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Abstract

“Remember that Time is Money”

— Benjamin Franklin in Advice to a Young Tradesman (1748)

Consider the following setting: a customer has a package and is willing to pay up to some
value v to ship it, but needs it to be shipped by some deadline d. Given the joint prior
distribution from which (v, d) pairs are drawn, we characterize the auction that yields optimal
revenue, contributing to the limited understanding of optimal auctions beyond single-parameter
settings. Our work requires a new way of combining and ironing revenue curves which illustrate
why randomization is necessary to achieve optimal revenue. Finally, we strengthen the emerging
understanding that duality is useful for both the design and analysis of optimal auctions in
multi-parameter settings.

1 Introduction

Consider the pricing problem faced by FedEx. Each customer has a package to ship, a deadline d by
which he needs his package to arrive, and a value v for a guarantee that the package will arrive by
his deadline. FedEx can (and does) offer a number of different shipping options in order to extract
more revenue from their customers. In this paper, we solve the optimal (revenue-maximizing)
auction problem for the single-agent version of this problem. Our paper adds to the relatively
short list of multi-parameter settings for which a closed-form solution is known.

This pricing problem is extremely natural and arises in numerous scenarios, whether it is Ama-
zon.com providing shipping options, Internet Service Providers offering bandwidth plans, Bitcoin
miners setting a policy for transaction fees, or a myriad of other settings in which customers have a
sensitivity to time or some other feature of service. In these settings, a seller can price discriminate
or otherwise segment his market by delaying service, or providing lower quality/cheaper versions
of a product. It is important to understand how buyer deadline (or quality) constraints impact
the design of auctions and what leverage they give to the seller to extract more revenue.
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We consider a model in which a seller provides n different options for service, and a customer
is interested in buying an option that meets his quality demand of d. We use the running example
of shipping packages by deadlines. A customer’s utility for getting his package shipped by day t
at a price of p is v− p if t ≤ d (i.e., it is received by his deadline) and −p otherwise. A customer’s
(v, d) pair is his private information. We study the Bayesian setting, where this pair (v, d) is drawn
from a prior distribution known to the seller.

Related Work

The FedEx problem is a variant of price discrimination in which the customers are grouped by their
deadline. Price discrimination offers different prices to users with the goal of improving revenue [5].
Alternatively one can view the FedEx problem as a multi-dimensional optimal auction problem.
There are two ways to express the FedEx problem in this way. First, as a 2-dimensional (value ×
deadline) problem of arbitrary joint distribution in which the second variable takes only integer
values in a bounded interval. Alternatively, as a very special case of the n-dimensional unit-demand
problem with correlated values (the customer buys a day among the n choices).

There is an extensive body of literature on optimal auction design. The seminal work of
Myerson [33] has completely settled the case of selling a single item to multiple bidders and extends
directly to the more general framework of single-parameter settings. The most complicated part
of his solution is his handling of distributions that are not regular by “ironing” them, that is,
by replacing the revenue curves by their upper concave envelope. Myerson’s ironing is done in
quantile space. In this work, we also need to iron the revenue curves, but we need to do this in
value space.

Extending Myerson’s solution to the multidimensional case has been one of the most important
open problems in Microeconomics. For the case of unit-demand agents, a beautiful sequence of
papers [15, 6, 16, 14, 1, 7] showed how to obtain approximately optimal auctions. For the case of
finite type spaces, [9, 11, 10] are able to use linear and convex programming techniques to formulate
and solve the optimal auction problem. This gives a black-box reduction from mechanism to
algorithm design that yields a PTAS for revenue maximization in unit-demand settings. For the
case of additive agents, additional recent breakthroughs [24, 29, 4, 38, 12, 13] have also resulted
in approximately optimal mechanisms.

But if we insist on optimal auctions for continuous probability distributions, no general solution
is known for the multidimensional case—even for the two-dimensional single-bidder case—and it
is very possible that no such simple solution exists for the general case. One of the reasons that
the multidimensional case is so complex is that optimal auctions are not necessarily deterministic
[34, 37, 6, 26, 25, 31, 35, 19]. The optimal auction for the FedEx problem also turns out to be
randomized with possibly exponentially many different price levels.

There are some relevant results that solve special cases of the two-parameter setting. One
of the earliest works is by Laffont, Maskin, and Rochet [28], who solved a distant variant of the
FedEx problem in which the utility of the bidder is expressed as a quadratic function of the two
values (v, d) when the values are uniformly distributed in [0, 1]; unlike the FedEx problem the
second parameter is drawn from a continuous probability distribution. Their solution was highly
non-trivial, which was an early indication that the multidimensional optimal auction problem may
not be easy. This work was followed by McAfee and McMillan [32] who generalized this example
to a class of distributions that have the “single-crossing” property.

