
Exploring D3 Implementation Challenges on Stack Overflow
Leilani Battle*

University of Washington
Danni Feng†

University of Maryland
Kelli Webber‡

University of Maryland

ABSTRACT

Visualization languages help to standardize the process of design-
ing effective visualizations, one of the most prominent being D3.
However, few researchers have analyzed at scale how users incor-
porate these languages into existing visualization programming pro-
cesses, i.e., implementation workflows. In this paper, we present an
analysis of the experiences of D3 users as observed through Stack
Overflow, summarizing common D3 implementation workflows and
challenges discussed online. Our results show how the visualization
community may be limiting its understanding of users’ visualiza-
tion implementation challenges by ignoring the larger context in
which languages such as D3 are used. Based on our findings, we
suggest new research directions to enhance the user experience with
visualization languages. All our data and code are available at:
https://osf.io/fup48/.

Keywords: Web mining, visualization language evaluation

Index Terms: Human-centered computing—Visualization—
Visualization design and evaluation methods

1 INTRODUCTION

Visualization languages provide great flexibility in programming
and reusing visualization designs [10, 27]. Browser-based languages
in particular have made it easier for a wide range of people to
experiment with programming visualizations online [6, 10, 38], one
of the most influential being D3 [10]. On the one hand, D3 is wildly
successful: it has been starred over 101 thousand times on GitHub
and has been identified on many thousands of webpages, including
those of highly regarded media outlets [6]. On the other hand, D3
also has steep learning curve, and can be challenging for analysts
and data enthusiasts to adopt [27, 37].

One approach to addressing this problem is to investigate the chal-
lenges D3 users face with existing visualization programming pro-
cesses and toolsets, i.e., implementation workflows. This knowledge
could be used to strengthen existing infrastructure for implementing
D3 visualizations (e.g., documentation, examples, tutorials), and
even lead to targeted support tools that integrate directly with these
workflows. Furthermore, D3 is an important baseline for compari-
son with other visualization languages [39], and existing languages
adopt a similar support structure (e.g., Vega [39] and Vega-Lite [38]).
By investigating how to address implementation challenges for D3,
similar improvements could be propagated to other languages.

However, we observe a dearth of academic corpora regarding how
users interact with visualization languages such as D3. Given the
thousands of Stack Overflow posts made about D3, online forums
could be a rich resource regarding how D3 users implement new
visualizations, and the challenges they run into along the way. Fur-
thermore, these forums could enable us to study D3 users on a scale
not yet seen in existing evaluations [24].

*e-mail: leibatt@cs.washington.edu
†e-mail: fengdn@terpmail.umd.edu
‡e-mail: kwebber1@terpmail.umd.edu

In this paper, we start to fill this gap by mining and analyzing
37,815 posts about D3 collected from Stack Overflow. To ground
our analysis, we evaluate how D3’s original design goals have been
realized among these users to improve compatibility, debugging, and
performance [10]. Through this work, we contribute:

1. A mixed methods analysis of the experiences of D3 users as
observed on Stack Overflow. To the best of our knowledge, this
paper is the first to center on online forums, which is known to
be a critical resource for D3 users.

2. A collection of common implementation workflows discussed
by D3 users on Stack Overflow, common challenges when
integrating D3 into these workflows, and common debugging
patterns for D3 programs.

3. Empirical support for several “common knowledge” assump-
tions made about D3 users that have yet to be rigorously evalu-
ated, such as the frequent incorporation of non-visualization
tools into D3 implementation workflows and persistent barriers
to finding relevant D3 examples online.

4. Based on our findings, we identify new areas for future visu-
alization research. As one example, more research is needed
on how to strategically design example galleries to boost user
creativity and innovation, which would benefit not only D3
users but users of all visualization languages.

2 RELATED WORK
Analyzing Online Forums. A number of projects investigate

the practices [26, 44, 46], attitudes [11, 22] and impacts [20, 34] of
engagement in various online Q&A communities, and the impact
online forums can have on individual users [3, 4, 14, 28, 43]. We
utilize prior work to explore the intersection between online Q&A
communities and visualization implementation workflows and be-
haviors. We observe similar phenomena reported in prior work, such
as a large fraction of unanswered questions [43], strong associations
between certain tools and libraries [13], prevalent code re-use [2],
and an emphasis on web development [5]. However, given our focus
on visualization, we can speak to impacts on D3 users specifically,
and adapt existing guidance to the interests and needs of the visual-
ization community. We believe this paper is the first to analyze D3
implementation workflows by mining posts from online forums.

