Skew-Aware Join Optimization for Array Databases

Jennie Duggan?, Olga Papaemmanouilt, Leilani Battle*, Michael Stonebraker-
Northwestern University, T Brandeis University, * MIT
1 jennie@eecs.northwestern.edu, folga@cs.brandeis.edu, *{leilani, stonebraker}@csail.mit.edu

ABSTRACT

Science applications are accumulating an ever-increasing amount
of multidimensional data. Although some of it can be processed in
a relational database, much of it is better suited to array-based en-
gines. As such, it is important to optimize the query processing of
these systems. This paper focuses on efficient query processing of
join operations within an array database. These engines invariably
“chunk” their data into multidimensional tiles that they use to effi-
ciently process spatial queries. As such, traditional relational algo-
rithms need to be substantially modified to take advantage of array
tiles. Moreover, most n-dimensional science data is unevenly dis-
tributed in array space because its underlying observations rarely
follow a uniform pattern. It is crucial that the optimization of ar-
ray joins be skew-aware. In addition, owing to the scale of science
applications, their query processing usually spans multiple nodes.
This further complicates the planning of array joins.

In this paper, we introduce a join optimization framework that is
skew-aware for distributed joins. This optimization consists of two
phases. In the first, a logical planner selects the query’s algorithm
(e.g., merge join), the granularity of the its tiles, and the reorgani-
zation operations needed to align the data. The second phase imple-
ments this logical plan by assigning tiles to cluster nodes using an
analytical cost model. Our experimental results, on both synthetic
and real-world data, demonstrate that this optimization framework
speeds up array joins by up to 2.5X in comparison to the baseline.

1. INTRODUCTION

Science applications are collecting and processing data at an
unprecedented rate. For example, the Sloan Digital Sky Survey
records observations of stars and galaxies at nightly rates of 0.5TB
to 20TB |22} 33]]. Other science projects including the Large Syn-
optic Survey Telescope and the Large Hadron Collider are even
more demanding. As a result, multi-node scalable storage systems
are required for these kinds of applications.

Furthermore, skewed data distributions are prevalent in virtu-
ally every domain of science [27]. For example, in astronomy stars
and other objects are not uniformly distributed in the sky. Hence,
telescope measurements have corresponding areas of density and
sparsity. Likewise, when marine scientists monitor shipping ves-
sels around US waters [26]], there are orders of magnitude more
reported vessels near major ports, such as New York, than around
less populous coastlines like Alaska.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SIGMOD’15, May 31-June 4, 2015, Melbourne, Victoria, Australia.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2723709.

In addition, queries to scientific databases do not resemble the
ones found in traditional business data processing applications.
Complex analytics, such as predictive modeling and linear regres-
sion, are prevalent in such workloads, replacing the more traditional
SQL aggregates found in business intelligence applications. Such
analytics are invariably linear algebra-based and are more CPU-
intensive than RDBMS ones.

The relational data model has shown itself to be ill-suited for
many of these science workloads [37], and performance can be
greatly improved through use of a multidimensional, array-based
data model [34]. As a result, numerous array processing solutions
have emerged to support science applications in a distributed envi-
ronment [5} |6, 9L |10]]. Traditionally, these systems do not deal with
uneven data distributions. If query operators are not skew-aware,
then hotspots and load imbalance between nodes will result, lead-
ing to performance degradation. Obviously, this issue will be more
serious for more complex operations, such as joins.

Hence, our focus is on optimizing array joins over skewed, mul-
tidimensional datasets. Array databases leverage the spatial nature
of their data by storing it in “chunks” or multidimensional tiles.
Tiles preserve the multidimensional properties of the data and can
be leveraged for efficient join processing. As such, the tactics used
in RDBMs must be modified for array applications to take advan-
tage of the spatial layout of the array chunks.

Traditionally, join queries on arrays are executed as either a
merge join or a cross join [9]]. In a merge join the query predicate
must include all of the array dimensions of the two operands (which
must match), and one array is rechunked to the tiling system of the
other. Then, each pair of cells can be merged cell-by-cell. Joins
that do not satisfy this requirement (i.e., where the join predicate
includes data comparisons not in dimensions) are executed using
a cross join. There are several strategies for cross join execution
ranging from repartitioning either or both arrays and then execut-
ing a merge join to computing the Cartesian product of two arrays.
Both of these techniques need to be extended to be skew-aware.

To addresses these challenges we introduce the shuffle join opti-
mization framework for the SciDB array data model [10]. It takes
advantage of the spatial clustering provided by n-dimensional stor-
age tiles to effectively parallelize join execution and minimize data
transfers. It also incorporates a range of alternative query plans, us-
ing an analytical cost model to identify the best join execution strat-
egy. The cost model includes both network transfer and compute-
intensive processing costs in a skew-aware fashion. We focus on
equi-joins, but our techniques generalize to other predicates.

Our optimization consists of a logical and a physical planning
phase. The logical planner picks the join algorithm as well as the
subarrays for processing and network transfer. This step is designed
to handle any schema alignment requirements among the source
and output array and it strives to leverage the preexisting storage
organization of multidimensional chunks. If this is not possible, the
planner makes use of a dynamic programming optimization model
to compose alternative logical plans. It then identifies the lowest
cost method of executing the join and organizing its output array.

The logical planner relies on two primitives, join units and slices.
Join units are non-overlapping collections of array cells grouped
by the join predicate (i.e., cells that must be compared for possible
matches) and they are built dynamically at runtime specifically for
join execution. Working with non-overlapping join units allows us
to parallelize the join across the nodes in a cluster, as each join unit
can be processed independently. As a result, the join unit defines the
granularity at which work is assigned to cluster nodes. To execute
the join, we “shuffle” the join units such that matching disjoint sets
between the two operand arrays are collocated. These units of net-
work transfer are called slices and define the granularity at which
data will be moved between cluster nodes.

The physical planner assigns join units to cluster nodes. It starts
with a data alignment step that shuffles the slices associated with
each join unit to a single node. It is followed by a cell comparison
step, that applies the previously selected join algorithm to each join
unit. The physical planner uses an analytical cost model to compare
competing plans. For each plan, it estimates the query’s processing
time using the network transfers associated with the data alignment
step and the evenness with which the cell comparisons are spread
over cluster nodes. We propose a set of algorithms that create these
join-unit-to-node assignments, including an integer linear program,
a locally optimal search, and a heuristics-based approach.

Our optimization framework is advantageous for two reasons.
First, evaluating the query’s network transfer and cell comparison
costs separately maximizes the flexibility afforded to each physical
planner. Second, the physical plans make efficient use of the clus-
ter’s sole shared resource, network bandwidth, by reducing data
transfer costs. Because CPU is abundant and I/O is readily paral-
lelizable, we optimize the scarcest resource in query processing.

The main contributions of this work are:

e A novel skew-aware join optimization framework for array
databases. Our approach identifies the processing unit, data
transfer unit, and the join algorithm that minimizes end-to-
end query time.

e A dynamic programming model for logical join optimization
to identify alternative query execution plans. The optimizer
considers a set of array operators that handle schema reso-
lution requirements among data sources and destination ar-
rays. It also incorporates new join algorithms into the array
processing model (e.g., hash join), generalizing previous ap-
proaches.

e Several skew-aware algorithms to identify the best execution
strategy for the logical plan. All of the algorithms use an an-
alytical model that decouples data alignment from cell com-
parison to discover the join site for each processing unit that
will minimize network transfer cost, while balancing the pro-
cessing across the cluster to prevent hotspots.

e Experiments demonstrating the effectiveness of our tech-
niques. We show a speedup in query latency of up to 2.5X.

We begin our discussion by introducing the array data model
and the challenges associated with join processing in Section [2]
Section [3] provides an overview of our optimization framework. In
Sections [4] and [5] we detail the logical and physical join planning
algorithms. Our experimental results are presented in Section [6]
Section|/|surveys the related work, and after that we conclude.

2. BACKGROUND

In this section, we introduce the basic concepts of the Array Data
Model (ADM). We begin with an overview of its logical and phys-
ical data representation. Next, we will explore a taxonomy of join
processing models. The section concludes with a look at the chal-
lenges and opportunities presented by the ADM.

2.1 The Array Data Model

In an array database, the storage engine contains a collection of
multidimensional objects. Every array adheres to a logical schema,
which consists of dimensions, attributes, and a storage layout. Ar-
rays have any number of named dimensions that specify its shape.
Each dimension is represented by a range of contiguous integer val-
ues between 1 and N, and the extent of the dimension is the number
of potential values within this range. Dimensions are ordered, indi-
cating to the optimizer how the query executor will iterate over the
array space.

Each array cell is identified by its dimension values, or coordi-

nates. Cells are analogous to tuples in the relational model. The
logical schema contains one or more attributes, defining the set of
values to store in each cell. Each attribute has a scalar type, such
as an integer or float. Each cell may be empty or occupied, and
occupied cells contain data for at least one attribute in the array’s
schema. The database engine only stores occupied cells, making it
efficient for sparse arrays.
Storage Model Cells are clustered in multidimensional subarrays
called chunks. Each dimension is divided into logical chunks with
a given chunk interval, specifying the granularity at which the
database accesses cells in each dimension. Therefore, all chunks
cover the same number of logical cells, although their stored size
is proportional to the count of occupied ones. The database engine
uses chunks as its unit of memory, I/O, and network transmission.
Each is on the order of tens of megabytes in size, although with
storage skew this figure has high variance. Chunk intervals are de-
fined in an array’s logical schema. The array’s shape is defined by
its dimension extents and chunking intervals.

