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We present Gecko, a compact and versatile text embedding model. Gecko achieves strong retrieval
performance by leveraging a key idea: distilling knowledge from large language models (LLMs) into a
retriever. Our two-step distillation process begins with generating diverse, synthetic paired data using
an LLM. Next, we further refine the data quality by retrieving a set of candidate passages for each query,
and relabeling the positive and hard negative passages using the same LLM. The effectiveness of our
approach is demonstrated by the compactness of the Gecko. On the Massive Text Embedding Benchmark
(MTEB), Gecko with 256 embedding dimensions outperforms all existing entries with 768 embedding
size. Gecko with 768 embedding dimensions achieves an average score of 66.31, competing with 7x
larger models and 5x higher dimensional embeddings.

1. Introduction

Text embedding models represent natural language as dense vectors, positioning semantically similar
text near each other within the embedding space (Gao et al., 2021; Le and Mikolov, 2014; Reimers
and Gurevych, 2019). These embeddings are commonly used for a wide range of downstream tasks
including document retrieval, sentence similarity, classification, and clustering (Muennighoff et al.,
2023). Instead of building separate embedding models for each downstream task, recent efforts seek
to create a single embedding model supporting many tasks.

The recent development of general-purpose text embedding models presents a challenge: these
models require large amounts of training data to comprehensively cover desired domains and skills.
Recent embedding efforts have focused on using extensive collections of training examples (Li et al.,
2023; Wang et al., 2022). Large language models (LLMs) offer a powerful alternative, as they contain
vast knowledge across various domains and are known to be exceptional few-shot learners (Anil et al.,
2023; Brown et al., 2020). Recent work demonstrates the effectiveness of using LLMs for synthetic
data generation, but the focus has primarily been on augmenting existing human-labeled data or
improving performance in specific domains (Dai et al., 2022; Jeronymo et al., 2023). It motivates us
to re-examine: to what extent can we leverage LLMs directly to improve text embedding models?

In this work, we present Gecko, a highly versatile yet efficient embedding model, powered by the
vast world knowledge of LLMs. Our approach leverages insights from knowledge distillation to create
a two-step LLM-powered embedding model. Starting with a large corpus of (unlabeled) passages,
we use a few-shot prompted LLM to generate a relevant task and query for each passage, similar to
Dai et al. (2022) and Wang et al. (2023). We then embed the concatenated task and query using a
pretrained embedding model to obtain nearest neighbor passages, use an LLM to rerank the passages,
and obtain positive and negative passages based on the LLM scores. The reranking step is key to
enhance the quality as we discover that the best passage to answer the generated query often differs
from the original source passage. We show that using our LLM-based dataset, FRet, alone can lead to
significantly improvement, setting a strong baseline as a zero-shot embedding model on MTEB.
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Gecko: Versatile Text Embeddings Distilled from Large Language Models

Gecko

The feast of the Repose of Saint 
Herman was celebrated … on Tuesday, 

December 13, 2016.

Task: Given a query, find a passage 
that answers the question.

Query: when is the feast of st. herman

Herman was able to see into the 
hearts of others, as well as into the 

future. He worked …

Positive

Negative

Similar

Large 
Language 

Model

Task Query P N
Task Query P N
Task Query P N…

FRet

Figure 1 | Overview of Gecko. Gecko is a versatile text embedding model trained on a variety of tasks
including document retrieval, semantic similarity, and classification. To train Gecko, we utilize FRet
where queries are generated from LLMs, and their positive and negative passages are mined by LLMs.

By combining this LLM-generated and LLM-ranked data with human-annotated data, our model,
Gecko-1B with 768-dimensional embeddings, achieves the best performance on the popular MTEB
benchmark (Muennighoff et al., 2023) among the models with compatible embedding dimensions
and model sizes. Moreover, Gecko often outperforms other systems that use either larger base models
(7B) or higher dimensional embeddings (1k to 4k).

2. Related Work

Text Embedding Models Text embeddings convert textual inputs into uniform-sized vectors, sup-
porting downstream tasks such as semantic similarity, information retrieval, clustering, and clas-
sification. Recent models, including SBERT (Reimers and Gurevych, 2019), Universal Sentence
Encoder (Cer et al., 2018), and Sentence T5 (Ni et al., 2022), attempt to provide general purpose
embeddings suitable for various NLP tasks. Despite attempting to be general-purpose, studies indicate
that these embedding models struggle to generalize across tasks and domains, motivating the creation
of unified models trained across diverse tasks (Asai et al., 2022; Su et al., 2022) and benchmarks
such as MTEB (Muennighoff et al., 2023) focused on novel task and domain generalization. Inspired
by these prior works, we develop a versatile embedding model by creating the LLM-generated FRet
dataset from a large and diverse corpus encompassing a wide variety of task types.

Contrastive Learning One of the critical components of contrastive learning is to find proper negative
examples for a query (Gao et al., 2021; Karpukhin et al., 2020; Lee et al., 2021). For example, Xiong
et al. (2020) proposed to select hard negatives from a large corpus using an asynchronously-updated
approximate nearest neighbor index. Other previous work has denoised the hard negatives based
on confidence scores (Qu et al., 2021; Ren et al., 2021) or distilled knowledge from cross-attention
rerankers into the dual-encoders (Izacard and Grave, 2021; Sachan et al., 2023; Santhanam et al.,
2022). In our work, using LLMs, we study the effect of mining better positive examples for a query
while finding useful hard negatives as well. While similar in spirit to previous distillation approaches,
using this hard selection of positive and negative passages aligns well with the format of existing
human-annotated training data, allowing us to train on both.
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Synthetic Data Generation When applying text embedding models to new tasks and domains, we
often want to have relevant queries and labels for these target domains, but they are often unavailable
or prohibitively expensive to collect. To address this issue, several works (Bonifacio et al., 2022;
Dai et al., 2022; Jeronymo et al., 2023; Khramtsova et al., 2024) propose a few-shot prompted
query generation approach. They generate synthetic queries by few-shot prompting LLMs to create
a domain-specific training dataset, which has been shown to be very successful on the zero-shot
information retrieval benchmark (Thakur et al., 2021). In contrast to generating domain-specific
queries for domain adaptation, our work aims to distill more general-purpose knowledge of LLMs
into a text embedding model, resulting in a versatile text embedding model that achieves strong
performance on MTEB (Muennighoff et al., 2023).

