_m^i\}} \left| \frac{\operatorname{Area}(R_m \bigcap N_m^i)}{\operatorname{Area}(R_m)} - \frac{\operatorname{Area}(R_t \bigcap N_t^i)}{\operatorname{Area}(R_t)} \right| > t_s$$

V. Ferrari, T. Tuytelaars, and L. Van Gool. *Simultaneous Object Recognition and Segmentation by Image Exploration*. In Proc. ECCV, 2004.

36

Test

Image
Main expansion

• Matches from pervious step added to support group.

• Follow similar steps as early expansion.

 Refinement is applied after we picked a new matching region.

V. Ferrari, T. Tuytelaars, and L. Van Gool. *Simultaneous Object Recognition and Segmentation by Image Exploration*. In Proc. ECCV, 2004.

Main Contraction Sidedness Constraint

$$\operatorname{err}_{\operatorname{topo}}(R^{i}) = \frac{1}{v} \sum_{R^{j}, R^{k} \in \Gamma \setminus R^{i}, j > k} |\operatorname{side}(R^{i}_{m}, R^{j}_{m}, R^{k}_{m}) - \operatorname{side}(R^{i}_{t}, R^{j}_{t}, R^{k}_{t})|$$

• Test each region R^i with every two other regions R^j , R^k • Correct match will give 0

V. Ferrari, T. Tuytelaars, and L. Van Gool. *Simultaneous Object Recognition and Segmentation by Image Exploration*. In Proc. ECCV, 2004.

Main contraction –cont.

The filtering algorithm:

1. (Re-)compute $\operatorname{err}_{\operatorname{tot}}(R^i)$ for all $R^i \in \Gamma$.

$$\operatorname{err}_{\operatorname{tot}}(R^{i}) = \operatorname{err}_{\operatorname{topo}}(R^{i}) + (t_{2} - \sin(R_{m}^{i}, R_{t}^{i}))$$

sidedness similarity

- 2. Find the worst match R^w , with $w = \arg \max_i \operatorname{err}_{\operatorname{tot}}(R^i)$
- 3. If $\operatorname{err}_{\operatorname{tot}}(R^w) > 0$, remove $R^w \colon \Gamma \leftarrow (\Gamma \setminus R^w)$, and iterate to 1, else stop.

Finally, iterate between contraction & expansion...

V. Ferrari, T. Tuytelaars, and L. Van Gool. *Simultaneous Object Recognition and Segmentation by Image Exploration*. In Proc. ECCV, 2004.

Illustration: Soft matches

Illustration: Early expansion

Illustration: Early contraction

Illustration: 1st Main Expansion

Illustration: 1st Main Contraction

Illustration: 2nd Main Expansion

Illustration: 2nd Main Contraction

Segmentation & Recognition

Segmentation **t** recognition

Segmentation helps recognition

Recognized objects constrain segmentation

Bottom – Up segmentation

Goal aggregate pixels with similar low level features.

 E. Sharon *et al.* method : construct a 4connected graph

Eitan Sharon, Achi Brandt, and Ronen Basri, Segmentation and boundary detection using multiscale intensity 52 measurements., CVPR, 2001, pp. 469–476.

Bottom – Up segmentation

 Apply a fast multi level solver called *Algebraic MultiGrid* (AMG), for graph coarsening.

Eitan Sharon, Achi Brandt, and Ronen Basri, Segmentation and boundary detection using multiscale intensity 53 measurements., CVPR, 2001, pp. 469–476.

Bottom – Up segmentation

- 1. Calculate coarse scale node.
- 2. Create inter scale weights and calculate new features.
- 3. Update coarse scale weights by averaging the fine scale weights.
- 4. Repeat the above process. Segments emerges as node at some coarse scale.

Difficulties in bottom-up segmentation

How to constrain the segmentation?

Think on an horse for example:

Shape is an important cue

Introducing shape Into the segmentation

Instead of Bottom up use Top-down

Training images

Learn how to segment this type of images

Result: Binary segmentation Background / foreground

Top-Down - Borenstein & Ullman.

Randomly collect a large set of candid. fragments

Select subset of informative fragments Figure-Background Labeling

Selecting Informative Fragments

 Informative = likely to be detected in class compared with non-class images

$$f_j = \arg\max_f \left(I(F^s \cup f; C) - I(F^s; C) \right)$$

- Fragments are added to maximize the gain in mutual information
- Highly overlapping
- Well-distributed over the figure

Segmenting Informative Fragments

Segmenting Informative Fragments

Segmentation ?

Likelihood determined by the degree of cover

Overlap with the average Edges D(x,y) of fragment in all the training images.

$$P = \arg \max_{P(\bar{r})} \left(\sum_{(x,y) \in P(\bar{r})} D(x,y) + \lambda \sum_{(x,y) \in \partial P(\bar{r})} D(x,y) \right)$$

Segmenting a test image

• Each fragment votes for the classification of pixels it covers

weight = $\frac{\text{detection rate}}{\text{false alarms rate}}$

- Count the number of votes for figure and background
- Check consistency test between the received labeling and labeling of each fragment using NCC

Top-Down - Borenstein & Ullman. Main contributions

Top down approach

• Automatic fragments labeling

This Alg. figure-ground labeling

Manual figure-ground labeling

Bottom-up seg.

