
Dynamic Reduction of Query Result Sets for Interactive Visualization

Leilani Battle, Michael Stonebraker
Electrical Engineering and Computer Science Department

MIT

Remco Chang
Department of Computer Science

Tufts University

Abstract—Modern database management systems (DBMS)
have been designed to efficiently store, manage and perform
computations on massive amounts of data. In contrast, many
existing visualization systems do not scale seamlessly from
small data sets to enormous ones. We have designed a three-
tiered visualization system called ScalaR to deal with this issue.
ScalaR dynamically performs resolution reduction when the
expected result of a DBMS query is too large to be effectively
rendered on existing screen real estate. Instead of running the
original query, ScalaR inserts aggregation, sampling or filtering
operations to reduce the size of the result. This paper presents
the design and implementation of ScalaR, and shows results
for an example application, displaying satellite imagery data
stored in SciDB as the back-end DBMS.

Keywords-data analysis; scientific computing; interactive vi-
sualization

I. INTRODUCTION

Modern database management systems (DBMS) are de-
signed to efficiently store, manage and perform computations
on massive amounts of data. In addition, scientific data sets
are growing rapidly to the point that they do not fit in
memory. As a result, more analytics systems are relying
on databases for the management of big data. For example,
many popular data analysis systems, such as Tableau [1],
Spotfire [2], R and Matlab, are actively used in conjunction
with database management systems. Furthermore, Bronson
et. al. [3], show that distributed data management and
analysis systems like Hadoop [4] have the potential to power
scalable data visualization systems.

Unfortunately, many information visualization systems do
not scale seamlessly from small data sets to massive ones by
taking advantage of these data management tools. Current
workflows for visualizing data often involve transferring
the data from the back-end database management sys-
tem(DBMS) to the front-end visualization system, placing
the burden of efficiently managing the query results on the
visualizer.

To avoid this, many large-scale visualization systems rely
on fitting the entire data set within memory, tying data
analytics and visualization directly to the management of big
data. However, this limits adoptability of these systems in
the real world, and draws the focus of these systems away
from producing efficient and innovative visualizations for
scientific data and towards general storage and manipulation
of massive query results.

To address these issues, we developed a flexible, three-
tiered scalable interactive visualization system for big data
named ScalaR, which leverages the computational power of
modern database management systems to power the back-
end analytics and execution. ScalaR relies on query plan
estimates computed by the DBMS to perform resolution re-
duction, or how to dynamically determine how to summarize
massive query result sets on the fly. We provide more details
on resolution reduction below

ScalaR places a limit in advance on the amount of data
the underlying database can return. This data limit can be
driven by various performance factors, such as the resource
limitations of the front-end visualization system.We insert
a middle layer of software between the front-end visualiza-
tion system and underlying database management system
(DBMS) that dynamically determines when a query will
violate the imposed data limit and delegates to the DBMS
how to reduce the result accordingly.

We rely on statistics computed by the DBMS to quickly
compute necessary reduction estimates by analyzing query
plans (see Section III-A for more information about query
plans). This decouples the task of visualizing the data from
the management and analysis of the data. This also makes
our design back-end agnostic, as the only requirements are
that the back-end must support a query API and provide ac-
cess to metadata in the form of query plans. To demonstrate
our approach, we provide use-cases visualizing earthquake
records and NASA satellite imagery data in ScalaR using
SciDB as the back-end DBMS.

In this paper, we make the following contributions:

• We present a modularized approach to query result
reduction using query plans for limit estimation and
leveraging native database operations to reduce query
results directly in the database.

• We present the architechture for a scalable information
visualization system that is completely agnostic to the
underlying data management back-end.

• We present motivating examples for ScalaR using earth-
quake data and NASA MODIS satellite imagery data.

• We present initial performance results for using ScalaR
to visualize NASA MODIS satellite imagery data.

A. Related Work

In an effort to push data management outside of the visual-
ization system and into the back-end DBMS, several existing
techniques and systems provide functionality for reducing
the amount data visualized. For example, Jerding et. al. [5]
compress entire information spaces into a given pixel range
using pixel binning, and color cues to denote pixel overlap in
the reduced visualization. Elmqvist et. al. [6] use hierarchi-
cal aggregation to reduce the underlying data and reduce the
number of elements drawn in the visualization. Hierarchical
aggregation transforms visualizations into scalable, multi-
level structures that are able to support multiple resolutions
over the data.