Retrieval with Instructions Previously, Dai et al. (2022) demonstrated that there exist different
intents for different retrieval tasks. For instance, given a search query, users might want to find a
similar query, or they might want to read a passage that directly answers the query. Recent work
has explored implementing a retriever that changes the retrieval behavior for different intents. Asai
et al. (2022) and Su et al. (2022) introduce “retrieval with instructions,” where a dense retriever
is trained to follow an instruction that was given along with the query. Wang et al. (2023) also
explores how LLMs can generate synthetic task instructions and associated queries, but for more
general-purpose text embeddings similar to ours. They use a two-step prompt to encourage the
diversity of the synthetic data: first prompting an LLM to come up with a task and then generating
an example (query, positive passage, and negative passage) based on the task. In our work, we also
synthesize task-query pairs to increase the diversity of the synthetic data. Unlike Wang et al. (2023),
however, we generate synthetic task and query pairs from the web passages, basing our FRet dataset
on real user-facing content. We also use LLMs to decide which web passages can be used as positive
or negative targets for each generated query.

3. Training Recipe for Gecko

Gecko is based on a 1.2B parameter pre-trained transformer language model that undergoes two
additional training stages: pre-finetuning and fine-tuning. First, we extend the pre-finetuning recipe
from previous work (Ni et al., 2021; §3.1). For fine-tuning, our main contribution is to create
a novel fine-tuning dataset for a diverse set of downstream tasks via a two-step LLM distillation,
which identifies both positive and hard negative passages for each generated query (§3.2). We coin
this dataset as FRet, the Few-shot Prompted Retrieval dataset. For the fine-tuning mixture, FRet
is combined with a diverse set of academic datasets formatted in a similar way: each with a task
description, input query, positive passage, and negative passage (§3.3).

3.1. Pre-finetuning

Following the prior work (Neelakantan et al., 2022; Ni et al., 2021; Wang et al., 2022), our pre-
finetuning procedure relies on self-supervised tasks over a large text corpus as described below.

Training Mixture We use two pre-finetuning datasets. First, we use the large-scale community
QA dataset by Ni et al. (2021), which includes text pairs such as question-answer pairs from online
forums and QA websites. Next, we crawl a corpus of title-body text pairs from the Web, which can be
found from almost every website as naturally occurring pairs. Despite its simplicity, Wang et al. (2022)
showed that these naturally occurring text pairs are useful for pre-finetuning embedding models.
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Training Objective Pre-finetuning on a large amount of unsupervised text pairs has been shown
to improve performance for smaller-scale dual encoders for various downstream tasks including
document retrieval (Izacard et al., 2022; Lee et al., 2019) and semantic similarity (Gao et al., 2021).
The goal of the pre-finetuning stage is to expose the model to a large amount of textual diversity,
which seems necessary for the compact text embedding models that we aim to train.

We begin with a pre-trained language modelM whereM outputs a series of contextualized token
embeddingsW ∈ ℝ𝑛×𝑑 given a sequence of 𝑛 tokens and an embedding dimension of 𝑑. Given a set of
text pairs Dpre = {(𝑞𝑖, 𝑝𝑖)}𝑁𝑖=1 for pre-finetuning, we obtain the vector representations of 𝑞𝑖 and 𝑝𝑖 by
taking the mean ofW along the 𝑛 axis. We first prepend a dataset-specific task feature 𝑡 before each
query, so each query is informed of which task is being optimized.

q𝑖 = mean_pool |𝑡 |+|𝑞𝑖 |

[
M(𝑡 ⊕ 𝑞𝑖) ∈ ℝ( |𝑡 |+|𝑞𝑖 | )×𝑑

]
∈ ℝ𝑑

p𝑖 = mean_pool | 𝑝𝑖 |

[
M(𝑝𝑖) ∈ ℝ | 𝑝𝑖 |×𝑑

]
∈ ℝ𝑑 .

(1)

For pre-finetuning, we use simple task features such as question answering or search result for 𝑡
depending on the dataset. Then, for each mini-batch of size 𝐵, we optimize the contrastive learning
objective with in-batch negatives:

Lpre =
1
𝐵

𝐵∑︁
𝑖=1

[
− log 𝑒sim(q𝑖,p𝑖 )/𝜏∑𝐵

𝑗=1 𝑒
sim(q𝑖,p 𝑗 )/𝜏

]
. (2)

In this work, we use the cosine similarity for the similarity function, sim(x, y) =
x⊤y

| |x | | · | |y | | , with a
temperature parameter 𝜏. Note that we do not utilize hard negatives during pre-finetuning and utilize
the maximum batch size that fits into the device. This has been found to be effective for document
retrieval tasks as observed in previous work (Li et al., 2023; Wang et al., 2022).

