
Chapter 16

Using Queueing Network Modelling Software

16.1. Introduction

A variety of techniques for evaluating queueing network models have
been described. The general techniques of bounding analysis, single and
multiple class analysis, and hierarchical modelling were presented in Part
II. Specific techniques for memory, disk I/O, and processor subsystems
were discussed in Part III. This collection of techniques comes together
for the computer system performance analyst in the form of queueing
network modelling software. Such software frees the analyst from the
algorithmic portion of the modelling process, allowing concentration on
important issues such as model construction and validation, performance
projection, and capacity planning.

Most queueing network modelling software can be understood in
terms of the structure illustrated in Figure 16.1. There is a sequence of
software layers, each transforming input received from the layer above
into output suitable for the layer below. In Section 16.2 we will refer to
this structure in describing the major components of queueing network
modelling software. In Section 16.3 we give an example of conducting a
performance study using such software.

16.2. Components of Queueing Network Modelling
Software

16.2.1. The Core Computational Routine

The job of the core computational routine, situated at the lowest level in
Figure 16.1, is simply stated. Given a separable queueing network model
defined by its customer description, center description, and service
demands, this routine produces performance measures. In other words,
the core computational routine is an embodiment of the techniques
described in Part II of the book. The core routine may be based on
either exact or approximate algorithms,

354

16.2. Components of Queueing Network Modelling SofnYare 355

LEVEL 4

High-level front ends
for generating models

(Section 16.2.4)

LEVEL 3

User interface with
convenience features

(Section 16.2.3)

TransforFnations from
non-separable QNMs
to separable QNMs

(Section 16.2.2)

Core algorithms for
separable QNMs

(Section 16.2.1)

Figure 16.1 - The Structure of Queueing Network Modelling Software

356 Perspective: Using Queueing Network Modelling Software

16.2.2. The Approximation Transformations

When viewed at a detailed level, many subsystems have characteristics
that lead to non-separable queueing network models. The software layers
immediately above the core computational routine, the approximation
transformations (level 2 in Figure 16.1), translate these non-separable
models into a form that is suitable for the core routine. In other words,
the approximation transformations correspond to the techniques described
in Part III. Many of these techniques require an iterative relationship
with the core routine: the transformations provide input suitable to the
core routine, and the core routine’s output is used as additional input to
the transformations.

Consider the treatment of C classes with independent memory con-
straints in Section 9.3.2. In a sense, there are C different separable low-
level models, and C different separable high-level models. The low-level
model corresponding to class c has each class other than c represented by
its average central subsystem population, while class c’s population is
varied from 1 to M,, its memory constraint, The high-level model
corresponding to class c is a single class model using the FESC obtained
from the low-level model. Each model is evaluated by the core routine,
with the transformation layer using the outputs of some models to define
the inputs of others.

Another example is the treatment of RPS disks in Section 10.3. The
service demands at the centers representing the disks must reflect more
than the seek, latency, and data transfer requirements. Approximation
transformations estimate the component due to path contention, as in
Algorithm 10.2, and calculate efSective service demands, which are passed
to the core routine. Again, this process is iterative.

Additional examples of transformations include those used to
represent priority scheduling (Section 11.3) and distributions of multipro-
gramming level (Section 9.2).

16.2.3. The User Interface

An important attribute of queueing network modelling software is the
convenient expression of performance models. The user inteU?zce, level 3
in Figure 16.1, must bridge the gap between the world of queueing net-
work models and the world of computer systems, so that performance
studies can be conducted efficiently by analysts whose primary training is
in computer systems.

In many cases, queueing network concepts correspond directly to com-
puter system concepts: e.g., classes to workload components, centers to
devices, customers to users or job:.. These queueing network concepts

16.2. Components of Queueing Network Iviodelling Software 357

are made visible to the analyst with little intervention by the user inter-
face layer.

