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ABSTRACT
Sensemaking is the iterative process of identifying, extracting, and
explaining insights from data, where each iteration is referred to
as the “sensemaking loop.” However, little is known about how
sensemaking behavior evolves from exploration and explanation
during this process. This gap limits our ability to understand the
full scope of sensemaking, which in turn inhibits the design of tools
that support the process. We contribute the first mixed-method to
characterize how sensemaking evolves within computational note-
books. We study 2,574 Jupyter notebooks mined from GitHub by
identifying data science notebooks that have undergone significant
iterations, presenting a regression model that automatically char-
acterizes sensemaking activity, and using this regression model to
calculate and analyze shifts in activity across GitHub versions. Our
results show that notebook authors participate in various sense-
making tasks over time, such as annotation, branching analysis,
and documentation. We use our insights to recommend extensions
to current notebook environments.

CCS CONCEPTS
• Human-centered computing → Human computer inter-
action (HCI); Empirical studies in HCI; • Mathematics of
computing → Exploratory data analysis.
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1 INTRODUCTION
Sensemaking is “the process of searching for a representation and
encoding data in that representation to answer task-specific ques-
tions” [34]. In each iteration of this “sensemaking loop” [28], data
scientists refine their code, visualizations, and annotations in pur-
suit of a deeper understanding of their data [36]. Pirolli and Card
posit that data scientists often oscillate between exploring the data
and explaining what they have learned (to themselves or stakehold-
ers) during sensemaking [28], leading to more of “spiral” of activity
than a true “loop”. Rule et al. observe similar sensemaking patterns
among computational notebook users [33]. Furthermore, sensemak-
ing is considered an iterative process, where the explanation or
insight of each oscillation informs the next [28, 33].

Computational notebooks such as Jupyter [17], R Markdown,
or Observable are especially popular for documenting the com-
plexities of the sensemaking process given the ease with which
code can be interleaved with descriptive text and illustrative im-
ages [16, 33]. However, notebooks still fall short of the ideal for
sensemaking, particularly in tracking changes to notebooks over
time [13], frustrating many notebook users [4].

In order to improve notebooks for sensemaking we must first
characterize users’ common interaction patterns so that we can
(re)design notebook environments to better support them [13].
However, the evolving nature of sensemaking suggests that these
patterns may vary depending on where users are within the pro-
gression between exploration and explanation [33]. Thus, we need
to determine where a user is along this exploration-explanation
spectrum before we can design appropriate solutions. Recent work
posits that we can infer where a user is within the exploration-
explanation spectrum directly from computational notebooks [16,
33, 42]. However, these prior works rely on small-scale user studies
to investigate sensemaking within notebooks. Furthermore, they
treat notebooks as static outputs of sensemaking rather than a core
medium for iteration. This limits our understanding of notebooks
as living documents of scientific inquiry. Without more rigorous
validation, it is still unclear whether current theory can accurately
detect sensemaking within real-world notebook environments.

This paper proposes a new approach to analyzing how com-
putational notebooks are revised over time. The key idea is that
many analysts already track their notebook iterations using pub-
lic version control infrastructure such as GitHub. We contribute a
pipeline to collect, model, and quantify exploration and explanation
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across GitHub commits. This pipeline allows us to (1) characterize
observed shifts in sensemaking behaviors within notebooks, such
as whether notebooks become more explanatory or exploratory
over time, and to (2) understand why these shifts occur. To do this,
we randomly sampled and downloaded 2,574 Jupyter notebooks
stored on GitHub’s public repositories. We report on their content,
revision history, and evolution. Our analysis has three parts:

(1) Identifying Relevant Notebooks – finding the data sci-
ence notebooks that were actively refined overtime onGitHub,
as well as quantitative metrics to analyze them;

(2) Measuring Exploration vs. Explanation – leveraging
prior work [16, 33] to distinguish between the exploratory
vs. explanatory nature of data science notebooks; and

(3) Measuring Evolution – drawing on GitHub revision his-
tory to understand how notebooks, and in turn authors’
positions in the sensemaking loop, shifted over time.

We acknowledge that these quantitative approximations may
not reflect the author’s complete process. This discrepancy is due in
part to authors’ selective reporting as well as to limitations inherent
to notebook platforms themselves [4, 16, 21, 24, 33, 39, 42]. In other
words, the use of GitHub as a data source likely biases the type
of notebooks we collect for our sample. Regardless, we believe
that measuring notebooks as they publicly change over time still
provides a unique perspective on the sensemaking process that
qualitative analyses of singular notebook versions cannot.

Wemake the following contributions in this paper: (1) we develop
a rubric to show how to quantify the explanatory or exploratory
nature of a Jupyter Notebook, enabling us to analyze data-science
notebooks at scale; (2) we track the evolution of notebooks over
time by calculating our quantitative measure across multiple note-
book versions; (3) we characterize the way analysts iterate on their
notebooks; and (4) we use these insights to make design recom-
mendations to better support the different notebook-based sense-
making behavior we observed. More broadly, we contribute a more
nuanced view of the data science process that brings notebook
analysis methodology closer alignment with established theories
of sensemaking and data exploration. This quantitative approach
to understanding the analytical process can be directly applied to-
wards teaching, guiding, and developing tools for promoting best
practices in data science.

Beyond the overview of our method and results presented in
this paper, we have also provided supplementary material with the
full details in the following OSF repository : https://osf.io/9q4wp/
?view_only=61e6f58d29194742a0aaed328afdea4d

2 RELATEDWORK
In this section, we introduce key concepts and terminology that
we use in our work to map signs of exploration and explanation
in computational notebooks to corresponding shifts within the
sensemaking loop.

2.1 Computational Notebooks
As an embodiment of the literate programming paradigm [18],
where traditional source code is embedded in descriptive natural
language, computational notebooks are an ideal medium for studying
the sensemaking process [7, 17, 26, 29, 35, 44]. A notebook is a linear

sequence of executable code that perfectly captures the procedural
nature of sensemaking. The ability to inspect intermediate results
by generating visualizations and tables scaffolds the exploratory
process. The rich annotation features scaffold the pivoting of data
representations towards explanation. Notebooks also allow for easy
sharing of data, code, and analyses all in one [4, 33]. As a result,
computational notebooks have quickly become an essential part of
conducting data science [16, 17, 33, 39].

