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Abstract

Two-tone (“Mooney”) images seem to arouse vivid 3D
percept of faces, both familiar and unfamiliar, despite their
seemingly poor content. Recent psychological and fMRI
studies suggest that this percept is guided primarily by top-
down procedures in which recognition precedes reconstruc-
tion. In this paper we investigate this hypothesis from a
mathematical standpoint. We show that indeed, under stan-
dard shape from shading assumptions, a Mooney image can
give rise to multiple different 3D reconstructions even if re-
construction is restricted to the Mooney transition curve
(the boundary curve between black and white) alone. We
then use top-down reconstruction methods to recover the
shape of novel faces from single Mooney images exploiting
prior knowledge of the structure of at least one face of a
different individual. We apply these methods to thresholded
images of real faces and compare the reconstruction quality
relative to reconstruction from gray level images.

1. Introduction

Two-tone (thresholded, black and white) images of faces
were first introduced in the 1950s by Craig Mooney [17]
to test the ability of children to form a coherent percept of
shape (termed ”perceptual closure”) on the basis of very lit-
tle visual detail. Such images (see examples in Figure1)
may seem initially difficult to interpret, but eventually lead
to a rich and stable percept of the objects in the image.

Mooney images have fascinated psychologists and neu-
robiologists throughout the past half a century. Their am-
biguous nature (is it an object or a random collection of
blobs?), face specificity (faces seem more readily identifi-
able than other objects), and sudden interpretability led to
a flurry of studies that used Mooney images to investigate
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Figure 1.Three Mooney face images – initially seem difficult to
interpret, but eventually lead to a rich and stable percept of the
objects in the image (a face) on the basis of very little visual detail.

the development of shape perception in children [17, 28], to
demonstrate that parts of the fusiform gyrus brain area spe-
cialize in faces [1, 9, 13], and to reveal synchronous activity
of neurons across brain areas [7, 21].

The remarkable perception of Mooney images raises the
question of whether their interpretation is primarily bottom-
up, driven by image data and guided by generic assump-
tions, or alternatively whether it is essentially a top-down
process driven by memory and attention and preceded by
a preliminary recognition process. Psychological studies
seem to suggest the latter. Among the evidence supporting
this view is that people usually fail to perceive upside-down
faces, arguably due to their unfamiliarity [9, 21], and that
pre-exposure to original gray level (or color) image facili-
tates their recognition [7, 11]. In an extensive study Moore
and Cavanagh [18] showed that shape primitives (e.g., gen-
eralized cones) are rarely perceivable in two-tone images,
both in isolation and in novel configuration with other prim-
itives, even when the image contains explicit hints about the
direction of the light source. These shapes, however, can
readily be interpreted from gray level images and even from
degraded line drawings. Familiar classes of objects, in con-
trast, are much more often perceivable in two-tone images.
Even volumetric primitives of faces, if rearranged, cease
to be perceived as coherent 3D objects. These findings
strongly support the view that the interpretation of Mooney
images is guided primarily by top-down processes.

In this paper we investigate this question from a mathe-



matical standpoint and ask whether a unique 3D shape can
be recovered from a single Mooney image. As Mooney pat-
terns reflect the interaction of lighting and shape in the im-
age it is natural to approach this problem using Shape from
Shading (SFS) techniques. In this view the main informa-
tion available in a Mooney image is in the shape of the
Mooney transition curve, i.e., the boundary between dark
and bright regions in the image. This curve is in fact an
isoluminance curve. We therefore investigate whether 3D
shape can be recoveredalong the Mooney transition curve.
By investigating the SFS equations we show that even along
this isoluminance curve reconstruction is not unique. We
consequently turn to algorithms that use prior knowledge
of faces [6, 14] to reconstruct the 3D shape of faces from
a single Mooney image. Our experiments show that these
methods manage to work surprisingly well on these impov-
erished images. This is encouraging both from a cogni-
tive perspective, and also from a practical standpoint, since
Mooney images resemble images obtained under extreme
lighting conditions (e.g., with saturated lighting in a dark
environment).