3.2. FRet: Two-Step LLM Distillation

In this section, we introduce our two-stage approach that uses LLMs to generate FRet. Traditional
approaches for training embedding models often rely on large, manually labeled datasets. However,
creating such datasets is time-consuming, expensive, and often results in undesirable biases and
lack of diversity. In this work, we present a novel method for generating synthetic data for training
multi-task text embedding models, leveraging the power of LLMs through a two-step distillation
process. The overall process of generating FRet is illustrated in Figure 2.

LLM-based Diverse Query Generation One of the challenges of using manually crafted queries
is to ensure that the queries cover a diverse set of tasks and linguistic patterns. With LLMs, these
variables are relatively easy to control as we can design the prompt to specify the diversity. In this
work, we employ few-shot prompts to control the diversity of queries. Our LLM is instructed to read a
sampled web passage and generate both the task description and a relevant query for the task:

LLM(ℙQG, 𝑝seed) → (𝑡, 𝑞)

where 𝑝seed is a passage drawn randomly from the web corpus C and ℙQG is a fixed prompt. The
prompt, ℙQG, is identical for every example and consists of few-shot examples and instructions. The
LLM generates a task description 𝑡, which describes the type of retrieval—for example, ‘Given a query,
find a passage that has the answer to the query’ (question answering) or ‘Given a query, find a passage
that allows you to check whether the query is true or not’ (fact checking)—and also a query 𝑞 that aligns
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Large 
Language 

Model
Phastos, a character blessed with 

the power of invention, helps 
humanity create the atomic bomb.

Retriever

…

Task: Given a query, find a passage 
that answers the question.

Query:
who made the atomic bomb?

Task: Given a query, find a passage 
that allows you to check whether 

the query is true or not.
Query:

Phastos created the atomic bomb.

…

Task: Given a query, find a passage 
that answers the question.

Query:
who made the atomic bomb?

The film follows the story of 
American scientist J. Robert 

Oppenheimer and his role in the 
development of the atomic bomb.

… will hold a digital exhibition in 
New York to convey the 

testimonies of A-bomb survivors 
on the sidelines …

… Large 
Language 

Model
…

Web

Positive

Negative

Figure 2 | Overview of FRet. Given a sampled passage from the web, FRet first utilizes LLMs to
generate a relevant task and a query for the passage (top). Then, each query and task is fed into a
pre-trained embedding model to obtain nearest neighbor passages, which are then scored by the
LLM to mine positive and negative passages (bottom). Note that the original web passage does not
necessarily become a positive passage as LLMs can find a more relevant passage as shown above.

with the task. By sampling over such free-form task descriptions, we guide the LLM to produce a wide
range of queries. These pairs are later used to train our embedding models, teaching the models to
associate a query and its corresponding instructions with the target passage.

The diversity of FRet comes from two sources. First, a web corpus inherently contains a variety of
topics as well as styles of writing, such as blog posts, news, Wikipedia-like content, and forum posts.
Second, by adding many diverse task descriptions in the prompt, we encourage the LLM to generate
more diverse task descriptions and therefore more diverse queries. Similar to Dai et al. (2022), our
method can be applied to any corpus of passages. Our method is different from approaches such
as Wang et al. (2023), where LLMs generate both synthetic queries and synthetic passages.

LLM-based Positive and Negative Mining Most models that utilize synthetic queries are trained
with (𝑞, 𝑝seed) pairs, which assumes that 𝑝seed is a good positive target for 𝑞 (Dai et al., 2022; Jeronymo
et al., 2023). While this is likely true in most cases, we hypothesize that there could be a more
relevant passage than 𝑝seed somewhere in our corpus of web passages. Essentially, in the previous
section, we sampled P(𝑡, 𝑞 | 𝑝seed) from the LLM, but this does not guarantee that 𝑝seed maximizes
P(𝑝 | 𝑞, 𝑡) over all the passages in the corpus. This intuition is supported by our observation that
generated queries often focus on a particular aspect of a relatively long passage. Hence, we propose
a method that leverages LLMs to discover more relevant positive passages along with a good hard
negative for the generated query.

In particular, we use an existing embedding model1 to retrieve top 𝑁 neighbors 𝑃 = {𝑝(1) , . . . , 𝑝(𝑁 ) }
from the corpus given a generated query 𝑞. We then employ the same LLM used for the query
generation to rank these retrieved passages based on their relevance to the query. Specifically, we
use two well-known few-shot prompted LLM ranking functions: query likelihood and relevance
classification. Query likelihood uses an LLM to measure the log-likelihood of a generated query 𝑞
given a passage 𝑝, i.e., QL(𝑞, 𝑝) = LLM(𝑞 | 𝑝,ℙQL) (Sachan et al., 2022). Herein, ℙQL is a prompt
containing an instruction for judging query likelihood and several few-shot examples of relevant
1In this work, we train an initial embedding model with (𝑞, 𝑝seed) pairs, treating in-batch passages as random negatives.
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query and passage pairs (Drozdov et al., 2023). Relevance classification (Zhuang et al., 2023) uses
an LLM to measure the log-likelihood of a specific relevance label given the query 𝑞 and a passage 𝑝,
i.e., RC(𝑞, 𝑝) = LLM(label | 𝑞, 𝑝,ℙRC), where ℙRC is a prompt with few-shot examples for grading the
relevance of each query-passage pair. The prompts ℙQL and ℙRC are identical for every example. Our
pilot study demonstrated that each prompting method (i.e. QL and RC) excels in different tasks, so
we ensemble the rankings from two different prompting results with the standard Reciprocal Rank
Fusion (RRF) approach (Cormack et al., 2009), obtaining a ranking function 𝑅(𝑞, 𝑝). As shown in
Appendix A, the ensembling greatly improves the robustness of our model across diverse tasks.