Data scientists utilize computational notebooks—specifically
their flexible cell structure—to iterate on different branches of ex-
ploration and create narratives surrounding their analyses [4, 5, 11,
14, 16, 19, 27, 31, 33, 40–43].

2.2 Sensemaking in Computational Notebooks
Pirolli and Card describe the sensemaking loop as cumulative itera-
tions by which analysts develop an understanding of the data [28].
Each iteration informs the next. Our work enriches this definition
of sensemaking with notebook-oriented notions of exploration and
explanation from the literature [16, 33]. Specifically, we define the
“sensemaking spectrum” as a two-dimensional representation of
the sensemaking loop from early-stage exploration to late-stage
explanation [28].

Qualitative studies from Rule et al.[33], Kery et al. [16], and
Wang et al. [42] show that we can observe sensemaking within
computational notebooks in the form of exploration and explana-
tion. For example, Kery et al. observed that some analysts created
many small code cells while performing exploratory data analysis
to optimize iteration, and later grouped code into individual “logical
units” to communicate analytical steps [16]. Rule et al. noted that
analysts place text that serve different purposes in different parts of
the notebook [33]. They found that nearly all code comments help
explain the methods employed by code, headers labeled the analy-
ses, and most non-header text explained analytical steps. Wang et
al. extended this finding by showing that highly readable (explana-
tory) notebooks use a variety of descriptors to attract a broader
audience [40]. Based on these findings, it seems evident that dif-
ferent notebook characteristics, such as types of documentation or
distribution of code across cells, can indicate an analyst’s current
position within the sensemaking spectrum between exploration
and explanation.

Some previous work contribute to our understanding of how
notebooks are used but do not identify these steps in the context of
sensemaking. For example, Dong et al. find that code cleaning is an
integral part of sharing a notebook [5]. They characterize cleaning
as renaming variables, generating functions, reordering code cells,
adding pertinent annotations, moving content between files, and
removing extraneous content. We leverage Dong et al.’s work to
construct a comprehensive model of sensemaking in notebooks.

2.3 From Exploration to Explanation
In data exploration, analysts seek to profile their data, define their
goals, and become comfortable with potential analytic methods [8,
16, 27]. As Alspaugh et al. explain, data analysis exists within a
spectrum between “exploratory" and “directed" analysis, wherein
the nature of analysis changes as goals become more concrete [1].
Analysts seek to understand their dataset, look for exciting patterns,
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Figure 1: Thresholding on Number of Notebook Commits.
We grouped notebooks by the number of times they were
committed to GitHub. We note the percentage of notebooks
within each commit group wherein the number of lines
changed between the first and last commits. As the vertical
red line indicates, we filter out notebooks in commit groups
where more than a quarter of the notebooks showed zero
changes to lines (i.e. notebooks with fewer than 4 commits).

and identify assumptions as a means to inform next steps [1, 12, 25,
45]. The ultimate objective of this process is to inform decisions.

The process of explaining data insights entails shaping explo-
rations into a narrative to communicate the process and results [16].
This type of explanation provides clarity on how the analysis pro-
cess yielded particular insights to an audience (including oneself).
Analysts can describe their analyses and findings in varying levels
of detail and clarity, ranging from reporting all avenues of explo-
ration and ensuing insights to saving only the most critical deci-
sions and findings [16, 22]. The level of detail they choose depends
mainly on the audience. When the audience is oneself or fellow
technical team members, the analyst focuses on retaining code and
branches of exploration and formatting them in a comprehensible
manner [16, 33]. When presenting results to a broader, perhaps
non-technical, audience, analysts may remove details that appear
confusing or uninteresting and add more explanatory text—shifting
the focus from the code to the narrative [16, 21, 33].

Our definitions are also grounded in literature on notebook
reproducibility—a common motivation for authoring notebooks [4,
27, 31, 42, 43]. Like explanatory notebooks, reproducible notebooks
allow for communication, reuse and reproduction—enabling a clear
linear structure [31, 43] and presenting clean code [5, 27].

3 DATASET
Given our aim to use revision histories to measure how data science
notebooks evolve, we chose to analyze publicly available Jupyter
Notebooks found on GitHub for the following reasons: 1) it pro-
vides an extensive repository of Jupyter Notebook documents, and
2) they are particularly amenable to meta-analysis due to the ease of
accessing their underlying JSON metadata structure. Since GitHub

contains a large variety of notebooks in terms of quality and pur-
pose, we anticipated that many notebooks would not be applica-
ble [19, 33] for this analysis. Thus, we sought to programmatically
filter for data science notebooks to automatically scale our analysis
to any sample size.

In July 2019, we identified 4.7 million notebooks on GitHub,
and randomly sampled approximately 10% of this dataset. Of the
approximately 400,000 notebooks selected, 27.4% were eliminated
due to dead links and an additional 57.6% were eliminated due to
inaccessible commit data. We queried for GitHub commit infor-
mation to ensure we could examine all versions of notebooks. Of
the remaining 59,887 notebooks, we selected 2,574 notebooks for
further analysis using the criteria we outline below.

3.1 Data Collection Method
To mine Jupyter Notebooks from GitHub, we used Rule et al.’s
approach [33]. We first downloaded and accessed the 59,887 note-
books remaining after the original sampling and filtering discussed
above. For the sake of project feasibility, we chose to observe only
Python notebooks annotated in English. Python and R are the most
popular languages used for data science, but we made this choice
on the basis that Python is significantly more common in Jupyter
than R (more than 96% of all Jupyter Notebooks are written in
Python [33]). Using these criteria, we programmatically eliminated
3,642 notebooks from our sample.

