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Modern intelligent systems are becoming increasingly monolithic, powered by gigantic
foundation models trained on trillions of tokens of web data. To democratize AI systems, it is
imperative to ensure that they are not limited to running on multi-accelerator clusters but also
on commodity devices like mobile phones seamlessly. Additionally, foundation models exhibit a
performance disparity between frequently encountered head tasks in the training data and less
common tail tasks, necessitating their adaptation through efficient retrieval of relevant contextual
data. Furthermore, echoing human learning principles, not all tasks are equally challenging or
require the entirety of the vast web data. My research methodology centers on translating these
concepts into practical solutions for real-world implementation, ensuring that these intelligent
systems can be scaled reliably and responsibly to serve all users equitably.

With the goal of efficient, elastic and contextual intelligence, I focus on building fundamental
machine learning (ML) building blocks that encompass: (1) elastic representations and models
for accurate, adaptive and efficient deployment and (2) mechanisms to make contextual data
efficiently accessible to models for equitable adaptation.

Towards the elastic modeling, along with traditional efficiency techniques [2, 3, 21, 22], I
introduced the “Matryoshka” way of packing information in a dense vector – the atomic building
block of every ML model. This enabled elastic multi-granular matryoshka embeddings for
datapoints [5] as well as elastic universal matryoshka neural network models [10] at web-scale.
Concretely, matryoshka representation learning (MRL) [5] is now a default design choice for
universal embedding models at Google that power image search, photos, and multimodal ads
directly impacting over a Billion users every day. At the same time, Matryoshka Transformer
(MatFormer) [10] enables model virtualization for adaptive computation across discriminative
and generative tasks and is a next generation architecture for web-scale foundation models.

Towards efficient access to contextual data, I revisited the fundamental problem of dense re-
trieval [4, 14, 20] that powers all of modern-day search [18, 28]. I developed approximate nearest
neighbor search (ANNS) methods that leverage the elastic embeddings for flexible search [20]
and end-to-end differentiable search solutions that are more data-driven [14]. Furthermore,
I also fundamentally rethought traditional search by learning compact binary codes for data
points that double as accurate representations and efficient web-scale indices [4]. This enabled
us to accurately index 1 Billion images with only 8 GBmemory and can power offline web-scale
search on a smartphone. Inspired by priming [24] from cognitive psychology, I believe that
foundation models can adapt [16, 31] efficiently to the tail tasks in the presence of appropriate
retrieved data from the vast web and more broadly the whole world.

The overarching theme of my research is to improve the building blocks of ML systems
to do more for the same resource usage with simple and scalable techniques. Due to the
fundamental nature, the techniques I build, for modeling and retrieving data, work together
seamlessly and can help build truly elastic and adaptive web-scale intelligent systems to serve the
users dynamically and equitably based on task, context, and resource constraints. Finally, each
of these research directions stands on its own merit solving high-impact fundamental problems
like large-scale search and efficient deployment that have potential applications across various
fields that extend beyond computer science.
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Past Research
Efficient and elastic ML models. Even back in 2017, when I started working on ML research,
the state-of-the-art (SOTA) deep learning (DL) models were computationally very expensive.
For example, it was not until late 2017 that wakeword detection of “Hey Siri” happened on-
device [25]. I realized the importance of having efficient ML models that can be deployed in
extremely resource-constrained settings to make intelligent systems real-time and ubiquitous.

To enable real-time intelligence on the edge, I developed FastGRNN [2, 1] that powered
“Hey Cortana” wakeword detection with a 1 KB model at Microsoft. FastGRNN was focused
on efficiency stemming from simple algorithmic design and a combination of now ubiquitous
compression techniques. We further extended these ideas to build an on-device radar-based
poacher detection system in remote wildlife reserves [21] and reduce the RAMusage, to less than
256 KB, of deep CNNmodels for object detection by using RNNPool [22] to perform accurate
downsampling. Furthermore, I introduced the concept of learnable sparsity [3] which was the
first end-to-end differentiable method that achieved SOTA “Accuracy vs FLOPs vs Model size”.
While extremely powerful, these efficiency techniques often demand extra training for specific
resource constraints. They are also hard to apply dynamically, even on the cloud, based on the
server load and other requirements. This necessitates the development of elastic entities that can
seamlessly adapt to evolving downstream requirements without incurring any additional costs.
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Figure 1: Matryoshka style ordered and nested in-
formation packing in a dense vector representation.

To address this fundamental problem, I
proposed “Matryoshka” structure in dense
vector representations to order the informa-
tion from left to right based on importance
in a nested fashion. Matryoshka represen-
tation learning (MRL) [5] helps neural net-
works output dense vectors that are inher-
ently multi-granular by jointly optimizing the
same learning task at a select few embedding
granularities. MRL helps obtain accurate low-
dimensional representations of desired quality
and cost/size by taking the appropriate num-
ber of leftmost coordinates. This helps elas-
tically cater to downstream tasks of varying
requirements like retrieval, classification, etc.,
in the transfer learning paradigm. MRL is sim-
ple, scalable, and agnostic to representation
learning setups, modalities, and models which made it a default choice in universal embedding
models at Google that rely on a single model to perform a variety of tasks but are restricted by
the most latency-sensitive task like web search. Today, matryoshka representations serve over a
Billion users daily across Google products and have been widely explored in the industry.

