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ABSTRACT
Database management systems (or DBMSs) have been around
for decades, and yet are still difficult to use, particularly when
trying to identify and fix errors in user programs (or queries).
We seek to understand what methods have been proposed
to help people debug database queries, and whether these
techniques have ultimately been adopted by DBMSs (and
users). We conducted an interdisciplinary review of 112 pa-
pers and tools from the database, visualization and HCI com-
munities. To better understand whether academic and industry
approaches are meeting the needs of users, we interviewed
20 database users (and some designers), and found surprising
results. In particular, there seems to be a wide gulf between
users’ debugging strategies and the functionality implemented
in existing DBMSs, as well as proposed in the literature. In
response, we propose new design guidelines to help system
designers to build features that more closely match users de-
bugging strategies.

Author Keywords
Debugging Databases, Literature Review, Empirical Study,
Survey, Visualization

CCS Concepts
•Human-centered computing → User studies; Field stud-
ies; •Information systems→ Query languages;

INTRODUCTION
Analysts and developers need an efficient way to articulate how
they want a computer to process large datasets [62], such as by
combining multiple data sources (or tables), clustering specific
data records, or calculating aggregate statistics [9]. Database
management systems (DBMSs) like PostgreSQL1 and Mi-
crosoft SQL Server2 enable users to specify their desired anal-
ysis output by issuing declarative programs (or queries) on
datasets. To process queries, the DBMS first translates them
1https://www.postgresql.org/
2https://www.microsoft.com/en-us/sql-server/default.aspx
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into a logical query plan that represents the operations that
must be executed on the data to produce the specified output.
Then the logical query plan is compiled into a physical query
plan that executes the specified steps efficiently on the under-
lying hardware (e.g., the user’s laptop or a remote server).

However, as with any complex programming language, it is
rare for users to be able to write “perfect” database queries on
their first try (i.e., without any errors). Hence, the debugging
of queries is a necessary step towards learning to use DBMSs
effectively. Debugging a query often requires more than sim-
ply fixing syntax issues. Query errors can manifest as vague
exceptions thrown by the DBMS, or unexpected behavior like
returning zero results or duplicate entries in the results. De-
bugging these errors requires an intuitive understanding of not
only the structure of the corresponding queries but also the
DBMS itself, which can be difficult to interpret [9]. Multiple
communities have studied how to help users debug queries:
the database community has proposed algorithms to detect
specific errors (e.g., [22, 77]), the visualization community
more intuitive visual representations of queries (e.g., [92, 95]),
and the HCI community new mechanisms for real-time feed-
back as users write programs (e.g., [71]). However, users are
unlikely to adopt all these different techniques just to address a
single problem. Our communities should rather work together
to develop interdisciplinary tools to ease the burden on users.

Unfortunately, little work has been done to synthesize and
integrate ideas from across these different research areas. To
better understand how these efforts can be combined to pro-
vide holistic debugging support for end users, we performed
an interdisciplinary review of 112 papers and tools of the past
25 years. These works ranged from formalised debugging al-
gorithms to visual query interfaces to interviews with industry
analysts to standard debugging features provided by current
commercial tools (e.g., breakpoints). We found promising
hybrid techniques proposed in the literature (e.g., “why” and
“why not” debugging [66, 22], iterative debugging [3]), yet we
also saw a lack of adoption of these techniques in industry.

To better understand how techniques in the literature translate
into the real world, we conducted an interview study with 20
database users, ranging from students in database courses to
full-time industry analysts. Participants shared some of their
own queries, as well as tools and evaluation strategies they
employed to debug queries. Even though we observed a num-
ber of strategies, we found that participants rarely use (and
many had never heard of) the proposed debugging techniques
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from the literature, and seldom used the debugging features in
commercial tools. Participants primarily evaluated and fixed
their queries manually. We summarize recurring activities
and steps used to debug database queries, and identify com-
mon pain points in the debugging process, including: vague
SQL exceptions, lack of access to the database schema while
debugging, and having to systematically test by hand each
component of the query (e.g., SQL clause or sub-query).

Our findings uncover several promising techniques in the liter-
ature that do seem to match user’s debugging strategies, such
as illustrating intermediate results (e.g., [45, 9]). Based on
the debugging strategies we observed, we believe that cer-
tain techniques from the literature could prove very useful to
implement in commercial systems, particularly features that
support the process of incremental query building and recur-
sive error checking. Furthermore, overall debugging time can
be significantly reduced by incorporating few simple utilities
into existing tools, such as automated translators from queries
written in older SQL standards to newer dialects.

To better understand the industry perspective, we reached out
to six database tool designers. We found that even though
query debugging is valued in industry, database companies
have other more pressing needs, suggesting that researchers
could have a big impact by partnering with industry to build
the debugging tools that we need today.

LITERATURE REVIEW
In this section, we review the relevant literature in debugging
and understanding query behavior. We highlight overlaps
between query and general program debugging techniques, as
well as alternatives that seek to circumvent the introduction of
errors in queries (e.g., intuitive query interfaces).
Methods
Query debugging spans multiple areas, such as databases, visu-
alization, and HCI. To address this challenge, we implemented
the steps below to select papers for our literature review. We
define our review topic as: algorithms, interfaces and tools de-
signed to support the debugging of database queries. A paper
or tool was considered relevant if it addressed this topic or a
related topic, understanding: query behavior (query and pro-
gram comprehension); user debugging behavior; user querying
and analysis behavior; visualizing queries; or query interfaces;
interactive debugging interfaces.
1. Relevant papers from the last five years of conferences

in databases (e.g., SIGMOD, VLDB), visualization (VIS,
VISSOFT), and HCI (CHI) were added to our review list.

2. We performed targeted online searches to identify papers
and tools outside of the venues or dates mentioned above.
Relevant search results were added to our review list.