These initial results were followed by more general results. In particular, Haghpanah and



Hartline [23] considered the multidimensional problem of selling a product with multiple quality
levels and gave sufficient conditions under which the optimal auction is to sell only the highest
quality (in the FedEx problem, this corresponds to having a single price for every day). They
also gave sufficient conditions under which selling the grand bundle to an agent with additive
preferences is optimal. Their work generalizes results from Armstrong [3].

Our approach is based on a duality framework. Two such frameworks were proposed. The first
framework by Daskalakis, Deckelbaum, and Tzamos [19, 20, 18] reduces the problem to optimal
transport theory. With its use, the authors gave optimal mechanisms for a number of two-item
settings and gave necessary and sufficient conditions under which grand bundle selling is optimal.
The second framework is by Giannakopoulos and Koutsoupias [21, 22], which is based on expressing
the problem as an optimization problem with linear partial differential inequalities, computing its
dual, and using complementary slackness conditions to extract the optimal auction and prove its
optimality. With its use, the authors gave the optimal auction for a large class of distributions for
two items and for the uniform distribution for up to 6 items. Our solution of the FedEx problem
follows the latter duality framework.

For much more on both exact and approximate optimal mechanism design, see [18, 17, 36, 27, 8].
For background on duality in infinite linear and convex programs, see e.g., [2, 30].

This Paper

Our main result is a characterization of the revenue-optimal auction for this setting. For each
delivery option of 1 through n days, the mechanism specifies a distribution of prices. The customer,
knowing the distributions, specifies a delivery option of i days, and then a price is drawn randomly
from day i’s distribution and offered to the customer.

We formulate the optimal auction problem as a continuous infinite linear program, take its
dual, and determine a sufficient set of conditions for optimality. We then show how to construct
a sequence of “revenue-type” curves Γ≥i(·). Each such curve represents the optimal revenue on
days i through n given a price that might be set on day i. That is, Γ≥i(p) corresponds to the sum
of (1) the revenue from selling day i delivery at a price of p to customers with a deadline of i and
(2) the optimal revenue (when constrained by this choice on day i) from days i + 1 through n,
where the constraint comes from the requirement that it is incentive compatible for a customer to
report his true deadline rather than an earlier one. This curve also incorporates “ironing” so as
to ensure incentive compatibility, and this ironing may lead to randomization over prices. We use
these curves to construct a solution to the primal and dual linear programs that satisfies conditions
sufficient for optimality.

Our result is one of relatively few exact and explicit closed-form generalizations of [33] to multi-
parameter settings with arbitrary joint distributions, and contributes to recent breakthroughs in
this space. Key take-aways are the following:

1. Our result requires a new way of combining and ironing revenue curves. In Myerson’s optimal
auction for irregular distributions, ironing ensures incentive compatibility and gives an upper
bound on the optimal revenue. Myerson shows that this upper bound is in fact achievable
using randomization. Similarly, our combined and ironed curves yield upper bounds on the
revenue, and we show that these upper bounds can be realized with lotteries. In Myerson’s
setting, ironing is required to enforce incentive compatibility constraints among multiple bid-
ders. In our setting, we need ironing even for one bidder because of the multiple parameters.



This may suggest that ironing is one of the biggest hurdles in extending Myerson’s results
to more general settings.

2. The optimal auction we obtain is constructed inductively and, consequently, is relatively
simple to describe. Once the distribution of prices has been determined for delivery by day
i, using Γ≥i+1(·), we show how to define the distribution of prices for delivery by day i+ 1.
The latter involves randomizing over up to 2i prices.

3. The duality approach gives a closed-form allocation rule. Naive attempts to solve this prob-
lem, even for the case where there are only two or three possible deadlines, leads to a massive
case analysis depending on the priors. Even in cases where the optimal auction is determin-
istic, setting these prices is not straightforward. For example, for three possible deadlines,
the optimal deterministic mechanism can require 1, 2, or 3 distinct prices, and determining
how many prices to use and how to set them seems non-trivial.

Our duality approach, however, leads to a unified allocation rule with no case analysis at all.
This paper strengthens the emerging understanding that duality is useful for determining
the structure of the optimal auction in non-trivial settings and for analyzing the resulting
auction.

2 Preliminaries

As discussed above, the type of a customer is a (value, deadline) pair. An auction takes as input a
reported type t = (v, d) and determines the shipping date in {1, . . . , n} and the price. We denote
by ad(v) the probability that the package is shipped by day d, when the agent reports (v, d), and
by pd(v) the corresponding expected price (the expectation is taken over the randomness in the
mechanism).

Our goal is to design an optimal auction for this setting. By the revelation principle, we can
restrict our attention to incentive-compatible mechanisms. Denote by u(v′, d′ | v, d) the utility of
the agent when his true type is (v, d) but he reports a type of (v′, d′). That is,

u(v′, d′ | v, d) =

{
vad′(v

′)− pd′(v′) if d′ ≤ d
−pd′(v′) otherwise.

