
Eurographics Conference on Visualization (EuroVis) 2019
M. Gleicher, H. Leitte, and I. Viola
(Guest Editors)

Volume 38 (2019), Number 3

Kyrix: Interactive Pan/Zoom Visualizations at Scale

Wenbo Tao1, Xiaoyu Liu1, Yedi Wang2, Leilani Battle3, Çağatay Demiralp4, Remco Chang2 and Michael Stonebraker1

1 Massachusetts Institute of Technology,2 Tufts University,
3 University of Maryland, College Park, 4 Megagon Labs

(a) (b)

Figure 1: Two example visualizations created using Kyrix: (a) a visualization of the 2017-2018 regular season of the NBA, where the user
can zoom from one view showing NBA team logos to another view showing a timeline of NBA games and (b) a pannable and zoomable EEG
time series consisting of 100 million data points.

Abstract
Pan and zoom are basic yet powerful interaction techniques for exploring large datasets. However, existing zoomable UI toolkits
such as Pad++ and ZVTM do not provide the backend database support and data-driven primitives that are necessary for
creating large-scale visualizations. This limitation in existing general-purpose toolkits has led to many purpose-built solutions
(e.g. Google Maps and ForeCache) that address the issue of scalability but cannot be easily extended to support visualizations
beyond their intended data types and usage scenarios. In this paper, we introduce Kyrix to ease the process of creating general
and large-scale web-based pan/zoom visualizations. Kyrix is an integrated system that provides the developer with a concise and
expressive declarative language along with a backend support for performance optimization of large-scale data. To evaluate
the scalability of Kyrix, we conducted a set of benchmarked experiments and show that Kyrix can support high interactivity
(with an average latency of 100 ms or below) on pan/zoom visualizations of 100 million data points. We further demonstrate
the accessibility of Kyrix through an observational study with 8 developers. Results indicate that developers can quickly learn
Kyrix’s underlying declarative model to create scalable pan/zoom visualizations. Finally, we provide a gallery of visualizations
and show that Kyrix is expressive and flexible in that it can support the developer in creating a wide range of customized
visualizations across different application domains and data types.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

W. Tao et al. / Kyrix: Interactive Pan/Zoom Visualizations at Scale

1. Introduction

Interactive visual data exploration for massive datasets is becom-
ing increasingly important with the rapid generation of data across
domains, from healthcare to sciences. Data analysts often have to
deal with datasets of sizes in the order of terabytes or petabytes.
When exploring data of this size, it is not unusual for them to be
burdened by information overload [Wur01], leading to error-prone
and prolonged analysis processes.

Pan/zoom interfaces [Bed01, DFW08, DCW12, Goo] have been
shown to be effective in facilitating the navigation in large datas-
paces. By presenting information in multiple levels of details and
enabling the user to smoothly traverse between and within levels,
these interfaces reduce the user’s cognitive load and help preserve
their sense of position and context [Shn96]. Figure 1 shows two
example pan/zoom visualizations created using the system we de-
scribe in this paper. Figure 1b shows an EEG diagram of one patient
in a large US hospital we collaborate with. To detect abnormal pat-
terns in large EEG data, the doctor can pan to conveniently scroll
through the long time series, or zoom in to see larger, detailed views
of the visualization. In Figure 1a, a basketball fan can click on† the
logo of his favorite NBA team in the first view, then zoom into a
timeline view showing the team’s basketball games.

The usefulness of pan/zoom interfaces has led to the de-
velopment of a number of zoomable UI (ZUI) toolkits, e.g.,
Pad++ [BH94] and ZVTM [Pie05]. However, while these toolk-
its support the developer in designing pan/zoom visualiza-
tions, they do not provide the backend database support
but instead assume that data can fit in memory. Nowadays,
datasets are often too large to fit in memory, containing mil-
lions or billions of records that require storage in disk-based
database systems [LJH13, CXGH08, LKS13]. Therefore, as data
gets large, pan/zoom interfaces developed using existing ZUI
toolkits can fail to bound interaction response times within
500ms, which is required for sustaining an interactive user
experience [LH14]. In addition, they do not provide data-driven
primitives for specifying data-visual mappings. Low-level graph-
ics primitives make it tedious and fault-prone to author large data
visualizations [BOH11, SH14]. As a result of these inadequacies
of existing ZUI tools, many purpose-built pan/zoom systems (e.g.
Google Maps [Goo] and ForeCache [BCS16]) have emerged, us-
ing highly-customized solutions to support the exploration of large
amounts of data. Nevertheless, these systems are often hardcoded
for certain data types and applications and thus cannot be easily
extended to support general scenarios.

To ease the creation of general and scalable pan/zoom visual-
izations, we need tools that can help the developer handle large
datasets and use effective optimizations to ensure interactivity. This
warrants an integrative approach to data-driven visual specification,
where performance optimizations and data are pushed to the server
side computation and data management systems.

In this paper, we present Kyrix‡, an integrated system for devel-
oping scalable visualizations driven by pan and zoom interactions.

† Point-click serves as a convenience mechanism for quick navigation be-
tween levels [PF93, BH94, Pie05].
‡ Code is available at https://github.com/tracyhenry/kyrix.

ask data

return data

Developer spec

Backend server

Database
pan zoom

Kyrix
Kyrix

Frontend renderer

user

compile

Figure 2: Kyrix system architecture.

Our goal is to achieve generality (support for general data types
and visualizations), ease of development and scalability. Figure 2
shows the system architecture. On the developer side, we offer a
concise yet expressive declarative model for easy specification of
pan/zoom visualizations. Declarative designs hide execution details
(e.g. backend optimization and frontend rendering) from the devel-
oper, so that they can focus on visual specification [SWH14]. On
the execution side, the compiler parses the developer’s specification
and performs basic constraint checking. Based on the specification,
the backend server then precomputes necessary database indexes
for performance optimizations. The frontend renderer is responsi-
ble for listening to user activities, communicating with the backend
server to fetch data and rendering the visualizations.

As a unified system, Kyrix contributes the following:

• An integrated visual specification and data management pipeline
to ease the creation of large-scale pan/zoom visualizations.

• To our best knowledge, the first declarative model for authoring
general pan/zoom visualizations of large, disk-based data (Sec-
tion 4).

• A suite of performance optimizations that integrate with the un-
derlying data management system to guarantee interactivity on
large datasets (Section 5).

We evaluate the expressivity of Kyrix’s model through building
several example visualizations (Section 6). To assess Kyrix’s acces-
sibility, we conduct a developer study with 8 visualization devel-
opers recording task performance time and accuracy along with
qualitative feedback (Section 7). Results show that developers can
quickly learn Kyrix’s programming model and create nontrivial vi-
sualizations by completing partial specifications. Also, feedback
from developers suggests that Kyrix can be valuable in accelerating
the development of interactive visualizations at scale, addressing
an important need in practice. Lastly, we report results from perfor-
mance experiments to demonstrate the scalability of Kyrix (Section
8). We find that Kyrix can support interactive exploration over 100
million data points with an average latency of 100 ms or below.

2. Related Work
Kyrix is related to prior research in ZUI design tools, scalable

visualization systems and declarative visual encoding.

2.1. ZUI Toolkits and Systems
Perlin and Fox introduces the Pad system [PF93], which

redesigns the computer desktop as a fully zoomable user in-
terface. This seminal work has sparked multiple efforts in

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/tracyhenry/kyrix

W. Tao et al. / Kyrix: Interactive Pan/Zoom Visualizations at Scale

designing toolkits to support the creation of ZUIs, including
Pad++ [BH94], Jazz [BMG03] and ZVTM [Pie05]. These tools
provide application programmers with low-level graphics primi-
tives and have enabled the creation of numerous ZUIs in various
domains [Bed01, DCW12, DFW08, Goo, SZG+96, SGKC03, RB05].