Very few computational algorithms have been proposed
to handle Mooney images. Most notably, Shashua [24]
introduced a method for face recognition from a single
Mooney image in a fixed pose and unknown lighting. As-
suming the face is Lambertian and in the absence of at-
tached shadow the set of images of the face under differ-
ent lightings is 3-dimensional. A two-tone image provides
at every pixel an inequality that is linear in both the com-
ponents of the lighting vector and the threshold value, and
so these parameters can be recovered by solving a linear
program. This method, however, requires a 3D model of
the specific individual to be identified in the image. (The
method however can in principle be extended to any linear
model.) A more recent method [16] too uses linear models
for object recognition from Mooney images. This method
finds initial values for the coefficients and the threshold by
solving a linear system along the Mooney transition curve,
and then uses an iterative computation to refine these val-
ues. None of these methods however addresses the problem
of reconstructing a novel face from a Mooney image.

In the remaining sections we first investigate the unique-
ness of reconstruction from a Mooney image (Section2).
Later on we introduce algorithms for reconstruction of 3D
faces from single Mooney images and present experimental
results (Section3).

2. Non-Uniqueness of Reconstruction

Monocular gray level and color images contain various
cues from which a 3D shape can be inferred. These include
perspective cues, texture distribution, bounding silhouettes,
and shading cues. As two-tone images are much more im-
poverished, most of these cues are rarely available, and the

main cue that remains is shading. In two-tone images only
a single bit of information is available at every pixel, mark-
ing whether the observed surface is either bright or dark due
to either the color of the surface, whether the surface faces
toward or away from the light, or whether the surface is in
shadow. It is natural therefore to analyze the problem of re-
construction from a Mooney image as a shape from shading
(SFS) problem with impoverished data.

The question of uniqueness arises in SFS also when gray
level images are considered [5, 19]. In general, the same
image can be produced by many different 3D shapes, and
so typically SFS algorithms make the stringent assumptions
that the lighting configuration is known, the reflectance
properties of the object are specified, the color (albedo) of
the object is known, and the appropriate boundary condi-
tions (i.e., depth values at certain locations on the object)
are given. Under these conditions SFS is unique up to trans-
lation in depth and reflection (convex/concave) ambiguity.
Below we make similar assumptions. We assume a sin-
gle point light source whose direction and magnitude are
known, the observed surface is Lambertian, and albedo is
uniform (or otherwise known). Our formulation also al-
lows the introduction of boundary conditions. As a Mooney
image is impoverished we focus on the Mooney transition
curve, i.e., the boundary curve between black and white in
the image, as we explain below.

As an example consider a two-tone image of a Lamber-
tian sphere illuminated by a frontal light source seen on a
bright background. It is easy to construct other simple sur-
faces that are consistent with this image, such as an axial
ellipsoid with equalx− andy− axes, or a cone. Note how-
ever that both these surfaces are circularly symmetric about
the optical axis, and so they all give the samez=const re-
construction along the Mooney transition curve. An inter-
esting question, therefore, is whether reconstruction is still
ambiguous if we restrict our attention to the Mooney transi-
tion curve. If such a reconstruction is unique, we might be
able to derive shape invariants along the curve and use them
to recognize the shape in a bottom-up fashion.