3. We scanned the references of the papers yielded by the
previous steps, and added relevant references.

4. We searched for later papers that cite papers yielded by the
previous steps. Relevant papers were added to our list.

Our selection process yielded 91 papers and tools. However,
15 papers and 6 tools did not match the above filter criteria, but
still provide useful information to understand related concepts
(e.g., provenance, static program analysis). We include them
as supplements to our analysis, resulting in 112 total papers

and tools for our review. Papers and tools were reviewed to
understand strategies and processes that users may employ
to reason about and debug queries, as well as for existing
algorithms and features to aid users in debugging queries.
Understanding User Analysis and Query Behavior
Understanding the Data Analysis Process. Several projects
analyze the specific strategies and processes of data ana-
lysts and data scientists. These processes can be investigated
through interviews (e.g., [62, 6, 63, 93, 65]), as well as through
quantitative evaluation of user logs collected by data analy-
sis tools (e.g., [10, 49, 47, 44]). For example, Kandel et
al. interviewed 35 analysts and found three different analyst
archetypes (“hackers”, “scripters”, and “application user[s]”),
where the “hackers” and “scripters” are typically proficient
in writing code and scripts, including queries [62]. Gotz and
Zhou analyze user interaction logs, and find that analysts tend
to decompose the (visual) analysis process into a hierarchy of
more targeted subtasks [44]. These projects provide a broader
perspective on the larger data analysis process, like which
tasks comprise the core stages of data analysis and data sci-
ence, and where analysts tend to spend their time, but may
lack specifics in terms of how individual stages are carried out
(e.g., the stages of the query debugging process). Petrillo et
al. present a tool for visualizing logs from users’ program de-
bugging sessions, which could shed light on users’ debugging
strategies, given sufficient data for analysis [84].
Patterns in SQL Usage. Several projects analyze users’ query
patterns [72, 60]. For example, Jain et al. analyzed query logs
collected from years of running the SQLShare system [60].
Their findings suggest that improving ease-of-use can influ-
ence a user’s continued interaction with DBMSs. However
these projects do not discuss how users debug their queries, or
how the debugging process could be improved.
Takeaways. Investigating the broader data analysis process can
provide insight into how more targeted tasks–in this case query
debugging–may generally be structured. For example, Kandel
et al. found that a notable number of analysts are comfortable
writing queries by hand [62]. Users may decompose a high
level debugging task into smaller targeted tasks (i.e., similar
to observations by Gotz and Zhou [44]). Analyses of users’
querying behavior (e.g., [60]) can also provide insight into
how query interfaces are used. However, the granularity of
these insights are too coarse to speak to the specific strategies
and experiences related to query debugging, and thus are of
limited use in determining how best to design debugging tools.
Alternatives to Writing SQL Queries
Many projects develop alternative user interfaces for DBMSs,
and fall into two groups: using other (written or spoken) lan-
guages or visual interfaces to formulate queries, which map to
an existing query language behind the scenes (primarily SQL).
Programming Languages to SQL. Several techniques trans-
late programming languages to SQL [38, 37, 70], for exam-
ple, DBridge translates imperative code (e.g., Java) into SQL
queries, and aims to make the program’s execution more effi-
cient, for example by reducing communication and data trans-
fer between a user program and the DBMS [38, 37]. Li et
al. propose a variant of SQL called “Schema-free SQL” [70],
where users can write queries without perfect recall of the
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database schema; for example, users can guess forgotten at-
tribute names as they write a query, which are corrected using
schema-free SQL, but throw errors using standard SQL.

Object-relational mapping (ORM) languages (e.g.,
SQLAlchemy3, Django4) and related frameworks (e.g.,
Ibis5) enable programmers to integrate local programming
environments (e.g., Pandas6) directly with DBMSs.

A range of domain-specific languages have also been devel-
oped to query relational data in various contexts beyond just
SQL (e.g., MyriaL [102]), and even extend query support to
other dataset types (e.g., GraphQL [39], SPARQL [87]).
Natural Language to SQL. Other systems avoid code alto-
gether, and instead translate natural language (e.g., English)
directly to SQL queries [73, 69]. For example, the NaLIR
system translates English descriptions of queries into proper
SQL [69]. However, current methods are still too restrictive
for wide adoption, necessitating further research in this area.
Visual Query Interfaces. Many systems provide graphical
interfaces for constructing queries using direct manipulation
[19]. These interfaces vary across a spectrum from more literal
query building interfaces [105, 30, 5, 97], to more abstract
exploration interfaces (e.g., [95, 74]). Query builder-style
interfaces have users construct a tree or graph representation
of the query, where nodes denote input data or query operators,
and directed edges give the flow of data through operators [105,
30, 5, 97, 3]. These interfaces can be made more intuitive
for specific dataset types [25], such as temporal data (e.g.,
filtering for specific patterns of events [52, 104, 53, 74, 107])
or network data (e.g., searching for structural patterns in sub-
graphs [85, 35, 57]). In the case of network data, a graph
representation for queries mimics the structure of the graph
itself. Zhang et al. generate interactive query interfaces for
DBMSs by analyzing query logs: they map groups of queries
to interaction widgets that produce equivalent results [110].

On the exploration side of the spectrum, a strong emphasis
is placed on dynamic queries [92]. Instead of manipulating a
representation of the query, dynamic queries allow users to ma-
nipulate the data directly [50]. For example, Spotfire supports
interactions like brushing and linking, zooming, and range
sliders, to perform query operations (e.g., joining, aggregating,
and filtering, respectively) [4]. Polaris [95] (now Tableau [99])
uses the VizQL language to map any visualization design in
the interface to a corresponding SQL query. To construct visu-
alizations, users drag attributes to encoding “shelves”, where
each completed interaction translates to a SQL query.

However, complicated queries are difficult to write with vi-
sual query interfaces, often requiring many direct manipula-
tion interactions to construct the queries. Furthermore, these
graphical interfaces generally lack the debugging infrastruc-
ture available when working with programming languages.
Takeaways. Many have observed that traditional query inter-
faces are overly complex, potentially leading to more (and
3https://www.sqlalchemy.org/
4https://www.djangoproject.com/
5https://docs.ibis-project.org/
6https://pandas.pydata.org/

more complex) errors in users’ queries. Many projects and
some commercial tools have developed more intuitive inter-
faces for interacting with database systems. While these tools
work very well for some analysts (e.g., the “application user[s]”
[62]), it seems that many users still prefer traditional query
interfaces (e.g., the “hackers” [62]). Furthermore, data science
and database courses may still emphasize traditional query
methods (e.g., [75]). Thus, many users may opt out of using
these interfaces, but still need debugging support.