Another prevalent technique for data reduction in data
analytics and visual analysis is building OLAP cubes to
summarize data [7]. To produce OLAP cubes, the underlying
data is binned and simple statistical calculations, such as
count and average, are computed over the bins. Liu et. al. use
this technique in the imMens system to reduce data in the
back-end DBMS, which combined with front-end WebGL
optimizations allows imMens to draw billions of data points
in the web browser.

Hellerstein et. al. [8], [9], [10] present an alternative
approach to data reduction through incremental, progres-
sive querying of databases. Progressive querying initially
samples a small set of the data to quickly produce a low-
accuracy result. Over time, the database samples more data
to improve the accuracy of the result. Users can wait for
the query to finish for complete results, or stop execution
early when the result has reached their desired error bounds.
Fisher et. al. [11] revisit this approach in greater detail
with simpleAction, focusing on applying iterative query
execution to improve interactivity of database visualizers.
simpleAction visualizes incremental query results with error
bounds so the user can stop execution when they’ve reached
their desired accuracy level. Instead of waiting for the user
to specify when to stop execution, Agarwal et. al. present
a different approach to fast approximate query execution in
their BlinkDB [12] system. BlinkDB executes queries over
stratified samples of the data set built at load time, and also
provides error bounds for query results.

ScalaR provides data-reduction functionality that is sim-
ilar to the systems described above. However, ScalaR also
provides functionality to specify a limit on the amount of
data the DBMS can return in advance, and dynamically
modifies the reductions accordingly. This allows the front-
end to specify more or less data on-the-fly, with minimal
knowledge of the back-end DBMS. As a result, ScalaR
provides more flexibility in choosing techniques for data
reduction, as reduction techniques can be added to the back-
end without modifying the front-end. In addition, the user
is not responsible for building summaries or samples of
the data in advance, thus reducing the level of expertise

Visualiza(on	
 Front-­‐End	

DBMS	

Front-­‐End	
 API	

Query	
 Interface	

Resolu(on	
 Reduc(on	

Logic	
 Result	

Cache	

Figure 1. ScalaR system architecture.

required to manage the back-end DBMS for visualization
with ScalaR.

II. ARCHITECTURE

ScalaR has 3 major components: a web-based front-end, a
middle layer between the front-end and DBMS, and SciDB
as the back-end DBMS (see Figure 1). They are described
in detail below.

A. Web Front-End

We implemented a web-based front end, using the
D3.js [13] Javascript library to draw the visualizations.
ScalaR supports scatterplots, line charts, histograms, map
plots and heat maps. The Google Maps API [14] is used to
draw map plots. The user inputs a query into a text box
on the screen and selects a visualization type through a
drop-down menu. The user can also specify a resolution
for the result, i.e. how many total data points they want
the query result to return, via a drop-down menu. After
choosing the visualization, the user is given a second set of
optional menus to specify characteristics of the visualization.
For example, what attributes in the query results correspond
to the x and y axes. ScalaR’s architecture supports pan
and zoom functionality, both of which trigger new dynamic
queries over the DBMS to retrieve missing data as the user
explores the data set.

B. Intermediate Layer

The intermediate layer consists of server code that takes
user queries from the front-end, dispatches queries to the
DBMS, and prepares the resulting data for consumption
by the front-end. Before dispatching user-defined queries
to the DBMS, the intermediate layer retrieves the proposed
query plan from the DBMS and uses this information to
compute the expected size of the result. The intermediate
layer uses this calculation to decide whether to insert a
resolution reduction operation into the original query. See
Section III-B for a list of resolution reduction operations.
Query results are stored in a result cache for future use.
A straight-forward eviction policy, such as LRU, is used to
remove old data from the cache.