The incentive compatibility requirement is that

u(v, d) := u(v, d | v, d) ≥ u(v′, d′ | v, d) ∀v′, d′. (1)

We also require individual rationality, i.e., u(v, d) ≥ 0 for all (v, d). Without loss of generality,
ad(v) is the probability that the package is shipped on day d, since any incentive-compatible
mechanism which ships a package early can be converted to one that always ships on the due
date1, while retaining incentive compatibility and without losing any revenue.

For each fixed d, this implies the standard (single parameter) constraints [33], namely

∀d, ad(v) is monotone weakly increasing and in [0, 1]; (2)

∀d, pd(v) = vad(v)−
∫ v

0
ad(x)dx and hence u(v, d) =

∫ v

0
ad(x)dx. (3)

1At least that’s when the customer thinks it’s being shipped.



Clearly no agent would ever report d′ ≥ d, as this would result in negative utility. However, we do
need to make sure that the agent has no incentive to under-report his deadline, and hence another
IC constraint is that for all 2 ≤ d ≤ n:

u(v, d− 1|v, d) ≤ u(v, d|v, d) (4)

which is equivalent to ∫ v

0
ad−1(x)dx ≤

∫ v

0
ad(x)dx ∀d s.t. 1 < d ≤ n. (5)

We sometimes refer to this as the inter-day IC constraint. Since ad(v) is the probability of allo-
cation on day d, given report (v, d), constraints (2), (3) and (5) are necessary and sufficient, by
transitivity, to ensure that

u(v′, d′|v, d) ≤ u(v, d|v, d)

for all possible misreports (v′, d′).

The prior

We assume that the agent’s (value, deadline) comes from a known prior F . Let qi be the probability
that the customer has a deadline i ∈ {1, . . . , n}, that is,

qi = Pr(v,d)∼F [d = i]

and let Fi(·) be the marginal distribution function of values for bidders with deadline i, that is,

Fi(x) = Pr(v,d)∼F [v ≤ x | d = i].

We assume that Fi is atomless and strictly increasing, with density function defined on [0, H]. Let
fi(v) be the derivative of Fi(v).

The objective

Let ϕi(v) = v − 1−Fi(v)
fi(v)

be the virtual value function for v drawn from distribution Fi. Applying
the Myerson payment identity implies that the expected payment of a customer with deadline i is

Ev∼Fi [pi(v)] = Ev∼Fi [ϕi(v)ai(v)].

Thus, we wish to choose monotone allocation rules ai(v), for days 1 ≤ i ≤ n, so as to maximize

E(v,i)∼F [pi(v)] =
n∑

i=1

qiEv∼Fi [pi(v)] =
n∑

i=1

qiEv∼Fi [ϕi(v)ai(v)] =

n∑
i=1

qi

∫ H

0
ϕi(v)fi(v)ai(v)dv,

subject to (2), (3) and (5).



A trivial case and discussion

Conditioned on the fact that a customer has a day d deadline, i.e., if we knew that his value for
service was drawn from Fd, the optimal pricing would be trivial, since this is a single agent, single
item auction. Thus, the optimal mechanism for such a customer is to set the price for service by
day d to the reserve price rd for his prior2. Moreover, if it is the case that rd ≥ rd+1 for each
d, where rd is the reserve price for the distribution Fd, the entire Fedex problem is trivial, since
then we could set rd as the price for service on day d, all IC constraints would be satisfied, and
we would be optimizing pointwise for each conditional distribution.

In this paper, we do not make the assumption that the reserve prices are weakly decreasing with
the deadline, let alone the stronger assumption that the distribution Fd stochastically dominates
the distribution Fd+1 for each d. There may be several reasons that these assumptions do not
hold. For one, the prior F captures the result of random draws from a population consisting of a
mixture of different types. Obviously any particular individual with deadline d is at least as happy
with day d − 1 service as with day d service, but two random individuals may have completely
uncorrelated needs, so if one them is of type (v, d), and the other is of type (v′, d′), with d′ > d, it
is not necessarily the case that v′ ≤ v.

A second factor has to do with costs. It is likely that the cost that FedEx incurs for sending a
package within d days is higher than the cost FedEx incurs for sending a package within d′ > d days,
since in the latter case, for example, FedEx has more flexibility about which of many planes/trucks
to put the package on, and even may be able to reduce the total number of plane/truck trips to a
particular destination given this flexibility. More generally, in other applications of this problem,
the cost of providing lower quality service is lower than the cost of providing higher quality service.
Thus, even if reserve prices tend to decrease with d, all bets are off once we consider a customer’s
value for deadline d conditioned on that value being above the expected cost to FedEx of shipping
a package by deadline d for each d.

In this paper, we are not explicitly modeling the costs that FedEx incurs, the optimization
problems that it faces, the online nature of the problem, or any limits on FedEx’s ability to ship
packages. These are interesting problems for future research. The discussion in the preceding few
paragraphs is here merely to explain why the problem remains interesting and relevant even when
rd is below rd+1.