Data Debugging
Sometimes, the underlying data itself may contain errors that
need to be fixed [62], which we call “data debugging”.
Data Profiling. Several systems provide graphical interfaces
to inspect issues with the data. A number of systems sup-
port “data profiling”, which help users calculate data quality
characteristics (e.g., the presence of nulls or duplicate values),
and identify potential data errors [2, 62]. For example, Pro-
filer provides an intuitive visual interface for summarizing and
interacting with data quality measures for tabular data [62].
Identifying Causes of Data Errors. Some systems aim to
explain the causes for data errors. For example, Scorpion
searches for patterns that could explain data errors and trans-
lates these patterns into queries [108]. QFix seeks to explain
how errors occur in a dataset by analyzing the queries that
have modified the data in the past, and detecting which queries
may have contributed to the errors [103].
Data Cleaning. Several projects suggest best practices [106,
27], and automated features to ease the burden of system-
atically cleaning large datasets [61, 96, 90]. For example,
Holoclean models inconsistencies within a dataset using ran-
dom variables, and uses probabilistic inference to reason about
possible strategies to clean groups of data records [90].
Takeaways. Analysts spend considerable time on fixing data
errors, before moving to writing (and debugging) queries [62],
and a variety of “data debugging” tools have been developed.
However, since data debugging occurs before data analysis
(and thus query debugging), we consider data debugging to be
orthogonal to query debugging, and do not touch on it further.

Query and Program Debugging
We now turn our focus to how systems help users debug their
analysis programs, and database queries in particular. These
systems generally use one or both of the following strategies,
which we use to organize the remainder of our review: 1)
modeling the logical structure of the query (i.e., using static
program analysis methods, e.g., [8, 66]), or 2) modeling execu-
tion output from the query (i.e., dynamic analysis, e.g., [109,
66]). Systems use these models to illustrate the behavior of
the given query, or to make predictions about the cause of the
error(s). We also highlight non-database debugging projects
that could be relevant to database debugging use cases.

Analyzing Logical Structure.
Many debugging methods aim to infer specific characteristics
from the logical structure of queries. Logical structure refers
to the organization and meaning of operations within a query
(or its corresponding query execution plan). These techniques
need only the user’s written query (or generated query plan)
to facilitate debugging, and avoid executing the query.

CHI 2020 Paper  CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 358 Page 3

https://www.sqlalchemy.org/
https://www.djangoproject.com/
https://docs.ibis-project.org/
https://pandas.pydata.org/


Illustrating Logical Structure. One class of techniques illus-
trates the structure of a query via static analysis of the query
[79, 33, 11, 18]. For example, QueryViz summarizes the
behavior of queries by generating diagrams to capture the rela-
tionships between operators (e.g., execution flow, containment,
inclusion/exclusion of tuples) [33]. QueryViz diagrams use
nodes and links to denote relationships between operators,
similar to query-builder interfaces, and provides example out-
puts to demonstrate the behavior of query operators. Mou et
al. illustrate the execution flow of entire data science work-
flows, which may consist of multiple black-box components,
some of which may not involve a DBMS. VisTrails considers
a similar problem, but focuses on visualization workflows [11,
18]. As mentioned previously, Zhang et al. analyze the logi-
cal structure of queries, but perform this analysis across full
DBMS query sessions, to generate an equivalent interactive
user interface for executing similar queries [110].

Several projects apply similar techniques, but for other lan-
guages [48, 7]. For example, Scoped depicts the execution
scope of variables by analyzing program source code [7].
These principles could be applied to database debugging con-
texts. For example to visualize relationships between different
query components (e.g., SQL clauses, sub-queries).
Inferring Structural Properties. A second class of techniques
focuses on inferring specific characteristics of queries through
static analysis [26, 101]. For example, Cosette can determine
whether two queries are semantically equivalent [26]. These
techniques could also be used for debugging purposes, e.g.,
Cosette could be used to identify a simpler, more succinct
query to display when recommending solutions to errors.
Predicting Causes of Errors. A third class of techniques uses
static analysis to predict potential causes of errors in programs
[81, 94], including queries [17, 16]. These techniques focus
on analyzing the “declarative meaning” [81], or the intent
behind the query components and not their implementation.
These methods often involve searching for structural patterns
of programs that denote errors, when compared to a descrip-
tion of program intent specified by the user. However, these
techniques may not be intuitive to users, since they require the
user to write a second program, in order to debug the first one.
Takeaways. A number of query and program debugging strate-
gies analyze the logical structure of queries without executing
them. Some systems visualize or illustrate this logical struc-
ture to improve users’ understanding of query behavior, while
others infer correctness of queries using theoretical proofs or
counter-examples. By avoiding execution of queries, these
strategies can be scaled to big data use cases. However, users
may want a deeper understanding of how the underlying data
are affected by different stages of a query’s execution, which
these techniques are unable to provide.

Analyzing Execution Structure.
In contrast to static analysis techniques, others focus on collect-
ing intermediate results at various stages of query execution,
and using this data to model query behavior. These techniques
can be thought as provenance-based debugging techniques,
given that they require the collection of provenance metadata.

Empty Answer Problem. One class of debugging projects
focuses specifically on analyzing a common database query
error, known as the “empty answer problem” [77, 78, 100].
This problem occurs when a user writes a very restrictive
query. Since DBMSs are designed to return exact answers,
overly-restrictive queries often produce zero records, making
it difficult for users to identify the cause of the error (i.e., the
filter that is eliminating results). The empty answer problem
has also been observed in visual analytics (e.g., [47]). Empty
answer debugging techniques generate a less restrictive version
of the original query, such that fuzzy results are returned to
the user, but may not be exactly what the user was looking for.
However, the empty answer problem error is only a fraction of
the errors that a user encounters with DBMSs. For example,
prior work has found that users often run into situations where
queries produce non-zero yet undesired results [9].
Recording Query Provenance. Database provenance (or lin-
eage) records the behavior of a query at each stage of execu-
tion, and thus can capture the execution behavior of a query.
However, constantly recording detailed information about the
execution of queries (and programs) can consume considerable
time and storage. The database community has extensively
studied how to quickly and efficiently record provenance for
queries [51, 98, 15, 64, 42, 31, 32, 83] (including over prob-
abilistic datasets [13]), as well as for more general analy-
sis workflows [41, 59, 11, 18]. Database provenance shares
some similarities with provenance in the visualization litera-
ture [88, 49]. However, the database community focuses more
on data provenance (i.e., the history and source of program
results), rather than analytic provenance (i.e., the sequence
of visualizations, interactions, and insights produced by the
user). Database provenance is an active area of research in
the database community, but query debugging is only a small
fraction of this sub-area, from our observation.
Illustrating Execution Structure. Given recorded provenance
data for a query, a second class of debugging projects focus
on providing intuitive visual representations of the results [9,
34, 45, 46, 82, 76]. For example, StreamTrace generates visu-
alizations and interactive widgets that enable users to explore
the execution of a temporal SQL query, step-by-step [9]. They
provide interactive debugging visualizations by rewriting the
original query as a series of intermediate queries, and record-
ing which input events and query operators contributed to
specific output events. Grust et al. use a similar technique,
where instead of an interactive visualization they allow users
to click on any query component qi to observe the intermediate
database table produced at that point [45]. RATest records
provenance data by comparing execution of a given user query
to an existing “solution” query (e.g., database homework prob-
lems) [75]. Perfopticon visualizes performance characteristics
for each machine and progress across all machines for given
query on a distributed (i.e., parallel) database. [76].