C. DBMS

Due to it’s ease of use with scientific data sets, SciDB [15]
is the primary back-end DBMS used in ScalaR. SciDB is
geared towards managing large-scale array-based data. Users
specify the dimensions of the matrix, and the attributes of
each element in the matrix (see Section IV-A for examples
of SciDB queries). However, ScalaR is database agnostic in
design, and can be extended to support a variety of data
management systems.

SciDB stores data as multi-dimensional matrices. Users
specify the dimensions of the matrix, and the attributes of
each element in the matrix. SciDB supports two languages
for querying the data: Array Functional Language (AFL), or
the SQL-like language Array Query Language (AQL). When
writing queries, the attributes and dimensions can be thought
of as “columns” and elements in the matrix as “tuples”. The
combined dimensions act as keys for elements in the matrix
(see Section IV-A for examples of SciDB queries).

SciDB is selected as the primary DBMS for ScalaR
because the array-based structure affords some native opera-
tions that are fast and efficient for typical visualization tasks
with large scientific data set. Basic resolution reduction tech-
niques, such as filtering and sampling, can be implemented
directly for most database management systems with native
operations.

III. RESOLUTION REDUCTION

In this section, we describe the general resolution reduc-
tion techniques used to develop ScalaR, and how they are
implemented using SciDB as the back-end DBMS.

A. Retrieving Metadata From the Query Optimizer

Almost all DBMS have a query compiler, which is
usually responsible for parsing, interpreting and generating
an efficient execution plan for queries. The query compiler
usually includes a component called the query optimizer,
which is the principal unit for improving query performance.
Metadata must be calculated in order for the query optimizer
to produce accurate estimates for query plans over the given
data set. This metadata includes statistics about the data set
and other useful information, such as the estimated number
of cells or tuples to be produced by the query.

Modern DBMS are designed to produce query plans very
cheaply in terms of time and resources. Statistics and other
various properties of the data are calculated and stored when
the data is loaded and during the execution of queries. Query
optimization in itself is a very important research problem
within the database community, and is thus outside the scope
of this paper. However, it is hopefully clear that executing
commands to retrieve query plans is significantly cheaper
than executing expensive queries over gigabytes of data or
more.

Most DBMS expose some amount of metadata from
the query optimizer to users in the form of special com-
mands. For example, PostgreSQL provides this function-
ality via the EXPLAIN command, which provides the
user with query plan information. SciDB exposes query
plan information through the explain_logical and
explain_physical commands.

Suppose we have an earthquake data set stored in SciDB
in an array named earthquake, and you want to see how
SciDB will execute the same query:

scan(earthquake);

The scan operation in SciDB is the same as “SELECT
*” syntax in relational databases. To generate a query plan,
we execute the following in SciDB:

explain_physical(’scan(earthquake)’,’afl’);

This produces the following query plan:

[("[pPlan]:
schema earthquake
<datetime:datetime NULL DEFAULT null,
magnitude:double NULL DEFAULT null,
latitude:double NULL DEFAULT null,
longitude:double NULL DEFAULT null>
[x=1:6381,6381,0,y=1:6543,6543,0]

bound start {1, 1} end {6381, 6543}
density 1 cells 41750883 chunks 1
est_bytes 7.97442e+09

")]

The whole schema of the resulting array is provided
beginning on line two of the query plan. The dimensions
of the array are x, and y, given by “x=1:6381” and
“y=1:6543 in the dimension description. We also see from
this dimension description that the resulting array will be
6381 by 6543 in dimension. SciDB also provides the bounds
of the array explicitly in “bound start 1, 1 end
6381, 6543”. The attributes of the array are provided on
the lines just before the dimension description: datetime,
magnitude, latitude, and longitude. SciDB at-
tributes are similar to columns in relational databases. The
number of cells in the array is 41750883, given by “cells
41750883” on the last line of the query plan. The number
of SciDB chunks used by the array (SciDB’s unit of storage
on disk) is 1, given by “chunks 1” on the same line. The
estimated number of bytes to store the result is given by
“est_bytes 7.97442e+09”.

Query plans are essential to databases because they pro-
vide valuable information about how the query will be
executed, and help the database reason about the relative
cost of various query operations. For the user, query plans
provide insight and additional information about the query
that is very difficult for humans to reason about without
any prior experience with the data set or previous query
results to reference. Lastly, this information costs very little
to retrieve from a modern DBMS compared to executing the

query directly, especially when working with massive data
sets.