In other cases, the correspondence is not so direct. In particular, the
user interface layer smoothes the analyst’s interaction with the transfor-
mation layer. As an example, when multipathing I/O is modelled, as
described in Section 10.5, the user interface layer allows the analyst to
describe the system in terms of channels, controllers, heads of string,
disks, and logical channels (in the case of an IBM configuration) and
translates this information into a form acceptable to the transformation
layer. The transformation layer then uses this information to estimate
effective service demands for the various disks, interacting iteratively with
the core routine, which evaluates a sequence of separable models pro-
vided by the transformation layer. Finally, the transformation and user
interface layers provide performance measures in a meaningful form.

A related facility allows the analyst to associate a “type” with a dev-!
ice, and to specify the relevant characteristics of this type to the software.
This is useful during modification analysis. As a simple example, an
existing system may have an IBM 3081-D CPU, and one of the contem-
plated modifications may be an upgrade to a 3081-K. If the relative
speeds of these two processors are known to the software (in fact, they
are roughly 4.0 and 5.51, then the following sequence of interactions
would be possible:

- analyst provides all inputs for baseline model
- analyst identifies CPU as 3081-D
- baseline model is validated
- analyst specifies that CPU type should be changed to 3081-K
- software adjusts CPU service demands based on internal informa-

tion
A similar approach can be applied to other devices.

The user interface layer typically provides the ability to save, recall,
and edit model definitions during an interactive session, since model
modification is the major activity in interacting with queueing network
modelling software. Output reports also need to be stored for post-
processing.

A final example of a facility provided by the user interface layer is a
means for the analyst to “program” the package using a simple language,
similar to the “exec file” or “command file” facility provided by most
contemporary timesharing systems. A simple application of this facility
would be to perform automatically a parametric study (for example, on
the effect of increasing the number of active terminals). Of course, an
analyst could conduct such a study by interacting with the software
directly, issuing separate commands to evaluate the model with each
population of interest. A better approach, though, would be to write a

358 Perspective: Using Queueing Network Modelling Software

simple program that, when interpreted by the package, accomplishes this
task. A more sophisticated application would be to implement new spe-
cialized evaluation techniques for subsystems peculiar to a particular
environment, similar to the established techniques described in Part III.

16.2.4. High-Level Front Ends

Given measurement data for a system of realistic size, it takes a
significant amount of time to calculate and enter the inputs of a queueing
network model. The process is error-prone, because of the large volume
of data. Many of the actions are repetitive. All of these factors argue
strongly in favor of a computer program that partially automates the con-
struction of baseline models of existing systems. This is one major exam-
ple of a high-level front end, level 4 in Figure 16.1. Other examples of
application areas in which high-level front ends are of great utility include
performance projection for proposed systems, for database systems, and
for communication networks. We touch upon each of these in turn.

Modelling Existing Systems

In Chapter 12 we discussed the parameterization of baseline models of
existing systems. To be sure, parts of this process require subtle judge-
ments on the part of the analyst. For any particular system, though, it is
possible to automate a large proportion of the labor involved in translat-
ing measurement data (stored in a specified format in a performance data-
base) into queueing network model inputs.

The feas~ibility of constructing such a high-level front end relies on the
fact that the general structure of queueing network models, while system
dependent, is not highly installation dependent. For example, in con-
structing queueing network models of IBM MVS systems it is reasonable
to equate “performance groups” with customer classes. In general, such
front ends construct fairly simple models, which subsequently are
adjusted by the analyst. Overall, the savings in time can be significant.

Modelling Proposed Systems

Performance projection for proposed systems was discussed in some
detail in Chapter 14, where we illustrated the syntax of two high-level
front ends. The interface for this application is based on the system
designer’s point of view. It deals with the natural units of the application
(e.g., estimated number of disk reads on the software side, transfer rate
on the hardware side) and translates them into a form acceptable to the
core routine of the queueing network modelling software.

16.2. Components of Queueing Network Modelling Software 359

Modelling Database Systems

In systems where database processing has a major influence on perfor-
mance, the use of a specialized high-level front end can expand the scope
of performance questions that can be addressed conveniently.