There are entire conferences devoted to visualizing programs
and software (in particular VISSOFT [1]); we direct readers
to the VISSOFT proceedings for more details. However, a
subset of these projects visualize software execution behav-
ior for program debugging [71, 89, 86], summarization and
comprehension [40, 12]. For example, Lieber et al. use online
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(i.e., live) provenance data to report line and method execu-
tion statistics using in-situ visualizations within the code [71].
Similar principles are used by Hoffswell et al. to help Vega-
Lite[91] users debug their visualization designs [54, 55].
Takeaways. Provenance-based debugging tools aim to cap-
ture the execution structure of queries and programs, and give
the user different ways to “open the hood” and observe how
a query or program was executed. Some systems integrate
tightly with the underlying DBMS, providing users with a
closer connection to the behavior of the DBMS [45, 9, 76].
However, it is still up to the user to interpret the provenance
data, identify errors, and devise solutions. Unlike static analy-
sis techniques, dynamic provenance-based debugging relies
on a potentially resource-heavy data collection process. As we
will see ahead, these techniques can be combined to provide
the benefits of both strategies.
Debugging Both Logical and Execution Structure

“Why” and “Why Not” Debugging. A number of systems
construct models of queries using both the logical and execu-
tion structure of the query [16, 56, 22, 68, 14]. Many of these
systems aim to answer “why” and “why not” questions: why
a particular result appears in the output, or why a given input
data record fails to appear in the final result [21]. For example,
Chapman et al. answer “why not” questions by constructing
a logically derived directed acyclic graph of the query, and
then conducting top-down and bottom-up searches over this
graph to identify points in the query where key results are
eliminated from the output [22]. As each node in the graph
is reached by the “why not” search algorithms, provenance
data is collected. The search stops when offending nodes are
found, avoiding recording of provenance for irrelevant nodes
(i.e., query operators that may not be a cause of the missing
“why not” tuples). “Why” and “why not” debugging has been
implemented for other languages as well [80, 67, 66, 21]. For
example, the WhyLine combines static and dynamic analysis
techniques–including provenance recording–to answer “why”
and “why not” questions about Java programs [67, 66, 80].

“Why” and “why not” debugging strategies are particularly
interesting because they enable users to reason about the be-
havior of programs and queries at a conceptual (i.e., not code)
level. Furthermore, these techniques combine previous al-
gorithmic approaches in ways that magnify their strengths.
For example, by constructing an initial graph using logical
structures, and then pruning irrelevant query operators, one
can spend less time on executing the query and thus improve
the speed at which a debugging system can identify errors.
However one drawback of these systems is their complexity,
which makes them difficult to implement and maintain within
already large and complicated development environments.
Query Steering. Some techniques allow users to modify
queries by manipulating the execution outputs; called “query
steering” [20, 3, 36], also called “query by example”. These
techniques allow users to add or remove tuples to the output
to tell what should (or should not) be in the result. These
methods then modify or add query predicates to capture the
changes from the augmented results.
Takeaways. Hybrid debugging strategies rely on analysis of
both the logical structure and execution structure of erroneous

queries (or programs). These techniques answer “why” or
“why not” questions about a query’s behavior, and use logical
query structure to efficiently model and search the space of
possible query errors. They strategically collect partial prove-
nance information and avoid executing the full query, saving
both computation and storage. However, implementation chal-
lenges could pose an issue for commercial adoption.
Commercial Database Debugging Tools
We found several commercial query debugging tools: Em-
barcadero Technologies RapidSQL [58], Keeptool’s PL/SQL
Debugger [43], and Microsoft’s T-SQL [29]. These are cross-
platform tools that can be used with other programming tools
like Eclipse7 and Visual Studio8. They can connect to vari-
ous DBMSs, including PostgreSQL1, Microsoft SQL Server2,
Oracle9, etc. Common features of these tools overlap with
standard debugging tools, such as the ability to set breakpoints,
to check dependencies between variables, and save input vari-
able values to a file for later use.

Microsoft’s U-SQL [28], provides performance-based debug-
ging support. U-SQL is a big data query language and execu-
tion platform that combines declarative SQL with imperative
custom languages, such as C# and Python. U-SQL decom-
poses a user’s query into a workflow of smaller connected
jobs. Similar to academic tools like Perfopticon [76], U-SQL
reports on various performance characteristics as the query
executes across multiple machines. However, this information
is not presented to U-SQL users through visualizations.
Takeaways. Interestingly, commercial debugging tools do not
seem to implement the state-of-the-art in query or program
debugging research. As observed by Reiss for program debug-
ging tools, it seems that database debugging tools also “...have
not changed significantly over the last fifty years.”[89]
Summary and Discussion
Here, we summarize our findings and highlight research ques-
tions for further investigation.
DBMS Users are Commonly Scripters and Programmers. a
notable number of analysts use DBMSs regularly for data
analysis, where many are comfortable with writing their own
queries. Research across databases, visualization and HCI
touches on how users interact with and analyze queries, but do
not consider the challenge of debugging complex SQL queries.
Users’ Database Debugging Strategies are Not Emphasized.
Much of the relevant visualization and HCI literature is de-
voted to intuitive query interfaces. The relevant database liter-
ature focuses on efficiently recording execution behavior (i.e.,
database provenance and lineage), not debugging. Across ar-
eas, we see a dearth of rich information about users’ database
debugging strategies and tools. We also see relatively little
work on query debugging tools for more code-savvy users.
Effective Debugging Tools Incorporate Features from Mul-
tiple Areas. Query debugging features seem to be more effec-
tive if adopted from multiple research areas, such as visual-
izations of program behaviour, intuitive interaction widgets,
and efficient database provenance recording strategies. For
7http://eclipsesql.sourceforge.net/
8https://visualstudio.microsoft.com/vs/features/ssdt/
9https://www.oracle.com/index.html
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example, the works of Abouzied et al. [3], Grust et al. [45],
Moritz et al. [76] and Battle et al. [9] present systems that
leverage database debugging techniques to produce effective
human-centered query debugging interfaces. Furthermore,
“why” and “why not” techniques seem to provide the best of
all worlds in terms of efficiency and debugging support.
Gaps Between the Literature and Commercial Systems. Pro-
posed debugging techniques have been around for over a
decade. Yet none of the existing commercial database de-
bugging tools that we reviewed seem to use these techniques.
One reason could be that commercial tools assume that users
debug queries the same way that they would debug Java or
C++ programs (e.g., setting breakpoints, tracking variables,
etc.) and thus lack techniques that go beyond this design.
Further Research Questions. From our review, we have the
following questions we seek to answer through interviews
with database users and designers:
• R1: What query interfaces (1) and debugging tools (2) do

