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Figure 1: A complex temporal query, visualized. The query execution diagram (A) shows that only one side is running the 

TumblingWindow operation; the corresponding timeline bars (B) are windowed for only that side. The user is highlighting one bar 
(C); the upstream and downstream output bars in the join operation are also highlighted. (D) A tooltip shows information about 
the highlighted bar

ABSTRACT 
As real-time monitoring and analysis becomes increasingly popular, 
more researchers and developers are turning to data stream 
management systems (DSMS’s) for fast, efficient ways to pose 
temporal questions over their datasets. However, these systems are 
inherently complex, and even individuals with database expertise 
find it difficult to understand the behavior of DSMS queries. To help 
analysts better understand their temporal DSMS queries, we 
developed a visualization tool that illustrates how a temporal query 
manipulates a given dataset, step-by-step. StreamTrace produces an 
interactive visualization that allows the user to audit their queries. 
We incorporated feedback from three expert DSMS users throughout 
our design process. 

1 INTRODUCTION 
The recent rise in large-scale streaming data—from machine 

telemetry, to social streams, to scientific analysis—has led to an 
increasing demand for the skills and tools to allow data scientists to 
analyze data with a temporal component. Data stream management 
systems (DSMS) are a class of tools designed for continuous 
computation over temporal data streams; they are controlled by 
stream query languages. Stream query language queries are executed 
over DSMS’s, just as SQL queries are executed by relational 
databases. The records stored in a data stream are referred to as 
stream events. 

Consider a motivating example: a data scientist wants to 
answer two questions about a newly-opened online store: 

• How many users are signed into our store? 
• On average, how many products are they buying? 

The online store generates log files like those seen in Figure 2. 
Reading this as a relational table, a data scientist might assume 

that the number of users signed in is 3, and the average number of 
products purchased is 2. The timeline on the right side of the figure 

shows that this is not the case: records go in and out of scope over 
time as users carry out sessions at the store. These changes in the 
timeline result in multiple answers for our aggregates: the correct 
answer actually changes from over time. 

Tracking these changes is precisely what DSMS’s are designed 
for—but that can also make DSMS queries hard to understand.  Data 
scientists who are new to DSMS’s—even if they are already 
experienced with relational databases—can find temporal queries 
that behave in ways that are difficult to understand. Before data 
scientists will readily incorporate DSMS’s into their temporal 
analysis pipeline, they need the ability to more easily interpret what 
queries are doing. 

To this end, we have developed StreamTrace, a visualization 
tool to help DSMS users better understand their temporal queries. 
Our visualizations were influenced by current strategies DSMS users 
employ while debugging their temporal queries. 

For a given temporal query, StreamTrace allows DSMS users 
to see the series of transformations applied to each input data point to 
produce the corresponding query output. Enabling a history for any 
given element in a query, or the provenance of a query, makes it 
possible for users to better understand these transformations. We 
focus on displaying “fine-grained” provenance (as opposed to 
workflow provenance), where users can view the history of any 
individual event in a DSMS stream. • Leilani Battle is at MIT. E-mail: leibatt@mit.edu. 
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Figure 1: Table and timeline representation for an 
example data stream, with corresponding aggregate results 



2 VISUALIZING FINE-GRAINED PROVENANCE 

 
We first surveyed two expert DSMS users to get a sense of the 

strategies they currently employ to debug their temporal queries. We 
found that these users had trouble explaining how temporal queries 
work to their teammates new to DSMS’s. We also retrieved sample 
queries and data from these experts. We found that these users build 
very small, hand-curated datasets to test their temporal queries. 

From this initial feedback, we developed a prototype of 
StreamTrace. Figure 1 is a snapshot of StreamTrace. Our 
visualizations consist of a workflow execution graph (section (A) of 
Figure 1), and a series of timelines (section (B) of Figure 1). 

