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Fig. 1: Lodestar web interface. The top panel, above the selected recommendations, provides a data selection menu. The black
dividers between sections are recommendation panels combining suggested analysis steps from various sources (called advisors).
Areas that have graphs and analysis outputted are analysis cells, each with multiple tabs: “Analysis Results” gives charts or
tables, “Output Dataframe” and “Code Script” shows the outputs and current code block, and “What’s this analysis?” gives a brief
description of the analyses. Outputs, code, and charts can also be exported.

Abstract— Keeping abreast of current trends, technologies, and best practices in visualization and data analysis is becoming
increasingly difficult, especially for fledgling data scientists. In this paper, we propose Lodestar, an interactive computational notebook
that allows users to quickly explore and construct new data science workflows by selecting from a list of automated analysis
recommendations. We derive our recommendations from directed graphs of known analysis states, with two input sources: one
manually curated from online data science tutorials, and another extracted through semi-automatic analysis of a corpus of over 6,000
Jupyter notebooks. We evaluate Lodestar in a formative study guiding our next set of improvements to the tool. Our results suggest
that users find Lodestar useful for rapidly creating data science workflows.
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1 INTRODUCTION

Data science is still a nascent and emerging discipline, which makes
it challenging for analysts to learn and keep up with new tools and
techniques. There is already a dizzying array of libraries, such as
Scikit-Learn [40], Pandas [36], and TensorFlow [1], and best practices
and workflows change often. Furthermore, few standardized methods
exist for data analysis: many times, the exact data transformations,
computations, and analyses needed depends on the data, task, and
user. This means that cookbook methods or simple workflow templates
are insufficient to teach fledgling analysts how to tackle realistic and
ever-changing data science problems.

In response, we present LODESTAR, an interactive and visual sand-
box environment for independent learning of new data analysis methods
and best practices in data science. Our aim in developing Lodestar is to
simplify the process of finding and experimenting with new analysis
methods by providing automated, data-driven recommendations. We
want Lodestar to be a self-contained environment for rapid learning
and iteration, where everything the user needs to infer the function and
purpose of an analysis step is available in one place.

The Lodestar system uses a computational notebook interface (simi-
lar to a Jupyter notebook [24]) showing a sequence of analysis steps
in the form of Python code cells (see Figure 1), but enables the user to
initially select from and interact with self-contained code cells without
having to write any code. The user merely selects which data frame
to analyze, and the system displays a ranked list of recommendations
of analysis steps to be executed on that data. Each analysis step is
represented by an interactive visualization in the notebook interface,
giving the user insights into its output and behavior. Furthermore, users
can view the corresponding code for any analysis step, and even export
the resulting notebook from Lodestar, providing flexibility in how users
learn from and interact with Lodestar’s analysis recommendations.

Lodestar provides recommendations for the user’s next analysis step
based on the current state of the analysis and the dataset being analyzed.
Recommended analysis steps and workflows are derived from two
sources representing current best practices in data science: (1) existing
data science tutorials from online academies and training materials
(i.e., an expert recommendation), and (2) common analysis patterns
mined from a large corpus of publicly available Jupyter notebooks [47]
(i.e., a crowd recommendation). The code cells extracted from each
source are manually curated, then programmatically clustered into
synonymous analysis steps, and inserted into a large directed graph
of connected cells representing common analysis workflows. The
Lodestar recommendation engine can then identify and rank the most
relevant analysis steps given a specific position in the graph.

We developed Lodestar using an iterative design process. We used
early feedback from six participants to improve the interface design.
Our findings show that key Lodestar interactive features, such as auto-
mated recommendations, a visualization of the full analysis workflow,
a code review pane for suggested analysis steps, and export support for
Jupyter Notebooks, provide significant value to those who are learning
data science.

In this work, we make the following contributions: (1) a holistic rec-
ommendation process involving two sources of data analysis practice:
crowd-based and expert-based; (2) a sandbox interface design integrat-
ing visualizations, interactions, and code to facilitate learning about
new data analysis techniques; (3) results from a formative study evalu-
ating the Lodestar design; and (4) a unique data analysis architecture
that integrates a recommender system with a computational notebook
interface. All our materials, including source code, documentation, and
study results, have been made available on the following OSF page:
https://osf.io/pztva/

2 BACKGROUND

2.1 Sensemaking

Lodestar was architected to aid and encourage best practices in sense-
making. Richard Hamming described sensemaking as “the process
of searching for a representation and encoding data in that representa-
tion to answer task-specific questions” [48]. Dubbed the sensemaking

loop [42], each sensemaking iteration works to refine and build on
the previous insights—ultimately enabling the analyst to address less
specialized audiences [60]. In combination, these iterations make up
the data science workflow. Analysts usually use visualizations or other
types of intermediate results to motivate further analysis. However,
these results can sometimes be dead ends. Kandel et al. [26] found that
analysts will overcome dead ends by backtracking and exploring new
branches.

2.2 Interactive Visualization Design Environments

Many visualization systems and toolkits are designed around specific
data analysis tasks, making the analysis process easier to perform.
Excel supports basic visualization and data transformations. Shelf-
based visualization environments such as Tableau (née Polaris [56])
allow easy configuration of visualizations through drag-and-drop of
data attributes and metadata onto “shelves” representing visual channels.
This approach is flexible enough for even novice users to construct a
wide range of visualizations. Interactive visual design environments
such as Lyra [50], iVoLVER [37], and iVisDesigner [44] utilize direct
manipulation to allow users to bind data to visual representations. More
recently, Data-Driven Guides [28], Data Illustrator [32], DataInk [71],
and Charticulator [45] provide advanced tools for representing data
items as visual elements and mapping their attributes to data dimensions.
Keshif [72], a faceted visualization tool, generates grids of predefined
charts to support visual exploration by novice users.