Visualization Mining, Modeling, and Analysis. Several
projects highlight the value in analyzing existing designs from
the web, such as website designs [23], visualization designs
[1,6,16,19,36], and even code structure [17]. Online platforms such
as bl.ocks.org [9] and Observable [30] also help communities engage
with visualizations online. A number of works analyze visualization
images to extract authors’ design decisions (e.g., [6, 16, 21, 33, 40]).
We extend prior work by automating the process of analyzing users’
challenges in implementing visualizations, rather than just analyz-
ing the visualizations themselves. Our findings could guide the
design of automated techniques, e.g., by extending systems such as
VizML [19] and Draco [29], to identify and fill specific blind spots
in a user’s visualization knowledge in a way that aligns with existing
user implementation workflows.

3 ANALYSIS OVERVIEW
Our primary objective in this work is to identify opportunities to
enhance the D3 visualization implementation process. To this end,
we use the original D3 design goals to drive our analysis (compati-
bility, debugging, performance) [10]. For sake of space, we focus

https://osf.io/fup48/


on two of these goals in this paper: compatibility and debugging1.
We summarize each goal as a concrete question for our analysis:

1. Compatibility: How is D3 used in conjunction with other
tools and environments?

2. Debugging: How do users explore, interpret, and augment the
behavior of D3 code?

To answer these questions, we downloaded relevant Stack Over-
flow posts, using Stack Overflow’s tag search to limit the corpus to
posts that include the “d3.js” tag. Only posts that were accessible on
Stack Overflow were included. With our approach, we are able to
analyze 37,815 total StackOverflow posts from 17,591 unique D3
users, showing the power of scale afforded by our techniques.

We apply a mixed methods analysis approach:
1. Explore a randomized sample of posts to identify patterns of

potential interest as qualitative codes;
2. Filter the full 37,815 corpus using specific keyphrases derived

from our qualitative codes and associated quotes;
3. Count observations of keyphrases on the full corpus to produce

quantitative measures;
4. Compare our results to follow-up analyses of Stack Overflow

posts, the D3 documentation, or relevant GitHub issues and
release notes (if applicable), to provide additional context.

In line with prior qualitative studies (e.g., [20, 26]), we created
a representative sample of Stack Overflow posts for the explore
phase of our analysis pipeline. This sample contains 817 posts
randomly sampled through the year 2020. Three authors manually
coded these posts using descriptive deductive and inductive codes.
Deductive codes were used for known categories in visualization,
such as visualization types (e.g., [6]) and interaction types (e.g.,
[12]). Inductive codes labeled self-reported visualization and/or user
characteristics, such as labeling when bar charts, Adobe Illustrator,
or SQL were mentioned. Codes were not exclusive, and could be
applied in parallel. Note that for most of our qualitative findings
from the explore phase, we verify our results quantitatively using
the full corpus (in Sect. 4.1, Sect. 5.1, and Sect. 5.2).
4 COMPATIBILITY: INTEGRATING D3 WITH OTHER TOOLS
In this section, we analyze mentions of external APIs and tools in
our random sample, and summarize the types of issues that Stack
Overflow users discuss online.
4.1 Analyzing Users’ Visualization Toolsets
23.4% of all posts we qualitatively analyzed referenced at least one
other external library or tool. We found 55 different languages, tools,
and libraries mentioned in conjunction with D3.js. To see if these
frequencies suggest a larger pattern, we compared with observations
of the same tools in the full Stack Overflow corpus. We found that
the random sample and full corpus have very similar distributions,
pointing to broader patterns in how D3 is being used in conjunction
with other tools (please see our technical report for more details).
We highlight a few interesting observations here.

D3 is Often Integrated Into Larger Web Applications. For
example, D3 users often use React, Angular, or Vue to manage the
front-end, and Python, Node, Ruby on Rails, Electron, or Java Spring
to run the back-end. 34 of 55 (or 61.8%) of the tools we observed
are JavaScript Libraries, and React.js, Angular, dc.js, jQuery, and
NVD3 are mentioned the most. However, each tool covers a small
fraction of posts. For example, React is mentioned in 5% of coded
posts. Thus there are a few popular application structures, but Stack
Overflow users vary widely in the libraries/tools they use with D3.

D3 is Paired With Specialized Visualization Libraries.
Though D3 provides support for geographic maps and graphs, we
find some users attempting to integrate D3 with specialized visual-
ization libraries, such as leaflet, simplify, datamaps, and openweath-
ermap for maps, and web cola for graphs. Greensock and Three.js,
specialized libraries for 2D and 3D animation, were also mentioned.