people use, and how and why did they select these tools?
• R2: What kinds of strategies (1) and visual aids (2) do users

employ when debugging their database queries?
• R3: Why are state-of-the-art database debugging techniques

in the literature not used in commercial tools?
To answer R1 and R2, we interview a range of database users.
To answer R3, we (informally) polled six database experts. In
the next section, we discuss our study design and findings.

STUDY DESIGN
Here, we describe the details and intuition for our study design.
Participants
We conducted 18 in-person and two remote interviews with
20 database users total, a number consistent with other similar
studies (e.g., [65]). We interviewed three different groups (16
male / 4 female, 18-54 years old):
• Undergraduate Students (6) – Participants pursuing or

just completed undergraduate degrees in Computer Science
or Information Systems.
• Graduate Students (4) – Participants pursuing graduate

degrees in Computer Science and Business Analytics.
• Industry Professionals (10) – Participants working in in-

dustry for 3-25 years.
Our aim was to capture a diverse range of database users.
In this case, students are relevant because they are actively
learning how to use DBMSs, and thus may have insights into
the debugging process that seasoned analysts no longer have.

We recruited all participants through public-facing online re-
sources (e.g., mailing lists, online contact pages) and profes-
sional networks. Most participants were based near our home
institution. However, participants came from the USA (12),
India (6), China (1) and Croatia (1).
Protocol
Each participant first signed a consent form, then was asked to
complete a demographic questionnaire (recording age group,
gender, occupation, etc.). We also noted participants’ expe-
rience levels with databases and SQL. We then followed a
semi-structured approach to conduct interviews. First, we
asked participants to walk us through two to three queries they

had written in the past. We then asked about the strategies
they used to debug their queries. Based on the responses, our
follow-up questions fell into one of the following categories:
• Strategies for comparing actual and expected query results
• Debugging tools and techniques used to verify query results
• Strengths/weaknesses of mentioned tools and approaches
• Use of visual aids to help with debugging queries
Table 1 lists our interview questions. Interviews typically
lasted one hour. Participants were given $20 compensation.
This study was approved by our home institution’s IRB.

ANALYSIS OF STUDY DATA
We analyzed our interview data (audio transcripts and hand-
written notes) using an iterative coding method inspired by
grounded theory [23]. We organize our findings around four
themes derived from the data, which deviated somewhat from
the categories outlined in section 3:
• Usage of general tools for querying DBMSs
• Awareness and usage of query debugging tools
• (High-level) Debugging strategies
• Use of visual aids for debugging queries
We iterated and refined these categories as we gathered more
data through our interview studies.
Querying Tools Used (R1-1)
Participants shared a wide range of tools for querying DBMSs,
ranging from minimalistic tools like text editors and command
line interfaces, to powerful products like SAP Hana10 and
ORM languages (e.g., SQLAlchemy3). Other querying tools
included database IDE’s like MySQL Workbench11, Oracle
SQL Developer12 and DBViewer13. We saw greater variety in
tools used to query DBMSs with an increase in experience.
Undergraduates Preferred Simple Tools. We observed that 5
of 6 undergraduates favored the simplest tools for writing SQL
queries (i.e., text editors and command line). The remaining
participant (P2) was introduced to ORM frameworks in a
summer internship, and prefers them over the “direct querying”
approach used by other undergraduates. However, queries of
undergraduate students were fairly simple (i.e., less than 15
lines long, executed on relatively small datasets), and many
shared queries written as part of a database course. Thus, there
did not appear to be a great need for powerful database tools.
Graduate Students Preferred IDEs. The 4 graduate students
we interviewed showed a mix of tools used for querying, and
reportedly used command line interfaces and database IDEs
interchangeably. They mentioned that, IDEs saved querying
time by providing predictive text and formatting the results
in a more readable ways. While most of this group preferred
IDEs, participants with additional DBMS experience preferred
simpler tools. One participant responded:

There is no space for an entire heavy-weighted IDE...
when you go into a cluster and need to perform queries
like update[s], deletion or migration in stipulated time

10https://www.sap.com/products/hana.html
11https://www.mysql.com/products/workbench/
12https://www.oracle.com/database/technologies/appdev/
sql-developer.html

13https://marketplace.eclipse.org/content/dbviewer-plugin
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Table 1. Interview Questions
Sr.
No.

Category of
Questions

Questions

1
Strategies for comparing
actual and expected
query results

What strategies do you use to evaluate whether database results match your expected results?
What are some of the tools that help you through this evaluation process?
Roughly how much time do you spend on debugging and updating your database queries?

2
Debugging tools and
techniques used to verify
query results

Are you aware of some tools for debugging database queries?
What are some of the tools that you use to debug your queries?
(If they do not use the tools) How are you confident of your queries and results?
(If they do not use the tools) Why would you not use debuggers?

3
Strengths/weaknesses of
mentioned tools and
approaches

(If they use some tools) What are some of the features you like and some features that you dislike about these tools?
(If they do not use the tools) What are some of the features you would like in a tool that could help you debug your queries?
Do you use your own scripts or techniques instead of the debugging tools?
(If they use scripts or own techniques) What additional benefits do you see in using your techniques? the debugging faster? If so,
roughly by how much with respect to using the existing tools?