Visualization development toolkits such as D3 [8] and Protovis [7]
provide fine-grained control over designing interactive visualizations,
but require significant programming expertise to use. Visualization
grammars, such as ggplot2 [67], Vega [52], and Vega-Lite [51], abstract
away implementation details, but still require programming knowledge
to use. Furthermore, even advanced visualization tools, toolkits, and
grammars offer only limited functionality for manipulating the data,
and only support a small number of statistical functions.

2.3 Visualization Recommendation

The purpose of visualization recommendation is to suggest relevant
visualizations to the user to facilitate data analysis [21], where the
visualizations are fully designed in advance and therefore directly ac-
cessible to the user. It was first proposed by Mackinlay [33] in 1986
with automatic design of effective presentations based on input data.
The work combines expressiveness and effectiveness criteria from stud-
ies such as those by Bertin [6] and Cleveland et al. [9] to recommend
appropriate visualizations. In 2007, Tableau’s Show Me feature [34]
revealed a commercial product with the implementation of these ideas.
Following the idea of Mackinlay’s automatic visualization, Roth et
al. [46] enhances user-oriented design by completing and retrieving
partial design graphics based on their appearance and data contents.
The rank-by-feature framework [53] ranks histograms, scatterplots, and
boxplots over 1D or 2D projections to find important features in mul-
tidimensional data. SeeDB [66] generates all possible visualizations
given a query of the database and identifies interesting ones. Perry et
al. [41] as well as van den Elzen and van Wijk [63] tackle the problem
of generating small multiple visualizations shown as thumbnails using
their statistical properties.

In the last few years, recommender systems have become widely
used for visualization. Voyager [68] generates a large number of vi-
sualizations given a user-specified partial specification, and organizes
them by data attributes. The generated visualizations are rendered as
cards on a scrolling view. Saket et al. [49] propose the Visualization-by-
Demonstration framework, which allows users to provide incremental
changes to the visual representation. The system recommends potential
transformations such as data mapping, axes, and view specification
transformations. Zenvisage [54] automatically identifies and recom-
mends desired visualizations from a large dataset. Voyager 2 [69]
extended the original Voyager through wildcard functionality that ex-
plores all possible combinations of attributes. Most recently, Draco [38]
even automates visualization design itself using partial specifications
and a database of design knowledge expressed as constraints. VizML
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learns what visualizations to recommend by training neural network
models on millions of visualization designs made using Plotly [22].

Several tools extend these ideas to recommending analytical insights
and data processing steps. “Top-K insights” [59] provides a theory
for generating top K insights from multidimensional data. Similarly,
Foresight [12] presents the top K insights in a dataset from 12 insight
classes using a corresponding visualization. DataSite [11] organizes
significant automatic findings in a specific feed of notifications. Finally,
Voder [55] builds on a similar feed as DataSite to provide “interactive
data facts” using visualizations.

Our proposed Lodestar system combines these ideas from visual-
ization recommendation with an analytical perspective, and allows
stringing together such analytical steps into a sequence. There are
some existing efforts on recommending data analysis techniques and
workflows. Yan et al. [73] demonstrate that online repositories of
computational notebooks can be a valuable resource for modeling and
testing a recommendation system for data cleaning techniques. Milo et
al. [4] take this a step further by automatically generating entire data
exploratory workflows using deep reinforcement learning techniques.
Our system builds on these works by presenting a holistic model and
code mining pipeline for deriving new recommendation features in
a data-driven way, whether for data visualization, data preparation,
or data analysis workflows. Essentially, Lodestar extends the idea of
automated recommendations to the entire data science pipeline, rather
than visualizations only.

2.4 Interactive Notebooks
Donald Knuth’s notion of a “literate” form of programming [30], which
merges source code with natural language and multimedia, has extended
to the concept of literate computing in the form of computational
notebooks [24, 29, 58], that combine executable code, its output, and
media objects in a single document. This has proven to be very useful
for rapid prototyping and exploration as well as for replicability and
communication, particularly for data science and analysis [47].

Because of their success, with adoption even at the level of entire
organizations [62], notebooks have enjoyed significant progress in
recent years. The new generation of computational notebooks, such as
Google Colaboratory [18] and Codestrates [43], enable synchronous
collaboration. Beyond such features, the JavaScript-based Observable
notebook [23] also supports one-way reactive execution flows.

Visualization in particular has recently begun to adopt computational
notebooks. Altair [65] builds on Vega [50] and Vega-Lite [51] to pro-
vide statistical visualizations in Python, and thus in Jupyter Notebooks
as well. Idyll [10] supports a notebook-like markup language to cre-
ate interactive data-driven document for communication. Vistrates [3]
provides a collaborative visualization workflow in a notebook. Ob-
servable [23] leverages the computational notebook environment to
also provide a collaborative visualization platform. Literate visualiza-
tion [70] integrates the visualization design process with the choices
that led to the implementation.

End-user and live programming paradigms have proven useful in cre-
ating intuitive interactions with visualizations found in computational
notebooks. For example, Wrex [13] and Mage [27] leverage user inter-
actions on data visualizations to automatically generate exemplar code.
As in traditional end-user programming platforms, Mage and Wrex
demonstrate the link between code and visual interactions. Torii [19]
uses a live programming model to enable easy maintenance and reuse
of source code, for the purposes of building tutorials. These systems
not only add to the number of ways users can interact with their literate
document, but, they also create loops between code and visualization
that lend well to data iteration.