Incorporating similar ideas into the weights of neural networks, not just the final embeddings
out of them would help train one universal model that can be elastically deployed across setups
and tasks at no additional cost. We developed MatFormer [10] which brought the matryoshka
structure to all of the Transformer [27] architecture. MatFormer enables extractions of 100s of
smaller accurate models for awide range of static deployment constraints and also supports
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dynamic conditional inference on-the-fly based on task hardness [23] and resource constraints.
Additionally, MatFormer provides smaller submodels that are inherently consistent with the
universal model due to the preservation of metric-space structure. This allows for significant
speed-ups in inference time optimization of generative language models [15] as well as enabling
adaptive query encoders for large-scale retrieval for the first time. Similar to MRL, MatFormer is
domain and setup agnostic while scaling, to internet-scale, as reliably as the default Transformer.
Overall, MatFormer is a next-generation architecture that elicits elasticity and virtualization
within foundation models that form the basis of modern-day web-scale intelligent systems.

Efficient data retrieval. Humans perceive things in a relative sense by comparing them to
preexisting memories [6] – web-scale machine learning is no different. Modern web search
consists of data points encoded as embeddings using a neural network, followed by building an
efficient ANNS index to effectively search over 100 billion instances for a given query. While
remarkable, the fundamentals behind this have not been revisited in a long time. This made me
work on improving and rethinking the fundamental building blocks of semantic search.

We focused on flexibility within ANNS building blocks [20] by leveraging the multi-granular
and elastic MRL representations for web-scale data. This helped design 2− 10× efficient ANNS
indices for web data without compromising accuracy. Now, matryoshka representations could
be used at web-scale for on-the-fly adaptive and equitable search without the need to rebuild
indices across granularities and is being actively explored at Google scale. Despite their success,
representations and ANNS indices do not inform each other in a data-driven fashion leading to
sub-optimality. To this end, we showed that jointly training representations and the a differen-
tiable tree-based ANNS index [14] improves accuracy and load-balancing while reducing latency
compared to existing modular systems. However, this solution still has human intervention,
through the inductive bias on the ANNS structure, which I wish to completely get rid of.

As an alternative, I rethought the entire pipeline as a representation learning problem,
through the lens of compression and scalable instance classification, where each data point is
assigned a learned low-dimensional binary code [4]. These binary codes have the required
semantic information for downstream tasks, while also acting as a native hash-based index for
all the data points. This works at scale resulting in an accurate encoding of 1 Billion images with
just 8 bytes per image which also serves as an extremely efficient web-scale index for search
on-demand. Rethinking search to be end-to-end differentiable and free of scaffolds can result in
large amounts of data being available for offline search based on the context during deployment.

Finally, most datasets used for large-scale training are not fair in their distribution across
various axes. To alleviate some of this problem,we also curated and auditedweb-scale datasets for
underserved tasks like 3D modeling [9] and multi-lingual NLP [13]. Without online adaptation
of foundation models, either through priming [31] or retrieval augmentation [16], using relevant
retrieved data based on the context, it is nearly impossible for equitable serving of intelligent
systems. My research on efficient data retrieval tackles the algorithmic aspects of web-scale
search to get relevant information effectively by allocating compute elastically based on the need.

Future Research Agenda
I envision a future where the AI systems cater to every user accurately, reliably and equitably

based on their needs in real-time. To realize this goal, I shall leveragemy experience and expertise
in elastic modelling and efficient data retrieval to pursue the following directions.
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End-to-end elastic search. Bringing together everything I have developed towards elastic
modelling, representations and ANNS will result in a truly elastic end-to-end learned search
system that maintains accuracy for head tasks at fraction of the cost while being able to spend lot
more resources to cater the rare tail queries to not leave any data or user behind. Currently, I am
co-leading a team at Google to build a prototype at scale for real-world use cases.

Indexing the world. Rethinking search through end-to-end representation learning and com-
pression opens up a new and on-the-fly way to index the entire world, not just the web. Imagine
a robot that is moving around and perceiving its surroundings, at the moment it can rarely
remember everything it saw, heard or felt. Enabling efficient representation that doubles as index
of the perceived states would help any embodied or intelligent agent make a more informed
decision like what a human or even a crow would. This also helps in improving privacy by en-
abling on-device indexing and search without compromising on accuracy for smart devices [11].
Beyond perception, this representation learning paradigm assists in any setup that requires
accurate and fast search on all the candidates like in drug discovery [8] or protein structure
generation [26]. I wish to expand on potential applications of efficient large-scale search and
storage across natural sciences for a more grounded use of generative foundation models.

Contextual foundation models. Hallucinations are the Achilles’ heel of modern generative
models, especially for tail tasks. While post-hoc retrieval augmentation [16, 19] can fix some
of the issues and make the generations more grounded and diverse, I look forward to building
contextual foundation models that are explicitly designed and optimized to leverage retrieval of
relevant contextual data and external memory banks as core components in their inference [7].

Continually learning intelligent systems. While human learning is never ending, the machine
equivalent, continual learning has hit a road block owing to the issues in evaluation [29]. Loosely
drawing parallels to human brain or to a great extent emulating the modern-day computer
architecture, elastic models can act as hierarchical information packing and learning entities. I
would like to revisit continual learning, through the lens of elastic and contextual modelling,
in real-world to capture trends across temporal scales while discovering new things along the
way [30] to eventually build a world model along side fast local models across time-scales [12].

In sum, my research focuses on designing fundamental ML algorithms with strong empirical
performance and real-world deployability geared towards enabling efficient, elastic and contex-
tual intelligence that can bring the systems ever so close to the efficiency of the human brain [17].
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