The presence of a significant database workload component does not
detract from the applicability of the techniques described in Parts II and
III to the prob-lem of projecting performance. In fact, several of the case
studies described earlier treat systems in which database activity is
significant. There are performance questions that arise in the context of
database systems, however, that cannot be addressed conveniently using
the interface provided by general queueing network modelling software.

The efficient operation of database systems depends on many design
decisions, including:

- representation of the logical data model as a set of files
- specification of links that relate records to one another
- selection of indices to facilitate access to records having various

values for a certain attribute in a file
- choice of query processing strategy
- placement of indices and files in main memory and on various

storage devices
- allocation of buffer space for various purposes

All of these decisions have a substantial influence on the service demands
of database transactions. The purpose of a high-level front end for data-
base systems is to support investigation of decisions such as these.

In most database systems, a few transaction types are dominant. If we
represent each such transaction type as a customer class in a model, the
class can be characterized by its workload intensity and its typical pattern
of accesses to items in the database. The front end can calculate the
number of physical block accesses per transaction from the pattern of
accesses to logical data items, by taking into account the representation of
the logical database as files and links between them. In processing a
query, the order in which operations are done (the query processing stra-
tegy) and the presence of indices on selected attributes also influence the
number of block accesses. Finally, data placement decisions determine
the fraction of block accesses directed to each device, and buffer stra-
tegies determine the fraction of block accesses that require a physical data
transfer. Thus, by considering the characteristics of a database environ-
ment and the design decisions made, the front end can transform the
high-level specification of transaction types into a specification suitable for
input to a standard queueing network modelling package.

Specific database management systems impose specific restrictions.
For example, IMS and System 2000 support particular ways of linking and

360 Perspective: Using Queueing Network Modelling Software

indexing files, and provide particular tuning parameters (such as priority
specifications, and the allocation of buffer space to various uses>. A
high-level front end tailored to a specific database system is most con-
venient for an analyst because all the decisions resolved within the system
can be built into the front end.

Modelling Computer Communication Networks

Many issues need to be considered in the design of computer com-
munication networks: network bandwidth, multiplexing and concentra-
tion strategies, network protocol layers, flow control policies, routing stra-
tegies, and buffering strategies. A network designer is interested in
knowing if a proposed network can handle a projected workload intensity
while providing an acceptable level of performance. A front end for this
application accepts system descriptions in terms of entities such as cluster
controllers, line speeds, host/satellite topology, and protocols. These are
transformed for the queueing network model into service demands at
various centers (e.g., the communications controller). Hierarchical
modelling, as described in Chapter 8, is useful here.

16.3. An Example

This section gives an example of the way in which advanced queueing
network modelling software can be used by an analyst to develop and
modify a model of a large contemporary computer system. We have
three objectives:
l We wish to illustrate the levels of detail that are appropriate for build-

ing a model and using that model for performance projection.
l We wish to illustrate the relationship between modelling concepts,

evaluation algorithms, and modelling software.
l We hope to indicate how such software can increase the productivity

of the analyst.
To achieve these objectives, it is necessary to include example commands
for specific queueing network modelling software. We have chosen the
package MAP for our example. Other packages have similar features.

16.3.1. Description of the Example System

The system we treat is an Amdahl 470 V/7 with 16 million bytes of
main memory. It runs IBM’s MVS operating system with two important

16.3. An Example

workload components, batch and TSO (interactive). Other workload
components are present, but the performance questions of interest con-
cern only batch throughput and TSO response time.

Approximately 200 disk drives, IBM 3350s are accessible through
eight physical channels. Other devices are attached to the system (e.g.,
unit record devices and tape devices), but they have little influence over
performance in the current system or any contemplated future system.

16.3.2. Building a Baseline Model

The first step in our modelling process is to construct a baseline model
that validates well on batch throughput and TSO response time. To
present the concepts clearly, we will be showing how an analyst might
interact directly with the package in building the baseline model, rather
than using a high-level front end to partially automate the process, as
described in Section 16.2.4. As a practical consideration, though, some
software assistance is a necessity in building large models. We assume
that all necessary parameter values have been obtained from measure-
ment data in accordance with the procedures suggested in Chapters 12
and 17.