2.1. General treatment of ambiguity

Consider a gray level imageI(x, y) of a smooth Lam-
bertian surfacez(x, y) with uniform albedo illuminated by
a directional sourcel ∈ <3. The image intensities are given
by I = lT n, wheren denotes the surface normal at each

point, n = (1/
√

z2
x + z2

y + 1)(−zx,−zy, 1). A two-tone

image is obtained fromI by applying a thresholdI ≥ T
for some constantT > 0. Below we assume without loss
of generality thatT is known, and that the light source co-
incides with the viewing direction, i.e.,l = (0, 0, 1). Note
however that our analysis can be applied to any directional
source by a change of coordinates, as in [15], and the mag-



nitude of the light can be scaled by appropriately scalingT .
With these assumptions we obtain

I(x, y) =
1√

z2
x + z2

y + 1
, (1)

which can be rewritten in the form of an Eikonal Equation

|∇z|2 = E(x, y) (2)

on some closed domainΩ ⊂ <2, whereE = (1/I2)− 1.
In general, given a gray level imageI, the correspond-

ing eikonal equation can be solved by various methods, for
example by upwind updates using a Dijkstra-like algorithm
(e.g., the fast marching method [15, 23, 27]). These solu-
tions rely on appropriate boundary conditions. In general,
upwind solutions require Dirichlet boundary conditions in
which z is specified at every minimal point ofE (maxi-
mal point ofI) in Ω. These may include local minima, as
well as any minimum point along the boundaries ofΩ. Our
analysis therefore will allow the introduction of boundary
conditions.

Consider two surfacesz andz′ that give rise respectively
to two imagesI andI ′ (and as before respectively toE and
E′) which are “Mooney equivalent.” By this we mean that
|∇z|2 = E(x, y) and|∇z′|2 = E′(x, y) andI = I ′ =const
along an isoluminance curveγ. Some boundary conditions
may also be specified, so thatz = z′ (and at internal points
also|∇z|2 = |∇z′|2 = 0) in some setB ⊂ Ω. Denote by
α(x, y) = z′ − z, our goal is givenz to find the possible
assignments ofα.

By subtracting the two eikonal equations forz andz′ we
obtain a new eikonal equation inα

|∇α|2 + 2∇α · ∇z = E′ − E. (3)

To solve for α we introduce a change of coordinates
(x, y) → (t, s) such thatαs = 0 andαt 6= 0. t there-
fore points in the gradient direction ofα, and this will be
useful since the gradient direction is also the characteristic
direction of (3). In this coordinate frame (3) is transformed
to

α2
t + 2ztαt − (E′ − E) = 0. (4)

(4) is quadratic inαt, and its solution is given by

αt = −zt ±
√

z2
t + E′ − E. (5)

From this equation we can derive a general solution for
α in the entire domainΩ by integrating (5) with respect tot
along the characteristic directions as follows

α(t, s) =− z(t, s) + z(t0, s) (6)

±
∫ t

t0

√
z2
t + E′ − E dt,

where the point(t0, s) ∈ B. It can be readily verified that
indeedα(t0, s) = 0.

Unfortunately, given a Mooney image we cannot use (6)
to recoverα since in generalE andE′ are unknown. How-
ever, along the transition curve,γ, we know thatE = E′,
and so (5) implies

αt|γ = −zt ± zt ∈ {0, − 2zt}. (7)

To produce a non-trivial ambiguity we are generally only
interested here in the negative solutionαt|γ = −2zt. Since
αs = 0, the positive solutionαt|γ = 0 if applied through-
out γ leads to the trivial solutionα =const, and so along
γ: z′ = z+const. As we are interested in smooth solu-
tions, we can restrict our search to ambiguities that satisfy
the negative solutionαt|γ = −2zt.

Note that (5) and (7) can be used to explain uniqueness
in the general SFS problem for gray level images. In that
caseE = E′ at every location inΩ, and the negative so-
lution corresponds to the well-known convex-concave re-
flection ambiguity. In principle either of the two solutions
can be selected independently at every point, but if we con-
sider only smooth solutions such transitions can only occur
at places in which|∇z|2 = 0, and those transitions can be
eliminated by supplying appropriate boundary conditions.
In our case, however, we know only thatE = E′ alongγ.