Given the scores from LLMs after ensembling, we index the set of passages 𝑃 according to their
ranking, i.e. 𝑃 = {𝑝1, . . . , 𝑝𝑁 } where if 𝑖 < 𝑗, 𝑅(𝑞, 𝑝𝑖) ≥ 𝑅(𝑞, 𝑝 𝑗). We then choose a new positive target:

𝑝+ = argmax
𝑝∈𝑃

𝑅(𝑞, 𝑝) = 𝑝1

Importantly, 𝑝+ can be different from 𝑝seed and conveys an approximation to the global preference of
the LLM over the entire corpus. Table 5 lists examples where the 𝑝+ differs from 𝑝seed, demonstrating
that the pair (𝑞, 𝑝seed) can be sub-optimal and there can be more relevant passages for 𝑞 globally. We
find that the relabeling of the positive passage (i.e., 𝑝+ ≠ 𝑝seed) happens for about 15% in our dataset.

Similarly, the LLM scores can also be used to select hard negative passages. One straightforward
option is to select the lowest scoring negative, i.e. 𝑝− = 𝑝𝑁 . Another is to sample from the remaining
nearest neighbors, i.e. 𝑝− ∼ 𝑃 \ {𝑝+}. We explore both options in §4.3. Combining all of our generation
results along with the positive and negative mining, we create the FRet dataset, comprised of 6.6M
examples, each containing a task, a query, a positive passage, and a negative passage.

3.3. Unified Fine-tuning Mixture

We combine FRet with other academic training datasets in the same format: task description, input
query, positive passage (or target), and negative passage (or distractor), creating a novel fine-tuning
mixture. We then train our embedding model, Gecko, using this mixture with a standard loss function.

Academic Data In addition to FRet, we use the following academic training datasets: Natural
Questions (Kwiatkowski et al., 2019), HotpotQA (Yang et al., 2018), FEVER (Thorne et al., 2018),
MedMCQA (Pal et al., 2022), SNLI (Bowman et al., 2015), MNLI (Williams et al., 2018), and several
classification datasets from Huggingface. For the multilingual model, we add training sets from
MIRACL (Zhang et al., 2023). All datasets are pre-processed to have a unified encoding format
(Appendix B), containing a task description, a query, a positive passage, and a negative passage.

Classification Data for Contrastive Learning We aim to seamlessly incorporate the classification
training sets into our contrastive learning objective without any performance degradation on other
tasks such as document retrieval. Specifically, given a classification input text 𝑥 with a label 𝑦 ∈ Y, we
pair each input 𝑥 with another input 𝑥+, which shares the same label 𝑦 and then use 𝑥+ as a positive
target for 𝑥. At the same time, we randomly select a hard negative input 𝑥− which has any label
other than 𝑦. This approach is a simple version of the classification datasets pre-processed by Su
et al. (2022) but avoids using any model-specific embeddings. During our experiments, we found that
each 𝑥+ might overlap with other positive examples within the mini-batch, creating a false negative
problem among the in-batch negatives. Hence, we assign a unique ID to each triple (𝑥, 𝑥+, 𝑥−) and
append the same unique ID to 𝑥, 𝑥+, and 𝑥−. This effectively makes the in-batch negatives trivial for
the model to distinguish them, because if the unique ID does not match, then it is never the correct
answer. Thus, the model focuses on differentiating 𝑥+ and 𝑥− given 𝑥.
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Dim. # Params. Class. Cluster. Pair. Rerank. Retrieval STS Summary Avg.

gritlm-8x7b 4,096 56B 78.53 50.14 84.97 59.80 55.09 83.26 29.82 65.66
e5-mistral-7b-instruct 4,096 7B 78.47 50.26 88.34 60.21 56.89 84.63 31.40 66.63
echo-mistral-7b-instruct 4,096 7B 77.43 46.32 87.34 58.14 55.52 82.56 30.73 64.69
gritlm-7b 4,096 7B 79.46 50.61 87.16 60.49 57.41 83.35 30.37 66.76
text-embedding-3-large (OpenAI) 3,072 n/a 75.45 49.01 85.72 59.16 55.44 81.73 29.92 64.59

gtr-t5-xxl 768 5B 67.41 42.42 86.12 56.66 48.48 78.38 30.64 58.97
gtr-t5-xl 768 1.2B 67.11 41.51 86.13 55.97 47.96 77.80 30.21 58.42
instructor-xl 768 1.5B 73.12 44.74 86.62 57.29 49.26 83.06 32.32 61.79
text-embedding-3-large-256 (OpenAI) 256 n/a 71.97 46.23 84.22 57.99 51.66 81.04 29.92 62.00
gecko-1b-256 256 1.2B 78.99 45.07 87.25 57.78 52.44 84.93 32.36 64.37
gecko-1b-768 768 1.2B 81.17 47.48 87.61 58.91 55.70 85.06 32.63 66.31
– zero-shot (FRet-only) 768 1.2B 70.26 46.82 86.27 57.60 53.16 83.14 32.16 62.64

Table 1 | Results on MTEB. We categorize models into two groups based on their embedding dimension
(Dim.) and the number of parameters (# Params.). We report the average performance on seven
different tasks: Classification (Class.), Clustering (Cluter.), Pair Classification (Pair.), Reranking
(Rerank.), Retrieval, STS, and Summary. The last column shows the average performance across all
56 datasets from the seven tasks. In the last row, we show the performance of a zero-shot Gecko
model, solely trained on FRet without any human-labeled data or MTEB in-domain training datasets.
Please refer to Appendix C for the result and the instruction per dataset.