3 MOTIVATING SCENARIO

Here we describe a motivating data analysis scenario that highlights
a knowledge gap among existing work that the Lodestar system aims
to address. Suppose that an undergraduate student has just started
learning about data analysis techniques in a university data science
course. She is interested in selecting a dataset for her first assignment
in the course. However, before testing out any new analysis methods

on an unfamiliar dataset, the user wants to start with the simpler case
of analyzing the popular Cars dataset, which is made available via a
drop-down menu in the Lodestar interface upon startup. Upon selecting
the Cars dataset, the user is presented with a list of initial data analysis
steps, which have been recommended based on the user’s choice of
dataset (top of Figure 1). Each recommendation is represented as a
clickable button. As the user reads the labels of the recommendation
buttons, she may position her mouse over each, triggering tooltips with
a brief description of each recommendation’s behavior. The tooltip
associated with the “first 10 samples” recommendation suggests that
the user look at “the first 10 rows of the data frame.”

To gain a better sense of what the Cars dataset contains, the user
decides to select the “first 10 samples” recommendation. In response,
Lodestar adds a notebook cell to the interface. This notebook cell
contains results comprised of the Python code used to compute the
analysis step (Figure 2), a brief description of the analysis technique,
and a visualization of the results, in this case a table displaying the first
10 rows of the cars dataset (middle of Figure 1). The table shows that the
Cars dataset contains 10 attributes, where at least three attributes appear
to be categorical. The user is curious about what these categorical
attributes contain.

Lodestar generates a new panel of recommendations below the new
analysis cell, allowing the user to select the next step of her analysis
workflow. In this round of recommendations, she sees a recommenda-
tion for generating “group statistics,” which, according to the associated
tooltip, promises to generate descriptive statistics of the dataset. These
statistics could help her better identify the categorical attributes. Upon
selecting “group statistics,” another notebook cell is added to the inter-
face, along with a third recommendation panel with potential follow-up
analyses (bottom of Figure 1, collapsed).

In the table of summary statistics produced by the “group statistics”
recommendation, the user notices that there are three unique categories
in the “Origin” attribute. Curious about the distribution of cars per
country of origin, she scans the previous round of recommendations for
one that will allow her to dive deeper into categorical attributes. She
finds the “category count” option within the second recommendation
panel from which she originally chose “group statistics,” where “Cate-
gory count” will show “the distribution of categorical attributes across
different values.”

When she updates her selection to be “category count” instead of
“group statistics,” the original notebook cell for “group statistics” is
removed and replaced with a new notebook cell displaying the results of
“category count”; the third panel of recommendations is also updated
accordingly. The output of the “category count” cell is a bar chart
showing the number of cars for each country from the Origin attribute
(bottom of Figure 1). The user observes that there are more “American”
cars than any other kind.

The user now knows more about both the dataset and how to imple-
ment some of the statistical techniques she had encountered in class.
She is curious to explore the Python code she observed in the note-
book cells and the characteristics of cars from different countries. She
scrolls up to the menu panel at the top of the interface and selects
“export notebook”to save her current workflow as a Jupyter Notebook
file (cars_analysis.ipynb) for further analysis and manual editing.

4 DESIGN REQUIREMENTS

Our goal is to make Lodestar an interactive and visual sandbox environ-
ment for learning and experimenting with new data science methods
in a data-driven way. We also wanted to make data science univer-
sally accessible to fledgling data analysts and enthusiasts alike. These
core ideas helped us compile a set of design requirements and some
preliminary prototypes. In this section, we outline our major design
requirements, and report on a formative study conducted to validate
and refine our approach to the Lodestar interface design and system
development processes.

• D1: Informed by best practices. Generated recommendations
should be drawn from current practice, empowering those new to
data science to learn how to effectively analyze their data [31,34].



Fig. 2: Our fledgling analyst can explore the tabs within the analysis cell for details about the analysis step she chose to execute from the
recommendation panel.

• D2: Prioritize analysis steps over code. Our intended users are
trying to analyze data in a fast and fluid fashion, but may not yet
be familiar with specific libraries or modules needed to complete
different analysis steps. Lodestar needs to build a bridge between
the high level analysis steps common in data science, and the low-
level code needed to accomplish these steps [35]. For example,
recommendations should be immediately relevant and situated
within the overall data science pipeline to enable users to progress
in their analysis.

• D3: Enable independent exploration. To ensure that users can
explore their data independently, educational interface elements
must also be incorporated to automatically provide documen-
tation and clarification of system behavior [14]. Furthermore,
intermediate and final results should be presented using visual
representations that can be easily interpreted regardless of user
expertise [61].

4.1 Formative Study
We conducted a formative user study to evaluate the usability of an
early prototype of the Lodestar system, which we used to validate our
initial design requirements and refine the system design. This study
was approved by our home institution’s IRB.

4.1.1 Study Design
The study was conducted over a period of one month in which we
interviewed 6 fledgling analysts and data scientists; all undergraduate
university students. We focused on recruiting university students, since
they are generally learning data science methods for the first time and
thus could provide helpful insights in our design process. Each student
had demonstrated knowledge of data science fundamentals through
attending a university-level introductory data science course and/or
other relevant machine learning/data science experience. Although
not a prerequisite of the recruitment process, some students also had
experience performing analysis on platforms such as Excel and Tableau.