3 Warm-up: The case of n = 2

Suppose that the customer has a deadline of either one day or two days. By the taxation principle,
the optimal mechanism is a menu, in this case a price pi (possibly selected by some randomized
procedure) for having the package shipped by (on) day i.

LetRi(v) be the revenue curve for day i, that isRi(v) := v·(1−Fi(v)). Let ri := argmaxv(Ri(v)),
the price at which expected revenue from a bidder with value drawn from Fi is maximized, and let
R∗i := Ri(ri) denote this maximum expected revenue. Since R∗i is the optimal expected revenue
from the agent [33], conditioned on having a deadline of i, q1R

∗
1 + q2R

∗
2 is an upper bound on

the optimal expected revenue for the two-day FedEx problem. If r1 ≥ r2, then this optimum is
indeed achievable by an IC mechanism: just set the day one shipping price p1 to r1 and the day
two shipping price p2 to r2.

2rd is defined properly at the beginning of Section 3.



But what if r2 > r1? In this case, the inter-day IC constraint (5) is violated by this pricing (a
customer with d = 2 will prefer to pretend his deadline is d = 1).

Attempt #1: One alternative is to consider the optimal single price mechanism (i.e., p1 =
p2 = p). In this case, the optimal choice is clear:

p := argmaxv [q1R1(v) + q2R2(v)] , (6)

i.e., set the price that maximizes the combined revenue from both days. There are cases where
this is optimal, e.g., if both F1 and F2 are regular.3

Attempt #2: Another auction that retains incentive compatibility, and, in some cases, im-
proves performance is to set the day one price p1 to p and the day two price to

p2 := argmaxv≤p R2(v). (7)

However, even if we fix p1 = p, further optimization may be possible if F2 is not regular.
Attempt #3: Consider the concave hull of R2(·), i.e., the ironed revenue curve. If R2(v) is

maximized at r2 > p and R2(·) is ironed at p, then offering a lottery on day two with an expected
price of p yields higher expected revenue than offering any deterministic day two price of p2. As
we shall see, for this case, this solution is actually optimal. (See Figure 1.)

However, if p > r2, (which is possible if F1 and F2 are not regular, even if r1 < r2), then we
will see that the optimal day one price is indeed above r2, but not necessarily equal to p.

Attempt #4: If p > r2, set the day one price to

p1 := argmaxv≥r2 R1(v).

This should make sense: if we’re going to set a day one price above r2, we may as well set the day
two price to r2, but in that case, the day two curve should not influence the pricing for day one
(except to set a lower bound for it).

Admittedly, this sounds like a tedious case analysis, and extending this reasoning to three or
more days gets much worse. Happily, though, there is a nice, and relatively simple way to put all
the above elements together to describe the solution, and then, as we shall see in Section 5, prove
its optimality via a clean duality proof.

A solution for n = 2

Define R(·) to be the concave (ironed) revenue curve corresponding to revenue curve R(·) and let

R12(v) :=

{
q1R1(v) + q2R2(v) v ≤ r2
q1R1(v) + q2R2(r2) v > r2

(8)

Note that because R2(·) is the least concave upper bound of R2(·) and by definition of r2 that
R2(r2) = R2(r2). The optimal solution is to set

p1 := argmaxvR12(v),

and then take
p2 := r2 if r2 ≤ p1 and E(p2) := p1 otherwise,

3 A distribution F is regular if its virtual value function is increasing in v.
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Figure 1: A two-day case: Suppose that the optimal thing to do on day one is to offer a price
of p. In the upper left, we see the corresponding allocation curve a1(v). The bottom left graph
shows the revenue curve R2(·) for day two (the thin black curve) and the ironed version R2(·)
(the thick blue concave curve). Optimizing for day two subject to the inter-day IC constraint∫ v
0 a1(x)dx ≤

∫ v
0 a2(x)dx suggests that the most revenue we can get from a deadline d = 2

customer is R2(p) on day two, which can be done by offering the price of p with probability 1/3
and a price of p with probability 2/3 (since, in this example, p = (1/3)p + (2/3)p). This yields
the pink allocation curve a2(v) shown in the upper right. The fact that these curves satisfy the
inter-day IC constraint follows from the fact that the area of the two grey rectangles shown in the
bottom right are equal.



where the randomized case is implemented via the lottery as in the example of Figure 1.

The key idea: R12(v) describes the best revenue we can get if we set a price of v on day 1. Since
r2 is the optimal day two price, if we are going to set a price above r2 for day one, we may as well
be optimal for day two. On the other hand, if the day one price is going to be below r2, we have
to be careful about the inter-day IC constraint (5), and ironing the day two revenue curve may
be necessary. This is precisely what the definition of R12(·) in (8) does for us. The asymmetry
between day one and day two, specifically the fact that the day one curve is never ironed, whereas
the day two curve is, is a consequence of the inter-day IC constraint (5). We generalize this idea
in the next section to solve the n-day problem.

