

Making Sense of Temporal Queries with Fine-Grained Provenance
Leilani Battle, Danyel Fisher, Mike Barnett, Badrish Chandramouli, Rob DeLine, Jonathan Goldstein

Figure 1: A complex temporal query, visualized. The query execution diagram (A) shows that only one side is running the

TumblingWindow operation; the corresponding timeline bars (B) are windowed for only that side. The user is highlighting one bar
(C); the upstream and downstream output bars in the join operation are also highlighted. (D) A tooltip shows information about
the highlighted bar

ABSTRACT
As real-time monitoring and analysis becomes increasingly popular,
more researchers and developers are turning to data stream
management systems (DSMS’s) for fast, efficient ways to pose
temporal questions over their datasets. However, these systems are
inherently complex, and even individuals with database expertise
find it difficult to understand the behavior of DSMS queries. To help
analysts better understand their temporal DSMS queries, we
developed a visualization tool that illustrates how a temporal query
manipulates a given dataset, step-by-step. StreamTrace produces an
interactive visualization that allows the user to audit their queries.
We incorporated feedback from three expert DSMS users throughout
our design process.

1 INTRODUCTION
The recent rise in large-scale streaming data—from machine

telemetry, to social streams, to scientific analysis—has led to an
increasing demand for the skills and tools to allow data scientists to
analyze data with a temporal component. Data stream management
systems (DSMS) are a class of tools designed for continuous
computation over temporal data streams; they are controlled by
stream query languages. Stream query language queries are executed
over DSMS’s, just as SQL queries are executed by relational
databases. The records stored in a data stream are referred to as
stream events.

Consider a motivating example: a data scientist wants to
answer two questions about a newly-opened online store:

• How many users are signed into our store?
• On average, how many products are they buying?

The online store generates log files like those seen in Figure 2.
Reading this as a relational table, a data scientist might assume

that the number of users signed in is 3, and the average number of
products purchased is 2. The timeline on the right side of the figure

shows that this is not the case: records go in and out of scope over
time as users carry out sessions at the store. These changes in the
timeline result in multiple answers for our aggregates: the correct
answer actually changes from over time.

Tracking these changes is precisely what DSMS’s are designed
for—but that can also make DSMS queries hard to understand. Data
scientists who are new to DSMS’s—even if they are already
experienced with relational databases—can find temporal queries
that behave in ways that are difficult to understand. Before data
scientists will readily incorporate DSMS’s into their temporal
analysis pipeline, they need the ability to more easily interpret what
queries are doing.

To this end, we have developed StreamTrace, a visualization
tool to help DSMS users better understand their temporal queries.
Our visualizations were influenced by current strategies DSMS users
employ while debugging their temporal queries.

For a given temporal query, StreamTrace allows DSMS users
to see the series of transformations applied to each input data point to
produce the corresponding query output. Enabling a history for any
given element in a query, or the provenance of a query, makes it
possible for users to better understand these transformations. We
focus on displaying “fine-grained” provenance (as opposed to
workflow provenance), where users can view the history of any
individual event in a DSMS stream. • Leilani Battle is at MIT. E-mail: leibatt@mit.edu.

• The other authors are at Microsoft Research. E-mail: {danyelf, mbarnett,
badrishc, rdeline, and jongold}@microsoft.com.

Figure 1: Table and timeline representation for an
example data stream, with corresponding aggregate results

2 VISUALIZING FINE-GRAINED PROVENANCE

We first surveyed two expert DSMS users to get a sense of the

strategies they currently employ to debug their temporal queries. We
found that these users had trouble explaining how temporal queries
work to their teammates new to DSMS’s. We also retrieved sample
queries and data from these experts. We found that these users build
very small, hand-curated datasets to test their temporal queries.

From this initial feedback, we developed a prototype of
StreamTrace. Figure 1 is a snapshot of StreamTrace. Our
visualizations consist of a workflow execution graph (section (A) of
Figure 1), and a series of timelines (section (B) of Figure 1).

Initially, we only drew a list of timelines, one per input or
operator in the query. Each timeline represented the visualized result
of executing the corresponding query operator at this point in the
query’s execution. However, early feedback from potential users
showed us that timelines alone were difficult to navigate, and
additional annotation was needed. We added workflow execution
graphs, where each node in the graph is either an input to the query,
or query operator. Edges in the graph represent the ordering and
relationship between query operators.

