A Review and Collation of Graphical Perception Knowledge for
Visualization Recommendation

Zehua Zeng
University of Maryland, College Park
College Park, Maryland, USA
zhzeng@umd.edu

ABSTRACT

Selecting appropriate visual encodings is critical to designing ef-
fective visualization recommendation systems, yet few findings
from graphical perception are typically applied within these sys-
tems. We observe two significant limitations in translating graphical
perception knowledge into actionable visualization recommenda-
tion rules/constraints: inconsistent reporting of findings and a lack
of shared data across studies. How can we translate the graphi-
cal perception literature into a knowledge base for visualization
recommendation? We present a review of 59 papers that study
user perception and performance across ten visual analysis tasks.
Through this study, we contribute a JSON dataset that collates ex-
isting theoretical and experimental knowledge and summarizes
key study outcomes in graphical perception. We illustrate how this
dataset can inform automated encoding decisions with three rep-
resentative visualization recommendation systems. Based on our
findings, we highlight open challenges and opportunities for the
community in collating graphical perception knowledge for a range
of visualization recommendation scenarios.

CCS CONCEPTS

« Human-centered computing — Visualization theory, con-
cepts and paradigms; Empirical studies in visualization; Visu-
alization systems and tools.
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1 INTRODUCTION

Certain graphical perception results have had a tremendous influ-
ence on the design of visualization recommendation systems. For
example, Wongsuphasawat et al. [107, 108] leverage theoretical
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breakthroughs from Bertin [9] and Mackinlay [61] in the devel-
opment of the Voyager system. Similarly, Moritz et al. [65] lever-
age empirical findings from Cleveland and McGill [17] and Kim
and Heer [46] in the development of the Draco recommendation
framework. However, we observe many more graphical perception
studies that are never considered in the design of visualization
recommendation systems. For example, none of the visualization
recommendation systems we observe (e.g., as summarized in cur-
rent surveys [86, 100, 109, 111, 113]) use guidelines from more than
three graphical perception studies to guide their encoding deci-
sions. Some visualization recommendation systems do not refer-
ence any graphical perception studies at all to inform their designs
(e.g., [24, 45, 98]). We posit that visualization recommendation al-
gorithms could be further enhanced if they could leverage more
findings from the graphical perception literature.

Furthermore, we observe significant changes and contradictions
in encoding guidelines as knowledge in graphical perception con-
tinues to evolve [48]. For example, Cleveland and McGill treated
pie charts as primarily angle encodings [17]; however, more recent
work suggests that pie charts are perceived more as area encod-
ings [49]. Thus, if a visualization recommendation system only uses
a few graphical perception papers to guide its selection of percep-
tually effective visualizations, it runs the risk of making outdated
decisions, which could lead users to misinterpret the data. As a
result, we argue that graphical perception is a necessary component
of designing effective visualization recommendation algorithms.

Despite the importance of graphical perception in visualization
recommendation, we observe that no current work establishes a
pipeline for integrating graphical perception studies into the design
of visualization recommendation algorithms. For example, we fail to
find any papers that translate a large body of graphical perception
literature into actionable design guidelines for visualization rec-
ommendation algorithms [73]. Existing surveys either summarize
existing graphical perception papers [103] or summarize the behav-
ior of existing visualization recommendation systems [86, 111, 113]
and ignore how one influences the other. Although existing visual-
ization recommendation frameworks [65, 88, 106] enable modeling
visualization design knowledge into developing new recommen-
dation algorithms, users still need to translate existing graphical
perception guidelines into rules/constraints that these algorithms
can understand.

We observe two major barriers to translating graphical percep-
tion knowledge into actionable visualization design rules and con-
straints: inconsistent reporting of findings and a lack of shared data
across graphical perception studies. To address this problem, one
should ideally review the literature in graphical perception, identify
which graphical perception studies are actually relevant to visual-
ization recommendation algorithms, and finally synthesize findings
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from the relevant graphical perception studies in a format that can
be integrated into visualization recommendation code.

In this paper, we survey existing graphical perception studies
that compare and rank visualization designs by perceptual effec-
tiveness under ten analysis tasks. We systematically document the
visualization designs studied in each study and other factors in-
fluencing how visualization designs are compared, such as input
data characteristics. Then, we summarize study outcomes at three
levels—between encodings, within chart types, and between chart
types—to synthesize concrete perception-driven design rules for
generating effective visualization designs for specific data charac-
teristics and analysis tasks. We illustrate how our results can be
used to improve existing visualization recommendation systems
with three representative systems as case studies: Foresight [24],
Voyager [107, 108] and Draco [65]. Furthermore, we share code to
automatically translate graphical perception results into their cor-
responding Draco constraints. Finally, we discuss open challenges
towards building a knowledge base in graphical perception for
visualization recommendation, such as contradictory results and
missing visualization design pairings in the literature.

In summary, we make the following contributions in this paper:

e We review a broad range of the literature (59 papers) on
visualization comparison and develop a schema to record
the theoretical and experimental results of the comparisons
made. The resulting dataset can be ingested into visualization
recommendation algorithms to guide the recommendation
process.

e We summarize the major takeaways from graphical percep-
tion papers as concrete design guidelines to help visualiza-
tion recommendation algorithms and even data analysts
select optimal visualization designs.

o We illustrate how our guidelines could be used to improve ex-
isting visualization recommendation systems and share code
to translate findings from 30 graphical perception papers
into their corresponding Draco [65] constraints.

e Finally, we suggest potential paths for future research to
address observed challenges in graphical perception and
visualization comparison.

All of our data are available online: https://github.com/Zehua-
Zeng/graphical-perception-knowledge.