Cells in a chunk are sorted using C-style ordering on the dimen-
sions, where the cells are sorted one dimension at a time, travers-
ing the innermost one entirely before increasing the outer’s value.
This enables the DBMS to efficiently traverse and query the ar-
ray spatially. This arrangement is very limiting for joins, because
each cell’s chunk position reveals nothing about the attribute val-
ues. Therefore, if a join predicate refers to an attribute, the query
executor resorts to scanning the entire second array for every cell
in the first, performing O(n?) comparisons for two arrays contain-
ing n cells each. Clearly, there is room for improvement in this
approach.

Array chunks are vertically partitioned (i.e., each attribute is
stored separately). Column stores [1]] have demonstrated that for
analytical relational databases, vertical partitioning yields an order
of magnitude or more speedup over horizontal partitioning. Simi-
lar savings in I/O costs are achieved for analytical array databases,
because their users often access just a small subset of an array’s
attributes. This is especially true for joins, where costly data align-
ment is accelerated by moving only the necessary attributes.
Example Figure [I| shows an array with schema A<vl:int,
v2:float>[i=1,6,3, j=1,6,31;. Array A has two di-
mensions, ¢ and j (denoted in brackets). This dimension has values
ranging from 1...6, inclusive. Both of them have a chunk interval
of 3. This schema has two attributes, v1, an integer, and v2, a float
(shown in angle brackets). This sparse array has nonempty cells in
just two of its logical chunks, hence it stores just the first and last
chunk. The figure displays the on-disk layout of the first chunk,
where each attribute is stored separately on disk. When serialized
to disk, the first v1 chunk is stored as (3,1,1,7,4,0,0),in
accordance with its C-style ordering.

Execution Environment In our work, the array database is dis-
tributed using a shared-nothing architecture, where each node hosts
one or more instances of the database. Each instance has a local
data partition with which it participates in query execution. The

W @ B @ 5 e 3|1

| B:53) | (1,47)

2] (1,0.2) | (7,1.3) 4 0 0

31| @19 | 0,04) | (0,75 i

[4] (6,1.4) | (3,6.9) 53|47

[5] (3,0.8) | (3,14) | (6,9.1) 02|13

(6] (9,2.7) | (5,7.9) | (5,8.7) 19]04|75

(a) (b)

A<vl:int, v2:float>[i=1,6,3, j=1,6,31;
Figure 1: Example: (a) logical array (b) physical layout (first chunk)

entire cluster shares access to a centralized system catalog that
maintains information about the nodes, data distribution, and array
schemas. A coordinator node manages the system catalog, hosting
this shared state.

2.2 Array Joins

Queries in this data model are written in the Array Query Lan-
guage (AQL), which is analogous to SQL for relational databases.
For example, to filter the array in Figure[I]to v1 values greater than
five in AQL, one would write SELECT * FROM A WHERE vl
> 5. Because AQL is declarative, users defer to a query optimizer
to plan the execution of any joins. A detailed description of this
language is in [9].

Array Functional Language (AFL) is a second way to compose
queries in the ADM using nested operators. In SciDB, AQL queries
are rewritten internally as AFL queries. The example query above is
expressed as filter (A, v1 > 5) in this language. Moreover,
AFL enables users to seamlessly compose operators, informing the
optimizer of their desired operator and execution order. This is cru-
cial for science applications because many of them have workflows
where order matters, like transposing a matrix and then multiplying
it. We use the declarative AQL to illustrate array queries and AFL
to demonstrate their execution plans.

Let us now examine how joins are computed on arrays. Fig-
ure [2] shows the join input for all subsequent examples. Our in-
put arrays « and 3 have schemas: a<v:int>[i=1,n,k]; and
B<w:int>[j=1,n,k];, respectively.

Array Joins Notation To formally reason about array joins, we
define an array « as:

— DQ = {d?7ad%}
= Aa:{a’lllv"?a%}

where D,, is the array’s dimension set, and each d5' contains the di-
mension’s name, range and chunk interval. A, specifies the array’s
attributes and includes their names and types.

To execute a join between arrays « and 3, 7 = « X< 3, one
writes the AQL query: SELECT expression INTO 7 FROM
a JOIN [ON P where P is the query’s predicate, and it con-
sists of pairs of attributes or dimensions from the source schemas
for comparison. In this work we focus on equi-joins, where the
predicates take the form of [y = r1 Al = r2 A ..., such that:

l € {Aa, Do} Vi 1)
ri € {A/j,DB} Vi

Hence, the query predicate P is defined as:
P=Ap1,.;pn} ={(li,m1), o, (lny) })

For example, the query SELECT % INTO 7 FROM « JOIN
[WHERE «.i=f.jhas asingle predicate: («. i, 8. j). By for-

mulating the join in this way, the optimizer can infer whether each
predicate pair (I;, r;) operates on dimensions, attributes, or one of
each. It then uses this information to identify the output schema of
the join based on the type of the predicate:

e Dimension:Dimension (D:D): This predicate pair matches
cells with the same dimension value by merging their at-
tribute values. This operation mostly closely resembles the
relational merge join. If a cell in either of the input ar-
rays is empty, the corresponding cell in the result is also
empty. Figure 2a) shows the output of the query: SELECT
* INTO 7 FROM a JOIN 8 WHERE «.i=f.7.Ifno
specific output schema is defined, the query produces an ar-
ray matching the shape of its inputs.

o Attribute:Attribute (A:A): This predicate compares the val-
ues of individual attributes, and matches for a single
value may appear in multiple chunks. Currently, these
queries are executed through a cross join in the ADM
which exhaustively compares all cells in both arrays.
We propose a series of optimizations to address these
queries in the subsequent sections. Figure [Z[b) shows
the output of the query: SELECT 1i,j INTO 7<i:int,
j:int>[] FROM a JOIN (8 WHERE «.v=0.w. This
produces three output cells. An A:A query produces an out-
put dimensionality that is the Cartesian product of its inputs.

o Attribute:Dimension (A:D/D:A): This matching compares
sorted dimension values from one array with the attributes of
the other array. As a result, this join type requires an output
schema to determine whether to handle the return values as
a dimension or attribute. One such query is SELECT «.v
INTO <v:int>[i=1,n,k, j=1,n,k] FROM «, B
WHERE «.i = fB.w. Its output is shown in Figure [2Jc).
Current array database implementations do not support this
join type. We explain how our optimization strategy extends
current techniques to support this join type in Section[4]

By default, the join 7 = « <1 8 is mapped to the output schema:

D. =D, UDB — (DB n Dp) 3)
A, :AQUA;} — (Aﬁf‘lAp)

where A, and D, are attributes and dimensions appearing in the
predicate. This operation is analogous to a natural join in the re-
lational model. In AQL, all queries can default to the execution
plan cross (a, (), which currently is implemented as an ex-
haustive comparison of all cells in both inputs and produces the
Cartesian product of its inputs. This inefficiency arises because ar-
ray databases are heavily optimized around the spatial organization
of their contents. Hence, many of the operators in a query execution
plan rely on their inputs being in a chunk belonging to a schema.

2.3 Array Join Optimization Challenges

Recall that current implementations of the array model are very
restrictive. A:D/D:A joins that compare dimension values to at-
tribute values are not supported, while joins comparing attribute
values in both operands are implemented by cross-joins. This oper-
ation sequentially scans the first input array for each cell lookup in
the second input array, and therefore does not scale to large input
sizes. Apart from eliminating these constraints and providing alter-
native join implementations, our work focuses on addressing two
significant challenges in array join optimization, namely, optimiz-
ing the use of expensive schema resolution operations and dealing
with skewed data distributions.

Input Arrays
i [11 [2] [3] [4] [5] [6] [7] [8] [9]

Full Reorder Output
. T
a 1 3|45 7(8|9 jl (1] 21 (3] [4 (51 [6] (71 8 (8]

[

jon 2 B oE s e el el
) 2|3 6|7 9|10

2 3

[El}

Merge Join Output @
LI O N v e e N O O R U R) [s]
T ‘(1‘2)‘ ‘ ‘ ‘(5,6)‘ ‘ ‘(3.9)‘(9,10)‘ 16 7
]
Unordered Join Output @ 9

(U]

T ©8)

Figure 2: Array joins with varying types of predicates.

&)}

2.3.1 Schema Resolution

Although the multidimensional storage layout demonstrated in
Figure [I] enables array databases to be fast for spatial queries, this
specialized layout adds nontrivial complexity to joining their con-
tents. Specifically, the data is ordered by its dimension values and
chunks are stored grouped on their position in dimension space. In
order to leverage these properties, current array databases imple-
ment join queries by executing a merge-join algorithm. Joining ar-
rays with the same logical schema leads to an efficient merge join:
since arrays are sorted by the same dimensions, the algorithm com-
bines the arrays by iterating over their chunks in their sort order.

The array merge join has several restrictions on its use. First,
it is limited to join predicates that refer to dimensions. Second,
the source arrays must have the same dimensions, dimension
extents, and chunk intervals. Join queries do not conform to the
join’s predicates and output shape (i.e., A:D/D:A or A:A) need a
reorganization step to use this algorithm. This transformation is
known as a redimension in the ADM, and it converts any number
of attributes to dimensions or vice versa in the source data. For
example, if the array in Figure[I]is being joined with array B with
the schema B<vl:int, v2:float, i:int>[j=1,6,3];,
the user would issue an AFL query of merge (A, redim (B,
<vl:int, v2:float> [i=1,6,3, j=1,6,31)). The
redim function converts the attribute B. i to a dimension with the
same extent and chunk interval as A. i. At present, this is usually
done manually, but as we will demonstrate it is possible to insert
these changes automatically using schema inference.