4 An optimal allocation rule

4.1 Preliminaries

Our goal is to choose monotone allocation rules ai(v), for days 1 ≤ i ≤ n, so as to maximize∑n
i=1 qi

∫ H
0 ϕi(v)fi(v)ai(v)dv.

For a distribution fi(·) on [0, H] with virtual value function ϕi(·) = v− 1−Fi(v)
fi(v)

, define γi(v) :=

qiϕi(v)fi(v). Then we aim to choose ai(v) to maximize
∑n

i=1

∫ H
0 γi(v)ai(v)dv.

Let Γi(v) =
∫ v
0 γi(x)dx. Observe that this function is the negative of the revenue curve, that

is, Γi(v) = −qiRi(v) = −qiv(1− Fi(v)). 4 Thus, Γi(0) = Γi(H) = 0 and Γi(v) ≤ 0 for v ∈ [0, H].

Definition 1. For any function Γ, define Γ̂(·) to be the lower convex envelope 5 of Γ(·). We say
that Γ̂(·) is ironed at v if Γ̂(v) 6= Γ(v).

Since Γ̂(·) is convex, it is continuously differentiable except at countably many points and its
derivative is monotone (weakly) increasing.

Definition 2. Let γ̂(·) be the derivative of Γ̂(·) and let γ(·) be the derivative of Γ(·).

Claim. The following facts are immediate from the definition of lower convex envelope (See Figure
2.):

• Γ̂(v) ≤ Γ(v) ∀v.

• Γ̂(vmin) = Γ(vmin) where vmin = argminvΓ(v). (This implies that there is no ironed interval
that crosses over vmin.)

• γ̂(v) is an increasing function of v and hence its derivative γ̂′(v) ≥ 0 for all v.

• If Γ̂(v) is ironed in the interval [`, h] , then γ̂(v) is linear and γ̂′(v) = 0 in (`, h).

We next define the sequence of functions that we will need for the construction:

4 Γi(v) = qi
∫ v

0
[xfi(x)− (1− Fi(x)] dx. Integrating the first term by parts gives

∫ v

0
xfi(x) dx = vFi(v) −∫ v

0
Fi(x) dx. Combining this with the second term yields Γi(v) = −qiv(1− Fi(v)).
5 The lower convex envelope of function f(x) is the supremum over convex functions g(·) such that g(x) ≤ f(x)

for all x. Notice that the lower convex envelope of Γ(·) is the negative of the ironed revenue curve R(v).
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Figure 2: The black curve is Γi(v), and its lower convex envelope Γ̂(v) is traced out by the thick
light blue line. The curve is ironed in the interval [`, h] (among others), so in that interval, Γ̂(v)
is linear, and thus has second derivative equal to 0.

Definition 3. Let
Γ≥n(v) := Γn(v) and r≥n := argminvΓ≥n(v).

Inductively, define, for i := n− 1 down to 1,

Γ≥i(v) :=

{
Γi(v) + Γ̂≥i+1(v) v < r≥i+1

Γi(v) + Γ̂≥i+1(r≥i+1) v ≥ r≥i+1

and r≥i := argminvΓ≥i(v).

The derivative of Γ≥i(·) is then

γ≥i(v) :=

{
γi(v) + γ̂≥i+1(v) v < r≥i+1

γi(v) v ≥ r≥i+1

.

Rewriting this yields

γ≥i(v)− γi(v) =

{
γ̂≥i+1(v) v < r≥i+1

0 v ≥ r≥i+1

. (9)

4.2 The allocation rule

We define the allocation curves ai(·) inductively. We will show later that they are optimal. Each
allocation curve is piecewise constant. For day one, set

a1(v) =

{
0 if v < r≥1,

1 otherwise
.

Suppose that ai−1 has been defined, for some i < n, with jumps at v1, . . . , vk, and values 0 = β0 <
β1 ≤ β2 . . . ≤ βk = 1. That is,

ai−1(v) =


0 if v < v1,

βj vj ≤ v < vj+1 1 ≤ j < k

1 vk ≤ v
.



Thus, we can write

ai−1(v) =

k∑
j=1

(βj − βj−1)ai−1,j(v)

where

ai−1,j(v) =

{
0 if v < vj

1 v ≥ vj
.

Next we define ai(v).

1

1

Figure 3: This figure shows an example allocation curve ai−1(v) in purple, and illustrates some
aspects of Definition 4. The curves Γ≥i(v) and Γ̂≥i(v) are shown directly below the top figure. In
this case, r≥i ∈ [vj+1, vj+2), so j∗ = j + 1. The bottom figure shows how ai,j(v) is constructed
from ai−1,j(v).