Nevertheless, the aforementioned tools cannot scale to large
datasets due to two common limitations. First and foremost, they
assume data can fit in main memory – an assumption that does not
hold for large datasets that require disk-based data storage [LJH13].
Second, they lack data-driven primitives for easy mapping from
data to visual properties. For instance, to create visual objects
that match a dataset, the developer is required to individually
create each visual object and attach pan/zoom event listeners.
Similar to how native Javascript hinders large-scale visualization
authoring [BOH11], this cumbersome process prevents the devel-
oper from reasoning on the data level, and therefore is ill-suited for
creating large-scale pan/zoom data visualizations.

In contrast, Kyrix offers an integrated workflow for declarative
visual authoring and large-scale data management, providing pro-
grammers with high-level data-driven abstractions while freeing
them from writing complex execution code to optimize perfor-
mance and render visualizations.

2.2. Performance Optimization in Visualization Systems
The inability of general ZUI toolkits to handle large data has

led to many custom-made pan/zoom systems optimized for specific
data types and applications.

Image tile browsers such as Deepzoom [Mic08], Google
Maps [Goo] and Zoomify [Zoo99] generally assume or create a
pyramid of image tiles with varied resolution, and only render tiles
that fall within the viewport. While convenient for viewing a high-
resolution image at multiple scales, this rigid paradigm does not
work well with general web-based visualizations (unless a tedious
conversion from a web-based visualization to multi-resolution im-
ages is done first). We will later use an example application (Figure
9b) to show that Kyrix can also be used as an image tile browser.

ATLAS [CXGH08] adopts predicative caching to enable in-
teractive pan and zoom on time series data. In a similar vein,
ForeCache [BCS16] prefetches data tiles to efficiently render
dense array-based data such as satellite imagery data. Aperture
Tiles [CSK+13] precomputes and fetches image tiles from dis-
tributed storage systems with a focus on geospatial applications.
HiGlass [KAL+18] is a recent system for visualizing genomic data
which precomputes image tiles. Different from these purpose-built
systems, Kyrix is agnostic to data and visualization types. Kyrix also
uses novel databse spatial indexing and extends some of the opti-
mization techniques in these systems (e.g. prefetching and caching)
to optimize general pan/zoom interactions.

Prior works have studied in-memory techniques to fetch
only needed data in response to user actions. The Splash
framework [GKW14] offers the developer an interface for writing
a data fetching procedure that returns data items falling in the cur-
rent viewport. Despite its flexibility, writing this procedure can be
nontrivial. Kyrix offers a more lightweight mechanism by allowing
the developer to specify a data-driven function that assigns bound-
ing boxes to data items, and then automates the data-fetching pro-

cess using database spatial queries in a disk-based setting. This idea
draws inspiration from Pad++ [BH94] and ZVTM [Pie05] which
provide shape-level bounding box specifications.

A long line of research also studies how to reduce vi-
sual clutter [ED07] on large data visualizations using tech-
niques such as sampling [DCHW03, DE02, Raf05] and binned
aggregation [EF10, GR94]. This type of data manipulation is of-
ten performed before data visualization [GR94, GKW14], so we as-
sume this is an orthogonal process that is done either outside Kyrix
or through a custom preprocessing procedure (Section 4.4).

Multidimensional data tiles/cubes [LJH13, LKS13, PSSC17, Bre16]
have been widely adopted to support interactive aggregation
queries. However, due to huge amounts of memory used, the index
structures proposed cannot support complex pan/zoom interactions
where frequent querying of visual objects falling in a rectangular
viewport is needed. In contrast, our method is based on database
spatial indexes to perform spatial queries on disk-resident data.

2.3. Declarative Visualization Specification
Kyrix’s declarative model is related to earlier research on declar-

ative visual analysis grammars. Wilkinson introduces a grammar
of graphics [Wil99] and its implementation (VizML), forming the
basis of the subsequent research on visualization specification.
Drawing from Wilkinson’s grammar of graphics, Polaris [STH02]
(commercialized as Tableau) uses a table algebra, which has
later evolved to VizQL [Han06], the underlying representation of
Tableau visualizations. Wickham introduces ggplot2 [Wic10], a
widely-adopted package in the R statistical language, based on
Wilkinson’s grammar. Similarly, Protovis [BH09], D3 [BOH11],
Vega [SRHH16], Brunel [Wil17], and Vega-Lite [SMWH17] all
provide grammars to declaratively specify visualizations.

Some of these declarative languages (e.g. D3 [BOH11] and
Vega [SRHH16]) are capable of expressing pan/zoom interactions
on small data. However, because of their general-purpose nature,
the specification is often verbose, involving tens or hundreds lines
of imperative event handling [BOH11] or event-driven functional
reactive programming code [SRHH16]. Vega-lite [SMWH17] of-
fers much simpler primitives to specify pan and zoom, but at the
cost of low customizability. Kyrix enables declarative specification
of pan/zoom interactions in a few lines of code, and is flexible
enough to support general visualizations.

Part of Kyrix’s declarative abstractions shares conceptual simi-
larities with existing grammars. However, our abstractions are de-
signed to delineate pan/zoom visualizations with multiple levels
of details, and are conducive to integration with a server-side data
management pipeline. For example, while the layer abstraction is
common in prior grammars [Wic10, SMWH17], in Kyrix a layer is
also associated with a bounding box function to enable fast data
fetching on the server side.

3. Design Requirements
We first present a set of requirements we identify before and

during the development of our system, inspired by limitations of
prior art, established design principles and our multi-year experi-
ences working with visualization users and developers. These re-
quirements inform the choices we make and guide us to refine our
design through multiple design iterations.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Tao et al. / Kyrix: Interactive Pan/Zoom Visualizations at Scale

Raw Data

Data
Transform 1

Data
Transform K

Layer 1

Layer 2

Layer M

Canvas 1

Canvas 2

Canvas N

Zoom

Zoom

Rendering

Placement

Rendering

Placement

Rendering

Placement

Figure 3: Kyrix’s declarative model. Canvases are “zoom levels”
connected by zooms. A canvas has multiple layers. A data trans-
form prepares the data source for rendering a layer. A rendering
function maps data to visual objects. A placement function provides
spatial information of objects to enable fast data fetching.

R1. Generality. In terms of design space, our system should sup-
port general data types and visual encodings, i.e., not limited to
certain data types such as time series data.

R2. Ease of development. From the developer’s standpoint, our
system should allow simple visual authoring of large visualizations.
More specifically, we collect the following sub-requirements:

• R2-a. Data-driven primitives. The system should pro-
vide data-driven primitives rather than shape-level function
calls [BH94, Pie05], which are laborious and error-prone espe-
cially for large data. Data-driven abstractions make it more ac-
cessible to author data-dependent visual properties [BOH11].

• R2-b. Easy creation of interactions. Specifying interactions
should be declarative and should avoid complex imperative event
handling code.

• R2-c. Automatic performance optimizations. To decouple
specification from execution details, performance optimizations
should be hidden from the developer and performed behind the
scenes. This also requires that the specification model provides
the backend with enough information to perform optimizations.

R3. Scalability. As established in [LH14], we should bound re-
sponse times to user operations within 500ms, a crucial threshold
for enabling fluid interactions.

4. Declarative Model
Our declarative model contributes an easy mechanism to specify

general and scalable pan/zoom visualizations. In this section, we
first give an overview of the concepts in our model and then de-
scribe them in more detail. We use the basketball data visualization
(Figure 1a) as a running example and show in Figures 4–7 relevant
specification snippets. In our current implementation, the developer
specifies visualizations using Javascript.