The redimension gives joins a linear running time, but it redis-
tributes an array and naturally increases the network transfer cost.
It also invokes a costly sort operation on the chunks it creates with
running time O(nlogn), where n is the number of cells in the ar-
ray. Our framework incorporates a logical planning phase to es-
timate the benefit and cost of various schema reorganization op-
erators, as well as examine alternative join algorithms that could
eliminate the cost of this reorganization.

2.3.2 Skew Management

The most efficient way to achieve fast, parallelizable join execu-
tion of large arrays is for the matching cells of the two inputs to be
hosted on the same server. This allows for parallel cell comparison
where each server joins local subarrays. Thus, parallel join exe-
cution has two phases: (a) data alignment or collocating cells for
comparison, and (b) cell comparison for evaluating the predicate.
Both these steps, however, are sensitive to skew.

Data Alignment Phase This phase aims to minimize the trans-
mission of array cells. This phase offers the largest opportunity
to improve query performance by bringing sparse or smaller sets
of cells to their denser matching counterparts. This is especially
profitable when sparsely populated subarrays are joined with dense

Beneficial Skew Adversarial Skew

L
R
Array A Array B

Sparse Chunk . Dense Chunk

Figure 3: Data distribution types for A > B.

Array A Array B

subarrays. We call instances of this imbalance beneficial skew, as
demonstrated in Figure [3] At the other end of the spectrum is ad-
versarial skew, where dense hotspots line up (i.e., dense subarrays
need to be matched with dense counterparts), and thus there are
limited opportunities to improve the data alignment costs.

Many of our optimizations target beneficial skew, wherein there
is a substantial difference in the size of the distributed cells to be
joined. This uneven distribution of join cells enables us to mini-
mize the data movement needed to complete the join. One inter-
esting facet of optimizing location-based skew is that simply mov-
ing sparse subarrays to the location of their dense counterparts is
sometimes not enough. If a query plan transmits all data to a sin-
gle host, this will create congestion because data is moving over a
small fraction of the network links. Therefore sending data to and
from all servers will result in better overall performance, even when
more array cells are moved. We address this challenge in Section 5]

Cell Comparison This step is made fast by maximizing the level
of parallelism used when identifying pairs of cells that match a
query predicate. Hence, we assign non-overlapping collections of
cells to each node for comparison. Here, uneven processing work-
loads could lead to hotspots and prolong the query execution time.

These two steps of join execution reveal the conflicting goals of
shortening the data alignment and cell comparison phases. Striving
to distribute the query’s work as evenly as possible across nodes
may create network congestion, especially if many nodes attempt
to transmit data simultaneously. In contrast, if the plan calls for less
data transmission, skewed data layouts may result in a dispropor-
tionate number of nodes performing the majority of the cell com-
parisons, prolonging this phase. The physical optimizations dis-
cussed in Section[3]address precisely this challenge.

3. SHUFFLE JOIN FRAMEWORK

In this section, we begin by walking through the shuffle join op-
timization framework. We first introduce the basic concepts of our
framework and the join algorithms implemented therein. We then
discuss the query planning process and the plan execution step.

3.1 Shuffle Join Terminology

Our shuffle join optimization framework assigns join units, or
small non-overlapping sets of cells, to nodes in order to make effi-
cient use of network bandwidth and to balance the cell comparison
load. Each join unit is in charge of a fraction of the predicate space
and cells are assigned to a join unit using either a hash function or
range partitioning. Join units enable us to generalize the ADM to a
wider range of cell comparison methods.

Cells belonging to a join unit are partitioned over multiple hosts.
Hence, each join unit is stored in its source array in one or more
slices, and an array has at most one slice per host. The data align-
ment phase transmits all slices that are part of the same join unit to
a single node for comparison. When the query is executed, the the
cells of its two sides are compared; each input array provides one
side. In our framework, the join algorithm refers to the implemen-
tation of the cell comparison phase. Our join algorithms are hash,
merge, and nested loop joins.

Shuffle Join Optimization

|

Logical
Plannin

Slice

Mapping

g
Pick join algo & join units Cells > slices

Physical
Planning
Assign join units > nodes

?

Node 1

A/M\B

[—
000
000
Node 1
-
000

=)

Shuffle Join Execution
Data Alignment # Cell Comparison ‘

Redistribute slices to collocate join units

Process join units

Figure 4: Shuffle join optimization and execution.

3.2 Join Algorithms

We now briefly outline the join algorithms available to the logical
planner. Each one stems from relational techniques, and they are
reviewed here for clarity. All algorithms take as input one join unit,
comprised of a set cells for each side of the join.

e Hash Join: This algorithm builds a hash map over the
smaller side of the join, and it iterates one cell at a time over
the larger set of cells, checking each time for a match in the
hash map. This join executes in linear time, proportional to
its input size, and can operate over unsorted join units.

e Merge Join: Merge join requires that the two input arrays
have the same shape, that the join’s predicates match all of
the dimensions but no attributes. It places a cursor at the start
of each set of cells, and increments the cursor pointing to a
smaller coordinate. If it finds a match between the coordi-
nates at each cursor, it emits the match and advances both
cursors. This continues until one or more sets are exhausted.
Merge join runs in linear time in relation to its cell count.

e Nested Loop Join: This algorithm is similar to the hash join
algorithm, where the hash map is replaced with a loop over
the smaller set of cells. It has a polynomial runtime but can
operate on join units in any sort order.

3.3 Shuffle Join Optimization

Figure [d]shows the shuffle join optimization process, which par-
titions the query planning into logical and physical phases. The log-
ical planner prepares the join inputs for fine-grained optimization
and collects statistics. The physical planner assigns the resulting
join units to nodes for fast query execution.

Logical Planning This phase analyzes the join predicates, and
based on a set of array reorganization operations and a dynamic
programming model, identifies candidate execution plans for the
query. Using an analytical cost model, it then calculates the cheap-
est plan. The logical planner also defines join units to complement
the join algorithm of each plan. For example, ordered chunks are
used as join units to merge joins, and hash buckets to hash joins.
Note that join units are only created for the query at hand, and are
thus a temporary reorganization of the array’s contents. Join units
are designed to be of moderate size (i.e., tens of megabytes), which
supports fine-grained join parallelization without overwhelming the
physical planner with options.

Slice Mapping Our optimization generates slices, i.e., network
transfer units that will collocate matching join units. To achieve

this, the optimizer sends a slice function to each node, which maps
a single cell to its appropriate join unit. Next, each node constructs
temporary slices by applying the slice function in parallel to their
local cells of the input array. This slice function is also tuned to
match the desired join unit. For example, a hash function is used
when the join units are hash buckets, and a dimension space when
the join units are array chunks.

A slice can also be ordered along a dimension space or un-

ordered. If it is ordered, both arrays will produce slices with the
same dimension space and chunk intervals. If it is unordered, a slice
may be created with either a hash function or a set of chunking in-
tervals, depending on the source arrays. Both hash and nested loop
joins are agnostic to the ordering of their inputs.
Physical Planning When a node completes this slice mapping, it
reports the size of its slices to the coordinator node of the cluster.
The coordinator then passes the slice statistics on to the physical
planner which uses them to assign join units, J; in Figure] to a
single node. It is at the destination node that the slices will be as-
sembled into a single join unit prior to cell comparison. The physi-
cal optimizer probes the physical plan search space of join-unit-to-
node assignments with an analytical cost model that estimates the
overall cost of both the data transfer and cell comparison.

3.4 Shuffle Join Execution

Given the final physical plan, the shuffle join execution step ini-

tiates the shuffle join as shown in Figure [It begins with the data
alignment step. Here, each host iterates over its slices in parallel,
sending the ones that are not assigned locally to their destination.
In the final phase, the cell comparison step, each host combines its
slices into join units, and then applies the selected join algorithm to
each join unit. During the assembly of the join unit, the execution
engine may also preprocess the input, such as sorting the newly
formed join unit if it is executing an ordered merge join. Each host
processes one join unit at a time, and all work in parallel.
Shuffle Scheduling Coordinating this data shuffle can be compli-
cated. If all hosts are exchanging slices at once over a switched net-
work, the data alignment is well-parallelized. On the other hand, if
one node is receiving slices from multiple others at once, it may be
subject to congestion slowing down the join. Optimally schedul-
ing network transmissions is a combinatorially hard problem [30].
We address this issue greedily by creating a write lock for each
host, where the locks are managed by the coordinator node. Hence,
when a node seeks to send a slice to node no, it first attempts to ac-
quire n2’s write lock from the coordinator to gain exclusive access.
If the sender cannot acquire the lock, it attempts to send the next
slice that is assigned to a node that is not ns. If the sending node
runs out of destinations for which it can acquire a lock, it polls for
the remaining locks until its transmissions are complete.

4. LOGICAL JOIN OPTIMIZATION

In this section, we introduce a logical query optimizer for plan-
ning joins in array databases. This planner uses a dynamic program-
ming approach inspired by relational optimizers [32] to produce a
set of feasible query plans and to identify the best one to use. Each
plan consists of a workflow of AFL operators that a) reorganize the
input arrays, if needed, b) specify the join algorithm and the join
unit and c) organize the output data to the desired output schema.
This planner is designed to extend the ADM to support arbitrary
predicates and it improves upon the default plan (a cross join) by
identifying more efficient alternatives.