Definition 4. Let j∗ be the largest j such that vj ≤ r≥i. For any j ≤ j∗, consider two cases:



• Γ̂≥i(vj) = Γ≥i(vj), i.e. Γ̂≥i not ironed at vj: In this case, define

ai,j(v) =

{
0 if v < vj

1 otherwise.
.

• Γ̂≥i(vj) 6= Γ≥i(vj): In this case, let

– vj := the largest v < vj such that Γ̂≥i(v) = Γ≥i(v) i.e., not ironed, and

– vj := the smallest v > vj such that Γ̂≥i(v) = Γ≥i(v) i.e., not ironed.

Let 0 < δ < 1 such that
vj = δvj + (1− δ)vj .

Then Γ̂≥i(·) is linear between vj and vj:

Γ̂≥i(vj) = δΓ≥i(vj) + (1− δ)Γ≥i(vj).

Define

ai,j(v) =


0 if v < vj
δ vj ≤ v < vj

1 otherwise.

.

Finally, set ai(v) as follows:

ai(v) =


∑j∗

j=1(βj − βj−1)aij(v) if v < r≥i,

1 v ≥ r≥i
. (10)

Remark: In order to continue the induction and define ai+1(v) we need to rewrite ai(v) in terms
of functions ai,j(v) that take only 0/1 values. This is straightforward.

Lemma 1. The allocation curves ai(·), for 1 ≤ i ≤ n, are monotone increasing from 0 to 1 and
satisfy the inter-day IC constraints (5). Moreover, each ai(·) changes value only at points where
Γ̂≥i(·) is not ironed.

Proof. That the allocation curves ai(·) are weakly increasing, start out at 0, and end at 1 is
immediate from the fact that they are convex combinations of the monotone allocation curves
aij(·). Also, by construction, each ai(·) changes value only at points where Γ̂≥i(v) is not ironed.

So we have only left to verify that∫ v

0
ai−1(x)dx ≤

∫ v

0
ai(x)dx.

From the discussion above, for v ≤ r≥i, we have

ai−1(v) =

j∗∑
j=1

(βj − βj−1)ai−1,j(v) and ai(v) =

j∗∑
j=1

(βj − βj−1)ai,j(v)



since ai−1,j(v) = 0 for v ≤ r≥i and j > j∗. Thus, it suffices to show that for each j ≤ j∗ and
v ≤ r≥i ∫ v

0
ai−1,j(x)dx ≤

∫ v

0
ai,j(x)dx.

If Γ≥i is not ironed at vj , then this is an equality. Otherwise, for v ≤ vj , the left hand side is 0
and the right hand side is nonnegative. For vj ≤ v ≤ vj the left hand side is (v − vj), whereas
the right hand side is δ(v − vj). Rearranging the inequality vj = δvj + (1− δ)vj ≥ δvj + (1− δ)v
implies that v − vj ≤ δ(v − vj). This completes the proof that (5) holds.

Notice that
∫ v
0 ai−1,j(x)dx =

∫ v
0 ai,j(x)dx for v < vj and v > vj , so ai−1(v) = ai(v) unless Γ≥i

is ironed at v, or v ≥ r≥i. We will use this fact in the proof of Claim 5.3 below.

5 Proof of optimality

In this section, we prove that the allocation rules and pricing of the previous section are optimal.
To this end, we formulate our problem as an (infinite) linear program. We discussed the objective
and constraints of the primal program in Section 2, and we have already shown above that our
allocation rules are feasible for the primal program. We then construct a dual program, and a
feasible dual solution for which we can prove strong duality and hence optimality of our solution.

5.1 The linear programming formulation

Recall the definitions from Section 2: The function γi(v) is the derivative of Γi(v) =
∫ v
0 qiϕi(x)fi(x) dx,

where ϕi(v) = v − 1−Fi(v)
fi(v)

is the day i virtual value function and qi is the fraction of bidders with

deadline i. Similarly γ̂i(v) is the derivative of Γ̂i(v). We use [n] to denote the set of integers
{1, . . . , n}.

The Primal

Variables: ai(v), for all i ∈ [n], and all v ∈ [0, H].

Maximize
n∑

i=1

∫ H

0
ai(v)γi(v)dv

Subject to∫ v

0
ai(x)dx−

∫ v

0
ai+1(x)dx ≤ 0 ∀i ∈ [n− 1] ∀v ∈ [0, H] (dual variables αi(v))

ai(v) ≤ 1 ∀i ∈ [n] ∀v ∈ [0, H] (dual variables bi(v))

−a′i(v) ≤ 0 ∀i ∈ [n] ∀v ∈ [0, H] (dual variables λi(v))

ai(v) ≥ 0 ∀i ∈ [n] ∀v ∈ [0, H].



The Dual

Variables: bi(v), λi(v), for all i ∈ [n], and all v ∈ [0, H], αi(x) for i ∈ [n− 1] and all x ∈ [0, H].