B. General Resolution Reduction Techniques

There are two issues many existing visualization systems
face when drawing very large data sets. Current systems
have to spend a considerable amount of time managing
data, which becomes increasingly problematic with more
and more data. Also, these systems lack effective tools for
automatically aggregating results. Therefore, there may be
so many objects to draw on the screen that the resulting
visualization is too dense to be useful to the user.

There are two commonly-used approaches to handling
large amounts of data stored in a DBMS that we have
automated, sampling a subset of the data or aggregating the
data (i.e. GROUP BY queries). When the data set is dense,
aggregation significantly reduces the resulting number of
points by grouping points by proximity. When the data is
sparse, it is difficult to gauge the distribution of data across
the array. Sampling results in a subset of data of predictable
size that is independent of the distribution of data in the
underlying array. When criteria is known for identifying non-
relevant data, filtering the data directly is also an option.

Each reduction technique takes an implicit parameter n
specified by the Intermediate Layer that is adjusted based
on the desired result set size. The techniques are as follows:
• Aggregation: Group the data into n sub-matrices, and

return summaries over the sub-matrices. Summary op-
erations include: sum, average, and max/min.

• Sampling: Given a probability value p, return roughly
that fraction of data as the result, where p * |data| = n.
Most databases already support this operation.

• Filtering: Given a set filters over the data, return the el-
ements that pass these filters. These filters are translated
into WHERE clause predicates.

The rest of this section describes in detail how ScalaR’s
intermediate layer retrieves and analyzes query metadata
from the DBMS and manages resolution reduction.

C. Analyzing SciDB Query Plans for Resolution Reduction

We describe in this section how the intermediate layer
estimates resolution reduction calculations with SciDB as
the back-end DBMS.

When ScalaR’s front-end receives a query and desired
resolution from the user, this information is first passed
to the intermediate layer. ScalaR’s intermediate layer then
requests query plan information for the user’s query from
the DBMS using the commands described in Section III-A.
ScalaR extracts the estimated size of the query result from
the resulting query plan information, and compares this
value to the user’s desired resolution. If the estimated size is
larger than the resolution value, the intermediate layer sends
a response to the front end indicating that the estimated size
of the result is larger than the user’s desired resolution.

The front-end then notifies the user that the result will
be “too big”, and gives the user the option of choosing a
resolution reduction approach to produce a smaller result,
or to return the full result anyway without any form of
resolution reduction. See Section III-B for more information
on resolution reduction techniques. Note that ScalaR is
estimating using only query plan information at this point,
and no queries have been performed on the actual data set.

If the user decides not to reduce the result, the intermedi-
ate layer dispatches the user’s original query for execution on
the database, formats the results, and returns the formatted
results to the front-end for visualization.

If the user chooses a resolution reduction technique,
ScalaR performs estimation calculations before sending any
queries to the DBMS, and thus no costly operations need to
be performed on the original data set while the intermediate
layer is constructing the final query incorporating resolution
reduction.

1) Aggregation: Given a d-dimensional SciDB array A
and desired resolution n, ScalaR aggregates over A by divid-
ing A into at most n d-dimensional sub-arrays, performing a
summary operation over all sub-arrays, and returning the
summary results. Examples of summary operations over
the sub-arrays include taking the sum, average or standard
deviation across all elements in the sub-array.

As described in Section II-C, SciDB already has a native
operation called regrid that will perform aggregation
automatically. However, SciDB does not take the number
of desired sub-arrays n as input, and instead requires the
desired dimensions of the sub-arrays. For example, to divide
a 2-dimensional 16 by 16 array into 16 sub-arrays using
regrid, ScalaR needs to specify sub-array dimensions
such that each sub-array contains 16 elements each. This
can be achieved by setting the sub-array dimensions to be
4 by 4. Sub-array dimensions of 2 by 8 or 1 by 16 will
also result in 16 sub-arrays total. Note that dimensions in
SciDB have a specific order, so the ordering of the sub-array
widths matters. For example, using 2 by 8 sub-arrays will
not produce the same result as using 8 by 2 sub-arrays.