Proposed plans improve upon the cross join in two ways. First,
the plan reorganizes lazily, only using expensive schema realign-
ment operators as needed. Second, good plans carefully insert these

Operator Cost Output
redim(a, J) Na + na log(na/ca) ordered chunks

hash («, P) Ne unordered buckets
rechunk («, J) N unordered chunks
sort (a) na log (na/ca) ordered chunks/buckets

scan (a) - ordered chunks

Table 1: Operators for logical join optimization.

reorganizations in the part of the query having the lowest cardinal-
ity. This way, if the database needs to make an expensive sort, it
does so on a smaller data sets. We analytically model the cost of
each plan to compare their estimated duration. In this phase, the
cost model works from a single-node model; we relax this assump-
tion in Section

Join Schema Definition Joins, like all array database operators,
have an output schema, J, that denotes the shape of its matches.
Hence, for the join 7 = « > f, the engine produces J which
will be translated to 7 if the two do not match. The join’s schema
is defined as J = {Dj, A;} and it has a number of properties.
Without these features, the join would not be parallelizable.

First, every dimension in the join’s schema must appear in an join
predicate, d € PVi. The schema dimensions are used to map cells
to join units using a conjunction of each cell’s dimension values.
This mapping is done either by using the chunking intervals like
range partitioning to establish the cell’s chunk or by applying a
hash function to the cell’s coordinate. If the join’s schema contained
a dimension that did not appear in the predicate, this might make
cells that are matches appear in different chunks, making the join
parallelizable. Note, the dimensions of this schema do not need to
cover all of the predicates. If the cells are grouped by a subset of
P, then all cells that could potentially result in matches will still
appear in the same predicate. A related property of J is that it must
contain at least one dimension, df # () or else the join units will no
longer be grouped deterministically.

The join schema must produce cells that contain all of the data
needed to create the destination schema, 7, and to evaluate the pred-
icate. Hence its attributes are described with A; = D, UA,UP —
D;. This makes sure that the vertically partitioned database only
moves around the attributes that are necessary, but does not per-
form any unnecessary work.

The dimensions in D; dictate how cells are meted out into join

units if the units are chunks. Here, for each d? the optimizer infers
its dimension extent and chunking interval. Because we aim to re-
organize the data lazily, if d is also a dimension in its source or
destination schemas, it copies their dimension space opportunisti-
cally. If d/ is a dimension in cv, 3, or 7, then the optimizer copies its
chunk intervals from the largest one and takes the dimension range
from the union of o and §’s ranges. If one or both sources has d;
as an attribute, the optimizer infers the dimension shape by refer-
encing statistics in the database engine about the source data. This
usually entails translating a histogram of the source data’s value
distribution into a set of ranges and chunking intervals.
Schema Alignment The join schema may partially overlap with its
source and destination shapes. If the source and destination arrays
all share a schema, then all the properties above are met, and no
schema alignment is necessary.

In the presence of an A:A predicate, the optimizer needs to re-
organize both arrays to turn at least the attributes referenced in the
predicates into a dimension in the join schema. A:D predicates pro-
duce a similar effect, necessitating a reorganization for any array
with an attribute referenced during cell comparison. The logical
planner confronts a similar issue when determining how to organize
the results to the destination schema. If a predicate is an attribute in
the final schema, than cells that are part of the same join unit may
be stored in different destination chunks.

Schema Alignment Operators To address these issues of efficient
schema alignment, we have designed a logical planner that uses a
set of AFL operators, shown in Table [T} Each of these operators,
or a combination thereof, can be inserted before or after a join al-
gorithm to create join units or destination chunks. In this context,
the source arrays, o and 3 have n, and ng cells respectively. Their
schemas have chunk counts of ¢, and cg.

The redimension (redim) operator converts one or more at-
tributes of array « into dimensions, producing ordered chunks as its
output. The operator iterates over the cells and uses a slice function
to assign each cell into a new chunk, an O(n.) time operation. It
then sorts each chunk of « with cost 1 /cq l0g(na /ca) per chunk.
‘We multiply this by the chunk count, ¢, for the total cost estimate.

The hash operator creates join units as hash buckets. This slice
mapping hashes a source array’s cells within O(n.) time. It pro-
duces hash buckets that are unordered and dimension-less. Assign-
ments to this join unit are likely to be sourced from a greater num-
ber of chunks, and hence nodes, because the slices are not directly
tied to a physical chunk. The presence of more slices enables the
physical planner to make its decisions at a finer granularity and
hence offers more opportunities for improving the data alignment
costs and balancing the cell comparison step.

The rechunk operator aligns two source arrays by assigning
each cell of one array to the chunk intervals of the join schema.
It does not, however, sort the chunks. This may reduce the query
execution time if the join is expected to be highly selective, i.e., the
query has a small output cardinality. In this case, it makes sense to
sort the fewer output cells instead of the input cells. The output join
unit will be unordered chunks.

The optimizer may also insert a sort operation after the cell
comparison. This step can be used to sort the output of a hash join
that received its join units from a rechunk operator. It has a cost
of na log(na/ca). Lastly, if no schema alignment is needed, then
the plan can use a scan operator to access the data. This has no
additional cost compared to operators that reorganize the data.
Dynamic Programming Optimization Once the optimizer has de-
duced the join schema, it starts to identify plans that will efficiently
map the source data to this layout and convert the output cells
to the destination schema. We adopt a dynamic programming ap-
proach to enumerate the possible plans and their costs. Its steps for
T = a 1 § are detailed in Algorithm [T]

planList = ()
for a-Align € (scan(w), redim(c, J), rechunk(ey, J), hash(c, P)) do
for B-Align € (scan(83), redim(8, J), rechunk(;3, J), hash(3, P)) do
for joinAlgo € (hash, merge, nestedLoop) do
for out-Align € (scan(J), redim(J, 7), sort(J, 7)) do
p = plan(a-Align, 5-Align, joinAlgo, out-Align)
if validatePlan(p) then
s = sumCost(p)
planList.append(s, p)
end if
end for
end for
end for
end for
return min(planList)

Algorithm 1: Dynamic programming for logical optimization.

The planner first iterates over the potential steps for aligning «
with the schema J. It considers all operators (except sort) and
then progresses on to an inner loop where it does the same with
. The algorithm identifies one or more join algorithms that can
compare cells for the plans. Lastly, it investigates any additional
steps needed to adapt J’s schema to the output array 7. This step

may call for a redimension to the output schema or a sort if J and
7 share chunking intervals, but the chunk cells are unordered.

Once a potential plan is formed, the optimizer validates the plan.
If the plan has a merge join, the validator checks that the inputs
are sorted chunks. It also confirms that the output conforms to 7’s
schema, precluding a scan after a hash or nested loop join for des-
tination schemas that have dimensions.

If a plan is valid, the optimizer then adds up the cost of its schema
alignment step(s) using the equations in Table[T} It also takes into
account the cell comparison time, O(nq + ng) for merge and hash
joins and polynomial time, O(nqny) for the nested loop algorithm.
It selects the plan with the minimum projected cost.

Although we have simplified our costs in Algorithm[I]to a single
node model, only small changes are needed to extend it to a dis-
tributed execution environment. If we execute a join over k£ nodes,
cell comparison for hash and merge join takes O((no + ng)/k)
time. For a redimension of «, it takes na /k + (na log(na/ca)/k
time. Even when calculating the cost at this finer granularity, the
principles of this cost model remain the same. Namely, the planner
only reorganizes its inputs as needed and it applies sorting opera-
tions to the part of the join with the lowest cardinality, either before
or after cell comparison. We address skew in the size of individual
join units in the next section.

In this dynamic programming approach, plans that do not call
for reorganization, like the D:D example in Figure 2] will be fa-
vored over plans that invoke sorts and passes over an entire array
to create new join units. This optimizer also speeds up the queries
by inserting sorts before or after the join, depending on which has
fewer cells. Note that the optimizer does not need very precise es-
timates of the join’s output cardinality to make this assessment. It
only needs to know whether or not the output cell count exceeds
the size of its inputs to make efficient choices about when to sort
the data. Join output cardinality estimation is beyond the scope of
this work, but the size of the output, n, may be estimated by gen-
eralizing the techniques in [[16].

S. PHYSICAL JOIN OPTIMIZATION

This section details the second phase of array join planning,
wherein the optimizer assigns units of work to individual nodes
in the cluster. This step begins with the logical plan created in the
last section; it provides a join algorithm and a join unit specifica-
tion. The latter subdivides the input cells into non-intersecting sets
for comparison. With this specification, the query executor create
slices for use during the data alignment phase. The physical planner
assigns join units to nodes with the aim of minimizing the query’s
end-to-end latency.

A physical optimizer considers both how evenly the load is bal-
anced across nodes and the network costs associated with transmit-
ting data between nodes. Since bandwidth is the only overlapping
resource in a shared nothing architecture, the planner carefully ra-
tions its use to expedite the data alignment phase. This goal is made
complicated if the source data is unevenly distributed over the clus-
ter at the query’s start. Here, it may be faster to rebalance the data
to maximize the parallelism of cell comparison.

We now introduce an analytical cost model for comparing com-
peting physical join plans. After that, we propose a series of tech-
niques to identify efficient data-to-node assignments.

5.1 Analytical Cost Model

To identify fast physical plans, the optimizer needs to qualita-
tively estimate how assigning a set of join units to processing nodes
will impact query completion time. A good cost model approxi-
mates the time needed for the proposed data alignment and cell

comparison phases of the join by identifying the resource, either
network links or compute time, having the most work assigned to
it for each of the two phases. This model does not approximate net-
work congestion. Instead, we use the locking strategy presented in
Section 3.4} which reduces congestion by only allowing one node
to write to a network link at any given time.