4.1.2 Method
Each interview lasted for 60 minutes and was divided into three phases.
Prior to the interview, each participant signed a consent form, allowing
us to record audio and screen capture throughout the duration of the
interview. The first phase consisted of questions, delivered verbally,
that assessed the participant’s recent experience in learning data science
techniques and tools through classes, side projects, research, and other
such activities. During this section, participants were also asked specific
questions regarding their view on recommender systems.

The second phase of the interview was dedicated to introducing an
early prototype of the Lodestar system in which participants were given
a brief 2-minute description of Lodestar and associated goals. The next
5 minutes were spent giving the participant a cursory tutorial of the
system. For each participant, the tutorial was given using a pre-written
script and with the same sample data set to give each of them equal
knowledge of the system prior to their exploration. The participants
then spent the next 15-20 minutes using the Lodestar system to conduct

exploratory data analysis on a data set of their choosing. We restricted
their choices to two datasets; the Boston House dataset from a Udacity
tutorial,1 and the ubiquitous Cars dataset. During this exploratory
session, participants verbalized their thought process, questions, and
comments with a think-aloud protocol. We encouraged participants
to “to use any and all features of the Lodestar system” and to “explore
whatever aspects of the data [they found] interesting.” Participants were
allowed to end the session before the allotted time expired if they were
satisfied with their results.

The third and final phase of the interview consisted of a post-
exploration questionnaire that asked participants to describe the utility
of Lodestar for their common data analysis tasks. They were specif-
ically asked if they would adopt Lodestar to learn new data science
techniques and whether they trusted the recommendations.

All sessions were held in a lab environment using Google Chrome on
a Macbook Pro with a 15-inch Retina display. Audio was recorded us-
ing the built-in voice recording application on a mobile device. Screen
capture was done using Apple’s QuickTime Player. Observational notes
from the study coordinators, text responses from our questionnaires,
and audio and video recordings were collected for further analysis and
prioritization of design requirements and functional features of the
existing prototype.

4.1.3 Results
Our formative study found that a majority of participants were in
favor of using Lodestar in their daily work, but suggested several
modifications to make the system more useful. For the sake of brevity,
we focus primarily on summarizing their constructive feedback below
(participant IDs start with “FP”):

Provide Clear Documentation & Context Our early prototypes
did not include tooltips or descriptions of analysis steps. Several partic-
ipants highlighted the need for increased transparency in the interface.
Specifically, they wanted clearer naming conventions, documentation
of features and methodologies (e.g., the difference between expert and
crowd recommendations), and explanation of expected system behavior.
For example, some participants had difficulties understanding the mean-
ing of certain user interface elements. Participants asked questions such
as “what are these percentages?” (FP6), or “[what do] the columns on
the left side represent?” (FP5). Participants FP1, FP2, FP3, and FP5
also asked if there “is actually a way to view the entire dataset?” (FP2).

There were many questions specific to the meaning of recommen-
dations. For example, FP3 said “I think the names [are] misleading...
there were some really complicated names for just a simple linear
regression. [It] should just be changed [to more] obvious names.”
Similarly, FP2 suggested that there should be “a longer description
[...] [or] some way to show their effectiveness without the user having
to Google search them.” These misconceptions indicate that better
documentation is needed to help new users understand the interface.

1The Udacity tutorial is available here: https://github.com/
sajal2692/data-science-portfolio/blob/master/boston_
housing/boston_housing.ipynb.
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Improve Tracking of Analysis Progress Several participants
wanted to be able to see what phase of the data science process they
were in based on the current state of their analysis workflow. Our
early prototypes did not include the feature to track previously selected
analysis. FP4 drew parallels with a restaurant order tracker, where
Lodestar should partition each part of the data science process into
separate steps, and group analysis recommendations into these steps.
Users would then be able to better understand their progress within the
data science process.

Enable More Granular Control The early Lodestar prototype
only allowed users to choose from pre-loaded datasets, and did not
provide any export or customization functionality for analysis steps.
However, multiple participants expressed the desire to import their
own dataset and export their own code for later sharing and reuse.
Participant FP4 said that they would be frustrated if they wanted to
“export it or make some changes in the data or [try] to do something
that is not supported by Lodestar [while] not having any way of doing
so.” Participants also highlighted the need for more control over what
parameters or attributes were being passed into different analysis steps,
such as selecting specific attributes when generating visualizations or
executing regression analyses. These observations suggest that users
should be able to import their own dataset, customize analysis steps,
and export their current analysis workflows.

4.1.4 Further Refinement of Lodestar
Though participants could see promise in providing automated rec-
ommendations (design requirement D1), the expressed need for more
tracking of workflow structure and progress also reinforces design
requirement D2. Without additional context to help users situate them-
selves within the broader data science process, users can easily lose
their train of thought, hindering their analytic flow. The need for more
documentation and control observed in our formative study supports
design requirement D3. Without adequate information, users are un-
able to explore new data analysis techniques and interpret the results
in Lodestar on their own. Users also find it difficult to tailor their
explorations to their specific needs without access to the code.

These points of feedback served as motivation for additional iteration
on the Lodestar feature design. Specific features that were added as a
result of this study included the ability to export the user’s notebook
to an .ipynb file for use outside of the system, a visual tracker that
displays the progress of the user’s analysis in each output cell, showing
which recommendations have been chosen so far, and descriptive tool-
tips of the different analysis techniques in each output cell.

5 SYSTEM OVERVIEW

LODESTAR is data analysis recommender, i.e., a system that interac-
tively suggests the next step to take in an analysis workflow. Lodestar is
designed in the style of an interactive computational notebook, and gen-
erally inspired by the designs of existing notebooks such as Jupyter [24],
Observable [23], and Google Colaboratory [18]. Given Python’s broad
popularity in data science contexts [47], we chose to focus on Python
as our target computation environment.