2 RELATED WORK

In this section, we discuss existing works in graphical perception
and visualization recommendation systems.

2.1 Graphical Perception Work

Many works investigate how to design effective visualizations.
Theory works such as Bertin’s visual encoding principles [9] and
Mackinlay’s APT work [61] have been highly influential in infor-
mation visualization research. Cleveland & McGill [17] organized
the encoding channels put forth by Bertin from least to most ef-
fective in terms of quantitative data and validated this ranking in
part through graphical perception studies. Mackinlay [61] later
extended the ranking to include ordinal and nominal data in the
APT system. Shneiderman [87]’s task taxonomy then broadened
Mackinlay’s work by including data types that were not covered in
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APT, such as multidimensional data, trees, and networks. The de-
sign principles proposed by Bertin, Cleveland & McGill, Mackinlay,
and Shneiderman inform the structure of our framework, which
focuses on organizing comparison among not only different visual
encodings but also various visualization types.

Numerous later experiments build on these foundational theo-
retical works. For example, the experimental results of Cleveland
& McGill were replicated and validated by Heer & Bostock [34]
through crowdsourcing of graphical perception experiments. Tal-
bot et al. [95] also designed four follow-up experiments on the
perception of bar charts to further explore and explain Cleveland &
McGill’s results. Their main goal was to understand how different
bar chart designs impact analysis task performance. Kim et al. [46]
discuss ways to evaluate the effectiveness of twelve 3-encoding
visualization designs for different low-level tasks and dataset char-
acteristics. Kosara [49] finds that pie charts may be perceived dif-
ferently than initially hypothesized by Cleveland and McGill. Saket
et al. [78] evaluate the effectiveness of basic visualization types for
a specific set of analysis tasks.

2.2 Visualization Recommendation Systems

We provide a summary of visualization recommendation systems
here and defer to existing surveys for more details [100, 109, 111,
113]. Existing visualization recommendation systems can be divided
into two main categories according to their strategies to rank visu-
alization designs: rule-based or machine learning-based [39, 111].
Rule-based systems utilize either existing theoretical principles in
graphical perception (e.g., [107, 108]) or propose new metrics to
rank visualization designs (e.g., [24, 45, 98]). For example, Wong-
suphasawat et al. [107, 108] use Mackinlay’s principles [61] to
make recommendations, prioritizing recommendations based on
the breadth of data covered within the visualizations. Vartak et
al. [98] use an “interestingness” metric based on deviation in the
data to identify visualizations of potential interest. Both Key et
al. [45] and Demiralp et al. [24] apply statistical features of the
dataset into their systems for guiding exploratory analysis.

Machine learning-based systems [39, 52, 54, 60, 65] design and
train models based on (often large) visualization design corpora.
For example, Hu et al. [39] trained a deep learning model using
millions of Plotly visualizations and recommended visualization
designs for new datasets using the trained model. In a similar spirit,
Luo et al. [60] implemented a visualization recommendation sys-
tem by combining deep learning techniques with hand-written
rules. Moritz et al. [65] introduced the Draco system, which enables
users to generate relevant visualizations by formulating design
requirements as rules passed to a constraint solver. One of the
Draco applications, Draco-Learn, was implemented with a training
model which learns effectiveness criteria from two prior empirical
studies [46, 78]. A more recent work by Li et al. [52] proposed a visu-
alization recommendation algorithm based on a knowledge graph
employed to model visualization rules, leveraging the advantages
of rule-based and machine-learning-based methods.

2.3 Limitations of Current Work

All these graphical perception works can (and probably should)
inform the design of visualization recommendation systems, yet
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their influence is still limited [79]. Existing visualization recom-
mendation systems only utilize a limited amount of research work
as the design guidelines, which introduces the risk of suggesting
ineffective visual encodings. Rather than assessing graphical per-
ception from a structural and implementation perspective, existing
surveys primarily summarize graphical perception research to edu-
cate non-specialists [102, 103]. We believe this paper is the first to
systematically synthesize the graphical perception literature into
actionable data and guidelines for visualization recommendation
systems. Furthermore, our work demonstrates how graphical per-
ception work that has generally been overlooked in visualization
recommendation systems can be used to improve their performance.

3 METHODOLOGY

Our goal is to enhance the ability of visualization recommendation
systems to reason intelligently about the effectiveness [61] of var-
ious visualization designs across analysis tasks and datasets. To
achieve this, we first need to understand the space of visualization
designs and visual comparisons that are most relevant to visualiza-
tion recommendation systems. In this section, we formally define
the visualization design space that we focus on in this paper. Then,
we describe our method and rationale for collecting and filtering
relevant theory and experiment papers in graphical perception.

3.1 Which Visualization Designs Should Be
Compared?

First, we need to define the visualization design space in which
a single recommendation system (or algorithm) can be effective.
On the one hand, it is impractical to derive a single visualization
recommendation system to cover all possible visualizations. On the
other hand, it is equally impractical to expect visualization users to
learn a completely different system for every conceivable visual-
ization use case. We establish the boundaries of the visualization
design space, which effectively covers the search space for most
visualization recommendation algorithms (e.g., Voyager [107, 108],
Foresight [24], DeepEye [60], Draco [65] etc.). Then, we explain
how we specify individual visualization designs within this space,
informed by the literature on visualization specification and visual-
ization languages [82, 104].

3.1.1 Establishing Design Space Boundaries. Our boundaries are in-
formed by existing literature on (1) visualization design spaces [62,
65, 106], which formally define the range of visualization designs
that could be recommended; and (2) graphical perception stud-
ies [35, 51, 82, 84, 96], which can be used to identify a subset of
designs that can be fairly compared in terms of user performance.
We summarize our findings as the following constraints on the
visualization design space.