Training Objective For fine-tuning, we are given a set of 𝑀 fine-tuning datasets (including FRet)
that are comprised of a query-specific task description, an input, a positive target, and a hard negative:
[D (1) , . . . ,D (𝑀 ) ] where D (𝑚) = {(𝑡𝑖, 𝑞𝑖, 𝑝+𝑖 , 𝑝−𝑖 )}𝑁𝑖=1. We obtain the vector representations q𝑖, p+

𝑖
, and

p−
𝑖
similar to eq. (1) where 𝑡𝑖 is used for the input: q𝑖 = mean_pool[M(𝑡𝑖 ⊕ 𝑞𝑖)].

For fine-tuning we optimize the in-batch cross-entropy loss, where query 𝑞𝑖 should distinguish
𝑝+
𝑖
from the hard negative 𝑝−

𝑖
, other passages in the batch {𝑝+

𝑗
}𝐵
𝑗=1, and other queries in the batch

{𝑞 𝑗}𝐵𝑗=1 \ {𝑞𝑖}. The use of other queries in the batch is also known as "same-tower negatives" (Moiseev
et al., 2023). Given a mini-batch of size 𝐵, we optimize the following objective:

Lmain =
1
𝐵

𝐵∑︁
𝑖=1

− log
𝑒sim(q𝑖,p+𝑖 )/𝜏∑𝐵

𝑗=1

(
𝑒
sim(q𝑖,p+𝑗 )/𝜏 + 1[ 𝑗≠𝑖]𝑒sim(q𝑖,q 𝑗 )/𝜏

)
+ 𝑒sim(q𝑖,p−

𝑖
)/𝜏

 . (3)

For the same-tower negatives, we used the indicator variable 1[ 𝑗≠𝑖] to denote that we are iterating
over 𝑗 except for the current target index 𝑖. Intuitively, same-tower negatives are helpful for symmetric
text embedding tasks such as measuring the semantic similarity of two sentences, because {q 𝑗}𝐵𝑗=1
shares the same modality with q𝑖: in this case, both are queries. Finally, to support multiple different
dimensions of embeddings with a single model, we add the MRL loss (Kusupati et al., 2022), which
optimizes eq. (3) with sub-dimensions smaller than 𝑑. In our experiments, we use two embedding
dimensions 𝑑 = 768 and 𝑑 = 256 for Gecko.

4. Experiments

We mainly evaluate Gecko on the Massive Text Embedding Benchmark (MTEB), which contains 56
datasets on retrieval, semantic textual similarity (STS), clustering, classification, pair classification,
reranking, and summarization. We analyze how each component of Gecko and FRet contribute to the
performance, providing insights on building heterogeneous text embedding models.

7



Gecko: Versatile Text Embeddings Distilled from Large Language Models

MIRACL (Avg.)

Per-language models

BM25 38.5
mDPR 41.8
BM25 + mDPR (hybrid) 56.6

One model for all languages

mDPR (en) 39.7
mContriever (en) 37.8
mContriever 52.7
SWIM-X 46.4
mContriever-X 55.4
text-embedding-3-large (OpenAI) 54.9
gecko-multilingual-1b 56.2

Table 2 | Results on MIRACL. We report average
nDCG@10 on multilingual retrieval tasks in 18
languages (ar, bn, en, es, fa, fi, fr, hi, id, ja, ko,
ru, sw, te, th, zh, de, yo). Each row shows the
performance of a single multilingual retriever.

Positive (𝑝+) Hard Negative (𝑝−) BEIR STS

MS-MARCO

𝑝seed None 49.87 79.38
𝑝seed 𝑝 ∼ 𝑃 \ {𝑝seed} 50.31 78.17
𝑝1 𝑝 ∼ 𝑃 \ {𝑝1} 52.03 78.96
𝑝1 𝑝20 52.29 78.96

FRet

𝑝seed None 52.33 82.66
𝑝seed 𝑝 ∼ 𝑃 \ {𝑝seed} 51.37 82.00
𝑝seed 𝑝20 51.96 82.26
𝑝1 None 53.07 82.88
𝑝1 𝑝 ∼ 𝑃 \ {𝑝1} 52.60 82.85
𝑝1 𝑝20 53.39 83.14

Table 3 | With MS-MARCO and FRet, we test dif-
ferent strategies of choosing positive and hard
negative passages. We train each model and re-
port its performance on BEIR (nDCG@10) and
STS (Spearman Correlation) performance.

4.1. Main Results

Table 1 summarizes the performance of Gecko and other baselines on MTEB. For baselines, we
report the performance of text embedding models whose recipes are fully (or partly) available.
Gecko significantly surpasses all similarly-sized baselines (<= 1k embedding dimensions, <= 5B
parameters) on every text embedding task in the MTEB benchmark. Gecko-1b-256 demonstrates
superior quality compared to text-embedding-3-large-256 (OpenAI; Neelakantan et al. 2022), GTR (Ni
et al., 2021), and Instructor (Su et al., 2022). Gecko-1b-768 often matches or exceeds the performance
of even larger models, including text-embedding-3-large (OpenAI), E5-mistral (Wang et al., 2023),
GRit (Muennighoff et al., 2024), and Echo embeddings (Springer et al., 2024). Notably, these models
all use 3-4k dimensional embeddings and exceed 7B parameters. We observe that Gecko is particularly
good at balancing retrieval and STS performance, and sets a new state-of-the-art on classification,
STS, and summary. Surprisingly, the performance of Gecko trained solely on FRet, which makes MTEB
a pure zero-shot benchmark, shows strong performance compared to other baselines.