To estimate the load on each node, the model calculates the max-
imum number of cells sent or received by any single node, and
multiplies this value by the cost of transmission. The model then
calculates the maximum number of cells assigned to each host, and
multiplies this quantity by the cost of processing a single cell. By
adding the two costs, the first for data alignment and the second for
cell comparison, the model estimates the duration of the entire join.

A physical plan consists of n data-to-node assignments, one per
join unit, represented with a set of binary variables, z; ; € (0,1). If
a query has n join units distributed over k£ nodes, then we say that
join unit ¢ is assigned to node j if the binary assignment variable,
x;,5, 18 equal to one. Each join unit is assigned to exactly one cluster
node, hence all valid plans have the constraint:

k
> iy =1Vi 4)
j=1

To estimate the time of the data alignment step, the model first
considers the number of cells to be sent by each host. For each
node, this cost is proportional to the number of cells in its slices
that are part of join units assigned to another node. If join unit ¢’s
slice on node j has s;,; cells, the cost for sending these cells is:

n

$ = max T;,584,5 (5)
Jj=[1,k] Pt

Since nodes can both send and receive data across the network at
the same time, the model also calculates the host receiving the most
data. Let .S; be the total number of cells within join unit ¢, across
all nodes. Therefore, a given host will receive no greater than:

n
r = max 24,5 (S — 84,5) (6)
J=[LE
cells. For each slice assigned to a node, its received cells equal
to the join unit’s total cell count less the ones stored locally. The
model quantifies the time of the proposed plan’s data alignment as
the maximum of the send and receive times, max(s, 7).

The model also approximates the plan’s cell comparison time. In
this step, we estimate the amount of query execution work assigned
to each node. This cost is variable, depending on the join algorithm
used. For a merge join, it has a cost of m per cell. Here, the join
unit’s cost, C'; = m x S;. When a hash join is selected, for each
join unit ¢, if we say that its smaller side has ¢; cells and its larger
one has u;, then the join unit’s cost is C; = b X t; + p X u;. Here,
b denotes the build cost of each tuple and p represents the time
needed to probe a hash map. This more complicated cost model is
borne from the observation that the time needed to build a hash map
is much greater than that of probing one.

The model sums up the number of cells assigned to each node
and identifies the node with the highest concentration of cells:

n

e = max xi,;Ci @)
J=[14 =

If ¢ is the cost of transmitting a cell, the plan’s total cost comes to:

c=maz(r,s) Xt+e (8)
where the aggregate for each phase is determined by the node with
the most work. In our experiments, we derive the cost model’s pa-
rameters (m, b, p, and t) empirically using the database’s perfor-
mance on our heuristics-based physical planner.

tabuList = () // list of all previous data-to-node assignments
Function TabuSearch
Input: S = {s; jie (1...n), j € (1...k)//allslice sizes
Output: P {x; ; Vi, Vj } //physical plan
P = minBandwidthHeuristic(S) // init to greedy placement
tabuList.insert(P); // current assignments cannot be repeated
PerNodeCosts = nodeCosts(P);
P =0;
while P # P’ do
P’ =P, // store prev. version
forallj € (1...k)do
if PerNodeCosts[j] > meanNodeCost then
P = RebalanceNode(j, P);
end if
end for
PerNodeCosts = nodeCosts(P);
end while
return P;

Function RebalanceNode
Input: N, P // node for rebalancing, present join plan
Output: P’ // revised plan
// for each join unit assigned to N
foralli| Plz;] =1 do
// foreach candidate host
forallj € (1...k) do
if j # N A —3 tabuList(i,j) then
w = P; w.assign(i,));
if queryCost(w) < queryCost(P) then
P = w; // new top plan
tabuList.insert(i,j)
end if
end if
end for
end for
return P;

Algorithm 2: Tabu search algorithm

5.2 Shuffle Planners

We now discuss the physical planner which takes slice statistics

as input and produces an assignment of join units to nodes. We have
designed a number of physical planners and each technique below
optimizes the operator’s data alignment cost, cell comparison cost,
or both, and many use the cost model above.
Minimum Bandwidth Heuristic The network is the most scarce
resource for joins in a shared-nothing architecture [24]. The Min-
imum Bandwidth Heuristic takes advantage of this observation by
greedily assigning join units to nodes. For a given join unit, 7, hav-
ing slice sizes {s;1,..., Sk} over k nodes, the physical planner
identifies the node n with the most cells from join unit ¢:

N = argmax S; ; ©)
J=[1,k]

and assigns the join unit to that node, i.e., x;, = 1. We call n

the join unit’s “center of gravity” since it corresponds to the largest
fraction of the join unit’s cells. This heuristic provably minimizes
the number of cells transmitted by a physical plan, but it does noth-
ing to address unequal load in the cell comparison step.
Tabu Search We improve upon the minimum bandwidth incre-
mentally using a variant of the Tabu Search [18]]. This locally opti-
mal search starts with the minimum bandwidth heuristic plan, and
probes the physical plan space by attempting to move join units
one at a time from nodes having a higher than average analytical
cost to nodes with a lower cost. Once a join unit has been placed
on a node once, it is added to a global “tabu” list, prohibiting the
optimizer from re-evaluating this data-to-node assignment. The al-
gorithm attempts to unburden the most costly nodes until it can no
longer improve on the plan.

The Tabu pseudocode is shown in Algorithm [2] It begins by as-
signing slices to nodes based on their center of gravity to mini-
mize their network transmissions. The algorithm then adds all of
its greedy assignments to the tabu list. With this initial assignment,
it calculates the join cost for each node by summing up their indi-
vidual data alignment and cell comparison costs as defined in Equa-
tions Here, instead of taking the max, the model considers a
single j, or node value, at a time. It then adds all of the present
assignments to the tabu list, to prevent reevaluation.

The algorithm then enters a while loop that iterates over cluster
nodes, attempting to rebalance nodes with a greater than average
analytical cost. The rebalancing operation iterates over every join
unit assigned to an overburdened node. It executes a what-if analy-
sis to see whether reassigning the join unit j; will reduce the entire

plan’s cost. Note that a reassignment is only valid if it does not ap-
pear on the tabu list. If the proposed change reduces the cost, a new
plan is selected and the reassignment is recorded in the tabu list.
This algorithm continues until the plan can no longer be improved.

We formulate the tabu list to cache the data-to-node assignments
(or z; ;’s that have ever been 1), rather than entire plans evalu-
ated, for numerous reasons. First, network bandwidth is the most
costly resource for this operator and the reassignment is a func-
tion of the local slice size, so moving join unit % to node j when
it was there before and removed is unlikely to be profitable. Also,
this approach makes maintaining an approximate list of previously
evaluated plans much more efficient. Rather than recording all of
the x; ; variables for each of the prior plans, Tabu only maintains a
list of prior x;, ; assignments. This makes probing the search space
much more tractable, reducing it from exponential 2°%7 to poly-
nomial, i x j o< n?. Lastly, this restriction prevents the planner
from creating loops, wherein a join unit gets passed back and forth
between two non-bottleneck nodes. This is particularly important
when several nodes have high costs, as the optimizer only rebal-
ances one node at a time. Hence, the most costly node is likely to
change during a single round of rebalancing operations.

Tabu is attractive because it produces solutions that address both

load balancing and data alignment without resorting to an exhaus-
tive search of the query plan space. On the other hand, this planner
may be susceptible to slowdown in the presence of many join units
and nodes, which will complicate its planning.
Integer Linear Program (ILP) Solver Formulating the cost model
in Section [5.1] as an integer linear program is a way to seek opti-
mal physical shuffle join plans. This approach uses two structural
variables d and g, for the data alignment and cell comparison times,
respectively. The ILP begins with the constraint in Equation[d] such
that each join unit is assigned to exactly one node. The solver next
models the costs of sending join unit slices by taking the com-
plement of Equation [5] We use this approach because constraint
solvers do not support conditional variables and cannot evaluate
the negation in the cost model.

This constraint quantifies the highest send cost per node:

n k,j#d

d—(—tx Z Z Zi,5Si,d) > 0 (10)

i=1 j=1

The data receive time constraint for the node d, Equation|[g] is:

d— (—t X Z:L‘ZJ(SZ — Si,j)) 2 0 (11)
i=1

The integer program calculates the processing cost of each join unit
based on its algorithm as:

if hash join

{ ti Xb+u; Xp
C; = . .
if merge join

mXSi

The nested loop join is never profitable, as we demonstrate analyt-
ically in Section[d]and empirically in Section[6.1] hence we do not
model it here. The solver also takes into account cell comparison
time using the following constraint:

g — Zmi,jCi 2 0 (12)

i=1

The ILP’s objective function is: min(g + m).

The structural variables g and m are used to subtract the cost
of the join at each node. They have the added constraint that they
must remain positive numbers, which in conjunction with the above
constraints implements the max functionality of the cost model.

We apply the SCIP integer program solver to find the optimal
solution [2]]. This approach is considered because it finds glob-
ally cost-effective solutions, whereas the Tabu search may become
trapped at a local optimum. However, solvers also have difficulty
scaling out to problems with thousands of decision variables.
Coarse Solver Empirically, we found that the ILP Solver has dif-
ficulty converging for shuffle join optimizations of moderate size
(1024 join units). To address this, we assign join units at a coarser
granularity. The Coarse Solver groups join units that share a center
of gravity together to reduce the total number of assignments, and
thus reduces the number of distinct decision variables. By evaluat-
ing slices that have their largest concentration of cells in the same
location as a group, we make this problem easier to solve by en-
suring that decision variables do not “conflict” with one another as
they would if data were randomly packed. As an aside, costly “bin
conflicts” occur in the solver when a bin has an equal concentra-
tion of cells on two or more hosts. This coarser technique is likely
to make the solver run faster, however it may exact a cost in query
plans of poorer quality by evaluating the join in larger segments.