To further select notebooks suitable for our analysis, we defined
a standard to identify Jupyter notebooks that use data science and
were stored on GitHub. To meet our standards: (1) notebooks
must demonstrate data analysis activity, (2) some subset of changes
must be observable across multiple versions found in the GitHub
repository, and (3) changes to the notebook must be made by the
original owner of the notebook. We briefly outline our filtering
criteria below; further details about our criteria and our methods
can be found in our supplemental material.

Data Science Notebooks. First, we defined data science notebooks
as ones that deal with data in any capacity, ranging from loading
a dataset to executing numerical operations on the dataset, all
the way to developing predictive models. We used the number of
popular data science Python libraries as a heuristic to determine
whether the notebooks were data science-oriented. We manually
derived a list of data science libraries by reviewing 28 online Python
tutorials. The full list contained the following packages, in order
of popularity: numpy, scipy, pandas, scikit-learn, matplotlib,
pytorch, and tensorflow [27].

We select notebooks that contain more than two of these libraries
and at least 15 function calls to these libraries. We added this last
criterion to ensure that data science libraries were imported as
well as utilized. The thresholds to these measures were determined
using qualitative analysis described in the supplemental materials.
We acknowledge that this heuristic has potential for eliminating
data science notebooks that use libraries not included in this list.
However, this method yielded a definite sample of data science
notebooks from the dataset.

Versioned Notebooks. Second, we used the number of notebook
versions within the repositories and the number of changes within
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them as a heuristic to measure whether changes to data analysis
were observable. Initially, we considered notebooks with at least
two versions. Through qualitative analysis, we found that a thresh-
old requiring at least four notebook versions ensured that we would
observe substantive changes to notebook content 1.

Among notebooks with at least four versions, we found that
selecting notebooks with at least two changes to the number of
cells and 20 changes to the number of lines ensured that both note-
book content and structure were changed. We did not set an upper
bound on any of these thresholds and our goal was to ensure the
data science notebooks generally demonstrated changes across ver-
sions. We identified these specific thresholds using the qualitative
approach described in the supplemental work. A total of 5,082 were
eliminated for not meeting this criterion.

Original Content. After observing duplicate notebooks and empty
class templates in our sample, we restricted the analysis to versions
made only by the original repository owner. This did not elimi-
nate notebooks with multiple contributors and ensured that we
considered original work across repositories. An additional 12,350
notebooks were eliminated based on this criterion.

3.2 Summary & Dataset Considerations
A total of 2,574 notebooks remained after the process described
above had filtered out dead links, inaccessible data, non-analysis
code, and insufficient commit histories. A majority of these note-
books were data-science oriented, contained a rich amount of data
science activity, and were written in English.

We acknowledge that our quantitative approach may produce
many false negatives (i.e., ignore some valid data science note-
books), providing opportunities to develop looser filters that are
still accurate in future research. However, given the millions of
notebooks we have access to, we believe false negatives are only
a minor concern compared to false positives, i.e., notebooks that
include no data science conducted over time, since false positives
could pollute the corpus with irrelevant data points that would be
difficult to detect automatically. For this reason, we chose rigorous
criteria to minimize the number of notebooks in the sample that
do not demonstrate traditional sensemaking. We believe that our
strict inclusion criteria ensure that very few of the selected note-
books are false positives, making our corpus suitable for large-scale
quantitative analyses.

We also acknowledge that not all analysts may commit all their
iterations to GitHub repositories. However, given the relatively
large size of our dataset (2,574 notebooks and 26,474 notebook
versions), the noise in our dataset is significantly diminished.

4 MEASURING EXPLORATION VS.
EXPLANATION

We first seek to answer the following research question: Can we
apply previous findings to quantitatively measure exploration and
explanation in computational notebooks? To answer this question,
we first manually curated a reference dataset of 244 notebooks (10%
of our sample) using a manual rubric that maps notebook charac-
teristics to points within the sensemaking spectrum. This rubric
scores builds directly upon findings of previous work regarding
how sensemaking manifests within computational notebooks. We

then used our manual reference dataset to develop and validate a
model to automate the manual classification.

4.1 Constructing the Reference Dataset
We acknowledge that in the absence of feedback from the original
notebook authors, it is difficult—and in some cases, impossible—to
synthesize an absolute measure of the exploratory-explanatory na-
ture of a notebook. We cannot nor should we claim that a specific
notebook is forever explanatory or exploratory. However, our inter-
est in this work is to understand how notebooks evolve over time,
suggesting that a relative measure of notebook iteration could be a
viable approach to analyzing notebook histories. In other words,
with a substantial history of notebook iteration, we can quantify
how sensemaking shifts over time, rather than trying to pinpoint
exactly where sensemaking begins or ends. Given our extensive
filtering strategy in the previous section, we know that our corpus
provides rich records of notebook revisions, enabling a comparison-
based analysis approach.

With this in mind, we introduce a measure of the exploratory
or explanatory nature of an individual notebook version, which
we will use later to perform a before-and-after analysis across
notebook versions. In this section, we describe a new rubric to
score data science notebooks according to their position along the
sensemaking spectrum, which we aim to automate. The goal of this
analysis was to determine whether each notebook appears to be
more exploratory or explanatory in nature, but again, in service of
our larger goal of analyzing notebook shifts over time.

Our rubric development was guided by existing evaluations of
sensemaking within computational notebooks. For example, as
observed in prior work [16, 33, 40], notebooks with good narrative
structure generally tell a compelling story of both the data analysis
process and the insights derived from this process. These notebooks
clearly communicate the analyst’s motivations and insights, and can
appeal to a wide audience via instructional text or explanations of
field-specific terminology [1, 4]. Therefore, the better the narrative
structure of a notebook, the higher the exploration-explanation
score it should receive.

Based on the literature, one of the authors developed a rubric for
scoring notebooks. Two other authors provided feedback on the
rubric between coding iterations. All coders were knowledgeable
in data science. Inspired by methods for reaching agreement on
qualitative codes [23], our scoring process involved three iterations
with two coders to converge to scores consistent with our rubric.
The iterations included a preliminary scoring iteration where scores
were assigned based on an initial rubric, a second one where scores
were refined in parallel with the rubric, and a final one where scores
were reviewed for consistency with the final rubric. Coders reached
a Krippendorff’s Alpha inter-rater reliability score of 0.88 after
converging on this rubric.