Our discussion of model building treats classes, centers, domains, and
service demands in turn.

Classes

Because of the performance questions of interest, the batch and TSO
workload components must be represented as separate classes. Multiple
class algorithms similar to those of Chapter 7 will provide the necessary
class based performance measures. In the actual system, other workload
components interfere with these two important components. We must
include this effect in the model. We do so with an aggregated artificial
third class. (Neglecting these other components would yield optimistic
results for the classes of interest.)

The definition of a class includes its name, its type, and its workload
intensity. TSO is a class of TERMINAL type with an associated number
of terminals and average think time. PRODUCTION is a class of
BATCH type with an associated average multiprogramming level. The
artificial class OTHER is specified as a class of TRANSACTION type with
an associated arrival rate, set equal to the rate at which jobs of the other
workload components complete. (This approach guarantees that the
modelled throughput of the OTHER class will equal the aggregated
throughputs of the other workload components.)

362 Perspective: Using Queueing Network Modelling Software

MAP commands to define the classes are:

CLASS TSO
TYPE TERMINAL
ONLINE-USERS 68
THINK 12.53

CLASS PRODUCTION
TYPE BATCH
AVG-MPL 8

CLASS OTHER
TYPE TRANSACTION
ARRIVAL-RATE .11

(create class TSO)
(state its type)
(specify the number of active terminal users)
(think time of 12.53 seconds)

(create class PRODUCTION)
(state its type)
(set its average multiprogramming level)

(create class OTHER)
(state its type)
(arrival rate is .I1 jobs/set.)

Additional commands that further specify class attributes will be given
shortly, when other necessary components of the model have been
defined.

Centers

The model includes a center representing the CPU and a center
representing each disk drive. The definition of a center includes its name
and optional attributes such as its scheduling discipline and its
manufacturer’s model designation. The MAP commands to define the
CPU and I/O devices are:

CENTER CPU
SCHEDULE PRIORITY
MODEL V/7

CENTER SYSOOl
MODEL 3350

CENTER PAGO01
MODEL 3350

(create a center named CPU>
(specify priority scheduling)
(inform MAP that it is an Amdahl V/7 CPI

(create center SYSOOl)
(inform MAP that is an IBM 3350 disk)

(create center PAGO011
(it is an IBM 3350)

J>

If no scheduling discipline is specified, processor sharing is assumed at a
CPU center, and FCFS is assumed at other centers. Here, the CPU has
been made a priority center. The relative scheduling priorities of classes
at this center must be given. In MAP, this is done using the PLEVEL
command:

16.3. An Example 363

CLASS TSO PLEVEL 3 (TSO has highest priority)

CLASS PRODUCTION PLEVEL 2 (PRODUCTION has middle)
(priority)

CLASS OTHER PLEVEL 1 (OTHER has lowest priority)

Higher PLEVEL values indicate higher scheduling priorities. The inclu-
sion of priority scheduling will cause MAP to evaluate the model using a
technique similar to the one described in Section 11.3.

Domains

In the actual system, the TSO workload component is subject to a
memory constraint of nine processing regions, meaning that at most nine
TSO users can be competing for CPU and I/O service at once (other
users must queue for memory). In MAP, this is modelled by the
DOMAIN feature. The definition of a domain consists of its name and
its capacity. It also is necessary to indicate which classes are constrained
by each domain. The MAP commands to do this for our example are:

DOMAIN DOM-TSO CAPACITY 9 (create domain DOM TSO;)
(set its capacity to 9jobs)

CLASS TSO INDOMAIN DOM-TSO (associate TSO with domain)
(DOM-TSO)

The other classes are not associated with domains. The use of the
DOMAIN feature will cause MAP to evaluate the model using a tech-
nique similar to the one described in Section 9.3.

A final memory related command is MEMSIZE, which informs MAP
of the amount of main storage in the base configuration:

MEMSIZE 16 (16MB of main storage in the base system)

This information is used by MAP during modification analysis, as we will
see.