1Please see our technical report for more details: https://arxiv.org/
abs/2108.02299.

D3 is Used Outside of JavaScript. D3 is not used solely with
JavaScript. For example, some Stack Overflow users seek help using
D3 in R and Jupyter Notebooks. Users mentioned three packages in
particular for R: shiny, r2d3, and radialnetworkr. Users also mention
other computational environments, such as PostgreSQL and SparQL.
However, the overwhelming majority of Stack Overflow posts that
we analyzed focused on a JavaScript programming context.

Graphics Editors and Spreadsheets are Used for Proto-
typing. We also find some interesting implementation variants,
such as using Microsoft Excel or Adobe Illustrator for brainstorming
prior to implementation (e.g., posts D-73 and A-296 from our dataset
files, respectively). Three graphics editors were mentioned on Stack
Overflow (Illustrator, CorelDraw, and InkScape), suggesting that a
number of users brainstorm visualizations in non-code environments
as part of their implementation workflows, and prior to using D3.
4.2 Common Assumptions Clash With User Workflows
When investigating one of the more popular application structures
(React components), we find two common integration challenges.
First, React is known to have a steep learning curve, and Stack Over-
flow users often encounter challenges simply in getting React to
work properly. For example, we find that many posters have more
trouble understanding React than D3 itself (e.g., post B-502). The
second theme we observe is a clash in functionality between React
and D3. D3 was originally designed to manipulate the DOM di-
rectly [10], with known issues for integrating D3 with other libraries
that also modify the DOM such as React [41]. We observed this
integration challenge in our qualitative analysis; for example, one
poster’s solution to their D3 integration problem was to use React-
focused utilities designed to integrate with D3, rather than use D3
directly (post B C-63). We also observed Stack Overflow users men-
tioning libraries that replace D3’s DOM manipulation operations
with those of another library, such as how ngx-charts uses Angu-
lar instead of D3 for rendering purposes (e.g., post D-38). Some
answers even suggested removing D3 entirely (e.g., post B-149).

We observe that when incorporating a JavaScript library that ma-
nipulates the DOM, a Stack Overflow user tends to anchor their
workflow on this library, since the DOM is the physical structure of
the webpage itself. By choosing to manipulate the DOM directly,
earlier versions of D3 tried to act as the anchoring library. Thus in a
way, the design of D3 assumed that D3 was the focal point of an im-
plementation workflow, even though D3 is scoped primarily for data
interaction and visualization, which represent only a fraction of a
user’s overall interface and webpage design. However, in reviewing
D3’s release notes, we found that D3’s structure has shifted signif-
icantly over time from being an anchoring language to a modular
collection of data manipulation and visualization libraries [8].

D3’s evolution in response to user (and developer) implementa-
tion challenges provides critical context for how visualization tools
can be designed in the future. For example, the visualization com-
munity often develops and evaluates new tools without considering
how they will be incorporated into existing workflows [31, 42]. This
lack of awareness could lead to less functional tools, and ultimately
lower adoption and impact for visualization work.
4.3 Takeaways.
We see a wide range of libraries and tools used as part of larger
visualization implementation workflows, from specialized visualiza-
tion libraries to usage with non-JavaScript languages such as Python
and R, and even graphics editors and spreadsheets. We explore how
D3 evolved in response to users’ implementation challenges, which
may speak to broader limitations in how visualization research is
conducted, in particular the perspective that visualization tools are
the focal point of a user’s visualization implementation workflow.
Our findings suggest that the visualization community may benefit
from taking the goal of compatibility even further, for example by
treating visualizations as just one component of a larger application
that a user wants to create, rather than the main focus. This shift

https://arxiv.org/abs/2108.02299
https://arxiv.org/abs/2108.02299


A B

C D E

F G

Figure 1: Example images shared online to convey desired visualiza-
tions (A, E, F, & G), interactions (B), and modifications (C & D).

in perspective necessitates a change in how visualization tools are
designed and evaluated. Long term case studies could be a useful
starting point for this shift [42].

5 DEBUGGING: INTERPRETING & APPLYING D3 CONCEPTS
In this section, we qualitatively analyze the kinds of bugs that Stack
Overflow users often run into with D3, and the different strategies
they use to articulate and fix their D3 implementation bugs.

5.1 Analyzing Implementation & Debugging Methods
Stack Overflow Users Wrestle With Odd D3 Behavior More

Often than Explicit Errors. Users mention explicit compilation
or runtime errors only 10.6% of the time (87 out of 817 posts). In-
stead, Stack Overflow users’ bugs tend to involve runnable code that
exhibits unexpected or unwanted behaviors (337 out of 817 posts,
or 41.2%), especially unexpected rendering effects or unexpected
interaction behaviors in the visualization output.