While given a Mooney image we cannot computeα in
the entire domainΩ, we can nevertheless still provide an
explicit solution forα along the transition curveγ. Let σ
be an arclength parameterization ofγ, and letθ(σ) denote
the angle between the tangent toγ and thet direction, we
obtain

α|γ = −2
∫

γ

zt cos θdσ + α(σ0). (8)

Eq. (8) implies that if we choose some characteristic direc-
tions for α along the transition curveγ then there will be
exactly two shapes along this curve that will be consistent
with the Mooney image,z andz′ = z + α. However, un-
like in the general SFS problem, in the case of a Mooney
image we in general are free to choose different character-
istic directions alongγ and thus produce many additional
solutions. The constraints onα are therefore that it must be
consistent with the boundary conditions inB, if such con-
ditions are given, and that its gradients coincide withsome
smoothly varying directional derivatives at points alongγ.
This implies that in general many ambiguities exist even
if we restrict our attention to the Mooney transition curve
only.

2.2. Ambiguity examples

In this section we demonstrate ambiguities for the sim-
ple Mooney pattern shown in Fig.2 (bottom right). Con-
sider the unit spherex2 + y2 + z2 = 1. We will use polar



Figure 2.Surfaces whose Mooney image is identical to that of a sphere. Top: (from left to right) a sphere, three surfaces that produce the
same Mooney pattern, and 3D reconstruction of the four correspondingγ curves. Bottom: original gray-level images of the four shapes
and the common thresholded image. To produce the ambiguity surfaces we usedf(r) = rq with q ∈ {3, 6, 10} andr0 = 0.3.

coordinates,r =
√

x2 + y2 andθ = tan−1(y/x), so that
z =

√
1− r2. The gradient ofz is therefore given by

zr =
−r√
1− r2

zθ = 0, (9)

and its magnitude isE = r2/(1 − r2). We further con-
sider boundary conditions at the origin, withz(0, θ) = 1
andzr(0, θ) = 0 for all θ. Let the curveγ consists of the
circle r = r0 and consider a pointp on this circle. Let thet
direction intersectp at some angleφ relative to the normal
to γ. Then the directional derivative ofz atp is

zt(r0, θ) =
−r0√
1− r2

0

cosφ. (10)

Now, using (7) the gradient ofα atp is

αt(r0, θ) = −2zt(r0, θ) =
2r0√
1− r2

0

cos φ. (11)

Projecting the gradient onto the two polar directions yields

αr(r0, θ) =
2r0√
1− r2

0

cos2 φ (12)

αθ(r0, θ) =
2r2

0√
1− r2

0

cos φ sin φ, (13)

where the factorr0 is squared in (13) due to the use of polar
coordinates.

Our objective is to find a functionα(r, θ) such that
α(0, θ) = αr(0, θ) = 0 at the origin and whose polar
derivatives onγ assume the values above. We can achieve
this by setting:

α = cf(r) cos2(kθ). (14)

for some smooth functionf(r) and constantsc andk. Con-
sequently,

αr = cfr cos2(kθ) (15)

αθ = −2ckf(r) cos(kθ) sin(kθ). (16)

The boundary conditions implyf(0) = fr(0) = 0, and the
conditions onγ imply

c =
2r0√
1− r2

0

1
fr(r0)

(17)

k = − r2
0√

1− r2
0

1
cf(r0)

= −r0fr(r0)
2f(r0)

. (18)

There are many ways to setf(r) to satisfy these equations.
One simple way is to setf(r) = rq for q ≥ 2. In that
casec = 2/(qrq−2

0

√
1− r2

0) andk = −q/2. Fig. 2 shows
several ambiguities from this family.

All the ambiguities in this family yield surfaces whose
Mooney images are indistinguishable from that of the
sphere, while their shape alongγ oscillates at any desired
frequency. However, these ambiguities in fact introduce
new maximal values near the boundary of the sphere, and
so in principle one may expect to obtain the height of these
maximal points as part of the boundary conditions. Unfor-
tunately, a local analysis of the type presented in Section2.1
cannot prevent the emergence of new maxima. However, in
general the constraints onα are such that in many cases it
may still be possible to produce ambiguities that will not
produce new maxima.