Service Demands

The final components we define in the baseline model are the service
demands of all classes at all centers. A convenient way of entering the
service demand values is to have the package prompt for them in a sys-
tematic manner. In MAP, this is accomplished by specifying class and
center values of ALL. Then, in response to the DEMAND command,
MAP will print class and center names and accept the corresponding ser-
vice demands, as in:

364 Perspective: Using Queueing Network Modelling Software

CLASS ALL (ALL will cause MAP to prompt with all class names>
CENTER ALL (ALL will cause MAP to prompt with all center)

(names)

DEMAND (indicate to MAP that we want to specify service)
(demands)

TSO:

CPU:
.09

SYSOOI:
.04

(MAP prompt for TSO, to which the following)
(prompts apply)
(MAP prompt for CPU service demand)
(user-specified)
(MAP prompt for SYSOOl service demand)
(user-specified)

(Prompts printed by MAP are shown in italics.)

Performance Reports

Having defined the model, a number of performance reports can be
obtained for the baseline system. Examples are shown in Table 16.1.

System Performance Measures

Response Time in Memory
Class Time System Wait Throughput

TSO 5.6423 2.3868 3.2555 3.7420
PRODUCTION 12.5391 12.5391 0.0000 0.6380

OTHER 7.2880 7.2880 0.0000 0.1100

Device Utilizations

Center

CPU
SYSOOl

PAGO01

TSO PRODUCTION OTHER Total

0.3368 0.5104 0.0220 0.8692
0.1497 0.1276 0.0033 0.2806
0.1123 0.2233 0.0330 0.3686

Table 16.1 - Example Performance Report

16.3. An Example 365

The model can be validated by checking its calculated performance
measures against those from several measurement periods, as described
in Chapters 2 and 12. This often is an iterative process in which the
model and its parameters are refined as a better understanding of the sys-
tem is gained.

At this point, we assume that the model has been validated successful-
ly. Once this has been accomplished, the model definition can be saved:

SAVE BASELINE (save model definition in permanent file)

The model could be retrieved subsequently, either in this MAP session or
in other sessions, using:

READ BASELINE (read the named model definition file)

16.3.3. Reflecting Anticipated Changes

In Chapter 13 we discussed the parameterization of models of evolving
systems. Many model modifications are possible. In this subsection we
will discuss modifications to the workload, hardware, and software com-
ponents of the baseline model. In doing so, we will illustrate many of the
convenience features of contemporary queueing network modelling
software.

Workload

One standard workload change is an increase in workload intensities.
To specify a new value for the PRODUCTION multiprogramming level,
the AVG-MPL command would be issued with a new value as its
operand:

CLASS PRODUCTION AVG-MPL 12 (set the new value)

A more usual specification involves a relative change, e.g., a 20% increase
in the TSO workload intensity (number of terminals), as in:

CLASS TSO ONLINE 1.2* (multiply the previous value by 1.2)

(Any unique prefix is an acceptable abbreviation in MAP; ONLINE is a
shortened form of ONLINE-USERS.)

Other workload changes might involve the service demands. New
application software might reduce the CPU path lengths for the TSO
class. This might be reflected in the model by:

366 Perspective: Using Queueing Network Modelling Software

CLASS TSO CENTER CPU DEMAND .90* (CPU demand is)
(reduced by 10%)

The service demands at the disks might change as well. New blocking
strategies for files might reduce the number of I/OS per transaction,
resulting in reduced access time per byte transferred because of smaller
total seek and latency requirements. Disk service demands can be
modified in a manner similar to above.

Having modified the parameters of the model as appropriate, perfor-
mance estimates for the proposed system can be obtained using the PER-
FORMANCE command, as was done during the validation phase of the
study.

Hardware

A typical hardware change is the upgrading of a device to a more
powerful one. In our example, the V/7 CPU might be upgraded to a
5860. Because a MODEL has been specified for the CPU center, specify-
ing a new MODEL has the effect of changing the service demands of all
classes at the CPU:

CENTER CPU MODEL 5860 (represent upgrade to Amdahl 5860)

This change is done automatically within the package based on built-in
knowledge of the relative speeds of these two CPUs.