Initially, we only drew a list of timelines, one per input or 
operator in the query. Each timeline represented the visualized result 
of executing the corresponding query operator at this point in the 
query’s execution. However, early feedback from potential users 
showed us that timelines alone were difficult to navigate, and 
additional annotation was needed. We added workflow execution 
graphs, where each node in the graph is either an input to the query, 
or query operator. Edges in the graph represent the ordering and 
relationship between query operators.  

We also incorporated interactions for exploring query 
provenance. When users hover over an individual event in one of the 
timelines, they see a tooltip (section (D) of Figure 1), showing the 
contents of the event at this point in the execution. We also highlight 
the current event and related events (section (C) of Figure 1). When 
events are highlighted above the current event, these represent inputs 
that contributed to the creation of the current event earlier in the 
query’s execution. Similarly, when events are highlighted below the 
current event, these represent (possibly intermediate) outputs that the 
current event contributed to later in the query’s execution. In Figure 
1, the black bars show the current highlighting. 

We again reached out to two expert DSMS users (including 
one from our previous survey) for feedback on our prototype. We 
were surprised to see that these users already relied on drawing flow 
charts, to track dependencies between query operators; and timelines, 
to track interactions between events. Figure 3 is a timeline diagram 
drawn by one of these users. The hand-drawn timeline diagrams 
validated our design choices to render events in timeline format. The 
flow charts confirmed that users interpret queries in multiple ways, 
validating the two parts to StreamTrace’s display. 

3 PROVENANCE TRACKING IN THE DSMS 
We developed a new approach for recording the lineage of 

individual records as a temporal query is being executed in the 
DSMS. The key idea behind our approach is to have each event store 
its own list of the previous input events that contributed to it. To do 
this, each stream event is assigned a provenance identifier. As a 
query is executed, these identifiers are propagated through each 
query operator to the corresponding output events. 

Our implementation consists of two steps: 1) modifying the 
structure of each event to include the list of past inputs; and 2) 
building wrappers around each query operator, which tell the 
operator how to propagate provenance identifiers from input events 
to the corresponding output events. 

We implemented provenance tracking as a separate module 
outside of the DSMS, making our provenance techniques easily 
transferable to other systems. 

4 QUERY RE-WRITING 
The DSMS is designed to return only the final output of 

queries. In the case of provenance tracking, we will only see for each 
final output record, which of the original input records contributed to 
this record. However, the user wants to see how the data is 
manipulated after every query operation is performed, not just the 
final output. To retrieve this metadata, we need to capture 
provenance information for all intermediate steps of the query. 

An example of our query re-writing technique for LINQ [3] 
queries is provided in Figure 4. In this example, the user is filtering 
the Input1 stream for row values greater than 10, joining the filtered 
result with the Input2 stream, and modifying the joined result to 
include only the filtered values. We rewrite the user’s original query 
(top left) to be a series of smaller queries (bottom left), where each 
new query represents an intermediate step in the original query’s 
execution flow. We also inject a special provenance call into 
rewritten queries to trigger provenance tracking in the DSMS. The 
output of the new queries is used to build a provenance graph (right), 
where each node in the graph is the result of one of the new queries. 
The final provenance graphs are used to build our visualizations. 

We rewrite queries automatically, so users can retrieve 
provenance information of a temporal query with one button click. 

StreamTrace is implemented as a debugging feature in the 
Tempe system (previously Stat [3]). Tempe is a web-based 
application, providing users with a live programming environment in 
the browser. Tempe uses the Trill streaming engine [1] to execute 
temporal queries (written using LINQ Error! Reference source not 
found.). 

5 CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented StreamTrace, a new 

visualization tool to help DSMS users better understand their 
temporal queries. Our visualizations are influenced by diagrams 
frequently drawn by DSMS users when debugging their own queries 
by hand. StreamTrace allows users to explore the fine-grained 
provenance of a query, or the lineage of any record in the query. 

We plan to conduct a study measuring the efficacy of our tool 
in helping LINQ users learn to write Trill queries. 
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Figure 3: User-drawn timeline for a DSMS query 
Figure 2: Query re-writing example 