4
Use of visual aids to
help with debugging
queries

Can you share examples of your visual aids?
Can you explain how you used these visual aids during the debugging process?
How helpful were these visual aids when debugging your queries?
(If they do not use visual aids) How helpful do you believe visual aids might be when debugging queries?
(If they do not use visual aids) Can you think of any ways in which visual aids could be used to help you during the debugging process?

to keep the system up-to-date. I would just prefer the
command line straight-up. (P4)

A reason for a mix of tools seen in graduate students was
perhaps that queries spanned from 30-50 lines long.
Industry Participants Varied Widely in Preference. On the
other hand, we see a wide range in usage among the 10 industry
participants. Three participants (P15, P16, P17) primarily
mentioned using IDEs for querying DBMSs, driven by the
conventions of their respective teams at work. Two participants
(P1, P14) preferred command line interfaces; these participants
were experienced analysts and not developers (i.e., 20+ years
industry experience). Two other participants (P5, P9) preferred
ORMs, where they could avoid writing SQL; one responded:

Never directly, would I fire up a SQL interface to see
the schema because I see it in a more readable format on
the ORM! (P5)

Two participants (P18, P19) mentioned using Oracle Hyper-
ion14 and SAP Hana6. These participants are research analysts
at large companies, and dealt with querying massive datasets.
These participants shared that their queries were generally 200-
3000 lines long and handling these large queries that pulled
data from many sources and served millions of customers was
possible only by these modern DBMSs. One participant said:

I have written reports that are 100-150 pages long.
The queries used to generate these reports are very very
complex and intertwined in nature. I heavily rely on
Hyperion. (P18)

Takeaways. We find that users use and learn tools only with
the effort that is absolutely necessary to get their work done.
Many of our participants (8 of 20) still preferred command
line interfaces for writing and issuing queries, regardless of
experience level. In case of students, where they are still
learning how to use DBMSs, there is low risk and low reward
in putting significant effort into learning new database tools.
However, with industry professionals, we see much more
variety in their tool usage, because their database needs differ
widely. At the extreme, we have serious database users with

14https://www.oracle.com/corporate/acquisitions/hyperion/

long, complicated queries which could affect thousands of
customers. In this case, we see users preferring top-of-the-line
database products to craft and execute their DBMS queries.
Debugging Tools Used (R1-2)
Few Participants Knew of SQL Debuggers. 16 of 20 (80%)
participants were unaware of any database debugging tools.
Of 4 participants who knew of debuggers, only 2 had used
them, while others were unable to name any SQL debuggers.
We found these results surprising, given IDEs usage of many
participants’ and the prevalence of debugging offerings in both
the academic literature and across industry tools (section 2).
Undergraduates Were Wary of Debuggers. 5 of 6 undergrad-
uate students were unaware of any database debuggers. The
remaining participant stated: “I am aware that database de-
buggers exist, but I haven’t used any of them.”(P2). In general,
undergraduate students expressed a collective dislike for pro-
gramming debuggers and used them very rarely.
Graduate Students Knew Program but Not SQL Debuggers.
3 of 4 graduate students reported using debuggers for other
languages, and posited that there might be plug-ins for DBMSs
(as seen in section 2), but have never seen or used them.

The remaining graduate participant (P11) had worked exten-
sively with the SAP ABAP15 debugger after her undergraduate.
She reported being “extremely daunted” by debuggers in un-
dergraduate, and only grew comfortable with debuggers after
working in industry as a technical analyst. She describes using
the debugger to set breakpoints, check values, change them if
incorrect, and repeating this process until all conditions were
passed successfully. Even when using the debugger, she re-
calls the process being tedious and highly repetitive, as she
had to manually click buttons many times in the interface,
and memorize the schema of different workflows if she was
changing some variable values. Nevertheless, she was still
grateful for having the debugger and states:

...it would roughly take me an hour and a half to debug
[10 queries], but with plain SQL querying on command
line, it could take up the whole day or even more... who
knows? (P11)

15https://developers.sap.com/topics/abap-platform.html
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Industry Participants were Also Unaware of SQL Debug-
gers. 7 of 10 industry participants were also oblivious of
database debuggers. One participant was “not even sure if
something like that even exists!”(P9) The remaining 3 partic-
ipants mentioned being aware of stack traces or debuggers
provided by modern frameworks, but never used them.
Takeaways Awareness of database debuggers was low amongst
participants (less than 20%). Except for one participant who
was a debugging expert, database debuggers (and even pro-
gram debuggers) were reportedly rarely used.

(High level) Debugging Strategies (R2-1).
Most Participants use Trial-and-Error. Most participants
seem to use a crude trial-and-error approach, regardless of
database query tool: they try writing or updating their query,
and then manually review the raw results from the DBMS. For
example, one graduate student said: “I don’t have a systematic
way of doing it and I kind of go by trial and error.”(P3) Many
industry participants also seemed to rely heavily on raw errors,
for example one participant said they only used “the errors
SQL gives [him]” (P16) to debug queries.
Raw DBMS Errors are Difficult to Interpret and Debug. Our
participants stressed how painful it is for them to try and
interpret raw exceptions from the DBMS, and how little help
the exceptions are in understanding the errors in queries. A
participant commented on database errors:

SQL errors are like just the worst. They just tell you you
messed up and not what [is messed up/wrong]? Some-
times, it’s also difficult to google it! (P19)

Scanning Unexpected Results for Common Error Indica-
tors. All 20 participants pointed to some key factors that
they checked for in the case where the query didn’t throw
errors, but still exhibited unexpected behavior. Some partic-
ipants mentioned that summary metrics output by database
query tools (e.g., IDEs) could be useful for debugging, such
as how long the query took to execute, or the number of rows
returned. Common (manual) debugging metrics included:
• No records are returned (i.e., empty answer, subsection 2.7)
• Presence of NULL entries
• Presence of multiple entries (i.e., duplicates)
• Total rows returned for a query component
Even though these metrics seem simple to report, participants
mentioned that none of their chosen tools reported these met-
rics by default; and they had to manually review the query
results to compute them. Participants often used Microsoft
Excel16 for this purpose. They exported the results to a spread-
sheet and used filters to evaluate their query results. However,
this had clear limitations, for example a participant said that

“this can’t work for complex and bigger queries.” (P11)
Debugging Complex Queries Using Nested Error Checking.
We asked participants how they circumvented the above limi-
tations with complex DBMS queries. We learned of the nested
error checking, as a seemingly universal debugging strategy,
used across nearly our entire participant pool. In one variant
of this approach, participants break a complex query into a
workflow of simpler components (e.g., SQL clauses, inner

16https://office.live.com/start/Excel.aspx

sub-queries), and debug the simplest component first. Once
the first component is returning expected results, then the user
moves on to the next simplest component (e.g., another clause,
or outer sub-query), and so on. This strategy seems to align
well with certain provenance-focused debugging techniques
proposed in prior work (e.g., step-by-step illustrations of exe-
cution structure and why-not strategies).