B1. Exclude 3D visualizations. As found in previous work, users
often have difficulty in perceiving information from 3D visual-
izations [96]. Most recommendation algorithms do not include
them [111]. Moreover, in many cases, multiple linked 2D views
prove to be more effective than a single 3D visualization of the
same data [84]. Thus, we exclude 3D visualizations from our design
space.
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B2. Exclude network graph visualizations. As discussed in previ-
ous work [51], graph analysis tasks are generally considered sepa-
rate from tabular data in visualization research and should likely be
studied separately. Moreover, existing visualization recommenda-
tion systems mainly focus on generating visualizations for tabular
data and generally do not include network graph visualizations
(e.g., [24, 45, 65, 107, 108].) Thus, we exclude graph visualizations,
like trees, treemaps, networks, radar charts, chord diagrams, etc.

B3. Focus on static visualization designs. Although animations
and transitions can improve a user’s perception of an underly-
ing dataset [35], many if not most visualizations are still designed
without any animations or transitions. Given a lack of data in the
literature evaluating the animation and transition design spaces,
we do not include these design elements within our visualization
design space. Similarly, the design space of interactions is still an
under-explored area in visualization, and enumeration of this space
has only recently become viable [82]. In this case, the lack of data
and theoretical principles is already evident and does not require
an in-depth literature review. As a result, we exclude animations
and interactions from our analysis. We plan to revisit this gap in
our future work as more data becomes available.

3.1.2  Specifying Visualization Designs. After establishing the de-
sign space boundaries, we then discuss how to specify individual vi-
sualization designs to be compared. The visualization effectiveness
could be impacted by many factors, such as the encoding channels,
mark types, and scales used in the visualization, but also the data
characteristics of the input dataset, like the cardinality and entropy
of each attribute. Inspired by one of the most popular visualization
grammars, Vega-Lite [82], we use data types, data transformations,
encoding channels, mark types, and scales to specify each observed
visualization design. However, Vega-Lite does not support data
characteristics specification. To address this limitation, we extend
Vega-Lite by integrating a new “data characteristics” component
to support describing the target dataset; the specification structure
is based on how dataset characteristics are specified in Draco [65].
Examples of how to use our specification language are provided in
Listing 1 and our supplemental materials.

Data Types: quantitative, nominal, or ordinal.

Data Characteristics: cardinality and entropy.

Data Transformations: aggregation or bin.

Encoding Channels: position (X/latitude, Y/longitude), length,
angle, area, texture, shape, color saturation, color hue, orientation,
column, row.

Mark Types: point, line, area-circle, area-rect, area-arc, area-
other, text, geoshape, box-plot.

Scales: linear, log, nominal, or ordinal.

We utilize data types, characteristics, and transformations to
describe the data while encoding channels, mark types, and scales
to specify the visualization design itself. There exist more mea-
surements for data characteristics like scagnostics [105]. However,
scagnostics are mainly used for one chart type—scatterplot, which
is already covered by a recent survey [81]. In this paper, we focus
on comparing different visualization designs instead of emphasiz-
ing one or two specific chart types; thus, we select the three most
commonly used measurements for data characteristics—cardinality,
entropy, and correlation.
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When selecting encoding channels for our analysis, we start
with the encoding channels discussed in the ranking of perceptual
tasks proposed by Cleveland & McGill [17] and later extended
by Mackinlay [61]. We remove the connection and containment
channels because they are mainly used for graph visualizations
which we exclude from the analysis (Section 3.1.1). We also find that
orientation has been discussed frequently in the literature (e.g., [16,
99]) and is similar to the direction channel proposed by Cleveland
& McGill [17] and the slope channel mentioned by Mackinlay [61];
thus we combine them into orientation channel. We split the position
channel into positionX and positionY since there are 2 directions
of position in the 2D Cartesian plane, which could impact a user’s
perception of these values. We also add column and row encodings
for faceting charts, bringing the number of encoding channels to 12
(see Figure 1). To save space, we use an abbreviation to represent
each channel. PX is positionX, PY is positionY, L is length, An is
angle, O is orientation, Ar is area, C is column, R is row, CS is color
saturation, CH is color hue, T is texture and S is shape, shown in
Figure 1.

PR | FAVAYVANArY |

PositionX PositionY Length Angle Orientation Area
(PX) (PY) (O] (An) (0) (Ar)

I
S e [ e B0 OWK

Texture Shape
Column lﬁ [ L V)] (S)
() R Color Hue
ow (CH)

(R)

Figure 1: All encoding channels utilized in our design space.

3.2 Which Papers Should be Included in the
Survey?

To initially find relevant papers for our literature review, we checked
all papers in well-known visualization-related conferences and
journals (specifically: IEEE TVCG, ACM SIGCHI, EuroVIS) in the
last ten years, in which we searched for the keywords “encoding”,
“perception”, “effectiveness”, “evaluate” in the titles, abstracts, and
keywords. We also reviewed the references for each paper found
through colleagues or online searches; any relevant papers were
also included in our review. In total, we found 132 candidate papers
for our literature review.

We then excluded papers that fall outside the boundaries of the
visualization design space described in Section 3.1.1. For example,
we excluded papers that only evaluate 3D visualizations, graph
visualizations, or animated visualizations. Given our focus on pro-
viding guidelines for visualization recommendation systems, we
use the following filters to guide our paper selection process:

F1. Focus on human perception and task performance. An essen-
tial facet of visualization recommendation systems is encoding
selection, which directly impacts a user’s ability to perceive the
underlying information [47, 111]. Even if a visualization system
suggests certain data attributes to explore, these findings will be
inaccessible to the user if the data is presented incorrectly. Thus, we
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focus on results that speak to a user’s ability to perceive different
visual encodings and differences in user performance across tasks
and visualization designs.