We represented the positions of notebooks on the sensemaking
spectrum using a score between 0.1 and 1.0, where 0.1 represents
the most exploratory notebooks and 1.0 the most explanatory ones.
Scores were assigned in increments of 0.1. We wanted our range of
scores to be evenly distributed such that the first five scores (0.1-0.5)
characterize mostly exploratory notebooks and the last five scores
(0.6-1.0) characterize mostly explanatory notebooks.
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Score Stage Concrete Examples

0.1 Understanding the data [1, 12,
25, 28, 45]

Just code (Few unorganized cells [16, 33], duplicated code [11], no
output [27].)

0.2 Iterative data wrangling [1, 8,
12, 25, 28, 45]

Just code, some output from exploration [27] (disjoint, duplicated code
cells; lots of code cells with individual lines of code [4, 9, 16, 33]).

0.3 Defining goals using iterative
exploratory analysis [1, 12, 28,
45]

Lots of code [16], some output from exploration (some code cells are
grouped by functionality, text headers and code comments are used to
label groups) [4, 5, 9, 16, 33].

0.4 Beginning goal-oriented ex-
ploratory analysis [1, 12, 28, 45]

Code and visual output address some goals (some code cells are linearly
grouped by text headers and code comments are used to label and
annotate analysis) [5, 9, 16, 31, 33, 42, 43].

0.5 Exploratory analysis with clear
goals [1, 12, 28, 45]

Code and visual output address goals (majority of code cells are linearly
grouped by text headers and code comments) [5, 9, 16, 31, 33, 42, 43].

0.6 Analytical steps are communi-
cated [1, 8, 12, 28, 45]

Code and code output are interwoven with text headers and code
comments for the sake of outlining the logical steps which were
taken. [9, 16, 33, 40].

0.7 Some insights of analy-
sis tracked and communi-
cated [1, 8, 12, 28, 45]

Analysts are also using text to briefly annotate their code with insights
from individual logical steps. [16, 33, 40].

0.8 Some motivations and insights
tracked and communicated [1,
8, 12, 28, 45]

Analysts are explaining their motivations behind individual analyt-
ical steps, and more thoroughly annotating their logical steps with
insights. [16, 33, 40].

0.9 Motivations and insights of
analysis clearly communi-
cated [1, 8, 12, 28, 45]

Analysts introduce their analytical reasoning behind the work overall.
In addition, they are illustrating links between logical steps using text in
the form of headers, insights and motivations. Together the text forms
a narrative of the methods and the results. [16, 33, 40].

1.0 Analysis workflow communi-
cated to a wide audience [28]

Text may provide instructions on how to interact with the notebook,
provide context behind the work, motivations on the methodology,
insights from individual logical steps and insights from the entire ex-
ercise [32]. If code and code output are present, they align with the
narrative being outlined by the text. [16, 33, 40].

Table 1: Notebook scoring rubric. This rubric leverages existing observations from the literature to characterize notebooks along
the sensemaking spectrum. For example, Tukey’s definition of exploratory data analysis motivates our definition of stages 0.1 -
0.5 [38], and we defined stages 0.6 - 1.0 using existing definitions of narrative structure [33] and types of descriptors [40]. Our
supplementary material (https://osf.io/9q4wp/?view_only=61e6f58d29194742a0aaed328afdea4d) includes the full rubric.

To form an impression of the notebooks, coders considered the
following criteria:

• Code abstraction methods such as functions, classes, and
code distribution within cells;

• The clarity of code based variable names and in-line code
comments;

• The use of markdown headers to create sections;
• The cohesiveness of the analytical workflow; and
• The types of descriptors (analytical, procedural, and context)
included in the document.

We identify exploratory notebooks as ones which leverage code
to explore data. These notebooks place little focus on explaining
insights, reasoning, or analytical methods, and instead focus on
fast iteration resulting in duplicated, messy code [4, 16, 19]. In
explanatory notebooks, on the other hand, the intent to outline,
document, or explain previous data exploration is clear [1, 4, 33, 40].
The rubric in Table 1 specifies how each notebook was evaluated.

4.2 Automating the Scoring Process
To scale up our analysis, we needed a way to programmatically
calculate a notebook’s exploration-explanation score. We observed
characteristics of notebooks from our reference dataset to under-
stand how they contributed to a notebook’s position on the sense-
making spectrum. We chose to observe particularly quantitative
characteristics which were highlighted by previous literature on
sensemaking in notebooks and used our own observations to un-
derstand how other metrics correlated with our manually assigned
exploration-explanation scores.

4.2.1 Analyzing Notebook Characteristics. Prior work suggests that
authors change many different aspects of a notebook throughout
the sensemaking process. Specifically:

• The amount of code in a notebook tends to increase as ana-
lysts explore their dataset [4, 5, 9, 11, 16, 19, 27, 33].

• Data science notebooks often contain content beyond just
code. This content is of particular interest, because they are

https://osf.io/9q4wp/?view_only=61e6f58d29194742a0aaed328afdea4d
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Focus Code Related Measures Non-Code Related Measures

Output Number of tables produced by code cells
Number of visualizations produced by code cells
Number of text outputs produced by code cells

Organization Number of code cells Number of spacing characters across markdown cells
Number of lines of code across
code cells

Number of lines of text across markdown cells

Output & Organization Number of markdown cells
Other Number of spacing characters

across code cells
Number of individual code com-
ments within code cells

Table 2: Summary of metrics. Our Hybrid combination included the above measures in italics. To ensure that different
quantitative measures could be compared fairly across notebooks, we normalized each measure with respect to individual
notebooks. Our normalization process translates each measure to a domain of 0.0 to 1.0. We normalized cell counts by dividing
them by the total number of cells found in the notebook (e.g., number of code cells divided by the number of all cells). We
normalized the output (text, table, and visualization) counts by dividing them by the total number of outputs in the notebook.
We normalized the number of code comments by the number of lines found within the code cell. Finally, we normalized the
number of spaces for a given cell type by dividing by the total spaces across all notebook cells.

primarily explanation-oriented, and thus increase a note-
book’s exploration-explanation scores [16, 32, 33, 41].