Just as a CPU can be upgraded, so can disks. If some or all of the
3350 disks are changed to 3380 disks, the MODEL command can be used
to alter the service demands of all classes at the devices upgraded, as in:

CENTER SYSOOl MODEL 3380 (upgrade from IBM 3350 to)
(IBM 3380)

Another typical upgrade involves a memory expansion. Going from
16 megabytes to 24 megabytes allows additional space to be allocated to
the user workloads. How this space is allocated is dependent on the
operating system memory policies. MAP uses built-in knowledge to esti-
mate how a memory expansion will affect various classes. The command:

MEMSIZE 24 (increase main memory size to 24MB)

causes MAP to alter automatically the average multiprogramming level of
the PRODUCTION class and the domain capacity of the TSO class to
reflect the use of increased main memory. (The values computed by
MAP are estimates- and account only for first-order effects; the analyst
might want to modify them on the basis of more detailed knowledge.)

16.3. An Example 361

As a final hardware change, consider the introduction of an additional
controller to the I/O subsystem to reduce path contention. (See Chapter
10 for a more complete description of the I/O subsystem architecture
being considered.) Our basic model contains no explicit representation of
I/O paths (the effect of contention for I/O paths is reflected in the disk
service demands, which contain a path contention component), so to
model this change a more detailed representation of the I/O subsystem is
required. We illustrate the process of creating a detailed model of this
sort with an example. For purposes of exposition, we will keep the
example small.

Suppose two strings of disks can connect to memory through two con-
trollers, and these two controllers can connect through two channels.
This connection scheme comprises what we call a logical channel, and
must be represented in our detailed model. Before defining the logical
channel in MAP, the basic components should be created, as in:

CHANNEL CHl (define a channel)
CHANNEL CH2 (define another channel)

CONTROLLER CTLA (define a controller)
CONTROLLER CTLB (define another controller)

The logical channel now can be defined:

LCHANNEL LCH

CHANNEL:
CHl

CONTROLLER:
CTLA

CONTROLLER:
CTLB

CONTROLLER:

CHANNEL:
CH2

CONTROLLER:
CTLA

CONTROLLER:
CTLB

CONTROLLER:

CHANNEL:

(define the logical channel; MAP)
(now will prompt for path descriptions)
(MAP prompt for channel at head of this path)
(user-specified)
(prompt for controller on this path)
(user>
(prompt for another controller on this path)
(user>
(prompt)
(user null line indicates end controller list)
(prompt for another channel to head)
(another set of paths)

(user null line, to end controller list)

(user null line, to end channel list)

Disks are grouped into sets called strings, with all disks on the same
string accessible over the same set of I/O paths (i.e., the same logical

368 Perspective: Using Queueing Network Modelling Software

channel). At this point, strings and associated information must be
defined, as in:

STRING STRl (create a string)
ONLCHANNEL LCH (inform MAP of the paths by)

(which disks on the string)
(are accessible)

STRING STR2 (create another string)
ONLCHANNEL LCH (place STR2 on paths LCH)

CENTER SYSOOl ONSTRING STRl (put SYSOOl on string STRl)

To model the addition of a controller to the system, the logical chan-
nels affected by the new controller could be redefined to include it, and
the model re-evaluated. MAP automatically estimates the new level of
path contention, and uses this to alter the disk service demands.

Other changes, such as the addition of channels and strings or the
movement of disks among strings, can be modelled similarly.