While it is possible to construct ambiguities that adhere
to the supplied boundary conditions and perhaps even avoid
introducing new extremal points it is worth noting that ob-
taining boundary values for Mooney images is arguably
very difficult. While for gray level images we may simply
detect the local maxima of the image, in Mooney images
those maxima can lie anywhere within the bright regions
in the image. Moreover, while in gray level images the
surface boundaries can be identified as discontinuities, in
Mooney images they may either blend with the background
or be indistinguishable from internal transitions from black
to white.



Figure 3.A smooth reconstruction of a face shape from a single
Mooney image using extensive boundary conditions. The figure
shows the mooney image (top left), a plot of the location of bound-
ary conditions (in blue) and the transition curve (in magenta) con-
tours (top right), initial surface (ground truth, bottom left) and the
surface obtained with this reconstruction (bottom right).

Finally, we have sought to construct an ambiguity sur-
face given a Mooney image of a face. To this end we have
implemented an iterative method that constructs smooth
shapes while adhering to boundary conditions and to con-
straints on the gradient magnitude. Our implementation
does not restrict the direction of the gradient atγ, but only
its magnitude. The result is shown in Figure3. As expected,
the overall shape of the face was preserved, due to the exten-
sive use of boundary conditions, but most of the significant
features were washed away.

3. 3D Reconstruction

In the previous section we showed that 3D reconstruc-
tion from single Mooney images is generally not unique
even if we restrict our attention to the Mooney transition
curve. This further supports psychological findings that the
percept of shape from a Mooney image is possible only if
prior knowledge is introduced. In the case of faces, such
prior knowledge may include for example the 3D structure
of known faces. In this section we describe how existing
3D face reconstruction methods that use prior knowledge of
faces can reconstruct the shape of faces from single Mooney
images. We consider two types of methods: a method for
3D face reconstruction that solves a shape from shading
equation and uses a single reference model and a method
that uses linear combinations of a database of faces.

3.1. Reconstruction with a single reference model

The first method, presented by Kemelmacher and
Basri [14] (denoted KB), was designed to recover 3D shape
and albedo of faces from single color or gray scale im-
ages using a single reference model of a different individ-
ual’s face. The method allows for multiple unknown light
sources and attached shadows by representing image in-
tensities using a spherical harmonics approximation to re-

flectance ([3, 20]). Specifically it uses the first order of ap-
proximation such that image intensities can be represented
as a linear combination of the components of the surface
normals,

I(x, y) ≈ ρlT Y(n), (19)

wherel = (l0, l1, l2, l3)T denote the harmonic coefficients
of lighting,Y(n) = (1, nx, ny, nz)T andnx, ny, nz are the
components of the surface normalsn(x, y) at each point.
Reconstruction is achieved by first roughly aligning the im-
age with respect to the reference model by matching a small
number of feature points and then optimizing the following
functional

min
l,ρ,z

∫

Ω

((
I − ρlT Y(n)

)2
+ λ14gdz + λ24gdρ

)
dxdy,

(20)
where the first term in the functional is the data term
(Eq. 19) and4gdz,4gdρ are two regularization functions
that maintain the difference between the reconstructed sur-
face and the reference model smooth. This optimization
is carried out in three steps in which lighting, shape, and
albedo are recovered sequentially. In the initial step we
solve for lightingl by fitting the reference model to the im-
age. After that the main step, recoveringz(x, y), is carried
out using the formula

I ≈ ρref(l0 +
1√

p2
ref + q2

ref + 1
l̃T (p, q,−1)T ) (21)

where l̃T = (l1, l2, l3), p = zx and q = zy. This pro-
vides one equation for every unknown, and with appropriate
regularization and boundary conditions it is solved directly
using least squares. (See Kemelmacher and Basri [14] for
further details).