• Negative space can have a profound impact on how informa-
tion is organized and presented for communication [37]. Rule
et al. suggest that the number of spacing characters in text
and code cells could point towards more of an explanation
focus for a notebook [33].

For these reasons, we analyzed all parts of a notebook, including
code, non-code, and whitespace, when developing and applying
the rubric.

4.2.2 Combining Measures. We combined a subset of these mea-
sures into three groups named “Output-Focused,” “Organization-
Focused,” and “Hybrid.”

• The “Output-Focused” group focused on the outputs gener-
ated by a notebook, which may indicate a more explanatory
notebook.

• The “Organization-Focused” group of measures gauged the
proportions of different cell types and their structure, where
notebooks with more markdown cells and/or better orga-
nized cells were likely to be more explanatory.

• It is possible that cell outputs and cell organization together
play important roles in assessing the exploration-explanation
scores of a notebook. In response, we formulated a new
“Hybrid” combination, incorporating measures from both
of the above combinations. We refer to this combination as
“Hybrid.”

We provide an itemized list of measures and their organization
in Table 2.

4.2.3 Comparing Combinations of Quantitative Measures. We used
each combination of measures as parameters in a multi-linear
regression analysis against the manually assigned exploration-
explanation scores. We leveraged a 𝑘-fold cross-validation tech-
nique to ensure the strength of eachmodel. Themodels were trained

in 5 folds on 20% of the data, and tested on the rest. 𝑅2 values were
calculated for each model, within each fold. A mean and median
𝑅2 value were generated for each model. Median 𝑅2 values were
compared to assess correlations.

4.2.4 Hybrid-Focused Combination Performance. We found that
our Output-Focused and Organization-Focused combinations cor-
relate positively with increases in exploration-explanation score.
The Organization-Focused combination has a higher correlation
value than our Output-Focused combination.

However, it is unclear whether cell outputs and cell organization
measure redundant information, or are complementary. To assess
this relationship, we performed the same analysis with our “Hybrid”
combination, which produces amulti-linear regressionmodel with a
correlation value (𝑅2 = 0.591): 𝑌 = 0.426× totalMarkdownCells+
0.145× totalMarkdownSpace− 0.077× totalCodeCells+ 0.176×
totalVisualizations + 0.125 × totalTextOutputs +
0.172 × totalTableOutputs + 0.395.

Thus, it seems that cell types, cell outputs, and cell organization
capture separate but complementary facets of a notebook author’s
sensemaking process. For this reason,weuse the hybrid combina-
tion for all subsequent analyses in this paper. The results for the
“Hybrid” combination are provided in Figure 2, where the y-axis rep-
resents the range of automated exploration-explanation scores, and
the x-axis the manually assigned exploration-explanation scores.

4.3 Results and Takeaways
In this study, we used prior observations of how analysts interact
with the sensemaking process as a whole [1, 12, 16, 20, 28, 34] and
computational notebooks in particular [33] to derive a new rubric
for assigning a exploration-explanation score to an individual note-
book. Our scoring mechanism aims to establish sufficient placement
along the sensemaking spectrum such that we can observe shifts in
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Figure 2: Score comparison. Comparison of our manually as-
signed exploration-explanation scores (x-axis) and hybrid au-
tomated scores (y-axis), using a combination of quantitative
measures. These data points are drawn from our reference
dataset containing 244 notebooks. (Multi-linear regression
model, 𝑅2 = 0.591.)

the spectrum over time. Although not exact, our computed scores
still provide a valuable signal for studying notebook evolution.

To scale up the application of our rubric, we first formed a
manually-labeled reference dataset containing 244 notebooks. These
were used to develop our regression models. We then analyzed rele-
vant quantitative measures that may predict these exploration-
explanation scores. We found a strong correlation between in-
creases in exploration-explanation scores and increases in organization-
focused measures, such as having more lines or more spacing in
markdown cells. We also found a positive correlation between
output-focused measures and exploration-explanation score (i.e.,
more explanatory notebooks). Thus, the content and structure of a
notebook may be indicative of the sensemaking goals of the note-
book’s author.

Analysis Limitations. We acknowledge that it is unrealistic to
extract exact quantitative measures for exploration-explanation
scores and that many combinations of notebook attributes could ul-
timately predict sensemaking behavior. Furthermore, although we
believe that our R-Squared value indicates that the metrics we con-
sidered can be used to measure sensemaking activity in notebooks,
there is room for improvement towards modeling sensemaking. For
example, modeling cell relationships could help capture the narra-
tive structure of the notebook. We could derive these relationships
by implementing more semantic analysis techniques that track the
execution order and the inter-dependence between code cells. Fur-
thermore, natural language techniques could be used to identify
the depth and breadth of documentation as well as their relevance
to the techniques attempted.

That being said, these techniques and capabilities are considered
in retrospect. At first, it was unclear what techniques could be
applied appropriately to this data, and to what degree, since few if
anyworks have taken this approach to quantifying the sensemaking

process in computational notebooks. Thus, we position this paper
as an exploratory “first look” into how these kinds of analyses
can be conducted programmatically, and leave it to future work
to generalize and extend them. We encourage the community to
extend our initial feature set with new attributes, and we hope that
our findings can inform future goals for developing accurate and
realistic semantic models in the future (see Section 6).

5 MEASURING NOTEBOOK EVOLUTION
Rule et al. observe that “the process used to collect, explore, and
model data has a significant impact on the sense made.” In other
words, the process of authoring a notebook affects the insights
derived. Given that a single snapshot of a notebook represents only
one point within this process, it stands to reason that analyzing
only one version of a notebook is insufficient to fully comprehend
the sensemaking process behind it. For example, it is impossible
to know from a single notebook version whether a user’s analysis
shifted from exploration towards explanation, as hypothesized in
prior work, or followed a different path.