4.2. Multilingual Retrieval Results

Table 2 summarizes the performance of Gecko and other baselines on MTEB. We train a multilingual
version of Gecko with multilingual language models (Team et al., 2023; Xue et al., 2021) with the
same recipe as Gecko, but add the MIRACL training dataset in the mixture. Note that FRet is provided
only in English and the main difference of gecko-multilingual-1b with others is the use of FRet in its
training set. We find that while we only generated English-only dataset from LLMs, this translates
well to other multilingual tasks achieving superior performance compared to others.

4.3. Analysis

LLM as a Labeler In Table 3, we test different labeling strategies for FRet where we use different
positive and hard negative passages. For positive passages, we try 1) the original passage where
the queries were generated (i.e. 𝑝seed), or 2) the top-1 passage selected by an LLM out of the
nearest neighbor passages (including the original one) of a generated query (i.e. 𝑝1). For negative
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Class. Cluster. Pair. Rerank. Retrieval STS Summary Avg.

Baseline (Ni et al., 2021) 67.11 41.51 86.13 55.97 47.96 77.80 30.21 58.42

FRet synthetic data ablation

FRet-question-answering 69.39 45.58 84.40 56.30 49.65 78.98 31.17 60.32
FRet-search-result 70.41 44.12 82.99 56.50 49.65 78.82 31.27 60.17
FRet-fact-checking 70.81 45.70 81.63 57.31 49.38 79.34 30.99 60.56
FRet-sentence-similarity 70.25 45.60 81.46 56.73 47.26 82.02 31.80 60.30

FRet-all-tasks (300K) 70.25 44.56 85.37 56.46 50.19 80.07 30.67 60.70
[+] Uniform task sampling 70.57 45.00 85.35 56.84 49.67 80.70 31.34 60.87
[−] Unified format 61.72 45.58 82.89 54.52 45.82 79.06 30.29 57.45

Human data ablation

FRet (6.6M) 70.26 46.82 86.27 57.60 53.16 83.14 32.16 62.64
[+] NLI datasets 71.86 46.91 86.60 57.51 52.93 84.74 32.11 63.24
[+] Class. datasets 81.00 46.85 86.13 57.80 52.84 82.78 32.35 64.82
[+] Full mixture 81.17 47.48 87.61 58.91 55.70 85.06 32.63 66.31

Table 4 | Does the diversity of FRet matter when training versatile embedding models? We test different
subsets of FRet for training and report their performance on MTEB. From the four most frequent tasks
in FRet (e.g., FRet-question-answering), we sample 300k training examples. For FRet-all-tasks, we
sample 75k training examples from each task to form 300k training examples. We also test sampling
FRet examples uniformly across different tasks and replacing the unified format (Appendix B) with
naive concatenation of tasks and text. In the bottom rows, we show the performance of using all FRet
training data along with human annotated NLI and classification datasets.

passages, we try 1) a random nearest neighbor passage that is different from the original passage (i.e.
𝑝 ∼ 𝑃 \ {𝑝seed}), or 2) the 𝑘-th passage as ranked by the LLM out of the nearest neighbor passages
(including the original one) for the given query (i.e. 𝑝𝑘). From the result, we find that using the most
relevant passage chosen by an LLM is always better than using the original passage as positive. This
implies that the original passage is not necessarily best passage to use as a positive target despite the
fact that the query was generated from it. In our qualitative analysis in Table 5, we show that such
cases happen quite often.

Diversity of FRet FRet provides queries in multiple tasks including question answering, search result,
fact checking, and sentence similarity. In Table 4, we test how the diversity of FRet influences model
generalizability across tasks in MTEB. First, we train individual models each using 300k data from a
specific task (e.g., FRet-question-answering). Additionally, we train models on 300k samples drawn
across all four tasks (75k per task; FRet-all-tasks) with original sampling distribution or uniform
sampling distribution. We observe superior performance from the FRet-all-tasks model, particularly
when tasks were uniformly sampled. We also find that the unified formatting (Appendix B) affects
the quality of embeddings significantly, as it helps the model better separate different tasks.

Learning Semantic Similarity and Classification In the last rows of Table 4, we show how Gecko
learns better semantic similarity and classification. We use the symmetric format (Sym.) as well as the
same tower negatives for learning better semantic similarity. Along with the NLI datasets, it drastically
improves the STS performance by 1.6 on average. Our strategy of combining classification datasets
also improve the performance on classification by a large margin without significant performance
degradation on other tasks. Using the full FRet mixture gives us the final performance of 66.31.
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Seed Passage (𝑝seed) Recently, Marvel’s The Eternals has become the topic of a great deal of online discourse, in part
because of a scene where Phastos, a character blessed with the power of invention, helps humanity
create the atomic bomb. As you can probably imagine, Twitter saw this and lost it.

Generated Task (𝑡) Given a query, find a passage that has the answer to the query.
Generated Query (𝑞) who made the atomic bomb?
LLM-mined Positive (𝑝1) The film follows the story of American scientist J. Robert Oppenheimer and his role in the development

of the atomic bomb.
LLM-mined Negative (𝑝20) Amid deepening crises around the world with nuclear undertones, a research team from the University

of Tokyo will hold a digital exhibition in New York to convey the testimonies of A-bomb survivors on
the sidelines of the United Nations review conference of a nuclear nonproliferation treaty.

Seed Passage (𝑝seed) moose - online shopping for canadians. The 2010 Vancouver Winter Olympics $75 gold coins were
sold individually or in sets of three coins. The three different sets offered were Canadian Wildlife,
Canadian Emblems and Vancouver 2010 Olympic Winter Games.