F2. Focus on evaluation with standard displays. Although some
existing work has researched the effect of display size on graphical
perception or task performance [5, 22, 34], and some are building
new systems to better support different display sizes [7, 11, 36,
38], the vast majority of existing visualization evaluations are still
conducted in regular displays (e.g., computer screens). Thus, we
focus on reviewing the literature in visualization evaluation and
comparison with standard desktop and laptop displays.

F3. Focus on evaluation with visualizations that can be gener-
ated by automatic processes. Recent work [21] combines natural
language analysis techniques with visualization synthesis to auto-
matically generate infographics; however, it remains challenging
for recommendation systems to understand the semantic mean-
ing of most datasets and then select corresponding encodings or
visualizations. Thus, we exclude papers only evaluating visualiza-
tions that usually require a certain amount of manual generation,
like visual embellishments [10, 32, 89, 91], and semantically color
assignments [56, 85], etc.

F4. Compare different visualization designs. In order for algo-
rithms to select the most relevant visualization design for a given
dataset, they must be able to compare and ultimately rank the ef-
fectiveness of different designs [111]. To determine which designs
should be preferred by these algorithms, we need experimental
results that compare different visualization designs or theoretical
rules and guidelines to prune irrelevant designs. To this end, we
include any paper in our review that compares the user’s ability to
effectively perceive and reason about information encoded using
different visualization designs (at least one of the six components
from Section 3.1.2 are different).

This filtering step excluded 73 of the 132 candidate papers, leav-
ing 59 papers for our analysis.

4 SYSTEMATICALLY RECORDING
PERCEPTUAL RESULTS

In this section, we present a schema to record extracted visualiza-
tion rankings. We use this schema to generate a data record for
each of the 59 papers in our literature review, contributing a JSON
dataset of graphical perception results that can be imported into
visualization recommendation systems. Our schema also enables a
fine-grained analysis of how many graphical perception works ex-
ists to inform encoding choices within these systems. Our schema
has four components:

Category: either theory, experiment, or hybrid. Experiment pa-
pers focus on experiments that provide concrete performance mea-
sures for various graphical perception scenarios. Theory papers
present theoretical principles to generalize the findings of empiri-
cal work or formal models that can be tested in subsequent work.
Hybrid papers present a pairing of theoretical hypotheses and exper-
iments conducted to test (at least some of) the proposed hypotheses.

Designs: a list of all the visualization designs tested by each
paper in our review, each specified using our visualization space
design parameters from Section 3.1.2.
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Tasks: a set of visual analysis tasks used in the existing litera-
ture for guiding the evaluation of visualization designs. Previous
research has indicated that the effectiveness of visualization de-
pends on the data attributes to be visualized [80] and the task to
be performed [4]; thus, we also include tasks in our schema. We
use prior work [4, 46] as guidelines and develop a hierarchical task
taxonomy.

Results: ordered lists representing the rankings and significant
differences reported in the literature for the proposed or tested
visualization designs. Results are separated into theoretical rankings
and experimental results.

4.1 Visualization Designs

Visualization designs are specified by six components as discussed
in Section 3.1.2. We incorporate layers in our schema [104] since
many designs are only feasible by overlaying multiple visualizations
on top of each other. Each layer is a single visualization design,
defined by an encoding set and the mark type. Each encoding
set consists of the data information of the data column visualized
by the current encoding and its assigned encoding channel and
scale. Listing 1 shows an example of a composite graph, a bar chart
(line 11-18) overlaid on a line chart (line 3-10), mentioned in Albers
et al. [2] (as shown in Figure 2). We assign an ID for each recorded
visualization design, where “E” means the design is empirically
evaluated, and “T” means it is theoretically discussed. For example,
the ID “E-4” (line 1 in Listing 1) means this visualization design is
the fourth empirically tested design in the paper [2].

When determining the encoding set for a visualization design,
we consider all encodings a user or participant perceives within the
design rather than the subset of encodings highlighted by a partic-
ular experiment or design rule. For example, when participants are
asked to judge whether test marks are using the same or different
colors in scatterplots [94], they perceive three encodings (PX, PY,
CH), even if only one encoding (CH) is permuted.

loo1{1{1{1{1{1{1}1%1%1{1%1

80 1

40
20

O| LI I B = L [ A A [ E I B ‘| [
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 2: The composite graph studied by Albers et al. [2].

The specification of this chart with our schema is shown
in Listing 1.
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Listing 1: Example of a covered visualization design, where a
bar chart overlaid on a line chart, as shown in Figure 2.