4.1. Overview
Figure 3 is an illustration of Kyrix concepts and their relation-

ships. Considering the fact that a pan/zoom data visualization typi-
cally comprises multiple levels of details [EF10, GKW14], we nat-
urally use a canvas to model one level of details, and use a zoom
to model that one can zoom in/out from one canvas to/from an-
other. Canvases and zooms form a connected directed graph if we
consider canvases as nodes and zooms as edges.

1 var viewportWidth = 1000, viewportHeight = 1000;
2 var p = new Project(“nba", viewportWidth, viewportHeight);

3 // ================== logo canvas ==================
4 var width = 1000;
5 var height = 1000;

6 // construct a canvas object
7 var logoCanvas = new Canvas("logo", width, height);
8 p.addCanvas(logoCanvas);

 // construct a logo layer (static)
9 var logoLayer = new Layer(transforms.logoTransform, true);
10 logoLayer.addRenderingFunc(renderers.logoRendering);
11 logoCanvas.addLayer(logoLayer);

 // ================== timeline canvas ==================
12 var width = 1000 * 16;
13 var height = 1000;

 // construct a canvas object
14 var timelineCanvas = new Canvas("timeline", width, height);
15 p.addCanvas(timelineCanvas);

 // timeline layer (dynamic)
16 var timelineLayer = new Layer(transforms.timelineTransform, false);
17 timelineLayer.addPlacement(placements.timelinePlacement);
18 timelineLayer.addRenderingFunc(renderers.timelineRendering);
19 timelineCanvas.addLayer(timelineLayer);

 // background layer (static)
20 var timelineBkgLayer = new Layer(transforms.bkgTransform, true);
21 timelineBkgLayer.addRenderingFunc(renderers.bkgRendering);
22 timelineCanvas.addLayer(timelineBkgLayer);

Figure 4: Specifications of canvases and layers for the NBA exam-
ple in Figure 1a.

A canvas is composed of one or more overlaid layers. To render
a layer, the developer needs to specify a data transform as its data
source, a rendering function mapping data to visual objects and a
placement function that informs the backend of the locations of the
visual objects on the canvas for fast data fetching.

The four views in Figure 1a show the progression of zooming
from an initial canvas (showing NBA team logos) to the second
canvas (showing a timeline). Note that the second canvas has two
layers: a static layer showing a logo background and a title text, and
a dynamic layer where the user can pan across the timeline.

In the following, we describe the Kyrix model in more detail.
In addition to providing specification details, we present relevant
design rationales by connecting the design choices made with re-
quirements established in Section 3.

4.2. Canvas and Layer
A canvas sets up a shared Cartesian coordinate system for its

layers. This coordinate system is a rectangular painting area with
developer-specified width and height (in number of pixels). If the
size of a canvas is larger than the size of the viewport, the frontend
renderer automatically enables panning (R2-b).

The layer concept in our model is conceptually analogous
to the layer operator proposed in existing visual specification
grammars [SMWH17, Wic10]. The primary goal is to enable mul-
tiple different visual encodings on a single view [Wic10]. Nonethe-
less, our layer concept has its own unique definition in a large-scale
pan/zoom visualization setting.

First, we want to enable a mixed visual representation by allow-
ing a layer to be either dynamic or static. Dynamic layers move and

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Tao et al. / Kyrix: Interactive Pan/Zoom Visualizations at Scale

 // ======== teamlogo -> teamtimeline ========
1 var selector = function (row) {
2 return true;
3 };

4 var viewport = function (row) {
5 return [0, 0];
6 };

7 var predicate = function (row) {
8 return {
9 "layer 0" : "home_team=" + row.team_id + " and "
10 + "away_team=" + row.team_id,
11 "layer 1" : “id=" + row.team_id
12 };
13 };

14 p.addZoom(new Zoom(logoCanvas,
15 timelineCanvas,
16 selector,
17 viewport,
18 predicate));

Figure 5: Specification of the zoom from the logo canvas to the
timeline canvas for the NBA example in Figure 1a.

trigger dynamic data fetching as the user pans on the canvas. Static
layers, on the other hand, are for creating static visual objects such
as background images, titles and legends.

Second, each dynamic layer is associated with a placement func-
tion that is used by the backend to perform fast data fetching in re-
sponse to pan/zoom interactions (R2-c). We describe this concept
in more detail in Section 4.6.

4.3. Zoom
A zoom can simply be constructed by specifying a source and a

destination canvas (R2-b). The user will then be able to perform
continuous geometric zoom on source before the magnification
reaches the zoom factor (determined by the sizes of two canvases),
at which point the scenegraph is updated to show the destination
canvas. Point-click based shortcut is achieved using smooth zoom
transitions.

To enable an expressive design space, we propose several
lightweight data-driven abstractions that allow customization of
various aspects of a zoom (R1, R2-a, R2-b).

Selector enables custom selection of visual objects that can trig-
ger a zoom. In the NBA example, every logo can trigger a zoom
into the timeline view (line 1, Figure 5). A more interesting sce-
nario would be that only playoff teams can trigger a zoom into a
“playoff” view. A selector is specified using a function that takes a
data item as input and returns whether visual objects that this data
item is bound to can trigger a zoom.

Viewport customizes the viewport location after the zoom. This
is a function that takes the data item bound to the zoomed-in object
(the visual object the user clicks on or hovers over when the zoom
happens), and returns the coordinates of the new viewport. In the
NBA example, this function returns a constant viewport location
(line 4, Figure 5) indicating that the user will see the start (leftmost
part) of the timeline after the zoom.

Predicate is a data-driven function used to select a subset of data

1 var logoTransform = new Transform("logoTransform”,
2 "select * from teams;",
3 "nba",
4 function (row){
5 var id = parseInt(row[0]);
6 var y = Math.floor(id / 6);
7 var x = id - y * 6;
8 var ret = [];
9 ret.push((x * 2 + 1) * 80); // x coordinate of logos
10 ret.push((y * 2 + 1) * 80 + 100); // y coordinate of logos
11 for (var i = 1; i <= 4; i ++)
12 ret.push(row[i]); // raw data attributes
13 return ret;
14 },
15 ["x", "y", "team_id", "city", "name", "abbr”]);

Figure 6: Specification of the data transform for a layer in the NBA
example in Figure 1a.

1 var timelinePlacement = {
2 centroid_x : "column:x",
3 centroid_y : "column:y",
4 width : "constant:160",
5 height : "constant:130"
6 };

Figure 7: Specification of the placement function for a dynamic
layer in the NBA example in Figure 1a.

to render on the destination canvas. For example, in line 7 in Fig-
ure 5, the predicate function enables displaying only games of the
zoomed-in team. In a sense, this enables “faceting” the destination
canvas, i.e., one can create a series of views sharing a common data
schema without creating a canvas for each view.

4.4. Data Transform

A data transform serves as the data source for rendering a layer.
To support general large disk-based data, our model allows this data
source to be specified as a generic query to the underlying database
(R1). For simplicity, we assume raw data is stored in a relational
database for the rest of the paper.§ Therefore, this query should
be a SQL query. Optionally, a preprocess function can “cook” raw
data into desired form before further passed into the rendering/-
placement functions. Examples include adding canvas coordinates,
scaling and sorting data.

Figure 6 shows the data transform used by the only layer in the
logo canvas, which essentially queries team information via a SQL
query (line 2) and then calculates canvas coordinates of each logo
in a preprocess function (lines 9 and 10).

4.5. Rendering Function

A rendering function is associated with each layer to map data
transform results to visual objects. Our model can work with arbi-
trary renderers that bind data to visual objects (R1). The purpose
of data binding is to enable data-driven specifications of place-
ment functions and zooms. In the current implementation, we allow
Javascript-based renderers (e.g. D3 [BOH11]).