Minimize

∫ H

0
[b1(v) + · · ·+ bn(v)] dv

Subject to

b1(v) + λ′1(v) +

∫ H

v
α1(x)dx ≥ γ1(v) ∀v ∈ [0, H] (primal var a1(v))

bi(v) + λ′i(v) +

∫ H

v
αi(x)dx−

∫ H

v
αi−1(x)dx ≥ γi(v) ∀v ∈ [0, H], i = 2, . . . , n− 1 (primal var ai(v))

bn(v) + λ′n(v)−
∫ H

v
αn−1(x)dx ≥ γn(v) ∀v ∈ [0, H] (primal var an(v))

λi(H) = 0 ∀i ∈ [n]

αi(v) ≥ 0 ∀v ∈ [0, H], i ∈ [n− 1]

bi(v), λi(v) ≥ 0 ∀i ∈ [n]∀v ∈ [0, H].

5.2 Conditions for strong duality:

As long as there are feasible primal and dual solutions satisfying the following conditions, strong
duality holds. See Appendix A for a proof that these conditions are sufficient.

ai(v) > 0 ⇒ λi(v) continuous at v i ∈ [n] (11)

ai(v) < 1 ⇒ bi(v) = 0 i ∈ [n] (12)

a′i(v) > 0 ⇒ λi(v) = 0 i ∈ [n] (13)∫ v

0
ai(x)dx <

∫ v

0
ai+1(x)dx ⇒ αi(v) = 0 i ∈ [n− 1] (14)

bi(v) + λ′i(v) +

∫ H

v
αi(x)dx−

∫ H

v
αi−1(x)dx > γi(v) ⇒ ai(v) = 0 i = 2, . . . , n− 1 (15)

b1(v) + λ′1(v) +

∫ H

v
α1(x)dx > γ1(v) ⇒ a1(v) = 0 (16)

bn(v) + λ′n(v)−
∫ H

v
αn−1(x)dx > γn(v) ⇒ an(v) = 0 (17)

We allow a′i(v) ∈ R ∪ {+∞}, otherwise we could not even encode a single-price auction.6

5.3 The proof

Theorem 2. The allocation curves presented in Subsection 4.2 are optimal, that is, obtain the
maximum possible expected revenue.

6 In particular, ai(v) may have (countably many) discontinuities, in which points a′i(v) = +∞ > 0. However,
in our proof of optimality a′i(v) appears only as a factor of the product a′i(v)λi(v). Every time a′i(v) = +∞, the
corresponding dual value of λi(v) is 0—by condition (13). See also Appendix A.



Proof. To prove the theorem, we verify that there is a setting of feasible dual variables for which
all the conditions for strong duality hold. To this end, set the variables as follows:

λi(v) = Γ≥i(v)− Γ̂≥i(v) (18)

bi(v) =

{
0 v < r≥i

γ̂≥i(v) v ≥ r≥i
(19)

αi(v) =

{
γ̂′≥i+1(v) v < r≥i+1

0 v ≥ r≥i+1

(20)

From Claim 4.1, it follows that λi(v), αi(v) ≥ 0 for all v and i. Since r≥i is the minimum of
Γ̂≥i(·), we have γ̂≥i(r≥i) = 0. Moreover, since γ̂≥i(·) is increasing, bi(v) ≥ 0 for all v and i.

Taking the derivative of (18), and using Equation (9), we obtain:

γi(v)− λ′i(v) =

{
γ̂≥i(v)− γ̂≥i+1(v) v < r≥i+1

γ̂≥i(v)− 0 v ≥ r≥i+1

(21)

γn(v)− λ′n(v) = γ̂n(v) (22)

Also, using (20) and the fact that γ̂≥i+1(r≥i+1) = 0, we get:

Ai(v) :=

∫ H

v
αi(x) dx =

{
−γ̂≥i+1(v) v < r≥i+1

0 v ≥ r≥i+1

(23)

Condition (11) from Section 5.2 holds since Γ≥i(v) and Γ̂≥i(v) are both continuous functions. The
proofs of all remaining conditions for strong duality from Section 5.2 can be found below.

Claim. Condition (12): For all i and v, ai(v) < 1 =⇒ bi(v) = 0.

Proof. If ai(v) < 1, then v < r≥i, so by construction, bi(v) = 0.

Claim. Condition (13): For all i and v, a′i(v) > 0 =⇒ λi(v) = 0.

Proof. From Subsection 4.2, a′i(v) > 0 only for unironed values of v, at which λi(v) = 0.

Claim. Condition (14): For all i and v,
∫ v
0 ai(x)dx <

∫ v
0 ai+1(x)dx =⇒ αi(v) = 0.

Proof. As discussed at the end of the proof of Lemma 1,
∫ v
0 ai(x)dx =

∫ v
0 ai+1(x)dx unless Γ≥i+1 is

ironed at v, or v ≥ r≥i. In both of these cases αi(v) = 0 (by part 4 of Claim 4.1 and Definition 20,
respectively).