1"E-4": {

2 "layers": [

3 {"encodings": [

4 { "data-type": "quantitative", "data-charcs": {3},
5 "data-trans": {3}, "channel": "positionY",

6 "scale": "linear"}3},

7 { "data-type": "ordinal", "data-charcs": {3},

8 "data-trans": {3}, "channel": "positionX",

9 "scale": "ordinal"}],

10 "mark": "line"},

11 {"encodings": [

12 { "data-type": "quantitative", "data-charcs": {3},
13 "data-trans": {"aggregate": "mean"},

14 "channel": "length", "scale": "linear"},

15 { "data-type": "ordinal", "data-charcs": {3},

16 "data-trans": {3}, "channel": "positionX",

17 "scale": "ordinal"}],

18 "mark": "area-rect"}1}

4.2 Tasks

Generally, visualizations are designed to facilitate specific visualiza-
tion tasks or user objectives [66, 77, 78], including in visualization
recommendation contexts [111]. As a result, graphical perception
experiments gauge performance under a specific subset of tasks.
Furthermore, we and others [77] observe that the literature is not
always consistent in how visual analysis tasks are defined. Thus,
we developed a standardized taxonomy to categorize the tasks ob-
served across our selected papers. We use the low-level analysis
tasks proposed by Amar et al. [4] as an initial starting point for the
taxonomy. We use the categorization of Kim & Heer to divide these
low-level tasks into two groups [46]: value and summary tasks.
Value tasks require reading or comparing individual values while
summary tasks require identification or comparison of the aggregate
properties. Then, we adjusted the task descriptions in response to
observed discrepancies from our literature review. For example,
we extended “Compute Derived Value” in Amar et al’s taxonomy
into “Aggregate” which includes computing and comparing the
aggregate values of the specified attributes. Table 1 shows all of the
visual analytics tasks we observed in our literature review, as well
as their descriptions and the relevant works that mention them.

4.3 Results

Results represent a summary of the reported outcomes of a given
graphical perception experiment or theory paper that can be used
to inform visual encoding recommendations. When documenting
graphical perception results, we distinguish between experimen-
tal and theoretical rankings. They are grouped by the metric that
the graphical perception paper uses to rank the visualization de-
signs. We include all and only the metrics that we observed directly
from the graphical perception literature. In total, we observed six
different metrics used in the existing literature to compare visual-
izations: accuracy, bias, IND (just noticeable difference), time and
user-preference for experimental results and effectiveness for theoret-
ical rules. Under each metric, we refer to the graphical perception
paper or its available supplemental materials to record how visual-
ization designs are ranked based on their task performance (from
the best to the worst). For visualizations that perform about the
same, we group them into a sub-set. While the rank list only reflects
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Table 1: A taxonomy of visual analysis tasks based on the task categorizations proposed by Amar et al. [4] and Kim & Heer [46].

Tasks Descriptions

Relevant Work

Retrieve Value

Identify values of the specified attributes

[3, 15, 19, 42, 46, 58, 63, 74, 78, 81, 99]

Filter Find data points satisfying the specified conditions [29, 68, 69, 78, 81, 93, 99]
14,17, 19, 34, 4 -
5 Sort Compare a set of data points by the specified ordinal metric [14, 17, 19, 34, 46, 50, 59, 67
'§ 69, 78, 81, 92, 95, 99, 112]
Cluster Detect clusters of similar attribute values [3, 6, 23, 28, 42, 64, 78, 81, 94, 101]
1, 3, 14, 16, 19, 20, 33, 41, 42, 44 4, 69—
Correlate Determine/estimate the correlation within the specified attributes [1,3, 14, 16, 19, 20, 33, 41, 42, 44, 53, 57, 64, 6
71,74, 78, 81]
1-3, 14, 18, 26, 2 40,41, 4 =
Aggregate Compute/compare the aggregate value of the specified attributes [1-3, 14, 18, 26, 27, 30, 37, 40, 41, 46, 67
N 70, 72, 74, 75, 78, 81, 83, 93, 110]
-
é Find Extremum Find data points with an extreme value of the specified attribute  [2, 3, 6, 16, 29, 41, 43, 46, 72, 78, 93, 99]
5  Determine Range Find the span of values of the specified attributes [2, 6, 29, 40, 78, 93]
%

Characterize Distribution

Find Anomalies Identify anomalies within the dataset

Identify the distribution of given attributes

[2,3, 6,46, 50, 76, 78, 81]
[2,3, 14, 31, 42, 64, 78, 81]

the ranking among visualization designs, it does not show whether
there is a significant difference between the two visualization de-
signs in terms of each metric. Thus, we also record the significance
results which store a list of visualization pairs where the first entry
performs significantly better than the second one. For experimental
results, we also record the statistical test results (if reported in the
literature), including the statistical method, threshold, and effect
size.

Listing 2: Example of the result of a hybrid paper [17].

1"Results": {

2 "Experimental": {

3 "accuracy": {

4 "sort-1": {

5 "rank": ["E-1","E-2","E-3","E-4","E-5"],

6 "significance": {

7 "pairs":[["E-1","E-3"],["E-1","E-4"],

8 ["E-1","E-5"]1,["E-2","E-4"],["E-2","E-5"],
9 ["E-3","E-4"1,["E-3","E-5"]],

10 "significance-method": "bootstrapping",
11 "significance-threshold": 95%,

12 "effect-size-method": "none",

13 "effect-size-threshold": null}},

14 "sort-2": {

15 "rank": ["E-1", "E-6"1,

16 "significance": {

17 "pairs": [["E-1", "E-6"11,

18 "significance-method": "bootstrapping",
19 "significance-threshold": 95%,

20 "effect-size-method": "none",

21 "effect-size-threshold": null}}}},

22 "Theoretical": {

23 "effectiveness": {

24 "overall": {

25 "ranking": ["T-1","T-2",["T-3","T-4","T-5"7,
26 "T-6", "T-7",["T-8","T-9"17,

27 "significance": {

28 "pairs": [["T-1","T-2"1, ["T-1","T-3"7,
29 ["T-1","T-4"1, ["T-7","T-9"11333}3}%

We use a hybrid paper [17] as an example (shown in Listing 2).
If a task is conducted multiple times, we add an index after the
task name to differentiate different task rounds. From Listing 2,
we can see that two sort tasks were conducted (line 4, 14). In the
first experiment (line 4-13), the rank list (line 5) shows that visu-
alization “E-1” performed the best among five designs. Moreover,
the significance result (line 6-13) reveals that bootstrapping method

was used to determine whether there is a significant difference
between two visualizations, and the threshold was set at 95%. The
pairs list reveals that there was a significant performance difference
between “E-1” and some other visualization designs (“E-3”, “E-4”,
and “E-5”) (line 7-9). However, the effect size was not reported in
the experiments from this paper (line 12-13).

