Automatic Example Queries for Ad Hoc Databases

Bill Howe

Garret Cole

1. INTRODUCTION

We explore automatic generation of example queries from

an ad hoc database. An ad hoc database is a collection of
tables with unknown relationships gathered to serve a spe-
cific, often transient, often urgent, purpose. Consider these
examples:

e A researcher assembles an ad hoc database of recent ex-
perimental results to prepare a paper or proposal.

e Emergency workers responding to a natural disaster as-
semble an ad hoc data-base from lists of addresses of
nearby schools, locations of resources (e.g., ambulances),
and contact information for emergnecy workers.

e A consulting business analyst assembles an ad hoc data-
base from a set of spreadsheets provided by management
for a short term engagement

Analysts who assemble ad hoc databases frequently do not
have significant SQL expertise, but we find that by providing
a rich set of examples is sufficient to empower non-experts
to use SQL for data analysis [8]. This finding should not
be surprising: Many public databases include a set of ex-
ample queries as part of their documentation [6, 11], sug-
gesting that the strategy is effective. We adopt the term
starter query to refer to a database-specific example query,
to distinguish them from examples that merely illustrate
SQL syntax abstractly.

Analysts use starter queries in several ways: They browse
them to learn basic idioms of SQL (joins, in particular, are
often frequently unfamiliar). They ezecute them to explore
the data itself. They modify them by adding or removing
snippets [9]: predicates in the where clause, tables in the
from clause, columns in the select clause. They compose
them to derive new queries — each saved query is auto-
matically registered as a view and is referenceable as a ta-
ble. They share them during collaboration — each query
(and its result) has a unique url that can be bookmarked
or emailed to colleagues, who can then add comments, de-
rive their own queries, etc. Our preliminary results suggest
that this query-oriented collaborative analysis is an effec-
tive model for working with ad hoc databases. To bootstrap
this model, we need only “seed” the collaboration with a set
of starter queries. In our existing system, these examples
queries are provided by database experts. In this demon-
stration, we show how a set of starter example queries can
be derived from a set of tables just be analyzing their sta-
tistical properties — no schema, no query workload, and no

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD 2011 Athens, Greece

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Nodira Khoussainova Leilani Battle
University of Washington
{billhowe,gbc3,nodira,leibatt}@cs.washington.edu
Name
jﬂil’l papers, fumlinq feature_extraction_estimated_time
0-churic b union all chunktests
ek b e select paper by date = : e
churibieet2id_u fourh i jointopics, activities ;:w [gbel] .“x
mmmm: =L feature_extraction_e.... il
activities.cs === ——————
funding_activity.csvQ
papers.csvi)
xauthor.csv. 1202
research activites :‘:”"’"‘*‘“ :“m e e,
topic.csv fourth wdes 2 a
research_system.csv
technology.csv & fous
research_system.csv
papers.cev 2 fourth 1
funding_activity.csv
funding.csv a fourth te:
zauthors csv
@ (®) ()

Figure 1: Demonstration interface for exploring how
different ad hoc databases lead to different sets of starter
queries. (a) The user selects the tables to act as the ad
hoc database. (b) A list of starter queries is dynamically
updated based on the user’s selection of tables. (c) The
user can view, modify, and execute the query definition.

user input is assumed to exist. We will also demonstrate
how this capability fits into the larger context of an Ad Hoc
Database Management System called SQLShare [8].

2. WHAT WILL THE USER SEE AND DO?

Figure 1 illustrates the interface that users will interact
with in this demonstration. In the left-hand column, the
user will highlight a subset of the available tables in the
system. Each table is a link to the In the middle column, the
starter queries derived from the selected tables are displayed.
The user can select a query and view, modify, and execute
the query definition. Finally, the user can view the decision
tree that led to this query being recommended, with the
relevant path highlighted.