We also incorporated interactions for exploring query
provenance. When users hover over an individual event in one of the
timelines, they see a tooltip (section (D) of Figure 1), showing the
contents of the event at this point in the execution. We also highlight
the current event and related events (section (C) of Figure 1). When
events are highlighted above the current event, these represent inputs
that contributed to the creation of the current event earlier in the
query’s execution. Similarly, when events are highlighted below the
current event, these represent (possibly intermediate) outputs that the
current event contributed to later in the query’s execution. In Figure
1, the black bars show the current highlighting.

We again reached out to two expert DSMS users (including
one from our previous survey) for feedback on our prototype. We
were surprised to see that these users already relied on drawing flow
charts, to track dependencies between query operators; and timelines,
to track interactions between events. Figure 3 is a timeline diagram
drawn by one of these users. The hand-drawn timeline diagrams
validated our design choices to render events in timeline format. The
flow charts confirmed that users interpret queries in multiple ways,
validating the two parts to StreamTrace’s display.

3 PROVENANCE TRACKING IN THE DSMS
We developed a new approach for recording the lineage of

individual records as a temporal query is being executed in the
DSMS. The key idea behind our approach is to have each event store
its own list of the previous input events that contributed to it. To do
this, each stream event is assigned a provenance identifier. As a
query is executed, these identifiers are propagated through each
query operator to the corresponding output events.

Our implementation consists of two steps: 1) modifying the
structure of each event to include the list of past inputs; and 2)
building wrappers around each query operator, which tell the
operator how to propagate provenance identifiers from input events
to the corresponding output events.

We implemented provenance tracking as a separate module
outside of the DSMS, making our provenance techniques easily
transferable to other systems.

4 QUERY RE-WRITING
The DSMS is designed to return only the final output of

queries. In the case of provenance tracking, we will only see for each
final output record, which of the original input records contributed to
this record. However, the user wants to see how the data is
manipulated after every query operation is performed, not just the
final output. To retrieve this metadata, we need to capture
provenance information for all intermediate steps of the query.

An example of our query re-writing technique for LINQ [3]
queries is provided in Figure 4. In this example, the user is filtering
the Input1 stream for row values greater than 10, joining the filtered
result with the Input2 stream, and modifying the joined result to
include only the filtered values. We rewrite the user’s original query
(top left) to be a series of smaller queries (bottom left), where each
new query represents an intermediate step in the original query’s
execution flow. We also inject a special provenance call into
rewritten queries to trigger provenance tracking in the DSMS. The
output of the new queries is used to build a provenance graph (right),
where each node in the graph is the result of one of the new queries.
The final provenance graphs are used to build our visualizations.

We rewrite queries automatically, so users can retrieve
provenance information of a temporal query with one button click.

StreamTrace is implemented as a debugging feature in the
Tempe system (previously Stat [3]). Tempe is a web-based
application, providing users with a live programming environment in
the browser. Tempe uses the Trill streaming engine [1] to execute
temporal queries (written using LINQ Error! Reference source not
found.).

5 CONCLUSIONS AND FUTURE WORK
In this paper, we have presented StreamTrace, a new

visualization tool to help DSMS users better understand their
temporal queries. Our visualizations are influenced by diagrams
frequently drawn by DSMS users when debugging their own queries
by hand. StreamTrace allows users to explore the fine-grained
provenance of a query, or the lineage of any record in the query.

We plan to conduct a study measuring the efficacy of our tool
in helping LINQ users learn to write Trill queries.

ACKNOWLEDGMENTS
This work was carried out while the first author was an intern at
Microsoft Research. Our thanks to the DSMS experts who helped
design our visualizations.

REFERENCES
[1] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C.

Platt, J. F. Terwilliger, and J. Wernsing. The Trill Incremental Analytics
Engine. no. MSR-TR-2014-54. 2014

[2] Meijer, E. The world according to LINQ. Comm. ACM 54, 10 (October
2011), 45-51.

[3] M. Barnett, B. Chandramouli, R. DeLine, S. M. Drucker, D. Fisher, J.
Goldstein, P. Morrison, and J. C. Platt. Stat!: an interactive analytics
environment for big data. SIGMOD 2013.

Figure 3: User-drawn timeline for a DSMS query
Figure 2: Query re-writing example