5 INTEGRATING CURRENT RANKINGS &
GUIDELINES

In this section, we review existing graphical perception theories
and experiments that could be used to guide visualization recom-
mendation systems. We synthesize existing performance rankings
across different visualization designs and summarize the impact
of data characteristics and tasks on these rankings. We generate
tables summarizing our findings, which system designers can use to
specify encoding rules for visualization recommendation systems,
e.g., as queries [106] or constraints [65]. We have three research
goals for this work: (1) summarize how to rank individual encodings
according to their expressiveness and effectiveness; (2) summarize
how to rank variations on a single chart type to enhance its design;
and (3) summarize rankings for comparing different chart types, to
identify the best performing visualization designs for specific data
characteristics or task types.

5.1 Encoding Channels

In this section, we cluster research papers by the encoding channels
they cover. We first discuss how well existing literature covers each
encoding channel, then summarize the study outcomes showing
how effective each encoding channel is in visualizing different data

types.

5.1.1 Literature Coverage. As shown in Table 2, all twelve encoding
channels are covered by existing literature. To analyze encoding
coverage, we break down visualization designs into encoding sets.
For example, a paper studying scatterplots covers both the PX and
PY encodings. As another example, a paper that studies grouped
bar charts covers three encodings: PX, PY, and CH. We can see that
(PX, PY) (49/59, 83.05%), CH (29/59, 49.15%), L (28/59, 47.46%), and
Ar (23/59, 38.98%) are the most discussed encodings, while other
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Table 2: Literature coverage for the 12 encoding channels. The papers in italics are theoretical, the underlined ones are hybrid,

and the rest are experimental.

‘ Relevant Work

[17, 64, 101]

[1,2, 6, 14, 16, 18-20, 26-29, 31, 33, 34, 37, 41-44, 46, 53, 57-59, 63, 67-71, 74, 75, 78, 83, 92-95, 99, 110, 112], [3, 61, 81],

PY [1,2, 6, 14, 18-20, 26-29, 31, 33, 34, 37, 41, 42, 44, 46, 53, 57, 59, 63, 67-71, 74, 78, 83, 92-94, 110], [3, 61, 81], [17, 40, 64, 101]
L [2, 15, 19, 27, 33, 34, 43, 44, 50, 59, 63, 67, 68, 71, 72, 76, 78, 90, 93-95, 99, 110, 112], [3, 61], [17, 40],

An [33, 34, 44, 50, 59, 70, 76, 78, 90], [61], [17]

Ar | [16, 20, 23, 28, 33, 34, 37, 41, 44, 46, 50, 63, 67, 69-72, 78, 90, 99], [3, 61], [17]

O | [3 61], [17], [16, 33, 34, 44, 63, 70, 90, 9]

CH [1,12, 13, 16, 18, 23, 26, 28, 29, 31, 33, 41, 44, 46, 50, 58, 59, 74, 75, 78, 90, 92-94], [3, 61], [25, 30, 101]
CS [2, 6,12, 13, 16, 26, 29, 37, 41, 46, 58, 63, 70-72, 74-76, 83], [3, 61], [17, 40]

T | [16], [61]

S [14, 16, 23, 26, 42, 92], [61]

Cc | [6,70,71,99], [3], [40]

R | [1,6, 41, 46,70, 71, 99], [3], [40]

Table 3: Encoding guidelines summarized from existing the-
oretical literature. Q means quantitative, N means nominal,
and O means ordinal data. An encoding channel is recom-
mended (¥), can partially support (%), or should not be used
(%) for the corresponding data type.

Expressiveness
Ar (¥), CS (+), CH (%), S (%), T (X)
CH (¥), T (¥), 0 (¥),S (¥), Ar (X), CS (X)
Ar (¥), CS (), T (¥), CH (%), S (%)

[12, 13, 61]

© zo

Effectiveness

PX=PY>L=An=0>Ar>CS | (17]

PX=PY>L>An>0>Ar>CS>CH
PX=PY>CH>T>CS>S>L>An>0>Ar [61]
PX=PY>CS>CH>T>L>An>0>Ar

© Zo |

encodings such as R (9/59, 15.25%), S (7/59, 11.86%), C (6/59, 10.17%)
and T (2/59, 3.39%) are less mentioned.

5.1.2  Study Outcomes. In Table 3, we summarize findings of encod-
ing perception organized by Mackinlay’s principles of expressiveness
and effectiveness [61]. A visualization design is considered expressive
if it shows all and only the data the user wants to see and effec-
tive if a user can accurately interpret the graphical representation.
We cluster research papers regarding data types to learn which
encoding works better for a specific data type.

Quantitative. As shown in Table 3, we can see that existing the-
oretical principles [61] do not recommend using S and T for quan-
titative data since they usually cannot be perceived to be ordered.
However, empirical results from Chung et al. [16] show that S and
T can be orderable; in particular, marks with countable differences
(e.g., the number of spikes or lines) can be perceived as ordered
(see Figure 3).

Texwre VOO D 000000000
Shape /A <> Yo E AT FEIEIETESEREE ¢

Figure 3: Texture and shape encodings studied by Chung et
al. [16].