Stack Overflow users often rely on existing examples to
find solutions to their bugs. We find that Stack Overflow users
often reference existing D3 examples that are publicly available
online when discussing their bugs (179 out of 817, or 21.9% of
posts). This suggests that Stack Overflow users often rely on existing
examples when debugging their D3 code. To better understand the
influence of the D3 documentation on example usage, we counted
the number of Stack Overflow posts containing a link to examples
from the visual index of the D3 visualization gallery, bl.ocks.org, and
Observable [30]. We find that 13.6% of all posts directly reference
examples from just these three sources, representing a significant
fraction of all referenced examples in our qualitative dataset.

To see if these findings point to a larger pattern, we compare
them with the full Stack Overflow corpus. Across all 37,815 posts
analyzed, we find that 14% include references to bl.ocks.org, Ob-
servable, or the D3 Gallery visual index, which is consistent with our
coded data. Thus D3 examples and documentation seem to be key
components of users’ D3 visualization implementation workflows.
5.2 Challenges in Using Relevant Examples to Fix Bugs
Adapting existing D3 examples seems to be an important but also
complicated part of the D3 implementation and debugging process,
which we explore further in this section.

Some Users Struggle to Find the Most Relevant Examples.
When searching for relevant examples, D3 users may struggle to
match their own terminology for different visualization and interac-
tion types to the terminology of others. For example, we find that 46
of 817 (or 5.6%) of posts mention difficulties in finding any relevant
D3 examples or Stack Overflow posts. If a D3 user is unaware of the
appropriate D3 methods for implementing certain functionality, then
a typical keyword search in Google or Observable may fail due to
mismatches in terminology. Advanced visualization search engines
may also be of limited use, due to their reliance on language-specific
terminology, such as [18] and bl.ocksplorer.org. However,
once relevant examples are identified, D3 users still seem to strug-
gle with separating relevant code from irrelevant code, and with
distinguishing D3 components from those of other libraries.

Complicated, Irrelevant Functionality Makes Examples Hard
to Reuse. The utility of a D3 example seems to depend on not
only the ratio of relevant to irrelevant functionality, but also the
complexity of this functionality. Unfortunately, existing examples
routinely contain more functionality than the user wants or is familiar
with, which can easily confuse them and lead to unnecessary bugs.
Consider the following quote, where a user is struggling to reuse the
zoom functionality from a geographic map example with meshes:

“I am trying to implement a ’zoom to bound’ feature on
my D3 map. This is the Block that I have in mind... My
issue is that it looks like the implementation requires a
topoJSON mesh.” (post A-587)

From follow-up comments on the post, we learn that meshes are not
needed, revealing unnecessary functionality:

“You don’t need the mesh, that’s just for the states’
strokes.” (post A-587)

The commentor also suggests a more relevant example “Have a look
at this bl.ocks without mesh...” (post A-587), pointing to a separate
problem that we observed: some users struggle to find the most
relevant examples in the first place.

Users Struggle to Connect D3 Code Components With
Their Corresponding Visual Outputs. We find that many Stack
Overflow users struggle to pinpoint the root causes of their D3
bugs. One challenge for Stack Overflow users may be that the
way in which users intuitively reason about visualization outputs
may not match how these outputs are generally specified using the
D3 language. Rather than using the parlance of the D3 language
to describe what they want to create, many Stack Overflow users
illustrate their desired outputs by embedding one or more images
within a post, often with annotations added. For example, 21.1% of
the posts we analyzed included linked or embedded images, which
also held true for our full Stack Overflow corpus (19.2%).

The annotations generally appeared to be hand-drawn, or applied
using image editing or presentation software. Fig. 1 provides ex-
amples from five different Stack Overflow posts. For example in
Fig. 1-E, the user circled a specific visualization within an existing
image (online weather information) that they want to copy. In Fig. 1-
G, the user has made a diagram in ASCII showing how they want to
order and group the bars of a bar chart, reminiscent of ASCII-based
diagramming seen in other debugging contexts (e.g., database debug-
ging [7]). Some users would even go so far as to draw the specific
changes they expect to make. In Fig. 1-D, the user has manually
illustrated their desired results by annotating a stacked bar chart
with the totals drawn above each stack. Users also illustrate desired
interactions by sharing videos (e.g., post E-110), .gifs (e.g., post
D-38), and sequences of annotated images (e.g., Fig. 1-A and B).