We allow the user to select different sets of tables to 1)
simulate the assembly of an ad hoc database and 2) illus-
trate the relationship between the database extent and set of
generated starter queries. For example, a bioogist we work
with uploaded three tables: experimentA, experimentB,
and metadata, where experiment B subsumes experimentA
and both experiment tables joined with metadata. In our
approach, selecting experimentA and metadata as the ba-
sis for an ad hoc database will, in general, produce a differ-
ent set of starter queries than selecting experimentB and
metadata. Further, selecting both experimentA as well as
experimentB — corresponding to the common occurrence
where an ad hoc database includes redundant data — may
produce a starter query expressing the union of the two
datasets, having observed that they share the same schema
and verlap significantly. This exploration of the influence
on the starter queries from the data — as opposed to query
logs, the schema, or user input — is the key mechanic of our

demonstration and the hallmark of our approach.

The starter queries are generated on the fly based on the
user’s selection, but the statistical features that inform the
decision will be pre-computed. For example, the likelihood
of a join on X.x = Y.y appearing in a starter query de-
pends on the cardinality of the intersection between X.x
and Y.y, among other things. This cardinality and other
relevant features will already have been extracted to ensure
interactivity.

3. MOTIVATION

Conventional relational database management software re-
mains underused for ad hoc databases, especially in the long
tail of science: the large number of relatively small labs
and individual researchers who, in contrast to “big science”
projects, have limited IT funding, staff, and infrastructure
yet collectively produce the bulk of scientific knowledge. De-
spite prominent success stories of scientific databases 7] and
an intuitive correspondence between exploratory hypothesis
testing and database query answering, scientists frequently
over-rely on file-oriented tools such as spreadsheets. How-
ever, as rate of data acquisition continues to increase, these
tools cannot keep pace. Indeed: in an informal survey, re-
searchers report that the ratio of time spent “manipulating
data” as opposed to “doing science” is approaching 9 to 1!

Having encountered this problem in multiple science do-
mains and at multiple scales, we find that although the rela-
tional model (tables) and de facto language (SQL) are per-
fectly adequate for many scientists’ needs, the costs asso-
ciated with deployment and use of database software are
prohibitive. In particular, the need to pre-define a schema
before any data can be loaded or any queries issued is infea-
sible in this context. A database schema represents a shared
consensus about the domain being modeled. But at the fron-
tier of research, such consensus does not exist, by definition
(“if it were well-understood, it wouldn’t be research”). Fur-
ther, the corpus of data for a given project or lab accretes
over time, with many versions and variants of the same infor-
mation and little explicit documentation about connections
between datasets and sensible ways to query them — these
issues complicate schema design, even for an expert.

As an alternative, we advocate explicit support for ad hoc
databases, where tabular data can be loaded as is, under
whatever schema can be inferred from the column names
and data types present in the source file. These tables can
be queried directly, and the queries saved as views. This
incremental view creation and reuse facilitates pay-as-you-
go integration, cleaning, analysis, and schema-building [4].

This approach relies on another key finding: the conven-
tional wisdom that states “scientists won’t write SQL” is
simply false, corroborating the findings of the Sloan Digital
Sky Survey [11, 7] Our experience is that scientists can and
will write even very complex queries, provided they are given
sufficient relevant examples from which to build.

Guided by these premises, we have constructed a platform
for managing ad hoc databases called SQLShare® [8] that al-
lows users to upload their data and immediately query it us-
ing SQL — no schema design, no reformatting, no DBAs, no
obstacles. Queries can be named, saved, shared, and com-
mented on — anything you can do with a YouTube video,
you can do with a saved query. Each saved query is also
registered as a view and can be referenced by other queries.

http://escience.washington.edu/sqlshare

The early response from the initial prototype has been re-
markable. At the first demonstration, the results of a simple
SQL query written “live” in less than a minute caused a bi-
ologist to exclaim “That took me a week!” — meaning that
she had spent a week manually cleaning and pre-filtering
a handful of spreadsheets and then computing a join be-
tween them via copy-and-paste. Within a day, the same
researcher had derived and saved several new queries of her
own. The experience was not isolated: the director of her
lab has contributed several of her own SQL queries. She has
commented that the tool “allows me to do science again,” ex-
plaining that she felt “locked out” from personal interaction
with her data due to technology barriers, relying instead on
indirect requests to students and IT staff.