§ Kyrix currently supports three popular databases: PostgreSQL, MySQL
and Vertica. In general, it is straightforward to put Kyrix on top of any
database with spatial indexes.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Tao et al. / Kyrix: Interactive Pan/Zoom Visualizations at Scale

Step 1: Fetching raw data from DB

Home Away Score

Celtics Warriors 92-88

Bucks Lakers 98-100

...

Step 2: Applying the preprocess function
(Figure 6)

Home Away Score x y

Celtics Warriors 92-88 400 300

Bucks Lakers 98-100 200 50

...

Step 3: Applying the placement function
(Figure 7)

Home Away Score x y bbox

Celtics Warriors 92-88 400 300 RECT1

Bucks Lakers 98-100 200 50 RECT2

...

Step 4: Creating R-tree spatial index on
bbox column

Adding canvas coordinatesSELECT * FROM nba_games INTO g;

ALTER TABLE g ADD COLUMN bbox geometry; CREATE INDEX on g USING gist (bbox);

...

...

 R1 R2 R3

R4 R5 R6

R7 R8 R9 R10 R11

...

... ...

...

(a) (b)

(c) (d)

Offline Indexing Online Data Fetching

Spatial Query

SELECT * from g where ST_Intersects(bbox,
Polygon(A, B, C, D, E, F));

Fetching Scheme

Caching. The frontend maintains a box (dashed
blue) slightly larger than the viewport (solid red).

Incremental View Maintenance. As the viewport
changes, the frontend fetches new data
(polygon ABCDEF), and removes stale data
(polygon BGHIDJ).

A B

C
D

EF

G H

I

J

Figure 8: An illustration of performance optimizations in Kyrix.

4.6. Placement Function

The key to high performance is to fetch only needed data when
the viewport changes. Prior pan/zoom systems [BH94, GKW14]
use bounding boxes of shapes to render only shapes whose bound-
ing boxes intersect the viewport. The developer needs to specify a
bounding box for each shape, which is tedious and error-prone.

In our model, we extend this idea but instead associate each dy-
namic layer with a more lightweight data-driven placement func-
tion (R2-a, R2-c). This function calculates a bounding box for each
row in the data transform result representing where this row appears
on the canvas. To simplify the specification, we allow the centroid,
width and height of a bounding box to be either a constant or a
column from the data transform result. An example is in Figure 7.

Compared to the use of bounding boxes in earlier systems, an-
other differentiating factor is that we perform data fetching in a
much larger, disk-based setting. We will describe how Kyrix uses
the bounding boxes to perform optimizations in Section 5.

4.7. Implementation

We implement Kyrix’s declarative language as a Node.js library.
After the developer specifies an application, the compiler checks
whether basic constraints (e.g. a dynamic layer requires a place-
ment function, a canvas must have at least one layer, etc.) are satis-
fied, and gives error messages if the checking fails. If the specifica-
tion passes all constraint checks, it is passed to the backend server
and saved in the database.

Upon receiving a new specification, the backend precomputes
necessary indexes for performance optimizations (details are in
the next section). At runtime, the frontend communicates with the
backend to dynamically fetch data. The frontend renders visualiza-
tions using SVG and uses D3’s zoom library [BOH11] to imple-
ment interaction listeners and zoom animations.

5. Performance Optimizations
Kyrix uses a suite of performance optimizations to enable fluid

interactions at scale (R3). All these are done in the backend or the
frontend and are transparent to the developer (R2-c).

The key optimization problem is how to only fetch visual ob-
jects falling into the viewport as the viewport is frequently changed
by pan/zoom interactions. A natural idea we adopt is to build spa-
tial indexes (e.g. R-trees [Gut84]) for visual objects and only fetch
those whose bounding boxes (specified by placement functions) in-
tersect with the viewport. The idea of using spatial indexes is also
adopted in prior systems [BH94, Pie05]. However, they assume the
spatial indexes can fit in memory while typical spatial indexes con-
sume linear space in the data size. Therefore, these systems cannot
scale to large data.

To support frequent spatial queries at scale, instead of maintain-
ing R-trees in memory, we keep the R-trees on disk by utilizing
R-tree indexing offered by modern databases. We describe in Sec-
tion 5.1 how to build and search disk-based R-tree indexes based
on the developer specification.

While disk-based spatial indexing allows for scalability and re-
moves the in-memory requirement of existing ZUI toolkits, there
are two challenges when used in highly interactive visualization
systems. First, the cost of a lookup (e.g. triggered by a user’s pan
interaction) is more expensive because each lookup requires issu-
ing a query from the frontend to the backend and further to the
database. Rapid user interactions will lead to frequent network and
database trips that consume both bandwidth and CPU resources on
the backend. Second, when using a disk-based indexing scheme,
the backend needs to be aware of the frontend in order to fetch the
data items that correspond to the user’s interaction and fall within
the viewport. To cope with these challenges, we devise caching
and view maintenance techniques to reduce the communication be-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Tao et al. / Kyrix: Interactive Pan/Zoom Visualizations at Scale

tween the frontend and the backend while ensuring interactivity.
We describe these techniques in Section 5.2.

5.1. Building and Searching Database Spatial Indexes
Our approach to a disk-based spatial index makes use of an aux-

iliary table in the database for each dynamic layer specified by the
developer. This table is precomputed offline and stores two pieces
of derived information for each data item in the layer: (1) the data
representation after data transform and (2) the bounding box of the
visual object (derived from the placement function). The R-tree in-
dexes are then built on the bounding boxes. Specifically, the four
steps for computing this table are:

• Step 1: run the SQL query of the data transform to fetch raw
data. The backend then processes raw data records one by one.
For instance, game records are fetched for the timeline layer of
the NBA example (Figure 8a).

• Step 2: for each record in the query result, apply the preprocess
function defined in the data transform. In Figure 8b, canvas co-
ordinates are added to raw data records.

• Step 3: for each preprocessed record, apply the placement func-
tion associated with the layer. This step adds a column typed
geometry representing the bounding boxes of records (Figure
8c). Modern databases generally have built-in geometry types for
representing spatial objects.

• Step 4: create an R-tree spatial index [Gut84] on the bounding
box column. Modern databases (or their spatial database exten-
sions) generally provide R-tree indexes to efficiently process
spatial queries that consider relationships between geometries
(e.g. intersection and containment).

To fetch data inside a given viewport, the backend can issue a
spatial query that returns all records whose bounding boxes inter-
sect with the viewport. As shown in the bottom right-hand corner
in Figure 8, this spatial query has a predicate involving a built-in
function ST_Intersects applied on the bounding box column.
The underlying database will use an R-tree index scan (with loga-
rithmic time complexity) to execute this query.

5.2. Caching and Incremental View Maintenance
Fetching data in exactly the viewport is problematic because ev-

ery time the user pans or zooms, the frontend needs to send a re-
quest to the backend asking for new data, which incurs one net-
work and one database trip. Frequent requests are detrimental and
will drain valuable CPU resources on the server side especially in
a multi-user setting.

To reduce the number of network and database trips, the Kyrix
frontend implements a simple caching strategy that fetches data
in a box slightly larger than the viewport (e.g. 50% larger in
width/height). This eliminates communication with the backend
while the user is exploring inside this box. The right part of Fig-
ure 8 illustrates this fetching scheme. The frontend sends a request
to the backend to fetch a new box only when the viewport moves
close to the boundary of the box (e.g. the distance from the view-
port to the box is within one third of the box size).

It is not efficient to fetch an entire new box for each request, since
consecutive boxes fetched often have much overlap. Therefore, the
backend executes an incremental view maintenance approach by

caching the last box fetched and fetching the intersection between
the new box and the last one. The intersection is represented as a
polygon and fed to the ST_Intersects function (see Figure 8).
Upon receiving new data, the frontend first renders new data (poly-
gon ABCDEF) and then removes stale data (polygon BGHIDJ).