Lodestar consists of four main components, shown in Figure 3: a
browser-based notebook interface, an interactive computing protocol,
a recommendation engine to suggest analysis steps, and a server-side
kernel [24] to execute analysis steps. The protocol manages communica-
tion between the client and server (commands as well as computational
results), and the kernel on the server side runs each analysis step that
the user selects using an interpreter. The Flask server handles all of
the client requests for data processing, analysis, and recommendations,
with different endpoints.

Lodestar emphasizes an iterative workflow design where analysis
steps are added progressively, one at a time, providing finer-grained
control to the user. To help users focus more on analysis steps and
best practices rather than low-level code, Lodestar allows the user
to rapidly choose from a list of recommended analysis steps. These
recommendations are displayed in the form of buttons, so a user can
easily select and execute an analysis step of interest with a single click.
Furthermore, these recommendations are mined from recent Python

tutorials and active GitHub repositories of Jupyter Notebooks, enabling
the user to construct new analysis workflows based on best practices in
a data-driven way.

We describe the Lodestar notebook interface in more detail in sec-
tion 6. We describe our process for extracting, curating, and recom-
mending analysis steps in section 7.

6 NOTEBOOK INTERFACE

The Lodestar interface (shown in Figure 1) is an interactive notebook
providing a literate computing environment [30] that runs in a web
browser on the client. Similar to existing notebooks, the Lodestar
notebook is essentially a linear document that the user can selectively
edit and execute. The interface contains three major components: a
menu panel at the top, one or more notebook cells, and recommen-
dation panels for each cell. The notebook cells and recommendation
panels dynamically appear and update within the notebook interface in
response to user interactions.

The user begins their analysis using the menu panel to load an
existing dataset or a new dataset (in CSV format) into the system. Once
a dataset has been loaded, Lodestar generates a recommendation panel
within the notebook interface, providing the user with an initial set
of recommended analysis steps. We refer to the actual code behind
each analysis step as an analysis block, and the displayed result of
executing the analysis step as a notebook cell. From this point onward,
the analysis process forms a cycle that repeats until the user is satisfied
with their new workflow:

1. The user selects an analysis step from a recommendation panel;
2. The kernel executes the matching analysis block on the server;
3. The notebook displays the output by appending a new cell; and
4. The notebook generates a new panel of recommendations,

based on the user’s previous selection.
When the user is ready to migrate their workflow to a complementary

tool, for example to iterate on the code directly within a code editor,
they can export the Lodestar workflow as a Jupyter notebook file.

6.1 Recommendation Panel
Every notebook cell in the Lodestar interface has an accompanying
recommendation panel, allowing the user to extend their latest anal-
ysis step by one cell. When the user selects an analysis step from
a recommendation panel, a new notebook cell is generated for the
selected recommendation, along with a new recommendation panel un-
derneath. Lodestar uses the output of the preceding notebook cell as the
input for executing any analysis step selected in this recommendation
panel. Each panel provides two sets of recommendations, one from
a crowd advisor and one from an expert advisor. The crowd advisor
sources recommendations from online data analysis repositories such
as GitHub. The expert advisor sources recommendations from educa-
tional resources such as textbooks, online classes or online tutorials.
We describe the Lodestar advisors in section 7.

If a user is unsatisfied with a given set of recommendations, they can
choose from Lodestar’s full catalog of analysis steps in a drop-down
menu at the bottom of each recommendation panel. This list is available
in the supplementary materials.

6.2 Notebook Cell
Once a selection is made in a recommendation panel, the selected anal-
ysis step is highlighted and the results are displayed in a new notebook
cell, allowing the user to review their past selections and the correspond-
ing results with each subsequent step. Furthermore, the user is able
to go back and update the results at any time by selecting a different
analysis step in any of the previous recommendation panels. Any cell
can also be deleted, which triggers the removal of all downstream cells
that depend on the deleted cell. In this way, Lodestar maintains a linear
structure in the notebook, making it easier for users to navigate within
the analysis workflow.

To help users understand the functionality of each recommended
analysis step and its purpose within the context of the larger data
science process, notebook cells consist of five tabs. Each tab describes
the behavior of the analysis block represented by this notebook cell.
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Fig. 3: Overview of the Lodestar architecture. The user interacts with the notebook interface and selects either a data set to bootstrap the notebook
or an analysis step within a guided workflow. The notebook interface sends the selection as a request to the Lodestar server. The Lodestar server
sends requests to the recommendation engine for subsequent recommendations based on current selections (data or analysis). Lodestar server also
sends a request to the Python interpreter to execute any selected analysis. Results from both these requests are sent back from the Lodestar server
to the notebook interface for the user to view and interact.

We refined the design of each tab based on the feedback we received
from the formative study (see subsection 4.1):

• Output Data Frame: Default view that renders the output data
frame produced by executing the analysis step as a table.

• Analysis Results: Displays the raw results produced by the anal-
ysis step (e.g., a print statement, or Seaborn visualization).

• Script: Displays the Python code within the corresponding anal-
ysis block.

• “What’s this Analysis?”: Provides a brief, high-level descrip-
tion of the analysis step.

• Analysis Progress: Displays the chain of analyses leading to the
current analysis step, where each step has an intuitive name.