Claim. Conditions (15)- (17) and dual feasibility: For all i and v, ai(v) > 0 =⇒ the correspond-
ing dual constraint is tight, and the dual constraints are always feasible.

Proof. Rearrange the dual constraint bi(v) +Ai(v)−Ai−1(v) + λ′i(v) ≥ γi(v) to

bi(v)−Ai−1(v) ≥ γi(v)− λ′i(v)−Ai(v).



Fact 1: For i ∈ [n− 1], γi(v)− λ′i(v)−Ai(v) = γ̂≥i(v) for all v. To see this use (21) and (23):

γi(v)− λ′i(v) =

{
γ̂≥i(v)− γ̂≥i+1(v) v < r≥i+1

γ̂≥i(v)− 0 v ≥ r≥i+1

Ai(v) =

{
−γ̂≥i+1(v) v < r≥i+1

0 v ≥ r≥i+1

Fact 2: For i ∈ {2, . . . , n}, bi(v)−Ai−1(v) = γ̂≥i(v) for all v.

bi(v) =

{
0 v < r≥i

γ̂≥i(v) v ≥ r≥i
−Ai−1(v) =

{
γ̂≥i(v) v < r≥i

0 v ≥ r≥i

Hence for i ∈ {2, . . . , n− 1}, bi(v)−Ai−1(v) = γi(v)− λ′i(v)−Ai(v) for all v.
For i = n, since γ≥n = γn, and γn(v)− λ′n(v) = γ̂n(v). Combining this with Fact 2 above, we

get that bn(v)−An−1(v) + λ′n(v) = γn(v) for all v.
Finally, for i = 1, using Fact 1, for v < r≥1, we get

b1(v) = 0 ≥ γ̂≥1(v) = γ1(v)− λ′1(v)−A1(v)

which is true for v < r≥1. For v ≥ r≥1, we get

b1(v) = γ≥1(v) = γ1(v)− λ′1(v)−A1(v),

so the dual constraint is tight when a1(v) > 0 as this starts at r≥1.

The above claims prove that this dual solution satisfies feasibility and all complementary
slackness and continuity conditions from Section 5.2 hold.
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A Proof of strong duality

Theorem 3. Let ai(·), bi(·), λi(·), αi(·) be functions feasible for the primal and dual, satisfying
all the conditions from Section sec:CS. Then they are optimal.

Proof. First, we prove weak duality. For any feasible primal and dual:∫ H

0

n∑
i=1

bi(v) dv (24)

=

∫ H

0

n∑
i=1

(1 · bi(v) + 0 · [λi(v) + αi(v)]) dv. (25)

Applying primal feasibility, we see that this quantity is

≥
∫ H

0

n∑
i=1

(
ai(v)bi(v))− a′i(v)λi(v) +

[∫ v

0
ai(x)− ai+1(x)dx

]
αi(v)

)
dv. (26)

We rewrite this expression using the following.

• Applying integration by parts,using the facts that λi(·) is continuous (Condition (11)) and
equal to 0 at any point that a′i(v) =∞,7 we get

−
∫ H

0
a′i(v)λi(v) dv = −ai(v)λi(v)

∣∣∣H
0

+

∫ H

0
ai(v)λ′i(v) dv =

∫ H

0
ai(v)λ′i(v) dv,

since ai(0) = 0 and λi(H) = 0.

• Second, interchanging the order of integration, we get∫ H

0

∫ v

0
[ai(x)− ai+1(x)dx]αi(v) dv =

∫ H

0

(
ai(v)

∫ H

v
αi(x) dx− ai+1(v)

∫ H

v
αi(x) dx

)
dv.

Combining these shows that (26) equals∫ H

0

(
n∑

i=1

ai(v)

[
bi(v) + λ′i(v) +

∫ H

v
αi(x)−

∫ H

v
αi−1(x) dx

])
dv

≥
∫ H

0

H∑
i=1

ai(v)γi(v) dv (27)

7a′i(v) can be ∞ at only countably many points.



where the last inequality is dual feasibility. (Note that α0(·) = αn(·) = 0.)

Comparing (24) and (27) yields weak duality, i.e.,
∑

i

∫ H
0 bi(v) dv ≥

∑
i

∫ H
0 ai(v)γi(v) dv.

If the conditions (11)-(17) hold, we also have strong duality and hence optimality: To show
that (25) = (26), observe that

• (12) ai(v) < 1 implies that bi(v) = 0;

• (13) a′i(v) > 0 implies that λi(v) = 0.

• (14)
∫ v
0 (ai+1(x)− ai(x))dx > 0 implies that αi(v) = 0 for i = 1, . . . , n− 1.

Finally, (27) is an equality rather than an inequality because of conditions (15)-(17).
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