6. EXPERIMENTAL RESULTS

We first describe our experimental setup and then we focus on
our evaluation of the efficiency of our proposed framework.
Experimental Setup We conducted our physical planner and real-
world data evaluations on a dedicated cluster with 4 nodes, each
of which has 50 GB of RAM and is running Red Hat Enterprise
Linux 6. This shared-nothing cluster transmitted data over a fully
switched network. The remaining evaluations were done on a 12-
host testbed, with each node having 2.1 GHz processors and 256
GB of RAM, all also using a switched network. In both settings,
the database is stored on SATA disks. Each experiment started with
a cold cache and all were executed 3 times. We report the average
query duration.

6.1 Logical Planning Evaluation

We begin by verifying the logical query planner in Sec-
tion] Here, it is our goal is a) to demonstrate that we identify
the best execution plan and b) to validate the planner’s cost
model, showing that the optimizer can accurately compare
competing query plans. Our experiment uses two 64 MB
synthetic arrays, sized to make the nested loop join, which
has a polynomial runtime, a feasible option. The two input
arrays have the schema: A<v:int>[i=1,128M,4M] and
B<w:int>[j=1,128M, 4M] and we execute the A:A query:
SELECT % INTO C<i:int, j:int>[v=1,128M,4M];

1.0E+12

1.0E+11

1.0E+10

1.0E+09
©Hash

OMerge
ANested Loop

Plan Cost

1.0E+08

1.0E+07

1.0E+06
10 100 1000 10000
Query Duration (Secs)

Figure 5: Logical plan cost vs. query latency.

FROM A, B WHERE A.v = B.w. Here, we use a single node
to test our logical planner while controlling for physical planning.

This query has a wide variety of plausible plans; all of its at-
tributes may become dimensions and vice versa and there are sev-
eral join algorithms to choose from. Figure [5| and [6] compare three
plans. Merge refers to the plan mergeJoin (redim(A,C),
redim (B, C)). Hashrefersto redim (hashJoin (hash (A),
hash (B)), C). The Nested Loop plan is similar to Hash with the
only change being the join algorithm.

Because the cost model of the logical planner works at the level
of entire arrays, its decisions are based on the output cardinality
of the join. To capture a large cross-section of potential plans, we
evaluated all three join algorithms, varying the selectivity of the
join. Hence, if A and B have n, and n; cells respectively, a join
with selectivity 0.1 produces 0.1 X (nq + ms) output cells. We
evaluated the join with selectivity of 0.01, 0.1, 1, 10, and 100 to
capture a wide range of outcomes.

Figure[5] plots the duration of each query against its logical plan
cost.The results revealed a strong power law correlation between
query duration and projected cost (2 = 0.9), indicating that the
planner will be able to accurately compare its options. In fact, for all
5 selectivities, the plan with the minimum cost also had the shortest
duration. This study also verified that the nested loop join is never a
profitable plan. This makes sense in light of its polynomial runtime.

Figure[6]displays the time of each of the logical plans over differ-
ent join selectivities. All of these performance curves see a signifi-
cant rise in latency as their output cardinality grows. This effect is
caused by the overhead of managing larger output chunks, includ-
ing allocating more memory and having less locality in the CPU
cache. Hash and nested loop joins are especially sensitive to high
match rates in the join because they also sort the data after cell com-
parison. All join deviates from the trend when the data produces an
output 100 times larger than its sources. At first glance, it might
seem that we should account for this delay in the model, but this is
not necessary because all possible plans produce the same output
and thus bear this cost.

This result also demonstrates that for queries with a low selectiv-
ity, the hash join is fastest. Because the hash join operates over un-
ordered buckets, the plan cannot sort the query data until after the
cell comparison phase, and this expensive step operates on fewer
cells. Once we reach a selectivity of 1, where the join’s inputs and
outputs have the same size, merge join narrowly edges out the hash
join plan. Merge join executes redimensions on the two source ar-
rays, performing twice as many sorts each on half the number of
cells. In other words, this logarithmic time operation scales better
in smaller batches. As the join produces higher output cardinalities,
merge join becomes the clear best choice because it front loads the
the reordering needed for the destination schema. For the largest
output cardinality, merge join performs 35X faster than hash join.

10000

1000

n

]

@

@

<

L

s 100 =——Hash
é ****Merge
E == Nested Loop
S

(<]

0.01 0.1 1 10 100
Selectivity

Figure 6: Performance for different logical plans and selectivities.

These results demonstrate how crucial it is to pick the right log-
ical plan for a join query. If the query calls for reordering the data,
correctly placing the sort before or after cell comparison makes a
dramatic difference in the database’s performance.

6.2 Physical Planning Evaluation

We now consider the performance of the physical join planners.
This section begins by verifying analytical cost model. We then ex-
amine the performance of the optimizers for merge and hash joins
under a variety of data distributions. Since we established that the
nested loop join has the worst performance above, it is excluded
from this study.

The joins are evaluated by joining two 100 GB ar-
rays with schema: A<vl:int, v2:int>[i=1, 64M,2M,
j=1, 64M, 2M]. Their array space is a grid with 32x32 chunks,
hence the merge join has 1024 join units to optimize. Likewise, the
hash join experiments assign 1024 hash buckets to its nodes.

Our experiments use synthetic data to carefully control the level
of skew in the source arrays. They begin with uniformly distributed
data, wherein all of the slices are the same size, and gradually in-
crease the skew. Here, the join unit and slice sizes follow a Zipfian
distribution. This distribution’s skewness is characterized with «,
and higher a’s denote greater imbalance in the data sizes. For these
trials we have a very low selectivity of 0.0001; this design tests ex-
treme differences in size between the two sides of a join unit, since
if a massive chunk is being compared with one that has very few
cells there are limited opportunities to match cells.

Baseline We compare the shuffle join planners to a naive planner.
This baseline is not skew-aware, and it makes decisions at the level
of entire arrays. For merge joins, this approach simply moves the
smaller array to the larger one. For hash joins, the planner assigns
an equal number of buckets to each node. If the join has b hash
buckets, and k nodes, the first [0/ k| buckets are assigned to the first
node and each subsequent host is assigned the next same-sized slice
of buckets. We take this approach from relational optimizers [31].
ILP Solvers Both the ILP Solver and Coarse ILP Solver have a
time budget within which to complete their optimization. This limit
is a workload-specific parameter, tuned to an empirically observed
time at which the solver’s solution quality becomes asymptotic. We
did this to make the approach competitive with the alternatives,
each of which completes its planning phase, assigning join units
to nodes, in few seconds. Our experiments have a time budget of 5
minutes. The Coarse ILP Solver packs its join units into 75 bins.

Our experiments display the time of shuffle join planning (Query
Plan), data alignment (Data Align), and cell comparison (Cell
Comp) for the Baseline (B), ILP Solver (ILP), ILP-Coarse Solver
(ILP-C), Minimum Bandwidth Heuristic (MBH) and Tabu Search
(Tabu) physical planners.

50 -

40

[Cell Comp
30 - [Data Align
B Query Plan

20 - I

Query Duration (Mins)

[~ a [A~
.’-‘Q:!(:LE[—' L’Q::!ziF Cﬂ:]zgk a‘.‘::]‘(iil—' CQ::!EEF
o= = == o= =k
0.0 0.5 1.0 1.5 20
Zipfian Alpha

Figure 7: Merge join with varying skew and physical planners.

ILP ILP-Coarse Tabu
Skew Time Cost Time Cost Time Cost
a=1.0 | 335 221 379 236 39.9 259
a=1.5 1 200 131 22.9 143 23.5 151
a=2.0 10.9 69 11.5 75 11.6 75

Table 2: Analytical cost model vs. join time in minutes for hash join.

Analytical Model Verification We demonstrate the efficacy of
the cost model from Section 5.]in Table 2] The table shows the
model’s qualitative estimates in comparison to the summed data
alignment and join execution times for the cost-based physical
planners. The results are taken from the hash joins shown in Fig-
ure [§] under moderate-to-high skew. We chose this series because
it demonstrates a complex optimization scenario with many slices
per join unit. These queries also showcase pronounced processing
skew, for which the physical planners are optimized.

A linear model shows that plan costs are very well-correlated
with the observed query latency (2 = 0.9). This implies that the
planners leveraging this model are able to accurately compare com-
peting plans. We see a minor outlier where a=2. ILP Coarse and
Tabu produce solutions with the same cost, but Tabu’s plan runs
for 6 seconds longer. For queries that execute for tens of minutes
apiece, we posit that this is an acceptable level of variance.

6.2.1 Merge Join

We now test the efficiency of the physical planners for managing
skew in merge joins. This experiment evaluates the D:D query:

SELECT A.vl - B.vl, A.v2 - B.v2
FROM A, B
WHERE A.i = B.i AND A.j = B.7j;

by executing the plan merge (A, B) ; its slices are whole chunks.
The query runtimes are shown in Figure [/| for different physical
planner and skew levels. For the uniform test, « = 0, all opti-
mizers produce plans of similar quality. The ILP Solver performs
noticeably slowly, because it attempts to make a series of small,
inconsequential improvements over the uniformly distributed data
and cannot converge on a globally optimal plan.