When we first engage a new potential user in our current
SQLShare prototype, we ask them to provide us with 1) their
data, and 2) a set of questions, in English, for which they
need answers. This approach, informed by Jim Gray’s “20
questions” requirements-gathering methodology for working
with scientists [7], has been remarkably successful. Once the
system was seeded with these starter queries, the scientists
were able to use the examples to derive their own queries
and start analyzing data.

We found that translating these English questions into
SQL was rather routine [8]. These queries typically involve
common idioms of using the data: how to combine two ta-
bles, how to retrieve basic data, how to perform an aggre-
gation. The common patterns suggested that the process
could be automated, deriving queries directly from the data
itself. This automation is the focus of this demonstration.

4. METHOD

Our approach to the problem of automatically deriving
starter queries for an ad hoc database is to 1) define a set of
heuristics that characterize “good” example queries, 2) for-
malize these heuristics into quantities we can calculate from
the data, 3) develop algorithms to compute or approximate
these features from the data efficiently, 4) use examples of
“starter queries” from existing databases to train a model on
the relative weights of these features, 5) evaluate the model
on a holdout test set, and 5) deploy the model in the pro-
duction SQLShare application. In this context, we are given
just the data itself: In contrast to existing query recommen-
dation approaches, we cannot assume access to a query log
[9] , a schema [12], or user preferences [1].

We explore heuristics for identifying four idioms: union,
join, select, and group by. The demonstration uses all four
idioms to make decisions. Here, we describe only our model
for detecting joins to explain the approach.

Detecting Joins To detect join candidates, we derive a
scoring function by combining a set of heuristics:

1. A foreign key between two columns suggests a join.

2. Two columns that have the same active domain but
different sizes suggest a 1:N foreign key and a good
join candidate. For example, a fact table has a large
cardinality and a dimension table has a low cardinality,
but the join attribute in each table will have a similar
active domain.

3. More generally, two columns with a high similarity of-
fer evidence in favor of a join?.

2 An important exception is the case of an “autoincrement”
column that is sometimes used as a key, and may have no
relationship to another autoincrement column.

4. If two columns have the same active domain, and that
active domain has high entropy (large numbers of dis-
tinct values) then this evidence in favor of a join. Con-
versely, if both attributes have small entropy, then this
is evidence against a join.

Join heuristics 1-4 above all involve reasoning about the
union and intersection of the column values and their active
domains. For example, heuristic 1 identifies foreign key rela-
tionships. Given two columns z and y (modeled as bags), a
foreign key relationship relationship exists if x C y. Heuris-
tic 2 adds the condition that |z| << |y|. Heuristic 3 relaxes
the strict subset condition and invokes Jaccard similarity
with bag semantics: Iigg:
the relative sizes of the active domains: |w(z)| << |z|, where
m(z) indicates the set derived by removing duplicates from
z. For example, a fact table has a large cardinality and a
dimension table has a low cardinality, but the join key will
typically have a highly similar active domain.

We cannot predict the effectiveness of each of these heuris-
tics a priori, so we train a model on existing datasets to
determine the relative influence fo each. For each pair of
columns x,y in the ad hoc database, we extract each fea-
ture in Table 1 for both set and bag semantics.

Heuristic 4 sets conditions on

Table 1: Features extracted to estimate the joinability

Feature Expression
max/min cardinality — max/min(|z|, |y|)
cardinality difference abs(|z| — |y|)

intersection cardinality |z Nyl
union cardinality |z Uyl
Jaccard similarity }igzl

To evaluate whether a particular join candidate should
be included in the set of starter queries, ideally, we would
have access to a decision tree that can weight these features
appropriately for all databases. In the preliminary results
used to drive this demonstration, we train the model on
the Sloan Digital Sky Survey logs (SDSS) [11], and then
evaluate it on a completely unrelated database, the Gene
Ontology database (GO) [6]. The underlying model we use
is an Alternating Decision Tree (ADTree) [5] consisting of
internal decision nodes and prediction nodes at the root and
leaves. To determine the class of a specific instance, we
traverse the ADTree and sum the contributions of all paths
that evaluate to true. The sign of this sum indicates the
class. Note that although we hypothesize that the relative
influence of these features are agnostic with respect to the
database used, we of course must still extract the features
from each database we wish to study.