5.3. Comparison with Existing Optimization Frameworks.
Many purpose-built systems (e.g. ForeCache [BCS16], Aperture

Tiles [CSK+13] and HiGlass [KAL+18]) use an “image tiling”
framework where a canvas is partitioned into equal-sized tiles that
are precomputed offline and fetched online. However, this approach
has the following drawbacks. First, when rendering a canvas as
images, the frontend loses track of spatial information of objects,
making point-click based shortcut more difficult. Second, it is often
hard to decide a tile size because small tile sizes lead to excessive
network/database trips (one for each tile) while large tile sizes of-
ten cause extra data being fetched. In contrast, our use of spatial
indexing is novel in that it enables point-click based shortcut by
preserving the placement of objects and strikes a balance between
database accesses and the amount of data fetched. Note that, how-
ever, our spatial index can still be used to fetch data in tiles (without
precomputing all tile images). We leave an in-depth performance
study on these two data fetching granularities as future work.

6. Example Visualizations
We demonstrate the expressivity of Kyrix’s declarative model

through a gallery of example pan/zoom visualizations (Figures 1
and 9). In the following, we first describe details of these example
applications (Section 6.1). We then use these examples to describe
an expressive design space enabled by our model (Section 6.2).

6.1. Using Kyrix’s Declarative Model to Create Example
Visualizations

NBA. Figure 1a shows two canvases of a basketball data visualiza-
tion. Descriptions of this example can be found in Section 4.1.

EEG. The visualization in Figure 1b shows an EEG time series of a
patient in a large US hospital where doctors apply Kyrix to visualize
their data. There are two canvases connected by a zoom (zoom fac-
tor is 2). One can zoom from the top canvas into the bottom canvas
and see more detailed time series. Both canvases are horizontally
pannable. The whole EEG is 7-hour long, consisting of 100 million
data points in total.

Cluster. Figure 9a shows a zoomable multi-class scatterplot of 17
million 2-second EEG segments from over 2,000 patients. This data
comes from the same US hospital we mention in EEG. Doctors use
a t-SNE projection [MH08] to map 2-second EEG segments into a
2D space to identify potential clusters and outliers. Different colors
represent different EEG patterns (e.g. Seizure). There are 7 can-
vases (zoom levels) in this example arranged in a multi-scale lay-
out. Random sampling is performed on canvases 1–6 to reduce vi-
sual clutter. The bottom-most canvas has all 17 million data points.

Forest. Figure 9b is a map of animals in the Amazon rain forests.
There are two canvases (zoom levels), each with two layers. One
shows background images. The other layer shows the animals. In
the top canvas, animals are previewed as white dots. In the bottom
canvas, images of the animals are shown. The background images

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Tao et al. / Kyrix: Interactive Pan/Zoom Visualizations at Scale

(a)

(c)

(b)

(d)

Figure 9: Four more example applications created using Kyrix: (a) a scatterplot visualizing 17 million 2-second EEG segments; (b) a map
of animals in the Amazon rainforest; (c) a zoomable crime rate map of the US; (d) a zoomable circle packing layout of the class hierarchy in
Flare, an ActionScript library for visualization [UC 08].

in the bottom canvas are higher-resolution versions of those in the
top canvas.

USMap. The visualization in Figure 9c shows a crime rate map
of the US. There are two canvases. The top canvas is a state-level
map of crime rates per 100,000 population. Darker colors indicate
higher crime rates. The user can click on a state to zoom into a sec-
ond canvas showing a pannable county-level map initially centered
at the selected state. Each canvas has two layers: a pannable map
layer and a static legend layer.

Flare. Figure 9d visualizes a tree hierarchy, where the classes in the
Flare visualization library [UC 08] are arranged in a circle packing
layout. The user can click on a class to zoom into another view
showing its direct child classes. This visualization is composed of
only one canvas, so the zoom object is a self-loop of this canvas.

6.2. Expressivity of Kyrix’s Declarative Model
In the following, we demonstrate an expressive design space en-

abled by our declarative model.

General Data Types and Visualizations. In our model, the data
source of a layer is specified using a generic database query. The
rendering function for a layer can also be arbitrary renderers with
minimal constraints (Section 4.5). Therefore, our model naturally
supports generic data types and visual representations (R1).

The six example visualizations cover a variety of data types: 2D
spatial data (USMap, Forest and Cluster), temporal data (EEG),
hierarchical data (Flare) and general relational data (NBA).

Highly Customizable Zooms. The zoom concept in Kyrix’s declar-
ative model provides lightweight data-driven abstractions for cus-
tomizing zooms between canvases (R2-a, R2-b).

Zoom selector. The selector function decides which visual objects
on the canvas can trigger a zoom. Some example visualizations
(NBA, USMap, Flare) utilize this function. For instance, in USMap,
we use the selector function to ensure that only visual objects on
dynamic layers can be zoomed in.

New viewport location. Recall that the viewport function is used to
specify the viewport location after a zoom. Besides constant coor-
dinates, we allow this function to return a viewport location using
the data item bound to the zoomed-in object. This data-driven view-
port location adds more expressivity to our model. For example, in
USMap, after the user clicks on a state, the zoomed-in view is cen-
tered at the clicked state. This is achieved by letting the viewport
function return the centroid location of the clicked state scaled by
a zooming factor.

Predicate. The predicate function enables custom selections of data
on the destination canvas. For example, in NBA, the predicate func-
tion is used to render games of the zoomed-in team. Similarly in
Flare, the predicate function is used to select child classes of the
zoomed-in class.

7. Developer Study
We conducted an observational study with developers to evaluate

the accessibility of Kyrix and its declarative language. We recruited
8 developers with different backgrounds (7 males, 1 female; ages
range from 23 to 44) by posting recruitment ads.¶ All participants
reported prior experience using Javascript and SQL. Four of the
participants (P1-P4) reported long-term experience in using visual-
ization tools such as D3.js and Tableau. The remaining four (P5-P8)
had little or no experience with visualization programming.

7.1. Protocol

Participants were given a tutorial on how to program in Kyrix af-
ter filling out a consent form. They were then asked to perform a
warm-up exercise, which involved completing the specification of
an example visualization used in the tutorial. After the warm-up ex-
ercise, participants were asked to complete two programming tasks
(with access to the code from the warm-up exercise). Each task
involved completing the specification of a Kyrix application, which

¶ Demographics information were collected in a sign-up form. We ex-
cluded one participant due to English communication barriers.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Tao et al. / Kyrix: Interactive Pan/Zoom Visualizations at Scale

we describe in detail below. Before the start of each task, the exper-
imenter verbally described the task. A completed visualization was
also shown to the participants. After the completion of the tasks,
the participants were asked to provide feedback by completing a
questionnaire and a semi-structured post-study interview.

All tasks were completed on a laptop with a resolution 2,880×
1,980. During the tasks, one experimenter sat next to the participant
to observe their coding behavior and answer questions if necessary.
We used a think-aloud protocol throughout the study and a second
interviewer transcribed notes during each session. We also audio
recorded the interviews. Participants were compensated $30 for a
2-hour session.

Task 1. Task 1 required each participant to complete the specifi-
cation of a scatterplot visualization with one million points (Fig-
ure 10) using Kyrix. The scatterplot had two zoom levels (canvases)
with two layers on each canvas (one scatterplot layer and one static
layer showing a title text). In this task, participants were given com-
pleted data transforms along with rendering and placement func-
tions, but were required to complete the definitions of canvases,
layers and a zoom. Specifically, Task 1 involved the following spec-
ifications:

a) A top-level canvas with two layers.
b) A bottom-level canvas with two layers.
c) A zoom from the top-level canvas to the bottom-level canvas.