However, a more complete view of the user’s sensemaking pro-
cess could be gained by considering how the notebook has changed
over time, i.e., across multiple git versions. To this end, we ana-
lyze how our exploration-explanation scores from Section 4 change
across notebook versions by treating them as individual time series.
We seek to answer the following research question through this
analysis: How does the exploration-explanation score of a notebook
change over time, and what factors (if any) may explain any observed
changes in the score?

5.1 Measuring Exploration-Explanation Scores
Across Versions

To understand how notebooks change over time, we chose to char-
acterize notebooks by their respective and available versions. This
was done in two steps.

First, we used public GitHub commits as a proxy for notebook
versions. We downloaded all available GitHub versions for each
notebook. For each version, we generated the notebook metrics
needed to apply the “hybrid-focused" formula from Section 4.2.4.
We used these metrics to calculate the exploration-explanation
score of each version, compiling a list of scores for each notebook.
This transformation allowed us to view each notebook as a time-
series of exploration-explanation scores (i.e., a series of notebook
scores ordered based on the time of each commit). For example, we
would represent a notebook with 5 versions with a list of 5 numbers,
each ranging from 0.1 to 1.0. Each number indicated the position of
each version within the sensemaking spectrum.We viewed changes
in the time-series to indicate the evolution of a notebook across
versions.

Second, we normalize the time-series data to enable comparison
across notebooks. The number of versions and thus the length of
our representations varied across notebooks, ranging from 4 to 94
versions. To do this, we generated a simple, best-fit linear regression
model for each notebook representing points as a linear relationship
between version numbers and exploration-explanation scores. A
linear model is an appropriate choice because we focus on general
shifts across entire notebook histories, which is a noisy time series.
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Linear Models. Many time series exhibit different patterns at
different levels of granularity [10], where some of the observed
variation may be due to noise [2]. The stock market is a classic
example. The gyrations of the stock market vary non-linearly at
a granular level, but a linear model can overcome the effects of
noise to reveal overall trends of stock market prices over time, e.g.,
market booms and busts and phenomena such as “regression to
the mean" [2]. A linear model is simple but still appropriate for
assessing these kinds of trends in noisy time series [6].

We also attempted to analyze this data using more sophisticated
time series analysis methods such as dynamic time warping. How-
ever, we soon realized these methods were unsuccessful due to
noise; example time series are shown in Figure 3. We observed con-
sistent overall shifts across time series, but no consistent patterns
between consecutive pairs of commits. Hence we adopted a more
traditional time series analysis method, i.e., a linear model [6].

5.2 Grouping Time-Series
Now that we had a means of comparing notebook time-series, we
chose to group notebooks bymajor shifts in exploration-explanation
score as a way to identify common user behaviors. We wanted to
asses whether these behaviors matched our current understanding
of the sensemaking spectrum. For example, if users generally follow
the pattern hypothesized in prior work [5, 9, 13, 16, 33], then we
would expect to see notebooks shifting upward from exploration
towards explanation. However, the notion of a sensemaking loop
suggests that users might also do the reverse, corresponding to
shifts from explanation toward exploration. In the remainder of
this section, we describe our process for grouping the time series
and qualitatively analyzing each group, and discuss the major shifts
that users tended to make along the sensemaking spectrum.

GroupingMethods. We focus our analysis on how notebooks shift
along the sensemaking spectrum, represented by three variables:
initial score (i.e., time-series starting with high/low exploration-
explanation scores), final score (i.e., time-series endingwith high/low
exploration-explanation scores), and direction of slope from respec-
tive linear regression model (i.e., increasing or decreasing scores).
Using the rubric established in section 4, we labeled scores ≤ 0.5 as
exploratory and > 0.5 as explanatory.

We identified four main groups of notebook shifts: exploration to
exploration, exploration to explanation, explanation to explanation,
and explanation to exploration. For example, time-series that began
and ended with exploratory notebook versions were grouped as
‘exploration to exploration.’

Qualitative Analysis Methods. Three of the authors qualitatively
examined a random sample of 5% of all notebooks (142 total) and
their version histories using the following guidelines:

(1) We analyzed the first version to form a hypothesis for the
analyst’s initial intent in creating the notebook.

(2) We observed changes in the type of text, code, and visualiza-
tions across individual version deltas and how these changes
contributed to the notebook’s narrative.

(3) We paid special attention to changes in the structure of the
notebook across versions—e.g., markdown, comments, or
visualizations demarcating different analytical steps.

(4) The frequency of commits, the commit window, and the
commit messages gave our coders clues into how authors
leveraged GitHub to meet their analysis goals.

We derived qualitative codes (words or short phrases) to describe
our observations with respect to these guidelines. We used these
codes to identify broader behavioral themes within each of the
four sensemaking groups. Themes focus on structural elements
commonly used to track the narrative and flow of sensemaking,
including code comments, objectives, sections, templates, and clean-
ing [33]. Details are provided in our supplementary material.

5.3 Results
Here we discuss our observations for each group of sensemaking
shifts, summarized in Table 3: exploration to exploration, explo-
ration to explanation, exploration to explanation, and explanation
to exploration.

5.3.1 Exploration to Exploration. 22.6% of our sample contains
notebooks that begin as exploratory (0.31-0.49) and remain ex-
ploratory after subsequent changes (scores of 0.31-0.49). Notebooks
in this group tend to have a relatively flat slope, suggesting “slow”
progress along the sensemaking spectrum. Although they remain
exploratory, we still observe both positive (towards explanation)
and negative (towards exploration) shifts within this group.

Edit Behavior. Authors of these notebooks often depend on code
comments to organize, annotate and save code [13, 16, 33]. Code is
commented as a way to control the flow of the analysis [13, 16, 33].
Authors also add text within code comments to label analyses and
describe insights. These notebooks organize code based on their
purpose. Code in loops and functions are sometimes found in sep-
arate cells from code that outputs text, tables, or visualizations.
Code that outputs are generally found in smaller sections to facili-
tate quick iteration [16]. The edit behavior within negatively and
positively sloping notebooks are the same. Negatively sloping note-
books often capture the removal of visualizations and positively
sloping notebooks their additions.