For the SDSS database, we have the database, the query
logs, and a set of curated example queries created by the
database designers to help train users in writing SQL. We
use the log to train the model, under the assumption that
the joins that appear in the logs will exemplify the char-
acteristics of “good” joins we would want to include in the
starter queries. To sanity check our results, we evaluate our
training model in a ten-fold evaluation. In this evaluation,
we trained the model on 90% of the data and tested the
model on the remaining 10%. The average of ten repeti-
tions achieved a recall of 91.1% and a precision of 91.2%.

For the GO database, we have the database itself and a
set of starter queries provided in the GO documentation.
Here, we use the same model learned on the SDSS data and
see if it can be used to predict the sample queries defined by

the GO developers. The key hypothesis is that the relative
importance of each of these generic features in determining
whether a join will appear in an example query are consistent
across all schemas and all databases. In this experiment, we
find that the model classifies 28 out of 30 joins correctly,
achieving 93.3% recall. To measure precision, we tested a
random set of 12 join pairs that did not appear in the starter
queries. The model classified 11 out of 12 of these candidates
correctly, achieving 96.6% precision.

We observe that the model encoded several intuitive and
non-intuitive heuristics. For example, the model found, un-
surprisingly, that the Jaccard similarity of the active do-
mains of two columns is a good predictor of joinability. But
the tree also learned that similar columns with high car-
dinalities were even more likely to be used in a join. In
low-similarity conditions, the model learned that very high
numbers of distinct values in one or both tables suggests
a join may be appropriate even if the Jaccard similarity is
low. Overall, the model performed well even on a completly
unrelated schema.

5. RELATED WORK

Query recommendation systems proposed in the literature
rely on information that we cannot assume access to in an
ad hoc database scenario: a query log [9], a well-defined
schema [12], or user history and preferences [1]. The con-
cept of dataspaces [4] is relevant to our work; we consider
SQLShare an example of a (relational) Dataspace Support
Platform. The Octopus project [3] provides a tool to in-
tegrate ad hoc data extracted from the web, but does not
attempt to derive SQL queries from the data itself. The gen-
eration of starter queries is related to work on schema map-
ping and matching [10, 2]: both problems involve measuring
the similarity of columns. However, ther goals and there-
fore techniques are different: we prioritize coverage of useful
query idioms as opposed to finding all semantic matches.

6 REFERENCES

[1] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy,
S. Mittal, D. On, N. Polyzotis, and J. S. V. Varman Sql
querie recommendations. PVLDB, 3(2):1597-1600, 2010.

(2] P. A. Bernstein and S. Melnik. Model management 2.0:
manipulating richer mappings. In SIGMOD Conference,
pages 1-12; 2007.

[3] M. J. Cafarella, A. Y. Halevy, and N. Khoussainova. Data
integration for the relational web. PVLDB, 2(1), 20009.

[4] M. J. Franklin, A. Y. Halevy, and D. Maier. From
databases to dataspaces: A new abstraction for information
management. SIGMOD Record, 34(4), December 2005.

[5] Y. Freund and L. Mason. The alternating decision tree
learning algorithm. In International Conference on
Machine Learning, 1999.

[6] Gene ontology. http://www.geneontology.org/.

[7] J. Gray, D. T. Liu, M. A. Nieto-Santisteban, A. S. Szalay,
D. J. DeWitt, and G. Heber. Scientific data management in
the coming decade. CoRR, abs/cs/0502008, 2005.

[8] B. Howe and G. Cole. SQL Is Dead; Long Live SQL:
Lightweight Query Services for Ad Hoc Research Data. In
4th Microsoft eScience Workshop, 2010.

[9] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu.
Snipsuggest: A context-aware sql autocomplete system.
2011.

[10] J. Madhavan, P. A. Bernstein, and E. Rahm. ”generic
schema matching with cupid. In VLDB, 2001.

[11] Sloan Digital Sky Survey. http://cas.sdss.org.

[12] a. D. X.Yang, C.M.Procopiuc. Summarizing relational
databases. Proc. VLDB Endowment, 2(1):634£645, 2009.