Task 2. Task 2 required participants to complete a partial specifi-
cation of the NBA example in Figure 1a, which has two canvases
(logo and timeline) and a zoom between the two. Similar to Task
1, participants were provided with data transforms and rendering
functions, and then were asked to complete the following specifi-
cations:

a) Two layers on the timeline canvas.
b) The placement function for the timeline layer.
c) The zoom between the two canvases.

7.2. Results and Discussion
Task completion. All participants completed Task 1, Tasks 2a and
2b under minimal or no guidance. Three participants (P1, P2, P5)
completed Task 2c under minimal guidance, and the remaining five
completed Task 2c with more hints. Finishing times are: µ = 17.25
min, σ = 3.69 min for Task 1, µ = 26.25 min, σ = 7.07 min for
Task 2.

Ease of learning. In the post-study questionnaire, participants
rated the ease of understanding concepts in Kyrix’s declarative
model on a 5-point Likert scale (1−very difficult, 5−very easy).
The results indicate that our model is easy to learn: canvas (µ =
4.50,σ = 0.76,M = 5, IQR = 1), layer (µ = 4.50,σ = 0.76,M =
5, IQR = 1), data transform (µ = 4,σ = 0.76,M = 4, IQR = 0.5)
and zoom (µ = 4,σ = 0.76,M = 4, IQR = 0.5).

Participants gave many positive comments about canvases and
layers in the interview. They thought they were “intuitive (P1),”
“really nice (P2),”“user-friendly and understandable (P8).” Some
drew connections with concepts in other software packages: “lay-
ering seems familiar to Illustrator (P1),” “(layer) It’s like Photo-
shop layers, you don’t have to think about it any more (P6).”

(a) (b)

Figure 10: The scatterplot visualization used both in Task 1 of the
developer study and in the performance evaluation: (a) the top-
level canvas; (b) the bottom-level canvas. Two canvases are con-
nected by a zoom. The zoom factor is 2.

Data transform and zoom were not as easy to learn for the partic-
ipants, as indicated by the relatively lower ratings and longer com-
pletion times of Task 2. A recurring pain point we observed was
that participants often could not recall what the input to the func-
tions (the data item bound to the zoomed-in object) meant when
completing Task 2c, and often confused it with visual objects on the
destination canvas. As noted by P7, “I was a bit confused about the
data flow, how data was moving from one view to the other, specifi-
cally when defining the predicates.” Our imperfect implementation
also contributed to the confusion, which we discuss later in this
section.

Fortunately, participants praised the shallow learning curve of
our system: “I don’t think it’s complicated at all once you get the
hang of it (P1),”“...once you know what the pieces you need to do,
which is probably similar across different projects, you can go a lot
faster (P2),” “If you get in the mindset of how it works, you can go
faster (P4).”

Ease of coding using Kyrix. Participants rated that it was easy to
code Kyrix applications overall (µ = 4.50,σ = 0.53,M = 4, IQR =
1, 1−strongly disagree, 5−strongly agree). They also reported that
it was straightforward to create a new Kyrix application by just im-
itating existing ones. One comment from P6: “It was enjoyable to
use it. Once you know the concepts, the declarative part of it is
quite clear.”

Scalability and expressivity. Participants liked Kyrix’s ability to
scale to very large datasets: “The fact that it can handle a ton of
data is really cool (P2),”“To plot a huge amount of data, I don’t
know if there is any tool that can do that in such an easy way (P4).”

Participants were also impressed by the example visualizations:
“I like the general look and feel of the whole visualization. The
way you can jump from one canvas to another, from a visual point
of view, it’s nice, I like it a lot (P4).

Suggestions and improvements. When asked about improvements
that can be made to Kyrix, most participants pointed out that our
current Javascript API was not very polished. For example, we
asked developers to write SQL predicates for the predicate func-
tion, instead of writing Javascript-style objects which Kyrix could
turn into SQL predicates by itself. This actually caused much con-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Tao et al. / Kyrix: Interactive Pan/Zoom Visualizations at Scale

fusion when participants were completing Task 2c. We plan to ad-
dress this type of issues by revising our API to be cleaner and more
understandable.

P1 and P6 also commented that the time required to precompute
indexes (3 minutes for Task 1) hindered the development flow. As
visualization developers, they tend to seek more rapid feedback. As
P1 noted, “In lots of tools I used, I try something, compile it, run
it and see what happens. In Kyrix the time it actually takes to run
it seems slow due to the precomputation.” In the future, we plan
to reduce this turnaround time by applying more sophisticated per-
formance optimizations and sampling techniques. More discussion
about debugging Kyrix applications is in Section 9.

Note that controlled studies carried in the lab provide useful but
partial assessment of accessibility by design. We make the source
code of Kyrix available at https://github.com/tracyhenry/kyrix with
several real world examples, enabling a broader evaluation of Kyrix
in the future that would account for diverse developer backgrounds
and workflows.

8. Performance Evaluation
In this section, we report results from performance experiments

on two real large datasets (EEG and Cluster) and synthetic bench-
marks. Specifically, we evaluate Kyrix’s ability to scale as the data
size grows, performance on real applications and effects of the
caching and incremental view maintenance strategies. For each
dataset, we run a synthetic pan/zoom trace and report the number
of data fetching request triggered, the average response time per
data fetching request (i.e. time elapsed from the backend receiving
the request to the backend getting the data from the database), and
the average network transmission time (i.e. the time taken to send
the data back to the frontend). We design the synthetic traces to be
both challenging (e.g. going through dense areas) and comprehen-
sive (e.g. with alternating pans and zooms). All experiments were
run on an AWS EC2 m4.2xlarge instance with 8 cores and 32GB
RAM. PostgreSQL 9.3 was used as the backend database. All num-
bers reported were averaged over three runs.

8.1. Scalability
To test the scalability of Kyrix, we used the scatterplot in Figure

10 as a benchmark visualization and varied the data size from 1
million to 100 million points. We generated the data such that there
were always approximately 5,000 points in the viewport for the top
level canvas. We used a user trace where the user first panned 2,000
pixels to the right on the top canvas, then zoomed into the bottom
canvas and then panned 2,000 pixels to the right again. The average
response and network times are shown in Figure 11.

As can be seen, the latency remained stably under 50 ms as the
data size grew. This scalability came from using database spatial
index to efficiently fetch data as the user’s viewport changes, as
well as caching and incremental view maintenance strategies. Note
that this does not mean Kyrix can scale to infinite data size. Kyrix’s
scalability is limited by the underlying database’s scalability.

8.2. Performance on Real Applications
In this experiment, we evaluated Kyrix’s performance on EEG

and Cluster, two large-scale real applications. The index build time
for Cluster and EEG were respectively 40 minutes and 6 hours.

1 2 5 10 20 50 100
Data size (# of points in millions)

0

10

20

30

40

50

60

Ti
m

e
(m

s)

response time
network time

Figure 11: Kyrix’s ability to scale with increasing data size. The
scatterplot in Figure 10 is used as the benchmark visualization.
Average response time and network latency are shown.

On EEG with 100 million data points, we used a trace where the
user first panned 2,000 pixels to the right on the top canvas, then
zoomed into the bottom canvas and then panned 2,000 pixels to the
right. There were always 40,000 points in the viewport. The aver-
age response time per data request was 70.6 ms, while the network
transmission time was 29.7 ms on average.

On Cluster with 17 million data points arranged in 7 zoom lev-
els, we used a trace where the user first zoomed into the second
level, panned 1,000 pixels to the right, then panned 1,000 pixels
downwards, and then zoomed all the way into the bottom zoom
level. The visual density varies due to skewed data distribution, so
the user trace is made to traverse through the densest green area
shown in Figure 9a, where around 5,300 points are visible at the
same time. The average response time per data request was 15.7
ms. The average network transmission time was 6.4 ms.