5.3 Takeaways.
Stack Overflow users often post about unexpected behaviors rather
than explicit errors. One common implementation and debugging
strategy among these users is to compare their code with relevant
examples that are publicly available online. However, Stack Over-
flow users often struggle to find the most relevant D3 examples to
inform their coding and debugging process. When they do find rele-
vant examples, they may still struggle to extract the most relevant
functionality. This is due in part to how many D3 examples lack a
modular structure, and often contain functionality that other users
do not need, which can lead to confusion and unnecessary bugs.

If users could search for desired functionality without domain-
specific keywords, they could find relevant D3 examples with less
time and effort. Furthermore, some users have found their own way
of communicating desired visualization outputs through annotated
images, videos, and gifs. If Stack Overflow users could demonstrate
their desired changes by directly manipulating the visualization
output (e.g., [25, 35, 47]), then they could debug their code using a
search-by-example process, rather than a language or keyword-based

bl.ocksplorer.org


search. Then, visualization tools could compute the corresponding
implementation deltas and update the code automatically. Debug-
ging via direct manipulation has been proposed in other contexts,
such as for updating Jupyter notebooks [45] and debugging SQL
queries [15], and could be adapted for visualization languages.

6 DISCUSSION: IMPLICATIONS FOR FUTURE RESEARCH

D3 has made incredible contributions to the visualization community.
In this paper, we investigate opportunities to further enhance the
experience of D3 users and of visualization language users in general.
We present an analysis of 37,815 posts made by D3 users on Stack
Overflow. We evaluate D3 from two perspectives: compatibility and
debugging. Our findings show that when we focus on developing
visualization languages but not how and where people actually use
them, we may struggle to fully understand the user experience,
and may thus fail to fully identify and address the needs of these
users. By being mindful of how users interact with visualization
languages and relay their implementation challenges, we can develop
innovative strategies to enhance users’ implementation processes,
increase users’ information access, and empower users to explore
a wider range of effective visualization designs. In this section, we
highlight opportunities for future work based on our findings.

6.1 Emphasize Integration With Non-Visualization Tools
When visualizations become the sole focus of visualization tool de-
velopment, developers and researchers may build tools that conflict
with other critical needs within users’ implementation workflows, po-
tentially hindering adoption. As demonstrated through the evolution
of D3, our community needs to shift its mindset towards building
modular visualization components that can integrate smoothly with
other tools. Furthermore, we encourage more formal evaluations of
how users integrate new tools and languages (or not) into their imple-
mentation workflows over time [31,42]. For example, we encourage
our community to conduct more large scale, quantitative studies
of how visualization languages are used in popular development
environments, e.g., Jupyter, Observable, and R Studio.

6.2 More Modular Infrastructure Could Boost Adoption
We find that users on Stack Overflow often rely on examples to
implement and debug new D3 visualizations, but struggle to find
relevant examples and reuse them correctly. Our findings point to
two challenges in supporting current debugging workflows. First,
we lack modularized building blocks for implementing new visual-
izations in D3. This issue may stem in part from D3’s mixing of
declarative specification of encodings with imperative specification
of interactions, which is addressed in later languages such as Vega-
Lite [38]. Second, the problem may not only be with code structure
but also insufficient infrastructure for helping users understand the
flow of the code, i.e., how results propagate through the various parts
of a D3 visualization. This issue has led to recent developments
such as the Observable notebook environment [30], but Observable
still expects users to manually segment their own code. Similar
environments such as Jupyter notebooks suffer from the same prob-
lems. Both challenges highlight how D3 users struggle to break their
implementation challenges down into modular, solvable pieces.

Based on our findings, we argue that both challenges could be ad-
dressed effectively by improving the support infrastructure around
D3, rather than by modifying D3 itself. For example, we could de-
velop more intuitive search interfaces that support search by example
or search by demonstration, such as searching existing D3 examples
for specific visual outputs or intended interaction behaviors. Solu-
tions can be developed in a data-driven way by mining them from
the thousands of existing D3 examples we observed. For example,
new tools could leverage this data to help users identify separate D3
components within existing examples, and extract only those that
are needed. Development environments could also be augmented to
automatically recommend relevant documentation or code blocks
based on inferred user goals, experience levels, and potential biases.

6.3 Make Example Gallery Design Active Research
Our findings in Sect. 5 show that a basic web search is just not good
enough to help users find relevant D3 examples. Asking users to
search for solutions using specialized D3 or visualization keywords
are sub-optimal alternatives. Even Stack Overflow is insufficient;
translating a specific D3 bug into a self-contained Stack Overflow
question requires significant time and effort [14], and 37% of the
37,815 posts analyzed were left unanswered by other users. We
believe these issues persist because our community views them as
engineering rather than research problems.