As skew increases, the planners all adapt to exploit this change.
The ILP Solver time decreases as the difference between the best
plan and the alternatives becomes more pronounced. Tabu con-
verges quickly as it too identifies areas of beneficial skew. Gen-
erally speaking, because this join plans at the level of logical
chunks, the optimizer has at most two choices for where it can cost-
effectively assign each join unit: the location of its two inputs. All
of the alternatives incur additional time in network bandwidth, and
this is often the bottleneck for array joins.

Owing to this simplicity in the plan search space, the Minimum
Bandwidth Heuristic performs best. Its planning time is virtually
nonexistent and bringing sparse chunks to their denser counter-
parts is enough to minimize query durations in this context. This

70

O Cell Comp
[Data Align
B Query Plan

Query Duration (Mins)

A ay [
=398 "3ET "ayE°
4= ﬁE £§
10 1.5 20
Zipfian Alpha

Figure 8: Hash join with varying skew and physical planners.

approach also benefits from having an uncomplicated cost mech-
anism. By not individually calculating the cost of cell comparison
and data alignment on a per-cell basis, it is robust to hardware-level
variance. For example, cells from the data alignment step may al-
ready be present in memory at cell comparison time, but locally
stored source data needs to be fetched from disk, creating differ-
ences in what is analytically regarded as the same operation.

6.2.2 Hash Join

We now examine the performance of the physical planners for

hash joins. This experiment evaluates the A:A query:

SELECT A.i, A.j, B.i, B.J

INTO<A.i:int, A.j:int, B.i:int, B.j:int>[]

FROM A, B

WHERE A.vl = B.vl and A.v2 = B.v2;

under different levels of skew; its join units are hash buckets. The
findings in Figure [§]introduce skew both in the join unit sizes and
their distribution across nodes. Each join unit is spread over all
nodes, creating a more complicated search space for the planners.

For uniformly distributed data, the planners all evenly distribute
join execution over the cluster. The ILP solvers suffer from longer
execution times because they rarely find the optimal solution at a
speed that would make them competitive. In contrast, the MBH
produces the most cost effective plan. It reduces the time of data
alignment by moving the smallest side of each join unit. Because
all of the join units are of approximately the same size, each node
is assigned roughly the same amount of work.

On the other hand, MBH performs exceptionally poorly under
slight skew, where o = 0.5. Here, its locally optimal, single-pass
solution latches on to small differences in slice size and creates
significant imbalance during the cell comparison step. This issue is
compounded by low skew that forces the hash join to create large
hash maps. Building this data structure is substantially more costly
than probing it. As the skew increases, the hash join selects the
smaller side of each join unit as its build array, reducing this effect.

The ILP Solver also performed poorly in the presence of slight
skew. For ac = 0.5, the planner failed to produce a valid plan within
its allotted time budget. To accommodate this limitation, we eval-
uated this query with a one-time 10 minute window. Even so, it’s
solution was less effective than the one provided by Tabu.

Overall, the results demonstrate that Tabu performs the best for
hash joins. This algorithm starts out with the greedy heuristic to
reduce data alignment time and progresses on to a locally optimal
search of the plan space to balance the cell comparison load. Hence,
it capitalizes on the best elements of heuristics and sophisticated
modeling to make this complicated join’s end-to-end latency low.

6.3 Real-World Data Evaluation

The next set of experiments concern two datasets sourced from
real-world science applications. The first consists of 170 GB of

2
g
S 200
8 O Cell Comp
g 15r [Data Align
A L — B Query Plan
oot —
=
[e4 [
5F .
0 =] Ay o jon) =)] @] jany =
= 4 = = 1 =
0 = O =
Beneficial Adversarial
Array Skew

Figure 9: Merge join using real world data, organized by join planner.

satellite imagery recorded by the NASA MODIS platform [25] over
a one week period. Scientists use MODIS data to model sea, atmo-
sphere, and land processes. MODIS records light measurements at
various wavelengths (or “bands”) accompanied by uncertainty in-
formation. Its data is relatively evenly distributed over array space.

The second dataset, AIS, is a ship tracking database for com-
mercial vessels provided by the National Oceanographic and At-
mospheric Administration [26]. This dataset contains one year of
marine traffic with a stored size of 110 GB. NOAA collects loca-
tion broadcasts from ships, and the array’s attributes include the
track’s ship identifier, course, speed, and rate of turn. This dataset
exhibits high amounts of skew, as vessels often cluster around ma-
jor ports and traverse shipping lanes. Its arrays are span the coastal
waters of the United States. Both sources have three dimensions:
time, longitude, and latitude. Their latitude-longitude dimensions
are divided into 4° x 4° chunks, producing in 4,186 join units.

We use these two datasets to test the physical planners on a merge
join. All of the joins in this section have sorted chunks as their join
units. The experiments first examine beneficial skew by joining AIS
with MODIS data, and then adversarial distributions via querying
two MODIS bands.

6.3.1 Beneficial Skew

Recall that MODIS data is used to model the earth’s atmosphere,
and in this experiment we study the satellite measurements taken at
the location of ship tracks to understand the environmental impact
of marine traffic. This experiment executes the query:

SELECT Bandl.reflectance,Broadcast.ship_id

FROM Bandl, Broadcast

WHERE Bandl.longitude = Broadcast.longitude
AND Bandl.latitude = Broadcast.latitude;

It joins on the geospatial dimensions alone to produce a long-
term view of the environment. This query is an example of bene-
ficial skew. For AIS, nearly 85% of the data is stored in just 5%
of the chunks. In contrast, MODIS has only slight skew; the top
5% of its chunks contain only 10% of the data. Hence, although
MODIS data is uniformly distributed over its array space, the AIS
data has several hotspots along the US coastline. This distribution
is beneficial because the AIS chunk sizes are very polarized, hence
there is always a clear winner as to which assignment will reduce
the bandwidth used during data alignment.

Figure 9] shows that the shuffle join planners achieve a speedup
of nearly 2.5X over the baseline in end-to-end performance. This
confirms our findings in Section[6.2} under severe skew, cost-based
planning makes a big difference in performance. Data alignment is
reduced by almost 20X, as the planners exploit beneficial skew by
moving sparse slices. Cell comparison is also halved compared to
the baseline, as its per-node data distribution is simply more even.
The baseline moved the smaller, more skewed AIS array to align it

60

50 -

2

£

S 40

g L O Cell Comp
g 30r] Data Align
g B Query Plan
o

Cluster Nodes
Figure 10: Scale out performance of merge join

with the more uniform MODIS source cells, transferring many of
its largest chunks to the same node. Thus the skew-agnostic planner
increased the duration of both join steps.

6.3.2 Adversarial Skew

Our experiment on this dataset joins two MODIS bands, calcu-
lating the normalized difference vegetation index as in [28]. The
query’s source arrays have very slight skew, as chunks nearer to the
equator having more cells. This is an artifact of latitude-longitude
space being more sparse near the poles of the globe.

SELECT (Band2.reflectance - Bandl.reflectance)
/ (Band2.reflectance + Bandl.reflectance)
FROM Bandl, Band2
WHERE Bandl.time = Band2.time
AND Bandl.longitude = Band2.longitude
AND Bandl.latitude = Band2.latitude;

The join’s output consists of a 3D array with a single attribute for
the vegetation reading, and this query is an example of adversarial
skew. Because both bands collect their data from the same sensor
array, their resulting chunks for a given location are very close in
size. On average the difference between joining chunks is 10,000
cells, whereas the mean chunk size is 665,000 cells.

All of the planners produce queries with comparable execution
times. This demonstrates that the optimizers can achieve significant
speedups in the presence of skew without a commensurate loss in
performance for uniformly distributed data. That being said, the
shuffle algorithms that search for a plan, i.e., Tabu and the solvers,
incur overhead as they scale up to a larger number of chunks. They
do so because each incremental plan revision can only result in
small changes in plan cost, complicating their decision space. Fu-
ture work could address this challenge by approximating the chunk
sizes in the planners for arrays having many chunks, in effect,
rounding the chunk sizes by some increment. This would make it
such that join units that are almost the same size are not considered
distinct options to the optimizers.

6.4 Scale Out Test

We now test the shuffle join’s ability to scale out to many nodes.
This experiment executes the merge join in Section [6.2.1] using a
range of cluster sizes. The database runs on 2-12 nodes in even
numbered quantities. Here, the level of skew is held constant at a
a = 1.0. The resulting query latencies are displayed in Figure[I0]

The skew-aware planners chose plans that execute faster with
two nodes than the baseline plan with 12 nodes. With very few
nodes, the join spends most of its time aligning data. In the two-
node trial, the hosts can only send or receive from a single network
link, and this limited level of parallelism exacerbates the network
bottleneck. On the other hand, this setting has much faster opti-
mization times for the cost-based planners. The ILP solvers quickly
converge on the optimal solution in the smallest scale trial.

As more nodes are introduced, the physical planning takes on
an exponentially richer decision space and the ILP optimizers use
their entire time budget. As they have more chunk-to-node assign-
ment options, their plans are not high-quality enough to justify this
wait time. Thus the much simpler Minimum Bandwidth Heuristic
performs best overall. At the small scale configuration, MBH per-
forms on par with the more sophisticated approaches and as the
cluster grows it surpasses them, cutting execution time in half.

7. RELATED WORK

Parallel, shared-nothing databases were proposed in [35]], imple-
mented in [8} 11, |15], and surveyed in [[12]].The requirements for
array data management were researched in [3} |19, |36]. Several ef-
forts are underway to implement scientific databases [} |6} 9], but
none of these optimize join processing over skewed data. Research
in parallel join execution for the relational model has focused on
the performance of hash joins [[13| 21]]. These algorithms are eval-
uated in [31]]. We build upon these results, but decouple the data
alignment of join inputs from their cell comparison.