Generated Task (𝑡) Given a query, find a passage that might show up as a search result.
Generated Query (𝑞) 2010 olympic winter games
LLM-mined Positive (𝑝1) The 2010 Winter Olympics return to North America on February 12th, when the world of snow sport

enthusiasts descend upon one of North America’s most beautiful cities, Vancouver.
LLM-mined Negative (𝑝20) Published: 9:42pm, 12 Feb, 2018 High winds caused havoc at the Pyeongchang Winter Games on

Monday as Olympics chief Thomas Bach dismissed concerns North Korea had tried to “hijack” the
competition for political gain.

Seed Passage (𝑝seed) Tagged: Batman, Robin, DC, DC Comics, Comics, ...

Generated Task (𝑡) Given a query, find a passage that allows you to check whether the query is true or not.
Generated Query (𝑞) Batman is from DC comics
LLM-mined Positive (𝑝1) The Batman is an American superhero film based on the DC Comics character of the same name.

Produced by DC Films and distributed by Warner Bros. Pictures, it is a reboot of the Batman film
franchise.

LLM-mined Negative (𝑝20) "One of my employees wants to dress up in Batman attire," Gaskins said. "As long as he’s at work, I
told him it was fine." New York Times News Service contributed to this report.

Table 5 | Examples for LLM-mined positives and negatives. While the intent of each query aligns with
each task, LLM-mined positive is often more relevant than the seed passage for the generated query.

Qualitative Analysis Table 5 showcases the advantages of LLM relabeling. We provide examples
of the original seed passage, generated task and query, and the LLM-mined positive and negative
passages. First, we observe that the LLM does generate diverse tasks and queries by conditioning on
seed passages 𝑝seed. Second, the table highlights the LLM’s ability to find a passage (𝑝1) that provides
a more direct and relevant answer to the generated query than the seed passage (𝑝seed). Furthermore,
LLM-ranked hard negatives make a challenging task of understanding nuanced differences. These
examples demonstrate how the 2-step LLM distillation process effectively brings the LLM’s diverse
domain knowledge and global ranking preferences into the text embedding model.

5. Conclusion

In this paper, we introduced Gecko, a versatile text embedding model distilled from large language
models. Gecko is trained on an LLM-generated synthetic dataset FRet that contains LLM-ranked
positives and negatives. We demonstrate that LLMs can be used to identify better positive as well as
negative targets for synthesized queries. We also show how combining this synthetically-generated
data in a unified format can lead us to achieve great performance on multiple different tasks at the
same time. Our ablation study reveals the importance of LLM-based relabeling and the diversity of
the datasets while demonstrating the strong zero-shot generalizability of Gecko.
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Appendix

A. Enhancing Few-shot LLM Ranking with Ensembling

To validate the quality of the few-shot reranking, we retrieve the top 100 candidate documents and
rerank them using our few-shot LLM reranker. We compare the performance of two LLM rerankers
introduced in §3.2: query likelihood (QL) and relevance classification (RC). Additionally, we investigate
the ensemble of these rerankers using Reciprocal Rank Fusion (RRF): 𝑅(𝑞, 𝑝) = 1/𝑟QL(𝑞, 𝑝)+1/𝑟RC(𝑞, 𝑝),
where 𝑟QL(𝑞, 𝑝) > 0 and 𝑟RC(𝑞, 𝑝) > 0 represent the rank positions assigned to passage 𝑝 by QL and
RC models for query 𝑞, respectively. It is important to note that we employ the identical prompts ℙQL
and ℙRC used in §3.2, but not a task-specific prompt for each BEIR task.

CV NF TO DB SF CF HQ FQ SD FE AR QU NQ Avg.

Trained on MS-MARCO

RankLLAMA 85.2 30.3 40.1 48.3 73.2 28.0 75.3 46.5 17.8 83.9 56.0 85.0 66.3 56.6

Our Few-shot Prompted LLM Re-Rankers

Baseline 72.7 38.1 21.3 39.7 71.7 23.6 64.4 49.0 16.4 81.6 51.1 85.3 51.7 51.3
[+] QL 78.8 40.9 21.3 43.8 75.2 15.2 76.1 57.1 22.1 76.6 35.7 86.3 57.3 52.8
[+] RC 83.7 40.6 21.9 45.3 74.2 24.8 62.3 46.8 20.3 71.1 59.9 85.0 66.9 54.1
[+] RRF(QL, RC) 84.1 41.9 22.9 46.8 76.8 22.0 76.0 56.7 22.7 78.8 55.6 87.2 66.5 56.8

Table 6 | Few-shot LLM re-ranking performance on BEIR. We use the standard nDCG@10 metric. We
report results from RankLLAMA (Ma et al., 2023), a state-of-the-art re-ranker trained on MS-MARCO,
for comparison. Red indicates that the re-ranker is worse than the baseline retriever.

Table 6 shows the results. Reranking with either QL or RC improves the performance. Ensembling
(RRF) significantly improves the overall quality. Importantly, the ensembled reranker consistently
improves the initial retriever across all tasks except for FEVER (FE), which highlights its robustness to
different tasks. This is important for creating the FRet dataset since we need high quality retrieval
data across a diverse range of tasks.

B. Formatting in FRet

Since we aggregate multiple datasets from different tasks, we preprocess every input and target with
a unified encoding format. In Table 7, we show that the performance of asymmetric tasks (i.e. BEIR)
is sensitive to the format while the performance of symmetric tasks are relatively stable.