In an effort to shift this perspective, we highlight opportunities to
expand existing design galleries. We could synthesize current best
practices in visualization design as a diverse set of modularized visu-
alization examples that all visualization language developers aim to
provide. Rather than expecting developers to create design galleries
meeting these requirements, we could also find ways to automate
the generation of design galleries. This solution could involve a
mixture of automation and the crowd, where automated processes
are developed not only to detect gaps in existing galleries, but also to
encourage users to fill these gaps with new examples. This approach
could also be used to detect redundant or low quality examples and
replace them automatically. Developing design galleries and docu-
mentation takes time, whether for open-source languages such as
Vega-Lite [38], or commercial APIs such as Plotly [32]. Automating
the documentation process could speed up the learning process and
dampen learning curves for users of all visualization languages.
6.4 Takeaways Summary
Here we list three major takeaways derived from our research:

• Develop and test visualization languages as part of larger im-
plementation workflows involving multiple tools.

• Provide support infrastructure for helping users find relevant
examples, extract meaningful code components, and integrate
these components into their workflows.

• Automate the example gallery generation process, to ease the
difficulty of designing effective examples and make the process
more consistent across languages/tools.

6.5 Limitations and Future Work
One limitation is that we only focus on D3 users who post on Stack
Overflow, a subset of all D3 users. However, we are still able to study
17,591 total D3 users, showing the scale afforded by our approach.
Given that posters do not have to share personal information on
Stack Overflow, user characteristics are not consistently available in
our dataset; thus we exclude them from our analysis. An interesting
direction for future research is to conduct follow up interviews with
D3 users to better understand their backgrounds, motivations, and
experiences, providing additional context for our findings. However,
we believe that our ability to analyze thousands of D3 users helps to
balance this limitation out. Certain D3 functionality may not be well
represented in our dataset, e.g., animations. It would be interesting
to introduce filters to our Stack Overflow crawler to extract specific
posts for more targeted analyses in the future, e.g., downloading
animation-focused posts for further analysis. In general, we hope
that by sharing our materials, we can empower the community
to explore visualization languages in new ways. For example, a
promising avenue of future work could be to analyze iteration on
visualization languages and user reasoning in tandem over time.

ACKNOWLEDGMENTS
This research was funded in part by NSF Award #1850115. We
thank the UMD HCIL, the BAD Lab, the UW IDL, and our (many)
reviewers for their invaluable feedback. We also thank Arjun Nair
and Rishik Narayana for their help with data collection.

REFERENCES

[1] End-users Publishing Structured Information on the Web: An Observa-
tional Study of What, Why, and How. CHI ’14. doi: 10.1145/2556288.
2557036



[2] R. Abdalkareem, E. Shihab, and J. Rilling. On code reuse from stack-
overflow: An exploratory study on android apps. Information and
Software Technology, 88:148–158, 2017.

[3] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec. Discover-
ing Value from Community Activity on Focused Question Answering
Sites: A Case Study of Stack Overflow. KDD ’12, pp. 850–858. ACM,
2012. doi: 10.1145/2339530.2339665

[4] A. Ardichvili, M. Maurer, W. Li, T. Wentling, and R. Stuedemann.
Cultural influences on knowledge sharing through online communities
of practice. Journal of Knowledge Management, 10(1):94–107, Jan.
2006. doi: 10.1108/13673270610650139

[5] A. Barua, S. W. Thomas, and A. E. Hassan. What are developers talking
about? an analysis of topics and trends in stack overflow. Empirical
Software Engineering, 19(3):619–654, 2014.

[6] L. Battle, P. Duan, Z. Miranda, D. Mukusheva, R. Chang, and M. Stone-
braker. Beagle: Automated Extraction and Interpretation of Visualiza-
tions from the Web. CHI ’18, pp. 594:1–594:8. ACM, 2018. doi: 10.
1145/3173574.3174168

[7] L. Battle, D. Fisher, R. DeLine, M. Barnett, B. Chandramouli, and
J. Goldstein. Making Sense of Temporal Queries with Interactive
Visualization. CHI ’16, pp. 5433–5443. ACM, 2016. doi: 10.1145/
2858036.2858408

[8] M. Bostock. Release v4.0.0 - d3/d3, 2016.
[9] M. Bostock. Popular blocks - bl.ocks.org, 2021.