Zoom-in to the results

Top-down

Bottom-up

The shape of the horse is captured

The boundaries are not exact

The boundaries are exact

We did not get the horse as one piece

Need to make a combination of Top-Down & Bottom-Up approaches

Bottom up & Top down segmentations

Training set

Test Image

The "correct" segmentation is some how a compromise between Top-down & bottom up.

How to combine?

 <u>Approach 1</u> – Do separate segmentations are combine them together.

E. Borenstein, E. Sharon, S. Ullman (2004)

<u>Approach 2</u> – Combine them in one pass.
 A. Levin and Y. Weiss (2006)

Combining Top-Down and Bottom-Up Segmentation- Borenstein *et al.*

• Use the hierarchy formed by the bottom-up segmentation.

• Each segment at each scale gets figure/background label.

Combining Top-Down and Bottom-Up segmentation

 Each father-descendent cost depends on their labels.

$$TCost(s_1,...,s_N) = \sum_i f_i(s_i,s_i^-)$$

Total Tree cost father-descendent cost

 f_i

 $S_i, S_i^- \in \{1, -1\}$ Descendent Father label label

E. Borenstein, E. Sharon, S. Ullman, Combining Top-Down and Bottom-Up Segmentation, Proceedings IEEE 69 workshop on Perceptual Organization in Computer Vision, IEEE CVPR Washington, DC, June 2004.

Combining Top-Down and Bottom-Up : father-descendent cost

• Each father-descendent energy has two terms:

$$f_i(s_i, s_i^-) = t_i(s_i) + b_i(s_i, s_i^-)$$

Top-down term

Sum of SSD from the Top-Down segmentation (only on leafs) Descendent more salient penalty for different fatherdescendent labels decreases.

$$\lambda |S_i| (1-h_i)(s_i - s_i^-)^2$$

Bottom-up term

Image

E. Borenstein, E. Sharon, S. Ullman, Combining Top-Down and Bottom-Up Segmentation, Proceedings IEEE **70** workshop on Perceptual Organization in Computer Vision, IEEE CVPR Washington, DC, June 2004.

Combining Top-Down and Bottom-Up Segmentation

• Since the cost function factorizes:

$$TCost(s_1,...,s_N) = \sum_i f_i(s_i,s_i^-)$$

Total Tree cost

Sum product algorithm is used (similar to BP)

E. Borenstein, E. Sharon, S. Ullman, Combining Top-Down and Bottom-Up Segmentation, Proceedings IEEE 71workshop on Perceptual Organization in Computer Vision, IEEE CVPR Washington, DC, June 2004.

Combining Top-Down and Bottom-Up Segmentation

• Requires only one pass in each direction.

A local computation in each segments results in:

$$Tcost_{s_{i}}(1) = \min(Tcost(s_{1},...,s_{i-1},1,s_{i+1},...,s_{N}))$$
$$Tcost_{s_{i}}(-1) = \min(Tcost(s_{1},...,s_{i-1},-1,s_{i+1},...,s_{N}))$$

E. Borenstein, E. Sharon, S. Ullman, Combining Top-Down and Bottom-Up Segmentation, Proceedings IEEE 72workshop on Perceptual Organization in Computer Vision, IEEE CVPR Washington, DC, June 2004.
Combining Top-Down and Bottom-Up Segmentation

Confidence map of the segmentation is given by:

$$\frac{\left|m_{S_i}\left(1\right) - m_{S_i}\left(-1\right)\right|}{\left|S\right|}$$

E. Borenstein, E. Sharon, S. Ullman, Combining Top-Down and Bottom-Up Segmentation, Proceedings IEEE 73workshop on Perceptual Organization in Computer Vision, IEEE CVPR Washington, DC, June 2004.

Bottom-Up segmentation

Top-Down segmentation

Combined segmentation

E. Borenstein, E. Sharon, S. Ullman, Combining Top-Down and Bottom-Up Segmentation, Proceedings IEEE **74** workshop on Perceptual Organization in Computer Vision, IEEE CVPR Washington, DC, June 2004.

Top-Down segmentation

Combined segmentation

E. Borenstein, E. Sharon, S. Ullman, Combining Top-Down and Bottom-Up Segmentation, Proceedings IEEE **75** workshop on Perceptual Organization in Computer Vision, IEEE CVPR Washington, DC, June 2004.

Combining Top-Down and Bottom-Up Segmentation- A. Levin *et al.*

• Combine in one segmentation process.

• Use only few fragments.