Symmetric Formatting

Input task: {task} | query: {input}
Target task: {task} | query: {target}

Asymmetric Formatting

Input task: {task} | query: {input}
Target title: {title} | text: {target}

Formatting BEIR STS

Input = {task} {input} 54.7 84.8Target = {title} {target}

Input = The task is {task}, and the query is {input} 54.5 85.0Target = The title is {title}, and the text {target}

Input = task: {task} | query: {input} 55.5 84.9Target = title: {title} | text: {target}

Table 7 | Formatting for FRet and other mixture datasets. We standardize different datasets and tasks
in a unified encoding format (left). We also show the performance on BEIR (asymmetric formatting)
and STS (symmetric formatting) with different formats (right).

C. Full MTEB Results and Instructions

In Table 8, we show the full MTEB results. In Table 9, we show the task strings (or instructions) used
in the MTEB evaluation. Note that we use consistent instructions for most tasks except for BEIR,
which contains multiple different intents as described in Dai et al. (2022).
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Dataset Gecko-1B-256 Gecko-1B-768

Classification

AmazonCounterfactualClassification 70.93 75.34
AmazonPolarityClassification 97.34 97.34
AmazonReviewsClassification 48.47 51.17
Banking77Classification 86.01 88.62
EmotionClassification 51.53 52.51
ImdbClassification 95.07 95.65
MTOPDomainClassification 98.02 98.35
MTOPIntentClassification 77.82 83.43
MassiveIntentClassification 75.67 80. 22
MassiveScenarioClassification 85.16 87.19
ToxicConversationsClassification 88.33 89.67
TweetSentimentExtractionClassification 72.97 74.52

Classification Pair
SprintDuplicateQuestions 96.49 96.26
TwitterSemEval2015 78.23 79.04
TwitterURLCorpus 87.04 87.53

STS

BIOSSES 89.42 89.46
SICK-R 81.67 81.92
STS12 78.02 77.59
STS13 90.10 90.36
STS14 85.44 85.25
STS15 89.64 89.66
STS16 87.24 87.34
STS17 90.46 92.06
STS22 67.99 68.02
STSBenchmark 89.33 88.99

Clustering

ArxivClusteringP2P 44.12 46.27
ArxivClusteringS2S 36.54 38.36
BiorxivClusteringP2P 36.28 37.87
BiorxivClusteringS2S 33.09 35.67
MedrxivClusteringP2P 32.08 33.11
MedrxivClusteringS2S 30.84 31.54
RedditClustering 62.24 65.81
RedditClusteringP2P 63.70 66.62
StackExchangeClustering 70.19 74.52
StackExchangeClusteringP2P 36.10 37.63
TwentyNewsgroupsClustering 50.60 54.87

Reranking

AskUbuntuDupQuestions 63.84 64.40
MindSmallReranking 31.89 33.07
SciDocsRR 81.62 83.59
StackOverflowDupQuestions 53.76 54.56

Retrieval

ArguAna 56.27 62.18
ClimateFEVER 29.35 33.21
CQADupstackAndroidRetrieval 45.44 48.82
DBPedia 41.91 47.12
FEVER 82.61 86.96
FiQA2018 55.54 59.24
HotpotQA 64.65 71.33
MSMARCO 31.12 32.58
NFCorpus 37.81 40.33
NQ 57.37 61.28
QuoraRetrieval 87.89 88.18
SCIDOCS 18.21 20.35
SciFact 70.86 75.42
TRECCOVID 80.13 82.62
Touche2020 27.40 25.86

Summarization SummEval 32.36 32.63

Average 64.37 66.31

Table 8 | Results for each dataset in the MTEB benchmark.
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Dataset Task Type Symmetric

Classification

AmazonCounterfactualClassification classification ✓
AmazonPolarityClassification classification ✓
AmazonReviewsClassification classification ✓
Banking77Classification classification ✓
EmotionClassification classification ✓
ImdbClassification classification ✓
MTOPDomainClassification classification ✓
MTOPIntentClassification classification ✓
MassiveIntentClassification classification ✓
MassiveScenarioClassification classification ✓
ToxicConversationsClassification classification ✓
TweetSentimentExtractionClassification classification ✓

Classification Pair
SprintDuplicateQuestions semantic similarity ✓
TwitterSemEval2015 semantic similarity ✓
TwitterURLCorpus semantic similarity ✓

STS

BIOSSES semantic similarity ✓
SICK-R semantic similarity ✓
STS12 semantic similarity ✓
STS13 semantic similarity ✓
STS14 semantic similarity ✓
STS15 semantic similarity ✓
STS16 semantic similarity ✓
STS17 semantic similarity ✓
STS22 semantic similarity ✓
STSBenchmark semantic similarity ✓

Clustering

ArxivClusteringP2P search result ✓
ArxivClusteringS2S search result ✓
BiorxivClusteringP2P search result ✓
BiorxivClusteringS2S search result ✓
MedrxivClusteringP2P search result ✓
MedrxivClusteringS2S search result ✓
RedditClustering search result ✓
RedditClusteringP2P search result ✓
StackExchangeClustering search result ✓
StackExchangeClusteringP2P search result ✓
TwentyNewsgroupsClustering search result ✓

Reranking

AskUbuntuDupQuestions question answering
MindSmallReranking semantic similarity
SciDocsRR question answering
StackOverflowDupQuestions search result

Retrieval

ArguAna semantic similarity
ClimateFEVER search result
CQADupstackAndroidRetrieval question answering
DBPedia question answering
FEVER search result
FiQA2018 question answering
HotpotQA search result
MSMARCO question answering
NFCorpus fact checking
NQ question answering
QuoraRetrieval search result ✓
SCIDOCS question answering
SciFact fact checking
TRECCOVID search result
Touche2020 question answering

Summarization SummEval search result

Table 9 | Instruction used for each dataset in the MTEB benchmark. Here, we denote a simplified task
type (e.g., question answering) that summarizes each task generated by Gecko.
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