A Mooney image is obtained fromI by choosing some
constantT > 0 and then by thresholding the image
I(x, y) ≥ T . In this case every equation in (21) becomes
an inequality. Thus in the main step we should now solve
a system of inequalities combined with regularization and
boundary conditions. To avoid the instabilities that can
arise from the use of inequalities we used the same least
squares approach as in [14] to solve the optimization, with
the Mooney image used forI. Constructing a smooth sur-
face from a binary image requires regularization; otherwise
the discontinuity at the transition curve may result in an un-
smooth reconstruction. We address this by modifying the
regularization weightsλ1, λ2 along the Mooney transition
curves to prevent discontinuities.

3.2. Reconstruction by statistical models

A fair number of recent approaches use statistical mod-
els for 3D face reconstruction. These methods learn the
set of allowable reconstructions from a large dataset of



Gray-level KB’s method CSH’s method Mooney KB’s method CSH’s method

Figure 4.Reconstruction results with gray-level (columns1− 5) and thresholded images (columns6− 8) from the YaleB database. From
left to right: gray-level input image, reconstruction results with KB’s method (shape and shape+albedo) and with CSH’s method, then we
show Mooney input image, and again reconstruction results with both methods.

KB’s method CSH’s method

1 6.2◦ 12.1◦

2 7.8◦ 11.8◦

3 4.1◦ 5.6◦
Table 1. Average angular error of shapes reconstructed from
Mooney images in Fig.4 relative to their reconstruction from gray
scale images.

faces by either embedding all 3D faces in a linear space
(e.g. [2, 4, 8, 26, 22, 30]) or by using a training set to deter-
mine a density function for faces [25, 29]. These methods
can achieve accurate reconstruction, but they often require
expensive alignment and parameter fitting. To simplify the
process, Castelanet al. [6] (denoted CSH) proposed to com-
bine surface shape and image brightness variations into a
single, coupled statistical model. In the first step separate
eigenspaces are constructed for image intensities and sur-
face shape variations from the training data, and then these
two spaces are combined into a single space. Then, given
an image the coefficients that fit the model to the image is
found and those coefficients, due to the coupling of bright-
ness and shape in the model, can be used to recover shape
parameters and consequently the shape of the face itself.
The objective function obtained is linear and can be solved
efficiently. Despite its simplicity, this model was shown to
generally produce accurate surfaces from real images. This
method however is limited in scope since it does not model
lighting explicitly and cannot extrapolate to new lighting
conditions. We will therefore apply this method to images
of novel faces, but with lighting with which the method was
trained.

One way to apply this model to Mooney images is to cast
the problem as a system of linear inequalities (in the spirit

of [24]), but due to the high dimensionality of the model
this would allow a fair amount of slack. Instead, we again
applied this method directly to the Mooney images. The
shapes obtained with this method appeared bumpy therefore
we applied gaussian smoothing to the outputs.

3.3. Results and discussion

For the CSH method we used for training77 models
from the USF database [12] acquired with a laser scanner.
The database contains depth and texture maps of male and
female adult faces with a mixture of race and age. For the
KB method a mere one of the models in this training set was
used as a reference model.

Figure 4 shows some reconstruction results. First we
show reconstruction from gray level images taken from
the YaleB database images [10]. Both methods produce
nice reconstructions, with Castelanet al’s method produc-
ing some ringing effects near the nose (perhaps due to mis-
alignments in the nose area). Then we show reconstructions

Figure 5.Reconstruction results. Top: input images. Bottom: face
shape reconstruction using KB’s method.