These results indicate that not only does Kyrix support the
maximum response latency for interactive visualizations of
500ms [LH14], it has the potential to support real-time visualiza-
tions. Cluster’s total response time of 22.1ms equates to rendering
at 45 frames-per-second (fps), surpassing the 30 fps typically re-
quired for commercial 3D games [CCD06, CC06]. EEG’s response
time is 100.3ms, or 10 fps, which is close to the rate where humans
perceive animation (instead of individual frames) [BKT86].

8.3. Effects of Caching and Incremental View Maintenance
In this experiment, we evaluated the effects of caching and in-

cremental view maintenance techniques described in Section 5.2.

Caching. We disabled caching (i.e. fetching exactly data in the
viewport rather than in a 50% larger box) and tested the perfor-
mance on EEG and Cluster using the same user traces. The aver-
age response times were respectively 20.6 ms (EEG) and 3.9 ms
(Cluster). Although this was a speedup compared to when caching
was used (because it fetched less data), it came at a cost of sig-
nificantly more data requests (83.3 requests on average vs. 27 on
EEG and 73.7 vs. 22 on Cluster, the fraction was due to subtle dif-
ferences of network speed across three runs). This result showed
that caching could be useful to reduce communication between the
frontend and the backend to save bandwidth and CPU resource on
the server side, while maintaining desirable interactivity.

Incremental View Maintenance. We disabled incremental view

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/tracyhenry/kyrix

W. Tao et al. / Kyrix: Interactive Pan/Zoom Visualizations at Scale

maintenance and instead fetched the entire box for each request.
On EEG, the average response time increased by 4.5× to 390.2 ms
(was 70.7 ms), whereas the average network latency increased to
265.1 ms (was 29.7 ms), making the overall latency exceed 500 ms.
On Cluster, the average response time increased to 42.1 ms (was
15.7 ms) and the average network latency increased to 30 ms (was
6.4 ms). This result showed that our incremental strategy greatly
reduced both response and network latency by avoiding fetching
already fetched data.

9. Limitations and Future Work
While Kyrix eases the creation of scalable pan/zoom visualiza-

tions, there is still room for improvement. We identify four areas of
future research moving forward.

Performance Hygiene. Currently, the developer needs to care-
fully design the application so that visual density is not too high
(e.g what canvases exist and how data is distributed on the can-
vases). High visual density can slow down both the frontend and
the backend. One future research direction is to detect overly high
visual density before runtime, and use sampling or aggregation
schemes [BSC13, EF10] or server-side rendering techniques to au-
tomatically manage visual density.

Dynamic data. Maintaining the spatial indexes upon data up-
dates is automatically handled by the underlying database
(e.g. PostgreSQL automatically updates index when a table is
modified [psq19]). However, recall that in Kyrix, spatial indexes are
built on auxiliary tables, which are computed from raw data (Sec-
tion 5). To handle dynamic data, we aim to use database triggers to
automatically update the auxiliary tables upon changes to the raw
data. This will in turn result in updates to the spatial indexes.

Debugging. As noted in Section 7, the long precomputation time
for large data can be detrimental to the iterative debugging work-
flow of visualization developers. We plan to investigate algorithmic
ways to reduce the precomputation time. Another avenue of future
research is to augment Kyrix’s debugging capabilities with visual-
izations of canvas and layer states, zooms between canvases, etc.

Higher-level abstractions. Despite that many specifications (e.g.
data transforms and rendering functions) can be shared across zoom
levels, canvases and rendering functions can be tedious to write. We
plan to offer higher-level abstractions that enable the developer to
specify, in some cases, just a few parameters (e.g. mappings from
data columns to 2D dimensions) and generate the definitions of
canvases, layers and rendering functions automatically.

10. Conclusion
To accelerate the development pace of interactive visualization

systems at scale, tools are needed to help the developer easily au-
thor large-scale visualizations and use effective performance opti-
mizations for sustaining interactive rates. In this paper, we present
the design of Kyrix, a novel integrated system for the developer to
build interactive pan/zoom visualizations at scale. Kyrix provides a
declarative language for easy specification of visualizations, while
utilizing Kyrix’s suite of optimizations and data management model.
Our evaluation of Kyrix has demonstrated that Kyrix meets the de-
sign requirements we identify, namely generality, ease of develop-
ment and scalability.

11. Acknowledgement

We thank the anonymous reviewers for their thoughtful feed-
back. This work was in part supported by NSF IIS-1452977,
DARPA FA8750-17-2-010 and the Data Systems and AI Lab
(DSAIL) initiative under Grant 3882825.

References

[BCS16] Leilani Battle, Remco Chang, and Michael Stonebraker. Dy-
namic prefetching of data tiles for interactive visualization. In Proceed-
ings of the 2016 International Conference on Management of Data, SIG-
MOD ’16, pages 1363–1375, New York, NY, USA, 2016. ACM. 2, 3,
7

[Bed01] Benjamin Bederson. Photomesa: A zoomable image browser
using quantum treemaps and bubblemaps. In Proceedings of the 14th
Annual ACM Symposium on User Interface Software and Technology,
UIST ’01, pages 71–80, New York, NY, USA, 2001. ACM. 2, 3

[BH94] Benjamin Bederson and James Hollan. Pad++: a zooming graph-
ical interface for exploring alternate interface physics. In Proceedings of
the 7th annual ACM symposium on User interface software and technol-
ogy, pages 17–26. ACM, 1994. 2, 3, 4, 6

[BH09] Michael Bostock and Jeffrey Heer. Protovis: A graphical toolkit
for visualization. IEEE Trans. Visualization & Comp. Graphics (Proc.
InfoVis), 2009. 3

[BKT86] Kenneth Boff, Lloyd Kaufman, and James Thomas. Handbook
of perception and human performance. 1986. 10

[BMG03] Benjamin Bederson, Jon Meyer, and Lance Good. Jazz: an
extensible zoomable user interface graphics toolkit in java. In The Craft
of Information Visualization, pages 95–104. Elsevier, 2003. 3

[BOH11] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-
driven documents. IEEE transactions on visualization and computer
graphics, 17(12):2301–2309, 2011. 2, 3, 4, 5, 6

[Bre16] Maarten A Breddels. Interactive (statistical) visualisation and ex-
ploration of a billion objects with vaex. Proceedings of the International
Astronomical Union, 12(S325):299–304, 2016. 3

[BSC13] Leilani Battle, Michael Stonebraker, and Remco Chang. Dy-
namic reduction of query result sets for interactive visualizaton. In Big
Data, 2013 IEEE International Conference on, pages 1–8. IEEE, 2013.
11

[CC06] Mark Claypool and Kajal Claypool. Latency and player actions
in online games. Communications of the ACM, 49(11):40–45, 2006. 10

[CCD06] Mark Claypool, Kajal Claypool, and Feissal Damaa. The ef-
fects of frame rate and resolution on users playing first person shooter
games. In Multimedia Computing and Networking 2006, volume 6071,
page 607101. International Society for Optics and Photonics, 2006. 10

[CSK+13] Daniel Cheng, Peter Schretlen, Nathan Kronenfeld, Neil Bo-
zowsky, and William Wright. Tile based visual analytics for twitter big
data exploratory analysis. In Big Data, 2013 IEEE International Confer-
ence on, pages 2–4. IEEE, 2013. 3, 7

[CXGH08] Sye-Min Chan, Ling Xiao, J. Gerth, and P. Hanrahan. Main-
taining interactivity while exploring massive time series. In IEEE Sym-
posium on Visual Analytics Science and Technology, pages 59–66, 2008.
2, 3

[DCHW03] Mark Derthick, Michael Christel, Alexander G Hauptmann,
and Howard D Wactlar. Constant density displays using diversity sam-
pling. In Information Visualization, 2003. INFOVIS 2003. IEEE Sympo-
sium on, pages 137–144. IEEE, 2003. 3