To reduce A to the desired user resolution n, ScalaR needs
to aggregate over A to create A′ such that |A′| ≤ n. The
simplest approach is to assume that the same number of
sub-arrays should be generated along every dimension. To
do this, ScalaR first computes the dth root of n, which we
refer to as nd . ScalaR then computes si, or the sub-array
width along dimension i, for all dimensions i by dividing
the width of A along dimension i by nd .

2) Sampling: When a user requests that data be sampled
to reduce the resolution, ScalaR returns a uniform sample of
the result. Most DBMS already provide their own uniform
sampling operations. SciDB’s bernoulli function per-
forms uniform sampling over a given array A with sampling
rate p and seed, where 0≤ p≤ 1. The seed used is a default
global variable chosen by us.

(a) Original query (b) Aggregation

(c) Sampling (d) Filtering

Figure 2. Map plots for a query manipulated using several resolution reduction techniques.

To reduce A to the desired user resolution n, ScalaR needs
to sample over A to create A′ such that |A′| ≤ n. ScalaR
computes the sampling rate p as the ratio of resolution n to
total array elements |A|, or p= n

|A| . If the resulting number of
points in the sampled A′ is greater than n, ScalaR randomly
removes |A′|−n points from A′.

3) Filtering: Currently, the user specifies explicitly via
text what filters to add to the query. These filters are
translated into SciDB filter operations. Note that ex-
tensive work has already been done in creating dynamic
querying interfaces, where users can specify filters without
writing their own SQL queries. Thus it is straightforward to
extend ScalaR’s front-end to incorporate a dynamic querying
interface for specifying filters in a more intuitive way.

IV. MOTIVATING EXAMPLES

We now present two use cases that demonstrate how
ScalaR addresses the issues presented in Section I.

A. Earthquake Data

Suppose a user of the ScalaR system wants to plot
earthquake data to see the distribution of earthquakes around
the world. She inputs the following query, and requests a
map plot of the results:

select latitude, longitude from quake.

The user has stored in SciDB a 6381 by 6543 sparse array
containing records for 7576 earthquakes. The schema is as
follows:

quake(datetime, magnitude, depth, latitude,
longitude, region)[x,y]

Figure 3. Zoom on regions 2 and 3 over filtered query results.

Array attributes are listed in the parentheses, followed by
dimensions in brackets. The dimensions x and y represent a
2-dimensional mesh of the latitude and longitude coordinates
to take advantage of spatial locality when storing the data
points as a SciDB array. Note also that every record in this
example data set has a unique pair of latitude and longitude
points for convenience.

The user picks 3 major regions of interest in this plot,
identified by the three boxes drawn in Figure 2a. Region
1 covers Asia and Australia. Region 2 is the Alaska area,
and region 3 is the west coast of the US excluding Alaska.
Figure 2a shows a classic over-plotting problem with map vi-
sualizations, where each recorded earthquake is represented
as a red dot. Region 1 in Figure 2a appears to contain at
least 25% of the plotted earthquakes. In addition, the points
in region 2 cover a larger area of the plot, so region 3 seems
to have less seismic activity than region 2. However, this plot
is misleading. All 7576 earthquakes are plotted, but over-
plotting obscures the true densities of these three regions.

Ignoring overlap with region 2, region 1 actually contains
only 548 points, or less than 8% of all plotted earthquakes.
Region 2 has 2423 points (over 30%), and region 3 4081
points (over 50%). Thus region 3 actually contains over 50%
more points than region 2.

This scenario lends itself to two separate goals for resolu-
tion reduction. If the physical over-plotting of points on the
map is the motivating factor, the reduction can be driven by
the width and height of the visualization canvas. As in the
case of this example, the volume of data being returned by
the back-end DBMS can also be motivation for resolution
reduction, which affects many performance-related factors,
such as limited bandwidth, latency, and rendering speed.