Vertical misalignment

-40 -20 0 +20 +40

33.7◦ 37.7◦ 4.3◦ 37.8◦ 48.2◦

Horizontal misalignment

-40 -20 0 +20 +40

28.9◦ 20.2◦ 4.3◦ 21.1◦ 29.7◦
Figure 6.Reconstruction error with misplaced alignment points with KB’s method. Top: masked two-tone images used for reconstruction.
The red dots indicate the positions matched to five features of the reference model (eyes, nose, mouth, and chin). Vertical offsets are shown
on the left and horizontal on the right. Numbers represent offsets in pixels. Second row: corresponding reconstructions. The numbers
represent anglular error relative to reconstruction from a color image.

from Mooney images obtained by thresholding images from
the YaleB dataset. To measure the error we compared the
average of the angles between corresponding surface nor-
mals in each reconstruction relative to a reconstruction with
the original gray scale image. Overall, both methods work
surprisingly well producing reasonable reconstructions that
have resemblance to their gray-level counterparts. This
is further demonstrated by measuring the average angular
error between the Mooney reconstructions and their gray-
level counterparts (Table1). We can observe that the KB’s
method is more consistent (the errors are smaller), however
in both methods the error is relatively small (up to12.1◦).

Next, we applied KB’s method to images downloaded
from the Internet and thresholded by the same constant (ex-
cept for the leftmost image, which was downloaded orig-
inally as a two-tone image). As CSH’s method is not de-
signed to work with lightings that are not available in the
training dataset it did not perform well on these images and
we do not include these results. Other PCA based methods
might better deal with variations in lighting. Fig.5 shows
reconstruction results obtained with KB’s method, these are
very similar to reconstructions from color images. Note that
the different features and facial expressions of each individ-
ual are clearly seen in these reconstructions.

When prior knowledge is used in reconstruction there is
always the question of how dominant the prior knowledge
is and how much it is modified by the data. This question is
particularly relevant when impoverished data is used. This
can be tested, for example, by applying reconstruction to
non-face black and white patches. Here we implement this
by applying KB’s method to shifted copies of the image,
i.e., to misplaced face patterns. Indeed, as we shift the posi-
tion of the alignment features in vertical and horizontal di-
rections the reconstruction results deteriorate fairly rapidly
(Fig. 6). A plot of the error as a function of misalignment

−40 −30 −20 −10 0 10 20 30 40
0

10

20

30

40

50

Figure 7.Angular error as a function of offset for vertical (blue
curve) and horizontal displacements (green).

in pixels in presented in Fig.7. A clear minimum in the er-
ror is obtained when the features are correctly aligned. The
reconstruction quality slowly degrades with shifts of up to
±5 pixels (10%) from correct alignment, which shows that
the method is robust to small misalignments. Further, its

100 120 140 160 180

7.2◦ 2.1◦ 5.3◦ 10.8◦ 14.9◦

Figure 8.Reconstruction results and errors with different thresh-
olds, obtained with KB’s method. Original color image and two-
tone images (top images) obtained with different threshold values
(indicated below), and corresponding reconstructions (bottom im-
ages), along with angular errors relative to reconstructions from
color image (shown on left).



degradation beyond that range indicates that the shape of
the reference face is not imposed on the data. Finally, as
Mooney faces can be produced from gray-scale images by
using different thresholds, we demonstrate the effect of us-
ing different thresholds in Fig.8.

4. Conclusion

Mooney images are fascinating testimonial to the ability
of biological vision systems to accurately handle and in-
terpret impoverished data. This paper provides additional
support, from a mathematical perspective, to the widely
held view in cognitive psychology that the perception of
Mooney images is guided primarily by top-down processes
in which prior knowledge plays a crucial role. Our main
contribution in this paper is showing that shape reconstruc-
tion from a single Mooney image, under the standard Lam-
bertian assumptions, is non-unique even if reconstruction is
restricted to the Mooney transition curve alone. We have
further demonstrated this by constructing families of ambi-
guities for simple shapes. Finally, we have discovered that
recent face reconstruction approaches that use prior knowl-
edge are capable of successfully recovering the 3D shape
of faces from single Mooney images and showed novel re-
sults on real and synthetic data. These results may further
encourage research in recognition and detection of Mooney
faces in cluttered environments, provide insights on image
quantization and may also suggest to psychophysicists con-
crete ways to test this fascinating human ability.
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