6.3 Exporting Code and Results
When the user is ready to migrate their analysis workflow to a related
tool, they can export content directly from Lodestar. To export the
code for a specific analysis step into an independent Jupyter notebook
file, the user can click on the export button next to the Code Script tab
of the corresponding cell. To export the entire analysis workflow, the
user can click on the export button on the menu panel at the top of the
interface. Similarly, Lodestar enables users to export the output data of
any displayed notebook cell in the form of a CSV file. To do this, the
user clicks on the export button next to the Output Data Frame tab. The
user can also download the visualizations displayed in any notebook
cell as separate PNG files.

7 ADVISORS AND RECOMMENDATIONS

The Lodestar recommendation engine is based on the notion of an
advisor: a source of analysis recommendations. Lodestar supports
multiple advisors, each consisting of a library of analysis steps and a
set of advisor-recommended transitions between analysis steps (i.e.,
a recommendation graph). In our current implementation, we use
two advisors: a “crowd” advisor drawn from our semi-automatic code
analysis, and an “expert” advisor drawn from the manual code curation.
For each advisor, the recommendation panel will show a list of up to
five recommendations, ordered by probability, or how frequently this
analysis step came next in the respective recommendation graph.

In this section, we describe how we build our recommendation
graphs for the expert and crowd advisors, and how we enable Lodestar
to identify equivalent or related states across both graphs.

7.1 Recommendation Graph
Lodestar models transitions between analysis steps by treating analy-
sis workflows (e.g., existing tutorials or computational notebooks) as
paths taken through a network graph. Each node in the graph is an
analysis step, and a directed edge appears in the graph for each pair of
consecutive analysis steps observed in a workflow. Lodestar leverages

Seaborn visualizations

Data frame
(+export)

Python code
(+export)

Export visualization

Explaining
analysis

Analysis
output

Analysis
progress

Fig. 4: Figure grid generated by an analysis block using the Seaborn
statistical data visualization package for Python.

the relative frequency of these transitions to predict which analysis
steps are likely to occur next. The particular graph structure used in
Lodestar is a Markov chain, and the final computed graph we refer to
as a recommendation graph.

Lodestar traverses the recommendation graph one state at a time
for each user input (i.e., choice of analysis step). As a result, our
recommendation approach does not require maintaining specific state
about the analysis itself. Instead, the location in the Markov chain
serves as state, and transitions (e.g., recommendations) thus depend
only on the current state.

We can infer these recommendation graphs programmatically by
mining analysis blocks (i.e., code snippets) from existing computational
notebooks. In this case, the analysis blocks are used as the graph states,
in place of their corresponding analysis steps. Figure 5 shows the
general approach for mining analysis blocks into this recommendation
graph. We extract the analysis blocks from existing computational note-
books and recover the transitions between states from the sequences
observed in each notebook, with the weights signifying the frequency
of observed transitions. Analysis blocks become nodes Bi in this graph,
and edges represent probabilistic transitions Pr( j|i) = Pi, j, where the
probabilities Pi, j are taken from a stochastic matrix P that simply rep-
resents the frequency of transitions between blocks in the individual
sequences.

To infer the full recommendation graph, we first construct a separate
Markov chain for each notebook (or tutorial) identified as a source
for our advisors. Specifically, we model each notebook as a Markov
chain with one state per block and the transition probability to move
from block Bi to the next block Bi+1 for each time step (e.g., user
input) expressed as Pr(i+1|i) = 1. Similar analysis steps are labeled
with the same high-level identifier, representing a broader category of
computation that transcends individual notebooks (e.g., B1, B2, etc. in



Fig. 5: Mining blocks into a recommendation graph representing a
Markov chain. In Step 1 (left), sources S1, . . . ,Sn (manually curated
or automatically extracted) yield (ordered) sequences of blocks Si =
(B1, . . . ,Bm). In Step 2, a recommendation graph can be derived by
matching blocks that appear in multiple sequences and joining the
sequences at those nodes. Edges between blocks in the graph are the
frequency-weighted state transitions in the chain.

Figure 5). The result is a larger two-dimensional nested list, where
each notebook is one row within the list (i.e., the left side of Figure 5),
and each column a sequence of analysis step categories.

We can then merge the resulting sequences into a single graph (e.g.,
merging S1, S2, etc. in Figure 5), and aggregate the relative frequencies
associated with the different categories to determine transition weights
(i.e., how often do we see blocks from category B1 executed before
blocks from category B2?).

Specifically, the transition probability Pi, j (and thus edge weight in
the recommendation graph) for the ith row and the jth column is the
number of edges from Bi to B j across all the sequences, divided by
the out-degree of Bi. In other words, the graph will have no edges
(weight 0) between blocks that never appeared in sequence, and will
have normalized weights for blocks that fan out to multiple different
destinations (because they are used by many notebooks). To boot-
strap the recommendation, we recommend the first analysis in all the
sequences (the root nodes in the graph).

7.2 Extracting Analysis Blocks for the Expert Advisor
We extracted analysis blocks for our expert advisor from online tuto-
rials2. These tutorials were either Jupyter Notebooks or blogs which
clearly delineated code from text. Analysis blocks correspond directly
to code cells found in tutorial notebooks, or self-contained code snip-
pets found in blog posts.

While there exist many data science resources online, their focus and
depth varies widely, from simple hands-on learning for beginners (e.g.,
software installation, basic Python knowledge, and Jupyter functional-
ity), to expert-level guides on deep learning, sensitivity analysis, and
model building and tuning. As a rule, we picked individual resources
focused on teaching how to complete a specific analysis task.

We narrowed our search to end-to-end data science examples, which
provide concrete sequences of analysis steps along the data science
pipeline. Specifically, we selected examples that have: an explicit
purpose for the data analysis, step-by-step explanations and results, and
runnable code. These requirements helped to ensure that the extracted
analysis blocks will have similar functionality across examples.