Modeling skew for parallel joins has been researched for re-
lational databases only. In [4, |7] they showed that skewed data
distributions offer performance improvement opportunities for in-
memory hash-joins. [38]] explored the impact of skew on query
execution plans. There are also several skew-aware optimizations
for parallel hash joins, including bucket size tuning [20], recur-
sive hash bucket splitting [41]], and global tuple-level load balanc-
ing [[14]. [40] addresses load balancing for sort-merge joins. Each
of these approaches optimizes for execution skew and we also con-
sider this objective in our models. Array workloads, however, are
much more sensitive to network and I/O availability, and we cre-
ated a series of techniques to address this. Finally, minimizing the
network transmission cost and balancing the cpu cost has been ex-
tensively studied for relational joins in [[17}/23}|39].

The performance benefits gained through exploiting data locality
specifically for parallel, in-memory hash joins were explored for re-
lational data [30}29]]. Our work also takes into account the location
of data when planning a join, however we do so for a wider variety
of join implementations within an array database where sort order
is fundamental to its design.

8. CONCLUSIONS

We introduce the shuffle join optimization framework that of-
fers efficient join execution plans in the presence of skew for array
databases. It includes a logical optimizer that exploits the spatial
storage and sorting properties of the input data to generate array-
level join execution plans that minimize the hardware resources
needed for a join. The framework also has a physical planner for
executing these operators across the database cluster by assigning
non-overlapping array subsets to nodes. An analytical cost model
enables the physical planner to exploit skew to craft efficient data-
to-node assignments. Experimental results show that this tactic
achieved a 2.5X speedup for skewed data and performed compa-
rably to skew-agnostic techniques for uniform distributions.

There are several promising directions for future work from this
study. Identifying the most efficient order of several joins within a
single query is one such question. Another area warranting further
investigation is generalizing this two-step optimization model to
complex analytics that combine arrays, such as covariance matrix
queries.

9. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful feedback.
This research was funded by the Intel Science and Technology Cen-
ter for Big Data and by NSF IIS 1253196.

10. REFERENCES

[1] M. Stonebraker et al. C-store: a column-oriented DBMS. In
VLDB, 2005.

[2] T. Achterberg. Scip: solving constraint integer programs.
Mathematical Programming Computation, 1(1):1-41, 2009.

[3] A. Ailamaki, V. Kantere, and D. Dash. Managing scientific
data. Communications of the ACM, 53(6):68-78, 2010.

[4] C. Balkesen, J. Teubner, G. Alonso, and T. Ozsu.
Main-memory hash joins on multi-core CPUs: Tuning to the
underlying Hardware. In /ICDE, 2013.

[5] A. Ballegooij. Ram: A multidimensional array dbms. In
EDBT Workshops 05.

[6] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and
N. Widmann. The multidimensional database system
RasDaMan. In SIGMOD Record, 1998.

[7] S. Blanas, Y. Li, and J. Patel. Design and evaluation of main
memory hash join algorithms for multi-core CPUs. In
SIGMOD, 2011.

[8] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth,
M. Franklin, B. Hart, M. Smith, and P. Valduriez.
Prototyping bubba, a highly parallel database system.
Knowledge and Data Engineering, IEEE Transactions on,
2(1):4-24, 1990.

[9] P. G. Brown. Overview of SciDB: large scale array storage,
processing and analysis. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data,
pages 963-968. ACM, 2010.

[10] P. Cudré-Mauroux, H. Kimura, K.-T. Lim, J. Rogers,

R. Simakov, E. Soroush, P. Velikhov, D. L. Wang,

M. Balazinska, J. Becla, D. J. DeWitt, B. Heath, D. Maier,
S. Madden, J. M. Patel, M. Stonebraker, and S. B. Zdonik. A
Demonstration of SciDB: A Science-Oriented DBMS.
PVLDB, 2(2):1534-1537, 2009.

[11] D. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker,
H.-I. Hsiao, and R. Rasmussen. The gamma database
machine project. Trans. on Knowledge & Data Eng.,
2(1):44-62, 1990.

[12] D.J. DeWitt and J. Gray. Parallel database systems: The
future of database processing or a passing fad? SIGMOD
Record, 19(4):104-112, 1990.

[13] D.J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R.
Stonebraker, and D. A. Wood. Implementation techniques for
main memory database systems, volume 14. June 1984.

[14] D.J. DeWitt, J. F. Naughton, D. A. Schneider, and
S. Seshadri. Practical skew handling in parallel joins. In
VLDB, volume 92, pages 27-40, 1992.

[15] S. Englert, J. Gray, T. Kocher, and P. Shah. A benchmark of
non-stop sql release 2 demonstrating near-linear speedup and
scaleup on large databases. Tandem Tech Report, 1989.

[16] C. Faloutsos, B. Seeger, A. Traina, and C. Traina, Jr. Spatial
join selectivity using power laws. SIGMOD Rec., 29(2), May
2000.

[17] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query
Optimization for Parallel Execution. In SIGMOD, 1992.

[18] F. Glover. Future paths for integer programming and links to
artificial intelligence. Computers & Operations Research,
13(5):533-549, 1986.

[19] J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. J.
DeWitt, and G. Heber. Scientific data management in the
coming decade. ACM SIGMOD Record, 34(4):34-41, 2005.

[20] M. Kitsuregawa and Y. Ogawa. Bucket Spreading Parallel
Hash: A New, Robust, Parallel Hash Join Method for Data
Skew in the Super Database Computer. In VLDB, 1990.

[21] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Application
of hash to data base machine and its architecture. New
Generation Computing, 1(1):63-74, 1983.

[22] Large Synoptic Survey Telescope.
http://www.lsst.orqg.

[23] J. Li, A. Deshpande, and S. Khuller. Minimizing
Communication Cost in Distributed Multi-query Processing.
In ICDE, 2009.

[24] M. Mehta and D. J. DeWitt. Data placement in
shared-nothing parallel database systems. The VLDB
Journal, 6(1):53-72, 1997.

[25] NASA, MODIS Website.
modis.gsfc.nasa.gov/data/.

[26] National Oceanic and Atmospheric Administration. Marine
Cadastre. http://marinecadastre.gov/AIS/.

[27] M. E. Newman. Power laws, pareto distributions and zipf’s
law. Contemporary Physics, 46(5):323-351, 2005.

[28] G. Planthaber, M. Stonebraker, and J. Frew. Earthdb: scalable
analysis of modis data using scidb. In BigSpatial ’12.

[29] O. Polychroniou, R. Sen, and K. A. Ross. Track join:
Distributed joins with minimal network traffic. SIGMOD
*14, pages 1483-1494, New York, NY, USA, 2014. ACM.

[30] W. Rodiger, T. Miihlbauer, P. Unterbrunner, A. Reiser,

A. Kemper, and T. Neumann. Locality-sensitive operators for
parallel main-memory database clusters. In ICDE, pages
592-603, 2014.

[31] D. Schneider and D. DeWitt. A performance evaluation of
four parallel join algorithms in a shared-nothing
multiprocessor environment. In SIGMOD ’89.

[32] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In Proceedings of the 1979
ACM SIGMOD international conference on Management of
data, pages 23-34. ACM, 1979.

[33] Sloan Digital Sky Survey. http://www.sdss.orgl

[34] E. Soroush, M. Balazinska, and D. L. Wang. ArrayStore: a
storage manager for complex parallel array processing. In
SIGMOD, 2011.

[35] M. Stonebraker. The case for shared nothing. IEEE Database
Eng. Bull., 1986.

[36] M. Stonebraker, J. Becla, D. J. DeWitt, K.-T. Lim, D. Maier,
O. Ratzesberger, and S. B. Zdonik. Requirements for science
data bases. In CIDR, 2009.

[37] R. Taft, M. Vartak, N. R. Satish, N. Sundaram, S. Madden,
and M. Stonebraker. Genbase: a complex analytics genomics
benchmark. In SIGMOD Conference, pages 177-188, 2014.

[38] C.B. Walton, A. G. Dale, and R. M. Jenevein. A taxonomy
and performance model of data skew effects in parallel joins.
In VLDB, 1991.

[39] X. Wang, R. Burns, A. Terzis, and A. Deshpande. Network -
Aware Join Processing in Global Scale Database Federations.
In ICDE, 2008.

[40] J. Wolf, D. Dias, and P. Yu. A parallel sort merge join
algorithm for managing data skew. Trans. on Parallel and
Dist. Systems, 1993.

[41] J. Wolf, P. Yu, J. Turek, and D. Dias. A parallel hash join
algorithm for managing data skew. Trans. on Parallel and
Dist. Systems, 1993.

http://www.lsst.org
modis.gsfc.nasa.gov/data/
http://marinecadastre.gov/AIS/
http://www.sdss.org

	Introduction
	Background
	The Array Data Model
	 Array Joins
	Array Join Optimization Challenges
	Schema Resolution
	Skew Management

	Shuffle Join Framework
	Shuffle Join Terminology
	Join Algorithms
	Shuffle Join Optimization
	Shuffle Join Execution

	Logical Join Optimization
	Physical Join Optimization
	Analytical Cost Model
	Shuffle Planners

	Experimental Results
	Logical Planning Evaluation
	Physical Planning Evaluation
	Merge Join
	Hash Join

	Real-World Data Evaluation
	Beneficial Skew
	Adversarial Skew

	Scale Out Test

	Related Work
	Conclusions
	Acknowledgments
	References