Markov Random Field

Joint distribution of labels and local features

$$p(x, y) = \frac{1}{Z} \prod_{i,j} \psi_{i,j}(x_i, x_j) \prod_i \phi_i(x_i, y_i)$$

One hidden -- one observation

Conditional Random Field

Conditional distribution of labels given whole image

$$p(x \mid \mathbf{y}) = \frac{1}{Z(\mathbf{y})} \prod_{i,j} \psi_{i,j}(x_i, x_j; \mathbf{y}) \prod_i \phi_i(x_i; \mathbf{y})$$

•CRF globally conditioned on the observation **Y** – **long range dependences**

Lafferty *et al.* (2001), Kumar and Hebert (2003)

 X_i

У

У

У

Log notation

$$p(x \mid \mathbf{y}) = \frac{1}{Z(\mathbf{y})} \prod_{i,j} \psi_{i,j}(x_i, x_j; \mathbf{y}) \prod_i \phi_i(x_i; \mathbf{y})$$

-

Take the log:

$$\overline{\psi}_{i,j}(x_i, x_j; \mathbf{y}) = -\log(\psi_{i,j}(x_i, x_j; \mathbf{y}))$$

$$\overline{\phi}_i(x_i; \mathbf{y}) = -\log(\phi_i(x_i; \mathbf{y}))$$
Easier to work
with summations
$$p(x \mid \mathbf{y}) = \frac{1}{\overline{Z}(\mathbf{y})}e^{-\sum_{i,j}\overline{\psi}_{i,j}(x_i, x_j; \mathbf{y}) + \sum_{i,j}\overline{\phi}_i(x_i; \mathbf{y})} = E(x; \mathbf{y})$$
79

How this helps the segmentation?

Learning

$$E(x;I) = \nu \sum_{i,j} w_{ij} |x(i) - x(j)| + \sum_{k} \lambda_k |x - x_{F_k,I}|$$

Labeling discontinuities == image discontinuities

$$w_{ij} = rac{1}{1+\sigma d_{ij}^2} \;\; d_{ij}^2$$
 - RGB distance

We want to learn:

1.
$$\mathcal{V}$$
 - power of the low level term
2. $\vec{\lambda}, \vec{F} = \lambda_1 + \lambda_2 + \dots$

Learning

Given a set of segmented training images

Switch the roll of hidden & observation to get likelihood of the labels x conditioned on the image *I*.

Find the parameters that maximize the sum of the log-likelihood :

$$\ell(\vec{\lambda}, \nu; \vec{F}) = \sum_{t} \ell^{t}(\vec{\lambda}, \nu; \vec{F})$$

Where:

$$\ell^t(\vec{\lambda}, \nu; \vec{F}) = \log p(x_t | I_t; \vec{\lambda}, \nu; \vec{F}) =$$

$$-E(x_t; I_t, \vec{\lambda}, \nu; \vec{F}) - \log Z(I_t, \vec{\lambda}, \nu; \vec{F})$$

Learning

- The CRF log likelihood is *convex* with respect to the weighting parameters λ_k , ν Lafferty *et al.* (2001)
- On the other hand exact computation of derivatives and Z(I) is in general intractable.

Use approximations

Out of a pool of fragments at random sizes & locations we want to select a few informative ones.

Straightforward computation of the likelihood improvement is not practical since each iteration will require inference for each $\vec{\lambda}, \vec{F}$.

How to do it efficiently ?

Recall the energy term: $E(x;I) = v \sum_{i,j} |x(i) - x(j)| + \sum_{k} \lambda_k |x - x_{F_k,I}|$

If no fragments are used:
$$E_0(x;I) = v \sum_{i,j} |x(i) - x(j)|$$

If we add one fragment:
$$E_1(x;I) = v \sum_{i,j} |x(i) - x(j)| + \lambda_1 |x - x_{F_1,I}|$$

Linear approximation:

$$E_1(x;I)|_{\lambda_1=0} \approx E_0(x;I) + \lambda_1 \frac{\partial E_1(x;I)}{\partial \lambda_1}$$

Energy change by adding F₁

Start without any Fragments

$$E_0(x;I) = v \sum_{i,j} |x(i) - x(j)|$$

If we add one fragment: $E_1(x;I) = v \sum_{i,j} |x(i) - x(j)| + \lambda_1 |x - x_{F_1,I}|$

Choose the fragment with large change.

• Continue in a greedy approach.

• Add a predefined number of fragments.

• After all the fragments are added, improve the accuracy of λ_k .

Segmentation

 Given a new image the segmentation is the assignment x that maximizes the probability:

$$p(x | I_{new}) = \frac{1}{Z(I_{new})} e^{-E(x;I_{new})}$$

• Where E(x;Inew) is the learned energy term.

One fragment

Conference on Computer Vision (ECCV), Graz, Austria, May 2006.

Two fragments

Three fragments

 Overlaid segmentation
 Image: Complete Segmentation
 Image: Complete Segmentation
 Image: Complete Segmentation
 Image: Complete Segmentation
 89

Fragments used:

MAP segmentation

Summary

Scene Labeling

 Recognition given explicit model

Segmentation & recognition

Thanks!