Now suppose we ask ScalaR to reduce the matrix size
of quake from 6381 by 6543 to 40000 maximum using
aggregation. ScalaR first takes the dth root of n to compute
the number of subarrays along every dimension nd (see
Section III-C for more information):

nd = b
√

40000c
where d is the number of dimensions (2) and n is our desired
resolution (40000). nd is 200in this example. ScalaR then
computes the width of each dimension i of the sub-arrays
by dividing the original width of i by nd :

s1 = d6381/200e,s2 = d6543/200e
In this example, s1 = 32 and s2 = 33. ScalaR’s aggregation

calculations produce the following query:

select avg(latitude), avg(longitude)
from (select latitude, longitude

from quake)
regrid 32, 33

where ScalaR uses SciDB’s regrid statement to reduce
the result. This query tells SciDB to divide quake into
subarrays with dimensions 32 by 33 alongx and y. The sub-
arrays are summarized by taking the average of the latitude
coordinates and the average of the longitude coordinates
within in each subarray. The resulting array has 2479 non-
empty cells, and Figure 2b shows the resulting plot. Note that
most cells are empty, as most earthquakes occur in specific
concentrated areas. quake’s dimensions represent latitude
and longitude ranges. With aggregation, ScalaR was able to
produce a visualization that is very similar to the original,
with less than one third the number of points.

Figure 4. Overview visualization of the ndvi_points array

Now suppose we ask ScalaR to perform sampling over

quake, using the number of points produced using aggre-
gation as the threshold. ScalaR computes the sampling rate
to be the desired resolution divided by the size of the original
data set:

p = n
|quake| =

2479
7576

In this example, p is 0.327.Sampling to reduce the resolu-
tion produces the following query:

select latitude, longitude
from bernoulli(

(select latitude, longitude
from quake),

0.327,
1)

where the original query is wrapped in a SciDB
bernoulli statement, and the default seed is 1. This query
tells SciDB to randomly choose points from quake, where
each point is chosen with a probability of 0.327.In this
case, sampling results in 2481 data points, which ScalaR
prunes to 2479 to satisfy the threshold conditions by ran-
domly choosing 2 points to remove from the reduced result.
Figure 2c shows a plot of the query result. Like aggregation,
sampling produces a visualization very similar to the original
visualization with considerably less data.

Now that the user has identified the regions with the
most earthquakes, she can filter the data in favor of these
regions. This results in the following query to retrieve points
in regions 2 and 3 (shown in Figure 2d):

select latitude, longitude
from quake
where lat > 20 and
(lon < -100 or lon > 170)

As shown in Figure 3, she can then zoom into regions 2
and 3 to see the distribution of earthquakes in more detail.

B. Visualizing Satellite Image Data

We implemented an example application that visualizes
query results for normalized difference vegetation index
(NDVI) calculations over a subset of NASA satellite imagery
data. The data set was roughly 27GB in size, covered
the state of California, and was stored in a single, two-
dimensional sparse matrix called ndvi_points in SciDB.
The schema was as follows:

ndvi_points(ndvi)[longitude,latitude].

The latitude and longitude coordinates were used to
dimension the array, and the NDVI calculations were stored
as an attribute of the array. The NDVI calculations were
visualized as heatmaps, and aggregation was used to reduce
the resolution of the data.

Consider the scenario where the user wants an overview of
the NDVI data over the southern California coast. The user
first writes a query to retrieve all data from ndvi_points:

select ndvi from ndvi_points.

(a) 1,000 points resolution (b) 10,000 points resolution (c) 40,000 points resolution

Figure 5. Zoom on the California region of the ndvi_points array at 1,000, 10,000, and 40,000 points resolution

Without resolution reduction, this query returns over one
billion points. In addition, the actual dimension ranges of
the array are on the order of millions, which would result in
a sparse heatmap with over one trillion cells. This is clearly
too large of an image to draw on the screen, so ScalaR
prompts the user to reduce the resolution. Using aggregation,
ScalaR produces an initial visualization at a resolution of
about 1000 points, shown in Figure 4. Resolution refers to
the size of the query results being drawn, so Figure 4 shows
the result of reducing the data down to a 33 by 33 matrix
(see Section II). This visualization clearly shows the array’s
sparseness, and reveals a dense area of data in the array.