We observed a variant of this strategy that involves participants
constructing their own unit tests in the form of small, targeted
inputs. For example, one participant said:

I would go to lower level development environments and
work with a mock data which is similar to my actual data
but just smaller, to try out my queries there. (P4)

This debugging strategy has also been observed by Battle et al.
for temporal queries [9]. Given a particular unit (represented
by one or more records in the output), participants would
manually evaluate this unit, to assess the correctness of their
query. If the result(s) did not match expectations, the same
iterative debugging strategies were used to add conditions to
fix the unit. However, with this technique, participants could
only hope that they had covered all of the needed test cases to
ensure the query’s correctness.
Alternative Debugging Methods. Some industry participants
use conventional print statements after every query component
to visit their query and find possible errors.

An alternative program debugging technique "rubber duck
debugging" was discussed by an industry professional (P19),
where you explain your code logic line by line and in the
process understand the error for yourself. He explained:

90% of the times you understand what you’re doing
wrong if you talk. You think you’ve stared at the query
long enough, and it’s weird but talking helps logic, since
you can’t really ask people around you always as they
are busy or have headphones on. (P19)

Many participants also verified their logic by writing pseudo-
code, as comments situated within their queries and code.
Debugging is not Formally Taught. Both students and indus-
try professionals believe that debuggers are not formally taught
in undergrad or grad courses. 4 of 10 industry participants
pointed to rely on their colleagues and bosses too to learn how
to evaluate their queries. One participant pointed out:

I did a lot of pair programming with my boss when query-
ing databases. It was the way I learnt. I still use a lot
of the same techniques and behaviours that I learnt from
my boss. (P1)

However, apparently none of our participants’ colleagues or
senior mentors were seen regularly using debuggers either.
One industry participant said:

I haven’t seen any of my colleagues use debuggers. Also,
during my training at [a major tech company], they would
have told us if there were some tools much earlier. But,
they haven’t. (P16)

Thus, there seems to be a lack of educational infrastructure for
debugging in general, which may explain in part the deficien-
cies in participants’ database debugging strategies.
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Takeaways. Participants’ debugging strategies seem to coa-
lesce around a low-level, trial-and-error process, which can
lead to considerable (and unpleasant) effort spent debugging
database queries. Even worse, participants seemed to actively
dislike using standard program debuggers until developing a
mastery of them. Lack of educational support seems to be a
key issue highlighted by multiple participants, which future
debugging tools could address. However, observed debugging
strategies do seem to align with proposed solutions, such as
step-by-step illustration of execution structure (e.g., [45, 9]
and “why” and “why not” debugging (e.g., [22, 21, 66]).

Visual Aids Used (R2-2)
We asked about any visual aids that might be used by the
participants to help them debug their queries. Most observed
techniques were based off manual drawing of flowcharts, show-
ing the process to be followed to reach the final results (also
observed by Battle et al. [9]). However, participants generally
tracked only part of the results to test certain conditions (i.e.,
the unit-test scenario mentioned above). Some participants
would also write down the database schema(s) to have them on
hand while writing the queries. In general, 9 of 20 participants
created their own visual aids on paper.
ER Diagrams are Bad for Debugging. The visual aid rec-
ommended most by participants was the Entity Relationship
(ER) diagram [24], which illustrates the structure of a database
schema. However, only 50% of the participants, mostly indus-
try participants, actually used this visual aid, and generally
not for debugging. ER diagrams were mostly drawn as part of
documentation, or by hand on white boards in team meetings
(i.e., for communication purposes). A participant notes the
limitations of ER diagrams for debugging:

ER diagram helps in understanding the schema but I want
to see how something in the beginning of the my query
affects something at the end of my query. This knowledge
is lost in the ER diagram. This is the minute thing I want
the visual aid to capture, especially if it is complex! (P8)

Other Debugging Visualizations from Commercial Tools.
Some participants mentioned that powerful tools like
Hadoop17 and SAP Hana6 provide features of visualising the
data as bar charts, though a participant pointed out that:

It’s not really helpful, as it only visualises up to 10,000
rows. Having a visualization of only 10,000 rows in a
database of a million rows, is not really helpful, making
the feature useless. (P19)

Participant Recommendations for Visual Aids. Many of the
participants had recommendations of visual aids that could
aid their debugging process. Most suggestions involved dis-
playing intermediate results of specific portions of the queries
(similar to the approach proposed by Grust et al. [45]), high-
lighting the trace of where certain tuples came from (similar
to the approach proposed by Battle et al. [9]), and having
some kind of documentation for keywords, especially when
working with different standards of one database language.
One participant suggested a visualization showing how certain
attributes transformed over the iterations of building the query,
which could be interesting future work.

17https://hadoop.apache.org/

9 of 20 participants mentioned that they derive query logic
entirely in their heads. Of these participants, 7 said visual
aids could still be helpful, mostly for tracking the nested error
checking debugging strategy, which sounds similar to the
visualization technique proposed by Battle et al. [9]. The
remaining 2 said that visual aids would not help them and they
would stick with the command line, as one said, “It’s faster
for me to process it in my head than it is for me to put it down
somewhere.” (P1)
Takeaways. Some visual aids mentioned by users already have
some support in commercial database tools (e.g., very sim-
ple charts, ER diagrams, and basic flow charts of low-level
query operators). Interestingly, many of the visual aids recom-
mended by our participants have already been developed in the
debugging literature, providing further support for these tech-
niques. However, most of these visual aids are not supported
by existing commercial tools (as observed in section 2).