In terms of effectiveness, Cleveland & McGill [17] propose a
ranking for encodings representing quantitative data, and Mackin-
lay [61] extends this ranking to include nominal and ordinal data
(see Table 3). Cleveland & McGill test part of the ranking with
follow-up experiments. Their results show that PY encoding out-
performs L and An encodings on sort tasks. Heer and Bostock [34]
replicate these experiments but also add Ar encoding in the test
and adjust the experiments to make results among tested encod-
ings comparable. Their results are similar to Cleveland & McGill’s.
McColeman et al. [63] re-examine these encoding rankings with
a different task and find they do not hold. Furthermore, they find
that other factors—such as cardinality—have more influence on task
performance than the encoding choice (see Table 4).

On the one hand, theoretical works [12, 13, 61] suggest that the
full-color spectrum is not ordered, but part of CH still can be used
for quantitative data. CS, in comparison, is preferable to represent
quantitative data. On the other hand, experiments are conducted to
evaluate the human performance of perceiving CS and CH convey-
ing quantitative data with various visual analysis tasks (see Table 5).
Although Liu & Heer [58] and Reda et al. [74, 75] arrive at a similar
finding which is that participants can discriminate more minor
gradient variations with multi-hue colormaps (CH + CS) than with
single-hue ones (CS only), they draw different conclusions for the
rainbow colormap (m 1). Liu & Heer [58] suggest that the
rainbow colormap is not intuitive and performs the worst for or-
dering colors and should be jettisoned; however, Reda et al. do not
discard the rainbow colormap. They recommend using rainbow
or other multi-hue colormaps for value tasks at high spatial fre-
quency. Schloss et al. [83], on the other hand, investigate how the
different colormaps would be affected by background color. They
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Table 4: Ranking for encodings representing quantitative
data from existing experimental literature, group by task
type and metric. () differentiates the same encoding but with
different mark types.

Task Metric Rank Ref.
PY (bar)>L, PY (bar)>An [17]

sort accuracy
PY (bar)>L>An>Ar [34]

retrieve value accuracy O>Ar>CS>L>PY (bar)>PY (line

(2 marks) bias O>L>PY (bar)>CS>Ar>PY (line

)

)

: — [63]
retrieve value accuracy Ar>O>CS>PY (bar)>L>PY (line)
)

(4 marks) bias L>PY (bar)>0>CS>Ar>PY (line

Table 5: Ranking for colormaps representing quantitative
data, group by task type and metric (only top 3 colormaps
are shown). > means the left performs better than the right,
while > means the same order but with some uncertainty.

Task Metric Rank Ref.
accuracy [ b 2 I

sort : [58]
time > I >

aggregate JND [ o> e 1> m— [75]
filter - 1> m - >

correlate  accuracy m o> 1> - [74]

cluster - o> . - > .

find that when colormaps vary less in opacity, human perception is
unaffected by the background; however, the role of the background
increases when apparent variation in opacity increases.

Nominal. Mackinlay’s expressiveness rules—the only relevant
theory work observed—do not recommend using Ar and CS for
nominal data since they would probably be perceived to be or-
dered. Empirically-focused papers [23, 92] aim to learn how dis-
criminable different encoding channels are for nominal data. Demi-
ralp et al. [23] examine the perceptual distance for CH, S, Ar and
their combinations. Based on the experiment results, they propose
palettes that can maximize perceptual discriminability for each
examined encoding (see Figure 4). Smart & Szafir [92] measure how
using CH, S, and Ar for marks influences data interpretation in mul-
ticlass scatterplots. They find that (1) S affects CH and Ar difference
perception more strongly than CH or Ar affects S perception; (2)
CH are generally more discriminable with filled shapes than with
unfilled ones, and filled shapes (e.g. @, @) are perceived as larger
than their unfilled counterparts (e.g. O, O ); and (3) shapes with
top or bottom edges (e.g. @, O) are perceived larger than others
(e.g. +, 77).

Ordinal. As for expressiveness, existing theory work does not
recommend CH to represent ordinal data and recommends CS
instead [61]. We find one empirical work evaluating CS and CH
for conveying ordinal data [29]. They confirm that CS ( oEm)

Zeng and Battle

originl OO0+ X *kOAVID> EEEEEEEE 0 000000000
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Figure 4: Shape, color hue and area palettes proposed by Demi-
ralp et al. [23]: bottom palettes are re-ordered to maximize
perceptual distance.

performs better than CH (mm= | =) in both accuracy and time for
summary tasks.

Takeaways: Design Guidelines. Theoretical work provides
concrete rules that allow visualization recommendation algorithms
to immediately detect bad encoding choices for a specific data type.
In this way, theoretical rules can help visualization recommenda-
tion algorithms automatically prune the space of recommendation
candidates. Meanwhile, experimental work examines some hypothe-
ses on how visual encodings perform in practical scenarios. The
resulting rankings can inform heuristics-driven visualization rec-
ommendation algorithms like Voyager [107, 108] (see Section 6.1.2).
We observe the following takeaways that could inform both human
and algorithmic design decisions:

¢ In general, position encodings (PX, PY) are the top choices for
representing all data types (quantitative, nominal, ordinal).

e Ar and CS encodings are also top choices for visualizing
quantitative data.

e CH, S, and Ar encodings are effective for visualizing nominal
data. However, different combinations have different percep-
tual discrminabilities. For example, CH is generally more
discriminable with filled shapes than with unfilled ones.

e CH is not expressive for representing ordinal data, and CS
performs better than CH.