Now the user zooms in on the dense portion of the array
by highlighting the area with a selection box and using the
“zoom-in” button. The resulting visualization at a resolution
of 1000 points is shown in Figure 5a. The general shape of
the western coast of California/Northern Mexico is apparent,
but the user may want the image to be clearer. Figures 5b and
5c show the results of increasing the resolution to 10000 and
40000 points respectively, where the identity of the region is
very clear in both images. The user can now clearly identify
the desired southern California region, and zooms in to the
Los Angeles, Santa Barbara area as shown in Figure 6.

To perform the same tasks without ScalaR, the user would
have to write aggregation queries manually over the data set.
She has to manually identify the desired region of the array
to visualize, and perform her own calculations to determine
a reasonable resolution for the results. She may also need
to store the query results in a separate file to load into
her desired visualization system. The user also resorts to
trial and error, potentially repeating the above steps many
times before finding her desired region and resolution for the
image. ScalaR eliminates the need to manually write queries
to reduce the resolution of the data, providing the user with
more information quickly and easily.

V. PERFORMANCE

We used a 2-node SciDB cluster to run the following
experiments. Each node had 50GB of RAM, 32 cores, and

(a) 1,000 points resolution (b) 10,000 points resolution

Figure 6. Zoom on LA area at 1,000 and 10,000 points resolution

Resolution Aggregation Runtime (s) Sampling Runtime (s)
1,000 89.55 1.95
10,000 87.22 1.94

100,000 88.71 24.52
1,000,000 98.58 133.68
10,000,000 132.32 176.58

100,000,000 1247.78 186.90
1,000,000,000 3692.02 296.83

Baseline 210.64

Table I
RAW RUNTIME RESULTS IN SECONDS FOR AGGREGATION AND
SAMPLING QUERIES OVER THE NDSI1 ARRAY, WITH VARIOUS

RESOLUTION VALUES. EXECUTION TIME FOR A FULL SCAN OVER
NDSI1 IS PROVIDED FOR REFERENCE, LABELED AS THE BASELINE.

10.8TB of disk space. SciDB was limited to using at most
75% of the available memory per node (as recommended
by the SciDB User’s Guide [16]), but the operating system
still had access to all available memory. We measured the
execution times of aggregation and sampling queries over a
single SciDB array containing Normalized Difference Snow
Index calculations (NDSI) for the entire world, which where
computed over roughly one week of NASA MODIS data.
The normalized difference snow index measures the amount
of snow cover on the earth at a given latitude-longitude
coordinate. For the rest of this section, we will refer to this
array as ndsi1. The ndsi1 array was roughly 209GB
on disk when stored directly inside SciDB, and 85GB
when stored as a compressed SciDB binary file. ndsi1
was a sparse array containing over 2.7 billion data points,
stored across 673,380 different SciDB chunks. We varied

0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

4"

0" 2" 4" 6" 8" 10"

Lo
g(
Se
co
nd

s)
,

Log(Output,Size),

Comparison,of,Aggrega9on,and,Sampling,
Query,Run9mes,over,ndsi1,

Aggregate"Query"Run6me"

Sampling"Query"Run6me"

Baseline"Run6me"

Figure 7. A comparison of aggregation and sampling on the ndsi1 array
with various data thresholds

the resolution threshold (i.e. maximum output size) from
one thousand to one billion data points, and measured the
runtime of the resulting SciDB aggregation and sampling
queries dispatched by ScalaR. As a baseline for comparison,
we also measured the execution time for a full scan of the
ndsi1 array (i.e. “ SELECT * FROM ndsi1”).

We present runtime results in Table I, and a log-scale
comparison of aggregation and sampling in Figure 7. Our
preliminary results show that basic aggregation and sam-
pling are effective in reducing output size and execution
time for most recorded output sizes. We see in Figure 7
that reducing the resolution of ndsi1 via sampling either
significantly improves performance or is on par with the
baseline. Aggregation performs better than or as fast as the
baseline for most resolution sizes, but slower than sampling.
We also see that performance plummets at the highest
resolution sizes. Aggregation’s slower performance is due in
part to the fact that the ndsi1 array is sparse. Aggregation
computes over logical array ranges, making it less efficient
when reducing sparse arrays. In addition, as the resolution
increases, aggregation performs even more operations per
SciDB chunk. Chunks are SciDB’s unit of storage on disk.
At resolutions of 100 million and one billion data points,
aggregation is executing hundreds or more operations per
chunk, causing aggregation’s poor performance.

