M EMRE] A

181 O
COMPUTER cenTen
L”'?.?,‘*H

SIGPLAN
Notices

A Monthly Publication of the

SPECIAL INTEREST GROUP ON PROGRAMMING LANGUAGES

Contents: voiune 8, Number 6 1973 June

ABSTRACTS
IN
PROGRAMMING LANGUAGE —RELATED RESEARCH

Edited by

James B. Morris

University of California
Los Alamos Scientific Laboratory

Los Alamos, New Mexico 87544

<43

khkkkkkhkkkhkkkkkkkkkkkhkhkkkkkkkik

khkkhkkhkkkkkkhkhkhkhkkhkhkhkkkhkkhhkhkhhkkhhkkkhkhhhkirx

THE DESIGN AND USE OF UNDERSTANDABLE, MINIMALLY
ERROR-PRONE PROGRAMMING LANGUAGES

2o 2% 53 ok o

dedkkkkkokkkkokkdkkkkk

524 2 358 % o A

Project Name: The Design and Use of Understandable, Minimally
Error-Prone Programming Languages
Name: E.J. Funk

Address: Department of Computer Science, Univ. of Toronto,
Toronto M5S 1A7 CANADA

_44-

Introduction: The increasing sophistication of higher-level pro-
gramming languages has relieved the programmer of the tedious book-
keeping which once was the source of most program errors, while
simultaneously bringing to the fore a host of other difficulties

formerly buried in the confusion. In particular, we note the fol-
lowing:
L3 It is obvious that certain factors stemming from the way

in which a programming language is used contribute to
the "psychological complexity'" of programs, and thereby
to the ease with which they are comprehended and modified.

2 Certain language constructs, and certain ways in which a
language is used due to its inherent characteristics, are
more error-prone than others.

i As the production of error-free software on the “first Ebry"
becomes an achievable goal, we wonder how much redundancy
on the part of the programmer and the programming language
will be necessary to make it a reality.

An integrated approach to the study of language and program complexity
is the substance of this research.

Background: Blonski and Oldham of this Department have recently
begun research centered around, respectively, the first and second
problems mentioned above. The general "human factors'" approach

of Weinburg and others is, of course, intimately connected.

Blonski proposes twenty-two ‘'program complexity factors”
touching upon the following aspects of program construction: program
flow; control flow; data flow; interaction between control flow and
data flow. Blonski is planning a multi-factor experiment in which
groups of students will be asked to explain, correct or evaluate
programs possessing various combinations and levels of complexity
factors. In this way the complexity measures will hopefully be
validated, and concrete rules for writing understandable programs
may be stated.

The primary difficulties which Blonski will encounter are two-

fold:

1. The combinatorial aspects of a multi-factor experiment,
coupled with the expense (financial or educational) of
conducting numerous trials on student groups, may preclude
obtaining statistically valid results for even a very few
complexity factors.

2. The general difficulty and unpredictable nature of psycholo-
gical tests performed with student labor may further in-
validate the results.

Oldham's proposed work is closely related. He intends to deter-
mine through examination of the program debugging process which
language constructs are particularly error-prone and in what respects.
He then plans to design a new language which elimates unnecessary
and error-prone constructs, and incorporates grammatical redundancy
at appropriate places in an effort to minimize the remaining errors.

-45-

Oldham's work will undoubtedly suffer from the second point
mentioned above, and his problems will be compounded by the fact that
impartial programmers are impossible to obtain; he will in-.all
probability be unable to obtain an "objectively optimal"” language
from an error standpoint by observing student programmers at work.

Qutline of Research: Briefly stated, the goal of this research is

to integrate and extend the proposed work of Blonski and Oldham

and at the same time to overcome the experimental limitations which,
for all practical purposes, preclude the possibility that they

will obtain meaningful results. In order to validate program com-
plexity measures and to determine those program constructs in need
of grammatical redundancy, large-scale psychological tests must be
performed on a tremendous number of objective subjects. I plan to
conduct my experiments on gerbils.

The numevous advantages of this approach should be, for the most
part, immediately obvious:

1. Gerbils are inexpensive to obtain and maintain, and may
be had in any desired quantity.

2. They are notoriously unifdrm and objective in their per
formance, eliminating the need to condition resluts on
subject performance in other areas.

3. Techniques of psychological testing on gerbils are much
more advanced than those for humans. No sense complicating
the situation by experimenting on the latter.

Certainly, objections may be raised. I feel that I can ade-

quately answer most of them, however:

Are we increasing the burden by requiring the gerbils to
learn both English and a programming language?
Emphatically not. The programming language may be taught
independently of any natural language.

Can gerbils be taught to program, in the first place?
Certainly. Brain-size studies have established the
gerbil's cranium to be between 90 and 97 per cent as
large as that of the average programmer-trainee.

What will the effect of these trained gerbils be on the
Canadian labour market?

The life span of gerbils is such that the impact, if sig-
nificant, will at least be of short duration.

The basic plan of attack is as follows:

A. Determination of error-prone language constructs.

Proper programming practice will be taught by normal Pav-

lovian techniques. Initially, it may be too ambitious to expect
to reward only correct programs. Instead, I may begin by re-
warding mnemonic variable names, proper syntax in a single ex-
pression, good paragraphing, etc.

Y

During the course of this training period, records will be
scrupulously maintained which indicate those constructs which
were most difficult for the gerbils to learn. The language will
be appropriately modified and its error rate correspondingly
reduced.

The use of several D to A converté; will allow the compiler

to notify the gerbil of errors detected by the grammatical redun-
dancy incorporated into the language.

Measurement of complexity &n completed programs.

Complexity factors will be measured in several ways. For
the initial series of multi-factor experiments, ease of under-
standing will be measured by training the gerbils to reward the
experimentor when they are presented with a comprehensible program.

Later on, error correction and ease of modification will
be studied in timed trials, with a reward provided to the gerbil
based upon the number of successful corrections and/or modifica-
tions which he(she(it)) 1is able to complete.

Determination of necessary redundancy.

It may be assumed that repeated coding of the same algor-
ithm will lead, via "majority modification" of the resultant
program, to a more correct implementation. The degree of
reduncancy (or error checking) required on the part of the pro-
grammer is the subject of this investigation.

Pioneering work in this area has recently been undertaken
by Steele, who writes "On Fault Tolerant Computing and the
Number of Gerbils Necessary to Simulate a Turing Machine."
In particular, Steele notes that five gerbils for each of the ten
functions of his universal Turing machine simulator provides
adequate reduncancy in most circumstances, since '"one can be
sleeping, one can be crapping and the other three can be polled
to determine the correct result of the function."

Interesting work remains to be done in this area. How much
noise can be tolerated while still maintaining the integrity of
the computation? How long a computation may safely be under-
taken by a Turing machine simulator with, say, a 99% accuracy
rate? Finally, what is the MTBGF (Mean Time Between Gerbil
Failure) of such a system? Once data have been collected, worth-
while comparisons could be made between gerbil and semiconductor
reliability. Would ENIAC have been able to last more than 45
minutes if it contained 18,000 gerbils?

More to the point, I will have a number of gérbils code
the same algorithm, and will attempt to determine the additional
accuracy.which can be obtained by redundancy factors ranging
from two to, say, fifty. These results should be directly appli-
cable to human programming endeavors.

U=

Summary: At the conclusion of this research I will have determined
those factors which make programs easily understandable to an objective
group of programmers, and will have designed a lan-uage free of error-
prone constructs. Finally, [will have established bounds on the
expected improvements obtainable through redundant programnming.