Software

By software changes we mean changes in the operating policies or
parameters of the system, not changes in the intrinsic workload demand.
As an example, consider attempting to balance resource usage by moving
a set of TSO files from one disk, where these files are responsible for one
third of the accesses, to another. This can be represented in MAP using:

CLASS TSO MOVE .33 SYSOOl SYSTMP

We can change the priority scheduling structure at the CPU simply by
specifying new PLEVEL values, as in:

CLASS TSO PLEVEL 2 (rehuce TSO’s priority level)

CLASS PRODUCTION PLEVEL 3 (give PRODUCTION priority)
(over TSO)

PRODUCTION now has priority over TSO at the CPU.
Unlimited variations are possible, but the essence of constructing and

modifying a model should be evident. The interactions between user and
package that have been illustrated are typical of those involved in perfor-
mance projection studies. The usual goal of such studies is to estimate
the performance of an existing system subjected to new workloads and
configurations. To support this activity, the software allows the analyst to
modify classes, centers, domains, and service demands in a simple

16.4. Summary 369

manner. The ability of the software to represent device-specific and
system-specific information is especially advantageous. A wide range of
alternatives can be investigated rapidly and interactively.

16.4. Summary

Queueing network modelling software can be viewed as consisting of
four levels. From lowest to highest, they are:
1. The core computational routine, which evaluates separable queueing

network models as described in Part II.
2. The approximation transformations, which interact with the core rou-

tines to evaluate detailed, non-separable models of subsystems such as
memory, disk I/O, and processors, as described in Part III.

3. The user interface, which allows the analyst to use the terminology of
computer systems, rather than the terminology of queueing networks,
and which also supports facilities such as the filing and retrieval of
model definitions and output reports, and the programmability of the
software.

4. High-level front ends, which partially automate specific tasks described
in Part IV: producing queueing network model inputs from system
measurement data, iteratively evolving the system specifications
needed for projecting the performance of proposed systems, etc.

All of these levels need not be present; indeed, simple queueing network
modelling software often consists only of the first level. However, the
higher levels are important to the professional computer system perfor-
mance analyst. The four levels need not be packaged together in a single
piece of software; it is typical for the fourth level to be separate from the
other three.

An obvious question that arises is whether queueing network model-
ling software should be developed in-house, using information from
sources such as this book, or obtained from a vendor. Most of the argu-
ments support the latter choice. Many of these arguments are
managerial, but one is technical, and we will consider it briefly.

Queueing network modelling technology has advanced rapidly in the
recent past, and can be expected to continue to do so in the near future.
That portion of a computer system performance analyst’s time not
devoted to computer system analysis is better spent staying abreast of
advances in computer systems than staying abreast of advances in queue-
ing network technology.

A quick historical review in support of this point may be of interest.
Table 16.2 shows that even at the relatively well understood level of the

370 Perspective: Using Queueing Network Modelling Software

core computational routine, advances have been recent, rapid, and
significant. At the level of the approximation transformations, progress
has been even more recent. For example, the techniques for evaluating
multiple class memory constrained queueing networks (Section 9.3) and
for evaluating multipathing I/O subsystems (Section 10.5) both were
developed during the two year gestation period of this book. In other
words, extensive changes have taken place recently even in the algo-
rithms at the lower levels of queueing network modelling software.

rough
date development

1965

1970

1975

1980

First application of queueing network models to computer
systems: a two center model with a population of a few
customers, evaluated using the global balance technique.

First efficient evaluation algorithm, an exact technique (the
“convolution method”) for single class separable models.

Extension to multiple class separable models.

Concept of flow equivalent service centers using load
dependent servers.

Mean value analysis and, subsequently, the highly efficient
MVA-based iterative approximate evaluation techniques for
separable models.

Table 16.2 - Advances in the Core Comfiutational Routine

16.5. Epilogue

Given that much of what has been discussed in this book can be -
and has been - packaged in queueing network modelling software, why
have you and we together labored so long over this material? The reason
is simple: the effectiveness with which such software can be applied is
multiplied many times by an understanding of the principles and tech-
niques upon which it is based. Briefly:
l In the case of Part I, you learned that Little’s law and its relatives,

which provide the technical foundation of queueing network model-
ling, are reasonable, and are of extremely broad applicability. This
knowledge, along with an awareness of the widespread success of per-

16.5. Epilogue 371

formance studies using queueing network models, provides confidence
in the approach.

l In the case of Part II, you learned the techniques used to evaluate
separable queueing network models, and the assumptions upon which
these techniques rely. The robustness of these techniques with
respect to the assumptions was indicated. This knowledge again builds
confidence in the approach and, more importantly, it indicates the
range of applicability of queueing network models, and provides
insight into the ways in which detailed models of specific subsystems
can be constructed using separable queueing network models as a
basis.