7.3 Formatting Analysis Blocks for the Expert Advisor
To ensure that the extracted analysis blocks are executable in Lodestar,
we also apply a separate code curation process. From our experience,
each source has a specific analysis goal, and the blocks across different
sources may use different libraries, data attributes, and variables to
achieve it. For example, a tutorial using the Boston housing dataset,
may generate a scatter to examine a linear relationship between four
housing attributes, while in a school test-scores dataset it only makes

2Please see our supplemental materials for a detailed report on our full
process for extracting and curating analysis blocks for the expert advisor: https:
//osf.io/3gpsy/

sense to examine a linear relationship in between two attributes. This
is useful nuance for manual analysis, but cannot be directly used in a
generic data analysis system such as Lodestar. In other words, the anal-
ysis blocks must be curated—typically generalized—to be applicable
across multiple applications.

The block curation process is idiosyncratic, but consists of the follow-
ing steps: (1) adding missing dependencies, (2) replacing data-specific
labels and attributes, (3) setting appropriate default parameters, and (4)
generalizing code to operate on general data frames and output data
frames too. This process is very similar to our curation strategy for
recommendations from our “crowd” advisor. We manually compared
new blocks to exiting blocks within the library, to ensure there were no
duplicates. Upon completion of the curation process, each new analysis
block is added to the library for the recommendation graph.

7.4 Managing Analysis Blocks for the Crowd Advisor
We extracted analysis blocks for our crowd advisor from a corpus of
approximately 6,000 Jupyter notebooks, originally collected by Rule
et al. [47]3. We filtered out notebooks which did not contain import
statements and API calls using common data science libraries, such
as Numpy [64], Scikit-Learn [40], or Pandas [36]. We first partition
each notebook into discrete analysis blocks. For Jupyter notebooks,
the code is often already partitioned by the notebook authors through
the use of Jupyter notebook code cells. Our straightforward approach
is to identify existing cells in the Jupyter notebook corpus as separate
analysis blocks for Lodestar.

Our key insight for this process is that similar data analysis steps
often use similar API calls in the code. Using this idea, we construct a
term vector to represent each analysis block, where the vector represents
the normalized frequency of each API call that appears within the block.
Each cell in the vector represents a unique API call observed in any
notebook in the dataset, allowing the vectors for any analysis block to
be compared with any other block in the dataset.

We use these term vectors to cluster the analysis blocks. Specifically,
the normalized vectors are passed to a k-means clustering algorithm to
be clustered for similarity. After some iteration, we identified 200 clus-
ters as an ideal number for grouping the analysis blocks extracted from
our corpus (please see our supplemental materials for more details).
Each resulting cluster represents a set of analysis blocks that share
similarities in functionality, and thus could also represent a shared or
synonymous analysis step across the corresponding Jupyter notebooks.

Of the 200 representatives (one for each cluster), we ultimately
selected 22 blocks as a starting set for the Lodestar library. For any
given cluster, Lodestar needs a way of recommending a single analysis
block to users that represents the corresponding analysis step. We
use code-line count as a heuristic to pick a representative analysis
blockfrom each cluster. Specifically, we pick the blocks which have a
median number of lines relative to all other blocks within a cluster.

Blocks for both the crowd and expert advisors are formatted to follow
the same consistent structure assumed by the Lodestar system. We
format each analysis block to be a Python function, include necessary
imports, convert the function’s input and output to a data frame, and
remove print statements and irrelevant comments.

7.5 Identifying Synonymous States Across Advisors
Of course, managing multiple advisors means that the system must
track the state of the analysis in the recommendation graph for all
advisors when the user selects a recommendation from a specific
advisor. Our current solution uses a multi-level tagging mechanism
where each block is manually tagged given its functionality; for ex-
ample, a decision tree block could be tagged with train-model and
test-model. Tags correspond to steps in the data analysis work-
flow. We developed an understanding of these steps using previous
studies [5, 20, 25, 73, 74]. Much like Yan et al. [73], we cast par-
ticular Python APIs to specific analysis steps. For example, Pandas
dropna function was cast as a data-cleaning operation since dropping

3Please see our supplemental materials for a detailed report on our full
process for extracting and curating analysis blocks for the crowd advisor.

https://osf.io/3gpsy/
https://osf.io/3gpsy/


empty elements is a common way to clean data. Our tags include:
statistical-sampling, visualization, data-organization,
data-cleaning, data-formatting and statistical-summary.

In tagging analysis in this way, we allow for matching the new state
of the specific advisor, chosen by the user, to relevant states in the
other advisors. More specifically, if the user chooses a recommendation
from the expert advisor that suggests running a specific decision tree
block, the Lodestar engine will advance the crowd advisor to a state in
its recommendation graph that corresponds to the train-model and
test-model tags. This design, as well as ordering recommendations
by probability ordering, allows Lodestar() to guide best practices.

The same functionality is used when the user eschews all of the
recommendations and instead selects directly from the library through
the drop-down box in the recommendation panel. In this case, all of
the advisor models will be advanced to the appropriate state matching
the block that the user executed. This allows the user to iterate and
sandbox different techniques, unhindered by a guided system. Though,
this is the limit to manual user control that Lodestar supports.