5.3.2 Exploration to Explanation. 15.1% of our sample contains
notebooks that begin as exploratory (scores of 0.31-0.49) and be-
come explanatory (0.50-0.91). These notebooks had a relatively
steep slope, which could be interpreted as “rapid” shifts in sense-
making. They tend to start within a narrow range of exploration
scores and end within a wider range of explanatory scores.

Edit Behavior. The first versions of these notebooks typically
contain just code or code and visualizations. In subsequent versions,
there are two main methods of iteration authors employ. The first
method consists of adding markdown and code in tandem, such as
including annotations and headers into sections as they create and
edit code cells. In the secondmethod, authors focus on code iteration
first, and add markdown and headers in their last few commits [5,
16, 33]. Some authors explicitly label a cleaning phase within their
GitHub versionswhere they prep their notebook for communication
purposes. This cleaning phase often involves reordering, splitting,
and reformatting code cells as well as adding observations within
markdown cells [5, 9].
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Figure 3: Visual summary of notebook time-series. Summary of trends within each notebook group, in order: exploration to
exploration, exploration to explanation, explanation to explanation, and exploration to exploration. The red line represents
the average linear trend.

5.3.3 Explanation to Explanation. 60.1% of our sample contains
notebooks that begin as explanatory notebooks (scores of 0.50-1.00)
and remain explanatory after changes (0.50-1.00). Although both
positive and negative shifts are observed within this group, these
notebooks tend to have relatively flat slopes, similar to the ‘ex-
ploration to exploration’ group. This is by far the largest group
observed, suggesting that data scientists may prioritize clarity and
reproducibility during sensemaking within GitHub notebooks, con-
sistent with prior work [5, 9, 16, 27, 33].

Edit Behavior. Notebooks that became less explanatory (sloped
negatively) often began with a template, to-do list, or a statement of
objective at the top of the page. In other words, they started as highly
explanatory, which we see reflected in these notebooks’ first scores,
averaging 0.7. Notebooks that became more explanatory (sloped
positively) lacked an explicit statement of objectives. Objectives,
implicit (in positively sloping notebooks) or explicit (in negatively
sloping notebooks), seemed to drive the construction of the rest of
the notebook. For example, if a template specified three goals, we
observed authors attempt each goal sequentially across versions.
Some authors even added commit messages about the goal being
achieved. When authors implemented each goal, they often added
annotations to describe and explain their workflow as it progressed.
For example, if authors added code and visualizations to the end
of the notebook, they also added markdown text to describe their
process and results.

5.3.4 Explanation to Exploration. Perhaps not surprisingly, only
2.09% of notebooks started explanatory (scores of 0.50-0.74) and
became exploratory (0.33-0.49). Relative to other groups, these note-
books shift negatively from within a narrow explanatory range to
a narrow exploratory range.

Edit Behavior. These notebooks progress towards exploration
through the removal of explanatory elements. For example, sev-
eral notebook authors commented code producing visualizations
and deleted markdown cells in later versions. This reduction of
visualizations and markdown in favor of code may be indicative of

authors preparing for new iterations of sensemaking with existing
(and likely duplicate) code as a starting point [13, 19].

5.4 Summary
Our qualitative findings suggest that GitHub commits can capture
shifts in notebook editing behaviors over time, which we success-
fully mapped to corresponding shifts in the authors’ sensemaking.
Thus, our results support the idea that one can automatically detect
a variety of sensemaking activities within computational notebooks.

Although we do see the shift from exploration to explanation
emphasized in prior work [5, 9, 16, 33], our analysis also reveals
a variety of shifts along the entire sensemaking spectrum which
were previously unobserved.

• It appears data scientists explain their findings in tandem
while exploring their data, as seen through our analysis of
the “explanation to explanation” group of notebooks.

• Furthermore, the “exploration to exploration” group shows
that some notebooks have yet to reach the explanatory stage,
suggesting that some authors are content to keep certain
analyses or notebooks exploratory.

• We also observed shifts away from explanation towards ex-
ploration. Though previously unobserved (and in some ways,
counter-intuitive), this result is consistent with our under-
standing of the sensemaking spectrum. We speculate that
this behavior demonstrates the beginning of a new sense-
making iteration.

• The fact that some notebooks start with explicit objectives
suggests that authors begin these notebookswith prior knowl-
edge and analysis goals, and likely leverage them to stream-
line their analysis of the data. Put another way, analysis
experience may allow notebook authors to “short-circuit”
the traditional sensemaking loop.

6 DISCUSSION
We have presented an analysis of 60,000 Jupyter Notebooks and
their respective GitHub histories. With this corpus, we isolate 2,574
notebooks that appear to be data science-oriented, characterize
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Explore-
Explore

Explain-
Explain

Explore-
Explain

Explain-
Explore

# of notebooks 582 1549 390 54
% of sample 22.6 60.1 15.1 2.00

avg # of versions 9 10 10 11
avg first score 0.438 0.683 0.438 0.567
avg last score 0.453 0.695 0.618 0.469
avg slope value 0.002 0.0015 0.021 -0.012

% positively sloping 58.4 54.4 96.9 5.55
% negatively sloping 38.3 45.5 3.00 94.4
% neutral sloping 3.20 .06 0 0

Table 3: General statistics of each notebook group. Explore
signifies that the score (first-last) in the time-series corre-
sponding to the notebooks are in the exploratory side of the
sensemaking spectrum. Explain signifies that the score is in
explanatory side of the spectrum.

their organization and structure, quantitatively measure various
properties to situate them within the overall sensemaking pro-
cess [28], and observe how sensemaking within these notebooks
shifts across GitHub commits.

6.1 Explaining and Generalizing the Results
First, our results demonstrate that we can apply qualitative observa-
tions from the literature (e.g., [5, 9, 16, 33, 40, 41]) to automatically
measure sensemaking within Jupyter Notebooks. We found that a
linear combination of quantitative measures involving both output
types (e.g., how many visualizations are generated?) and organi-
zation (e.g., how much negative space is incorporated?) correlated
with the scores in our reference set. These findings suggest that the
presence of descriptive outputs such as visualizations and text, as
well as text formatting with negative space, are signals for sense-
making in notebooks.