Summary
Here, we summarise the key takeaways of our interview study.
Lack of Training and Awareness of Database Debugging
Tools (R1). 19 of 20 participants we interviewed relied on
informal, manual debugging techniques developed or learned
on their own regardless of the size and complexity of the
queries. 17 of 20 participants were unaware of any kind of
database debuggers. Of 20, only one had actually used a
database debugger. Many participants mentioned a lack of
training in school and their workplace for proper usage of
debugging tools in general.
Participants Favor Nested Debugging Strategies (R2-1). All
20 participants used the common strategy of breaking down a
query into a workflow of simpler components, and debugging
incrementally to get to a final, error-less query. All participants
seemed to perform this process manually, oftentimes on paper.
However, techniques are proposed in the literature to provide
similar visual aids automatically (e.g., [45, 9]).
Participants See Value in Having Better Visual Aids (R2-2).
15 of 20 participants described using some form of visual aid
to write and debug queries. The most common visual aids used
for querying were ER diagrams, though they were not helpful
in debugging. For debugging, participants pointed to vast
use of flowcharts, scribbling names of tables and attributes,
writing pseudo codes to get to final results and highlighting
rows in tables as visual aids. Of the 5 participants that did
not actively use visual aids, 4 could still see their value for
debugging, especially if queries were long and complex.

FEEDBACK FROM DATABASE EXPERTS (R3)
Our analysis provided interesting insights, however, one ques-
tion remained: if users want new debugging functionality, and
this functionality has already been proposed in the academic
literature, why is it not available in commercial tools? We
reached out to six database experts with experience in building
commercial database tools. We asked them two questions to
both sanity check and to provide additional context for our
findings: 1) is there interest in industry in database query
debugging; and 2) why have proposed techniques not been im-
plemented in commercial tools? The expert’s key takeaways:
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Query Debugging is Important, But Not the Top Priority.
We found that all experts agreed that query debugging is an im-
portant research problem to address and there is some industry
interest. Most experts suggested that may be more pressing
concerns for database companies, such as supporting database
automation and performance, which could explain in part why
we observe a gap between the literature and commercial tools.
Collaborations With Industry May Be Critical to Improving
Debugging Tools. One expert noted that some techniques may
be too complicated and too specific to be useful in most real-
world debugging contexts. In particular, why not debugging
requires users to carefully articulate positive and negative ex-
amples, either using a programming language or by manually
labeling individual records, neither of which may be any easier
or faster to execute over a basic nested debugging strategy.
We see active efforts in developing new debugging methods in
academia but limited resources to rigorously test techniques,
and limited efforts in industry to improve debugging methods
but many opportunities for testing them with real users. Thus
there seems to be an opportunity for academics to effect strong
positive change in industry through an active collaboration.

SUMMARY AND DISCUSSION
In this paper, we aim to understand how database users debug
their database queries, summarize what techniques have been
proposed in the literature to support query debugging, and
ultimately identify specific ways in which we can better help
these users to utilize DBMSs more effectively moving forward.
To better understand what query debugging techniques exist
in the literature, we reviewed 112 papers and tools across
databases, visualization, and HCI. Hybrid techniques from
multiple research areas seem to provide better user support
and improved system performance. However, commercial
tools seem to only provide basic program debugging support.

To contextualize proposed techniques with users’ experience,
we interviewed 20 database users, ranging from undergraduate
students just learning how to use DBMSs, to industry veterans
leveraging powerful, top-of-the-line DBMSs. However, across
expertise levels, we saw roughly the same story: participants
were largely unaware of database debugging tools (even com-
mercial ones), and resorted to low-level, manual debugging
strategies that relied heavily on raw output from the DBMS.
We noted an aversion to using standard debugging tools (even
general program debuggers), which participants suggested
could stem from a lack of educational infrastructure for how
to use these tools. However users’ debugging strategies do
seem to align well with some existing solutions (e.g., [45, 9]).

Finally, we polled six database experts and learned: debugging
support is important but not a high priority in industry; and
proposed techniques need more rigorous evaluation to clarify
how helpful they truly are in real-world debugging scenarios.

Design Recommendations
From our findings, we make the following suggestions for
improving debugging tools in the future:
Design Tools to Integrate into Existing Workflows. Many of
our participants preferred their minimalist workflows. New de-
bugging tools may be more effective if they can be integrated

with existing command line tools or IDEs. Furthermore, our
participants worked with a range of commercial DBMSs, so
it may prove useful to support multiple commercial DBMSs,
which may have the added benefit of making it easier to estab-
lish collaborations in industry to build new tools.
Prioritize Teaching Users How to Debug Queries Effectively.
Our participants stressed a lack of formal training with debug-
ging tools. Educational modules could be developed to fill
this gap. For example, to help new DBMS users, we can in-
corporate hover-triggered popups to explain database-specific
terms as users interact with queries (and DBMS errors), such
as what a relation is or how foreign keys work. However, our
participants also seemed loath to learn how to use standard
program debuggers, let alone query debuggers. Thus we see
an opportunity to make debuggers easy to use and also easy
for users to learn on their own. For example, we could analyze
users’ interactions with the DBMS to detect experience levels,
and use this information to deploy more learning-focused inter-
actions (e.g., novice users see terminology popups, but expert
users do not). Furthermore, avoiding problematic assumptions
about database expertise when designing new features, e.g.,
assuming all users are database (and data) experts (e.g., have
the schema memorized), could benefit users.
Automate Features to Support Nested Debugging Strategies.
Our participants seemed to favor a nested approach to debug-
ging queries, and many hand-drew simple visual aids as part
of this process. These visual aids seem straightforward to au-
tomate, and have been suggested in the literature (e.g., [45, 9]).
These existing techniques should be prioritized as a starting
point for improving query debugging features. Furthermore,
we believe automated presentation of metadata for debugging
purposes to be a potentially fruitful avenue for future work.

Annotation features could also help users track their debugging
progress. For example, color highlighting and text notes could
help users keep track of query components already tested so
far and employ nested debugging more effectively. Further-
more, these annotations could also be analyzed to develop
smarter query testing features, such as generating unit tests
automatically for specific query components.
Limitations
One limitation of this work is that we did not poll a large
fraction of the database user population. As such, there may
exist debugging strategies, tools, or visual aids that are not
reflected in our results. However, our findings do corroborate
key points and techniques observed in prior work on query
debugging, suggesting that our users exhibit some known
characteristics observed in other database user populations.

Another potential limitation lies in the framing of our study
design. By explicitly asking users in our study about how they
incorporated visual aids in their debugging process, we may
not have observed the participants’ natural usage of visual aids
in terms of frequency and significance. However, we do find
that users see value in visual aids, and some incorporate visual
aids as part of their regular debugging process.
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