[10] M. Bostock, V. Ogievetsky, and J. Heer. D3 Data-Driven Documents.
IEEE TVCG, 17(12):2301–2309, Dec. 2011. doi: 10.1109/TVCG.2011
.185

[11] A. Bosu, C. S. Corley, D. Heaton, D. Chatterji, J. C. Carver, and
N. A. Kraft. Building Reputation in StackOverflow: An Empirical
Investigation. MSR ’13, pp. 89–92. IEEE Press, 2013.

[12] M. Brehmer and T. Munzner. A multi-level typology of abstract vi-
sualization tasks. IEEE TVCG, 19(12):2376–2385, 2013. doi: 10.
1109/TVCG.2013.124

[13] C. Chen and Z. Xing. Mining technology landscape from stack over-
flow. ESEM ’16. ACM, 2016. doi: 10.1145/2961111.2962588

[14] D. Ford, J. Smith, P. J. Guo, and C. Parnin. Paradise Unplugged:
Identifying Barriers for Female Participation on Stack Overflow. FSE
2016, pp. 846–857. ACM, 2016. doi: 10.1145/2950290.2950331

[15] S. Gathani, P. Lim, and L. Battle. Debugging database queries: A
survey of tools, techniques, and users. CHI ’20, p. 1–16. ACM, New
York, NY, USA, 2020.

[16] J. Harper and M. Agrawala. Converting Basic D3 Charts into Reusable
Style Templates. IEEE TVCG, 24(3):1274–1286, Mar. 2018. doi: 10.
1109/TVCG.2017.2659744

[17] A. Head, E. L. Glassman, B. Hartmann, and M. A. Hearst. Interactive
Extraction of Examples from Existing Code. CHI ’18, pp. 85:1–85:12.
ACM, 2018. doi: 10.1145/3173574.3173659

[18] E. Hoque and M. Agrawala. Searching the visual style and structure of
d3 visualizations. IEEE TVCG, 26(1):1236–1245, Jan 2020. doi: 10.
1109/TVCG.2019.2934431

[19] K. Hu, M. A. Bakker, S. Li, T. Kraska, and C. Hidalgo. VizML: A
Machine Learning Approach to Visualization Recommendation. CHI
’19, pp. 128:1–128:12. ACM, 2019. doi: 10.1145/3290605.3300358

[20] R. Jones, L. Colusso, K. Reinecke, and G. Hsieh. R/science: Challenges
and opportunities in online science communication. CHI 2019, p. 1–14.
ACM, New York, NY, USA, 2019.

[21] D. Jung, W. Kim, H. Song, J.-i. Hwang, B. Lee, B. Kim, and J. Seo.
ChartSense: Interactive Data Extraction from Chart Images. CHI ’17,
pp. 6706–6717. ACM, 2017. doi: 10.1145/3025453.3025957

[22] T. Kauer, M. Dörk, A. L. Ridley, and B. Bach. The public life of data:
Investigating reactions to visualizations on reddit. CHI ’21. ACM, New
York, NY, USA, 2021.

[23] R. Kumar, A. Satyanarayan, C. Torres, M. Lim, S. Ahmad, S. R.
Klemmer, and J. O. Talton. Webzeitgeist: Design Mining the Web.
CHI ’13, pp. 3083–3092. ACM, 2013. doi: 10.1145/2470654.2466420

[24] H. Lam, E. Bertini, P. Isenberg, C. Plaisant, and S. Carpendale. Empiri-
cal studies in information visualization: Seven scenarios. IEEE TVCG,
18(9):1520–1536, 2012. doi: 10.1109/TVCG.2011.279

[25] B. Lee, G. Smith, N. H. Riche, A. Karlson, and S. Carpendale. Sketchin-
sight: Natural data exploration on interactive whiteboards leveraging

pen and touch interaction. PacificVis ’15, pp. 199–206, 2015. doi: 10.
1109/PACIFICVIS.2015.7156378

[26] K. Mack, J. Lee, K. Chang, K. Karahalios, and A. Parameswaran.
Characterizing scalability issues in spreadsheet software using online
forums. CHI EA ’18, p. 1–9. ACM, New York, NY, USA, 2018. doi:
10.1145/3170427.3174359

[27] H. Mei, Y. Ma, Y. Wei, and W. Chen. The design space of construc-
tion tools for information visualization: A survey. Journal of Visual
Languages & Computing, 44:120–132, Feb. 2018. doi: 10.1016/j.jvlc.
2017.10.001

[28] A. Merchant, D. Shah, G. S. Bhatia, A. Ghosh, and P. Kumaraguru.
Signals Matter: Understanding Popularity and Impact of Users on
Stack Overflow. WWW ’19, pp. 3086–3092. ACM, 2019. doi: 10.
1145/3308558.3313583

[29] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and
J. Heer. Formalizing visualization design knowledge as constraints:
Actionable and extensible models in draco. IEEE TVCG, 25(1):438–
448, 2019. doi: 10.1109/TVCG.2018.2865240

[30] Observable, Inc. Observable - make sense of the world with data,
together / observable, 2021.