Second, by taking a mixed-methods approach to measuring how
each data science notebook evolves across multiple GitHub com-
mits, we showed that we can estimate how notebooks change over
time. We can automatically detect a variety of sensemaking ac-
tivities within computational notebooks: sustained exploration,
shifting from exploration to explanation, sustained explanation,
and shifting from explanation to further exploration. We validated
our observations of quantitative score shifts through qualitative
observations of the corresponding notebook edits, which reveal
consistent patterns of notebook editing behaviors associated with
these shifts. As Pirolli and Card describe, analysts appear to exhibit
a cycle of sensemaking activities.

Third, our findings also reveal a range of distinct notebook edit
behaviors. During exploration, notebook authors leverage code
comments to control, organize, and annotate their code flow. Cells
are leveraged to enable rapid iteration and create a separation be-
tween functionally different snippets. For example, when develop-
ing explanatory notebooks, authors can choose to add explanatory
elements such as markdown and visualization in tandem or during
a “cleaning” phase. These explanatory elements often point to either
implicit or explicit goals being set for the analysis. Some notebook

authors choose to remove explanatory elements like markdown
cells or visualizations as they iterate. This may be suggestive of a
change in the authors’ objectives.

These behaviors align with existing observations of data explo-
ration behaviors using visualization tools [3]. Observed parallels
between notebook editing behaviors and visual analysis behaviors
suggest that there are core patterns to sensemaking that transcend
particular tools and environments. As a result, our work opens
the door to gaining a deeper quantitative understanding of the
sensemaking loop itself through the lens of data science tools and
practices. For example, our findings could inform the design of new
features within not only alternative notebook platforms such as
Google Colab but also popular exploratory visual analysis tools
such as Tableau Desktop [3].

6.2 Implications for Data Science Tool Design
Our findings show that authors often use structural aspects of
the notebook to track and manage the evolution of their analysis
(Section 5). For example, notebook authors often use markdown
cells to label sections of code and describe their analysis objectives.
However, given that these structural elements are subject to change
during analysis, we believe that our finding highlights a need for
tools that help data scientists manage their goals while they analyze
data within a notebook [9].

Generate Relevant Recommendations. Using the techniques we
have demonstrated, notebook platforms can automatically calculate
the position of a notebook document within the sensemaking spec-
trum while it is being edited. Platforms could use this information to
support, teach, or even enforce best practices. For example, having
detected that the author is in the exploratory phase of analysis,
the platform may choose to automatically version the document to
comprehensively capture competing branches of exploration.

We believe this information can be particularly pertinent to data
science engines that wish to guide analysts with recommendations
on analysis tools and techniques. For example, having detected that
an author is performing exploratory analysis, a recommendation en-
gine can cull recommendations from a group of curated exploratory
notebooks. Our ideas can direct how recent work, such as by Yan et
al. [46] and by Raghunandan et al. [30], generate recommendations
found in Jupyter Notebooks. They can use the context of a notebook
to provide more targeted data science recommendations to authors.

Provide Best-Practice Templates. Based on our observations in
Section 5, it seems that people learning data science, i.e., authors ex-
plicitly leveraging notebook templates, are being taught to conduct
their analyses in a goal- or objective-driven manner. In contrast,
we did not observe templates corresponding to open-ended data
analysis practices. This suggests that existing pedagogy provides
direct infrastructure (i.e., templates) for more directed analysis [1],
but not necessarily for open-ended exploration. While we cannot
discount the possibility that authors engaging in open-ended ex-
ploration may also be using templates unobserved in our analysis,
the templates that we did observe do not seem to teach open-ended
exploration. We suggest that stronger guidance and infrastructure
can be provided to facilitate best practices in open-ended data explo-
ration such as through new systems and tools. With more training
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and practice in open-ended exploration, infrastructure and stan-
dards for conducting open-ended exploration within computational
notebooks will hopefully evolve [39], which in turn can enhance
our ability to quantify its use in the real world.

Track Multiple Analysis Paths. GitHub versioning of computa-
tional notebooks does not help to track what data scientists do.
For example, an analyst may pursue a particular line of inquiry,
realize that a few analysis steps were dead ends, and backtrack to an
earlier point to continue their analysis—introducing an alternative
branch of investigation. It is hard to represent this non-linear flow
with GitHub commits. We need mechanisms that track the actual
non-linear and iterative practices of data scientists [9, 13, 15]. We
suggest that an extension to current computational notebooks could
remedy this problem—an extension that versions and manages cell
dependencies. This enhancement would enable notebook users to
better track their sensemaking processes and enable researchers to
study sensemaking (and its evolution) in notebook environments.

6.3 Limitations and Future Work
Although our techniques produce a relatively small sample com-
pared to the original corpus, our study is still one of the largest
analyses of Jupyter Notebooks from GitHub (e.g., compared to
[5, 40]). Part of the problem is the inconsistent notebook quality on
GitHub [40]. We combat this challenge by proposing a method to
identify data science notebooks suitable for quantitative analysis.
This methodology could easily be extended to collect larger note-
book corpora in the future; for example, by curating data science
notebooks from all of the millions of notebooks on GitHub.

We approached our dataset with an understanding that many au-
thors selectively report their analysis [21]. As our findings indicate,
many notebooks on GitHub are skewed towards the explanatory
side of the spectrum, suggesting that some authors may wait until
later in the sensemaking process to share their notebooks. Coupled
with a lack of ground truth for the mental models of the notebook
authors, our ability to infer user intent was limited. We note that
this is a fundamental limitation of surveying computational note-
books stored in a public repository such as GitHub, but that the
benefits of getting the kind of insight demonstrated here far out-
weighs this drawback. We address this limitation in part through a
mixed-methods analysis strategy in Section 4 and Section 5.

Nevertheless, it would be interesting to develop new strategies
for collecting richer notebook metadata to fill observed gaps in
GitHub histories and to infer user intent from this metadata. We
view our work in this paper as the first of many to explore mixed
methods towards understanding sensemaking in computational
notebooks.
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