[DCW12] Marian Dörk, Sheelagh Carpendale, and Carey Williamson.
Fluid views: A zoomable search environment. In Proceedings of the
International Working Conference on Advanced Visual Interfaces, AVI
’12, pages 233–240, New York, NY, USA, 2012. ACM. 2, 3

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

W. Tao et al. / Kyrix: Interactive Pan/Zoom Visualizations at Scale

[DE02] Alan Dix and Geoff Ellis. by chance enhancing interaction with
large data sets through statistical sampling. In Proceedings of the Work-
ing Conference on Advanced Visual Interfaces, pages 167–176. ACM,
2002. 3

[DFW08] Raimund Dachselt, Mathias Frisch, and Markus Weiland.
Facetzoom: A continuous multi-scale widget for navigating hierarchical
metadata. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’08, pages 1353–1356, New York, NY, USA,
2008. ACM. 2, 3

[ED07] Geoffrey Ellis and Alan Dix. A taxonomy of clutter reduction
for information visualisation. IEEE transactions on visualization and
computer graphics, 13(6):1216–1223, 2007. 3

[EF10] Niklas Elmqvist and Jean-Daniel Fekete. Hierarchical aggre-
gation for information visualization: Overview, techniques, and design
guidelines. IEEE Transactions on Visualization and Computer Graph-
ics, 16(3):439–454, 2010. 3, 4, 11

[GKW14] Michael Glueck, Azam Khan, and Daniel Wigdor. Dive in!:
Enabling progressive loading for real-time navigation of data visualiza-
tions. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 561–570. ACM, 2014. 3, 4, 6

[Goo] Google, Inc. Google maps. https://www.google.com/maps. 2, 3

[GR94] Jade Goldstein and Steven Roth. Using aggregation and dynamic
queries for exploring large data sets. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pages 23–29. ACM,
1994. 3

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spa-
tial searching. In Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’84, pages 47–57, New
York, NY, USA, 1984. ACM. 6, 7

[Han06] Pat Hanrahan. Vizql: a language for query, analysis and visual-
ization. In Proceedings of the 2006 ACM SIGMOD international confer-
ence on Management of data, pages 721–721. ACM, 2006. 3

[KAL+18] Peter Kerpedjiev, Nezar Abdennur, Fritz Lekschas, Chuck
McCallum, Kasper Dinkla, Hendrik Strobelt, Jacob M Luber, Scott Ouel-
lette, Alaleh Azhir, Nikhil Kumar, et al. Higlass: web-based visual ex-
ploration and analysis of genome interaction maps. Genome biology,
19(1):125, 2018. 3, 7

[LH14] Zhicheng Liu and Jeffrey Heer. The effects of interactive latency
on exploratory visual analysis. IEEE transactions on visualization and
computer graphics, 20(12):2122–2131, 2014. 2, 4, 10

[LJH13] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. imMens: Real-time
visual querying of big data. Comput. Graphics Forum, 32:421–430,
2013. 2, 3

[LKS13] Lauro Lins, James T. Klosowski, and Carlos Scheidegger.
Nanocubes for real-time exploration of spatiotemporal datasets. IEEE
TVCG, 19(12):2456–2465, 2013. 2, 3

[MH08] Laurens van der Maaten and Geoffrey Hinton. Visualizing data
using t-sne. Journal of machine learning research, 9(Nov):2579–2605,
2008. 7

[Mic08] Microsoft Corporation. Deepzoom. https://www.microsoft.com/
silverlight/deep-zoom/, 2008. Accessed: 2018-09-19. 3

[PF93] Ken Perlin and David Fox. Pad: an alternative approach to
the computer interface. In Proceedings of the 20th annual conference
on Computer graphics and interactive techniques, pages 57–64. ACM,
1993. 2

[Pie05] Emmanuel Pietriga. A toolkit for addressing hci issues in visual
language environments. In null, pages 145–152. IEEE, 2005. 2, 3, 4, 6

[psq19] Introduction to postgresql indexing. https://www.postgresql.org/
docs/current/indexes-intro.html, 2019. 11

[PSSC17] Cicero Pahins, Sean Stephens, Carlos Scheidegger, and Joao
Comba. Hashedcubes: Simple, low memory, real-time visual exploration
of big data. IEEE Transactions on Visualization and Computer Graphics,
pages 671–680, 2017. 3

[Raf05] Davood Rafiei. Effectively visualizing large networks through
sampling. In Visualization, 2005. VIS 05. IEEE, pages 375–382. IEEE,
2005. 3

[RB05] Gonzalo Ramos and Ravin Balakrishnan. Zliding: fluid zooming
and sliding for high precision parameter manipulation. In Proceedings
of the 18th annual ACM symposium on User interface software and tech-
nology, pages 143–152. ACM, 2005. 3

[SGKC03] Kenneth Summers, Timothy Goldsmith, Steve Kubica, and
Thomas Caudell. An experimental evaluation of continuous semantic
zooming in program visualization. In Information Visualization, 2003.
INFOVIS 2003. IEEE Symposium on, pages 155–162. IEEE, 2003. 3

[SH14] Arvind Satyanarayan and Jeffrey Heer. Lyra: An interactive vi-
sualization design environment. Computer Graphics Forum, 33(3):351–
360, jun 2014. 2

[Shn96] Ben Shneiderman. The eyes have it: A task by data type taxon-
omy for information visualizations. In Proceedings of the 1996 IEEE
Symposium on Visual Languages, 1996. 2

[SMWH17] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsupha-
sawat, and Jeffrey Heer. Vega-lite: A grammar of interactive graphics.
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2017. 3, 4

[SRHH16] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jef-
frey Heer. Reactive vega: A streaming dataflow architecture for declar-
ative interactive visualization. IEEE transactions on visualization and
computer graphics, 22(1):659–668, 2016. 3

[STH02] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: A sys-
tem for query, analysis, and visualization of multidimensional relational
databases. IEEE Transactions on Visualization and Computer Graphics,
8(1):52–65, 2002. 3

[SWH14] Arvind Satyanarayan, Kanit Wongsuphasawat, and Jeffrey
Heer. Declarative interaction design for data visualization. In ACM User
Interface Software & Technology (UIST), 2014. 2

[SZG+96] Doug Schaffer, Zhengping Zuo, Saul Greenberg, Lyn Bartram,
John Dill, Shelli Dubs, and Mark Roseman. Navigating hierarchically
clustered networks through fisheye and full-zoom methods. ACM Trans-
actions on Computer-Human Interaction (TOCHI), 3(2):162–188, 1996.
3

[UC 08] UC Berkeley Visualization Lab. Flare data visualization tool.
http://flare.prefuse.org/, 2008. Accessed: 2018-09-19. 8

[Wic10] Hadley Wickham. A layered grammar of graphics. Journal of
Computational and Graphical Statistics, 19(1):3–28, 2010. 3, 4

[Wil99] Leland Wilkinson. The Grammar of Graphics. Springer, 1st
edition, 1999. 3

[Wil17] Graham Wills. Brunel v2.5. https://github.com/Brunel-
Visualization/Brunel, 2017. Accessed: 2018-04-04. 3

[Wur01] Richard Saul Wurman. Information anxiety. Number 302.234
WUR. CIMMYT. 2001. 2

[Zoo99] Zoomify, Inc. Zoomify. http://www.zoomify.com/, 1999. Ac-
cessed: 2018-09-19. 3

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

https://www.google.com/maps
https://www.microsoft.com/silverlight/deep-zoom/
https://www.microsoft.com/silverlight/deep-zoom/
https://www.postgresql.org/docs/current/indexes-intro.html
https://www.postgresql.org/docs/current/indexes-intro.html
http://flare.prefuse.org/
http://www.zoomify.com/