[31] C. Plaisant. The challenge of information visualization evaluation. AVI
’04, p. 109–116. ACM, 2004. doi: 10.1145/989863.989880

[32] Plotly. Plotly: The front end for ml and data science models, 2021.
[33] J. Poco and J. Heer. Reverse-Engineering Visualizations: Recover-

ing Visual Encodings from Chart Images. Comput. Graph. Forum,
36(3):353–363, June 2017. doi: 10.1111/cgf.13193

[34] S. Ravi, B. Pang, V. Rastogi, and R. Kumar. Great question! question
quality in community q&a. 8(1):426–435, May 2014.

[35] B. Saket, A. Srinivasan, E. D. Ragan, and A. Endert. Evaluating
Interactive Graphical Encodings for Data Visualization. IEEE TVCG,
24(3):1316–1330, Mar. 2018. doi: 10.1109/TVCG.2017.2680452

[36] B. Saleh, M. Dontcheva, A. Hertzmann, and Z. Liu. Learning Style
Similarity for Searching Infographics. GI ’15, pp. 59–64. Canadian
Information Processing Society, 2015.

[37] A. Satyanarayan, B. Lee, D. Ren, J. Heer, J. Stasko, J. Thompson,
M. Brehmer, and Z. Liu. Critical reflections on visualization authoring
systems. IEEE TVCG, 26(1):461–471, 2020. doi: 10.1109/TVCG.
2019.2934281

[38] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
Lite: A Grammar of Interactive Graphics. IEEE TVCG, 23(1):341–350,
Jan. 2017. doi: 10.1109/TVCG.2016.2599030

[39] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive
Vega: A Streaming Dataflow Architecture for Declarative Interactive
Visualization. IEEE TVCG, 22(1):659–668, Jan. 2016. doi: 10.1109/
TVCG.2015.2467091

[40] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer.
ReVision: Automated Classification, Analysis and Redesign of Chart
Images. UIST ’11, pp. 393–402. ACM, 2011. doi: 10.1145/2047196.
2047247

[41] D. Scanlon. How (and why) to use d3 with react — hacker noon, 2017.
[42] B. Shneiderman and C. Plaisant. Strategies for evaluating information

visualization tools: Multi-dimensional in-depth long-term case studies.
BELIV ’06, p. 1–7. ACM, 2006. doi: 10.1145/1168149.1168158

[43] R. Slag, M. de Waard, and A. Bacchelli. One-day flies on stackoverflow
- why the vast majority of stackoverflow users only posts once. MSR
’15, pp. 458–461. IEEE, 2015. doi: 10.1109/MSR.2015.63

[44] C. Treude, O. Barzilay, and M.-A. Storey. How Do Programmers Ask
and Answer Questions on the Web? (NIER Track). ICSE ’11, pp.
804–807. ACM, 2011. doi: 10.1145/1985793.1985907

[45] Y. Wu, J. M. Hellerstein, and A. Satyanarayan. B2: Bridging Code
and Interactive Visualization in Computational Notebooks, p. 152–165.
UIST 2020. ACM, 2020.

[46] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim. Are
code examples on an online q&a forum reliable? a study of api misuse
on stack overflow. ICSE ’18, p. 886–896. ACM, 2018. doi: 10.1145/
3180155.3180260

[47] J. Zong, D. Barnwal, R. Neogy, and A. Satyanarayan. Lyra 2: De-
signing interactive visualizations by demonstration. IEEE TVCG,
27(2):304–314, 2021. doi: 10.1109/TVCG.2020.3030367


	Introduction
	Related Work
	Analysis Overview
	Compatibility: Integrating D3 With Other Tools
	Analyzing Users' Visualization Toolsets
	Common Assumptions Clash With User Workflows
	Takeaways.

	Debugging: Interpreting & Applying D3 Concepts
	Analyzing Implementation & Debugging Methods
	Challenges in Using Relevant Examples to Fix Bugs
	Takeaways.

	Discussion: Implications for Future Research
	Emphasize Integration With Non-Visualization Tools
	More Modular Infrastructure Could Boost Adoption
	Make Example Gallery Design Active Research
	Takeaways Summary
	Limitations and Future Work