Note that our simple reduction algorithms require reading
virtually the entire data set, limiting their performance. We
plan to implement more efficient reduction techniques in
the future, and compare their performance to our basic
algorithms.

VI. CONCLUSIONS AND FUTURE WORK

We presented the design and implementation of ScalaR,
an information visualization system that dynamically per-
forms resolution reduction to improve query execution per-
formance of clusters running a distributed DBMS. ScalaR
uses aggregation, filtering and/or sampling operations to

downsize query results as necessary to reduce completion
time while still producing visualizations close in accuracy
to the original result. We presented preliminary performance
results for ScalaR, visualizing satellite imagery data stored
in SciDB.

We plan to make several optimizations in ScalaR’s design,
starting with the 2 following approaches. The first is to
use machine learning techniques over existing visualizations
found on the web to learn how to choose appropriate visu-
alization types for user query results automatically. Second,
we plan to incorporate prefetching in the middle layer of our
architecture, using feedback from the front-end about user
interactions; for example, whether the user just zoomed in,
or the direction the user is panning through the visualization.

REFERENCES

[1] “Tableau software,” http://www.tableausoftware.com/, May
2012.

[2] “Tibco spotfire,” http://spotfire.tibco.com/, May 2012.
[3] H. Vo et al., “Parallel visualization on large clusters us-

ing mapreduce,” in Large Data Analysis and Visualization
(LDAV), 2011 IEEE Symposium on, 2011, pp. 81–88.

[4] “Hadoop,” http://hadoop.apache.org/.
[5] D. Jerding and J. Stasko, “The information mural: a technique

for displaying and navigating large information spaces,” Vi-
sualization and Computer Graphics, IEEE Transactions on,
vol. 4, no. 3, pp. 257–271, 1998.

[6] N. Elmqvist and J. Fekete, “Hierarchical aggregation for
information visualization: Overview, techniques, and design
guidelines,” IEEE Trans on Visualization and Computer
Graphics, vol. 16, no. 3, pp. 439–454, 2010.

[7] S. Chaudhuri and U. Dayal, “An overview of data warehous-
ing and olap technology,” SIGMOD Rec., vol. 26, no. 1, pp.
65–74, Mar. 1997.

[8] J. M. Hellerstein et al., “Online aggregation,” SIGMOD Rec.,
vol. 26, no. 2, pp. 171–182, Jun. 1997.

[9] P. J. Haas and J. M. Hellerstein, “Ripple joins for online
aggregation,” SIGMOD Rec., vol. 28, no. 2, pp. 287–298,
Jun. 1999.

[10] J. M. Hellerstein et al., “Interactive data analysis: The control
project,” Computer, vol. 32, no. 8, pp. 51–59, Aug. 1999.

[11] D. Fisher et al., “Trust me, i’m partially right: incremental
visualization lets analysts explore large datasets faster,” in
Proceedings of the 2012 ACM annual conference on Human
Factors in Computing Systems, ser. CHI ’12. New York, NY,
USA: ACM, 2012, pp. 1673–1682.

[12] S. Agarwal et al., “Blinkdb: queries with bounded errors and
bounded response times on very large data.” New York, NY,
USA: ACM, 2013, pp. 29–42.

[13] M. Bostock et al., “D3: Data-driven documents,” IEEE Trans.
Visualization & Comp. Graphics (Proc. InfoVis), 2011.

[14] “Google maps api,” https://developers.google.com/maps/,
May 2012.

[15] P. Cudre-Mauroux et al., “A demonstration of scidb: a
science-oriented dbms,” Proc. VLDB Endow., vol. 2, no. 2,
pp. 1534–1537, Aug. 2009.

[16] “Scidb user’s guide (version 13.3),” 2013. [Online]. Available:
www.scidb.org