8 DISCUSSION

We have presented Lodestar, a computational notebook for rapid ex-
perimentation and learning of new data science practices. Instead of
forcing fledgling analysts to search for and apply relevant data analysis
methods by hand, Lodestar recommends suitable next steps for the
current workflow using both manually curated as well as automati-
cally crowd-sourced guidance. Our work on Lodestar has uncovered
several interesting discussion points: the prospect for data science for
novices, the actual “wisdom” of crowd recommendations, and alternate
recommendation mechanisms.

8.1 Data Science for Non-Experts
The real power of Lodestar lies not in its data sources, which are pub-
licly available to anyone online, but in its ability to synthesize the knowl-
edge from these diverse sources into a single unified model. By sharing
this knowledge in the form that data scientists are most familiar—
Python (or R) source code—Lodestar provides reusable building blocks
that can easily be transferred across data science workflows.

However, for the tool to be truly effective for its purpose, the library
of analysis blocks must be expanded and drawn from a large set of
sources. For example, new data sources could be incorporated to
customize Lodestar for specific disciplines such as bio-informatics,
computational journalism, and computer vision. Lodestar’s advisor
model may be one way to support this; instead of the “expert” vs.
“crowd” dichotomy that our current implementation uses, a more robust
implementation could support a plethora of pluggable advisors drawn
from a central repository. In this way, the advisors, analysis blocks, and
library could be community-driven and improved by anyone.

Choosing an analysis step or interpreting results in our current pro-
totype still requires baseline data science knowledge, such as from a
university data science course (indeed, all our participants had this).
However, the Lodestar approach does alleviate lack of expertise in data
science practice, which is often the case for academic learning.

8.2 On the “Wisdom of the Crowd” for Data Analysis
While we are excited about the prospects of the “wisdom of the
crowd” [57] for data science and analysis, it has become clear that
this is an area that will require significantly more work. For example,
our current approach is not entirely automated; manual curation is still
required in choosing a representative block from the clustering analysis
and in editing the block into the appropriate form that Lodestar expects,
including eliminating side effects, removing output statements, and
resolving dependencies. We plan to automate these steps in the future.

The need for manual curation, or at least review, is exacerbated by
the fact that a significant portion of the code we analyzed in Rule et
al.’s Jupyter notebook corpus [47] was of low quality: some notebooks
had cells with a single line of code, or all of the source code in a single
cell. Many had non-functional code, syntax errors, or code that was
never used. While we have filtered these notebooks from our analysis,
the signal-to-noise ratio in crowdsourced code is often low.

The remedy for many of these challenges can often be found in
sheer scale. While we studied the “sampler” dataset containing 6,530
notebooks in this paper, the full 600 GB dataset contains more than
1.25 million notebooks. With access to this many examples, we could
afford to discard more problematic ones. Furthermore, frequency of use
would help ensure that best practices are easier to identify. Of course,
a dataset of this size brings with it a new set of scalability challenges.
Existing data processing [39] and code analysis [15, 16] techniques
could help address this big data challenge in the future.

8.3 Different Recommendation Strategies

The Lodestar recommendation engine is based on Markov chains,
which are useful for representing a sequence of chained states or com-
mands, as in a data science script. However Markov chains may over-
simplify the relationships between analysis steps and data science users
in some ways. It would be interesting to study how to use more so-
phisticated methods as part of the Lodestar recommendation engine.
For example, state-of-the-art recommender systems tend to be orga-
nized into collaborative filtering, content-based filtering, and hybrid
filtering [2]. Collaborative filtering is based on a social view of recom-
mendation, where behavior by other users such as navigation, ratings,
and their personal traits are used to match content to a specific user.
In the case of Lodestar, this would enable the historical preferences
of Lodestar users to guide other users. For content-based filtering,
recommendations can be derived by comparing items to recommend
with user preferences and auxiliary information. This approach could
enable Lodestar users to be matched to specific analysis steps based
on, e.g., workflows they have created in the past, specific data types,
and metadata for existing datasets and code. Finally, we could combine
methods to develop new hybrid recommendation strategies.

A recent development in artificial intelligence is to build rec-
ommender systems using deep learning techniques (or deep recom-
menders) [4, 75], particularly for content-based approaches. Given our
large available corpus of potential training data, unsupervised methods
such as Recurrent Neural Networks [17] could prove useful, since they
are ideal for sequential data. The Lodestar advisor model provides a
useful framework from which to incorporate and merge future recom-
mendation strategies for data science. However, these topics are beyond
the scope of this paper.

8.4 Limitations and Future Work

Two participants from our formative study suggested that they would
either appreciate being able to toggle off the recommendations or view
them all without a filter. Based on these comments, it remains un-
clear how effective a code-free recommendation environment can be in
teaching data science best practices. Thus, in our future work, we will
test the strength of Lodestar recommendations and its effectiveness in
teaching novice data scientists new techniques.

Due to the many challenges of automatic code analysis, we currently
do not allow users to write their own code directly in Lodestar, or even
to modify existing code. To make online code editing possible, we
would need an automatic classification process that could determine
how new code fits into the recommendation graph so that the system
could resume the analysis with new recommendations after manual
code block. Such live updates to the recommender are not currently
part of Lodestar, but are an interesting direction for future work.

We made several design decisions to the Lodestar notebook that will
need to be revisited for a general implementation.

Lodestar currently does not consider specifics about each input
dataset while making recommendations—only display recommenda-
tions which do not programmatically fail to execute on the selected
dataset. This is a point of future work.

All of our analysis blocks take a Pandas data frame as input, and
generate a new data frame as output. Also, other disciplines use other
data representations, and some computations may require passing mul-
tiple data objects as arguments. To address these limitations, we look
to improving our existing design and thoroughly evaluating these im-
provements in our future work.
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