l In the case of Part III, you learned a collection of techniques for aug-
menting the algorithms of Part II to evaluate detailed models of
specific subsystems, where it often is necessary to represent the effects
of system characteristics that violate the separability assumptions.
This knowledge will help you understand the homogeneity assump-
tions made by queueing network modelling packages in specific cases
(for example, in representing multipathing I/O subsystems), so that
you will know if these assumptions should be a source of concern in a
particular performance study. The techniques presented in Part III
also can serve as a model for similar techniques that you might devise
yourself when confronted with a unique modelling probiem.

l In the case of Part IV, you learned how to parameterize queueing net-
work models to conduct studies of existing, evolving, and proposed
systems. Often a data reduction tool will not be available, and you will
be forced to work from raw measurement data. Even if such a tool is
available, it often will be desirable to augment it to accommodate the
requirements of a particular installation. You now have the knowledge
to do so.

l In the case of Part V, you learned through example how queueing net-
work models can be applied in “non-traditional” contexts. As com-
puter systems continue to evolve, it is important to recognize that the
applicability of queueing network technology, and of existing queueing
network modelling software, extends well beyond the confines of cen-
tralized systems with simple characteristics.

To repeat some comments made in the Preface, queueing network
models, while not a panacea, are the appropriate tool in a wide variety of
applications. Computer system analysis using queueing network models
is a blend of art and science, requiring both education and experience.
We hope to have contributed, and wish you success in applying queueing
network models in your work.

372 Perspective: Using Queueing Network Modelling Software

16.6. References

Our discussion of the structure of queueing network modelling
software is based on the treatment by Graham, Lazowska, and Sevcik
119821; this paper is the source of Figure 16.1.

BEST/l, available since the late 1970s and considerably updated since
then, is one of the earliest commercial queueing network modelling pack-
ages [BGS 1982al. More recent packages include CMFIModel [Boole &
Babbage 19831, RESQ [Sauer et al. 19821, and MAP [QSP 1982a, 1982bl.

An example of a high-level front end for modelling existing systems is
CAPTURE/MVS [BGS 1982b1, which prepares BEST/l input from MVS
performance monitor data.

A view of how to structure a hierarchical tool for database perfor-
mance projection, including a sequence of database workload descriptions,
is provided by Sevcik [1981]. A front end interface for projecting perfor-
mance of System 2000 databases is described by Casas Raposo 119811.

[BGS 1982al
BEST/l User’s Guide. BGS Systems, Inc., Waltham, MA, 1982.

[BGS 1982bl
CAPTUREMVS User’s Guide. BGS Systems, Inc., Waltham, MA,
1982.

EBoole & Babbage 19831
C’MF/Model. Boole & Babbage, Inc., Sunnyvale, CA, 1983.

[Casas Raposo 19811
I. Casas Raposo. Analytic Modeling of Data Base Systems: The
Design of a System 2000 Performance Predictor. Technical Note 25,
Computer Systems Research Group, University of Toronto, July 1981.

[Graham et al. 19821
G.S. Graham, E.D. Lazowska, and KC. Sevcik. Components of
Software Packages for the Solution of Queueing Network Models.
Proc. CPEUG ‘82 (19821, 183-187.

[QSP 1982al
MAP User Guide. Quantitative System Performance, Inc., Seattle,
WA, 1982.

[QSP 1982bl
MAP Reference Guide. Quantitative System Performance, Inc., Seattle,
WA, 1982.

16.6. References 373

[Sauer et al. 19821
Charles H. Sauer, Edward A. MacNair, and James F. Kurose. The
Research Queueing Package, Version 2: Introduction and Examples.
Report RA 138, IBM T.J. Watson Research Center, 1982.

[Sevcik 19811
K.C. Sevcik. Data Base System Performance Prediction Using an
Analytical Model. Proc. 7th VLDB Conference (1981), 182-189.