5.2 Chart Types

Although research findings at the individual encoding level can help
systems avoid obvious pitfalls (e.g., choosing a poor color scheme),
they fail to clarify interference effects [46] between encodings. For
example, the optimal encoding for a single quantitative attribute
may not apply when this attribute is also rendered alongside two
nominal attributes. To address the complexities of combining encod-
ings into full visualization designs, we re-cluster research papers by
the chart types they cover. We discuss how well existing literature
covers different chart types, then summarize observed coverage and
study outcomes from the literature towards achieving our two re-
maining goals: (1) comparing different variants of a single chart type,
and (2) comparing different chart types to identify better visualization
designs.

5.2.1 Literature Coverage. We summarize the chart type coverage
by existing literature in Table 6. Here we use higher-level visualiza-
tion types to cluster papers. For example, we lump bubble charts
into scatterplots and any variants of area charts like stream graphs
into area charts. We group pie charts and donut charts into one
category, as well as geomaps and cartograms. We can see that bar
charts (26/59, 44.07%), scatterplots (24/59, 40.68%), and line charts
(15/59, 25.42%) are the top 3 studied chart types, while only a few re-
search papers cover other chart types like area charts (5/59, 8.47%),
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Table 6: Literature coverage for different chart types. The
papers are grouped by their category, theory, experiment,
and hybrid.

‘ Relevant Work
Scatterplot (2, 14, 20, 26, 27, 31, 33, 34, 37, 42, 44, 46, 53,
P 57, 59, 63, 67, 78, 92, 94], [3, 81], [64, 101]
[2,6, 15,17, 19, 27, 33, 34, 43, 44, 50, 59, 63, 67,
Bar Chart
ar-har 68, 70, 76, 78, 93-95, 99, 110, 112], [3],[40]
. [1,2 18-
L Chart
e thar 20, 28, 33, 41, 44, 63, 70, 78, 94, 110],[3]
Area Chart [20, 28, 33, 41, 44]
Pie/Donut Chart [33, 34, 44, 50, 59, 70, 76, 78, 90, 99]
Heatmap [2, 18, 28, 83]
Parallel Coordinates | [33, 42, 44, 53]
Geomap/Cartogram [6, 29, 31, 69, 71, 74, 75], [3], [30]

heatmaps (4/59, 6.78%), parallel coordinates (4/59, 6.78%). This re-
sult is pretty consistent with Beagle [8], based on which bar charts
and line charts are the most popular visualization types among all
SVG-based visualizations mined from webs. On the other hand, we
also observe the dearth of theoretical work in the space (see Ta-
ble 6); thus, we focus on summarizing the study outcomes from
empirical work in Section 5.2.2 and Section 5.2.3.

5.2.2  Within Chart Type Comparison.

Scatterplots. Besides the evaluation of the class separability per-
ception [92, 101] (mentioned in Section 5.1.2), scatterplots are also
examined with different data characteristics [26, 31, 46], and marks
[26, 37, 46, 57]. We summarize the findings from these research
papers in Table 7. Kim & Heer [46] suggest that in general using
Ar performs better in summary tasks and CS performs better in
aggregate tasks when representing quantitative data; however,
the performance exhibits significant variance across different data
characteristics (entropy and cardinality). Gleicher et al. [26] find
that higher cardinality (more numbers of points) leads to marginally
better performance in aggregate tasks; on the other hand, using
redundant encodings (like using the combination of CH and S for a
same nominal attribute) would not influence the task performance
significantly. Gramazio et al. [31] suggest that using larger marks
can reduce participants’ response time; however, Hong et al. [37]
find that larger and darker marks lead to more bias. Liu et al. [57]
study if the mark orientation would affect task performance and
find that the mark orientation that is consistent with the trend of
the scatterplots can reduce errors in estimate trend tasks.

Bar Charts. Unlike scatterplots, bar charts are often studied with
different variants [15, 43, 68, 93, 95] and arrangements [95, 112].
Srinivasan et al. [93] and Nothlfer & Franconeri [68] evaluate differ-
ent bar chart variants for comparing changing data. They both
find that visualizing data differences yields better performance and
suggest using charts with difference overlays since only visualiz-
ing deltas would lose the context of base values. For visualizing
disproportionate values, Karduni et al. [43] propose using Du
Bios wrapped bar charts. They find that wrapped bar charts lead
to higher accuracy but sometimes at the cost of more time needed
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Table 7: Summarized outcomes for scatterplots. Designs
would affect the performance of corresponding tasks and
metrics. One needs to be cautious about using designs ()
since the effectiveness of visualizations changes dramatically
depending on data characteristics.

Designs Tasks Metrics Ref.
time,
-. . *>]. summary accurac
Yy
o o °
o _| e aggregate accuracy [46]
° °
time
o ol o N summary, )
° o &) value accuracy
o o ° °
.... >| . * summary time [31]
[ ™Y * .
> .. i aggregate bias [37]
[ )
b
v v N { correlate accuracy [57]
' o’
v o ®
o:.. S S K °
e o
LY L]
ot | o aggregate accuracy [26]
L °

than basic bar charts. Other experiments focus more on the per-
ception of bar charts. Talbot et al. [95] explore variations of bar
charts originally studied by Cleveland & McGill [17] and find that
shorter bars are more difficult for sort tasks. Zhao et al. [112],
on the other hand, investigate whether neighborhood would influ-
ence the perception of bars with sort tasks. The results show that
neighborhood does have an effect, but the effect size is small; other
factors like data characteristics have dominated effects. Godau et
al. [27] find consistent underestimations with bar charts, which
are not affected by the height of bars; moreover, the bias persists
even adding a numerical scale or outliers. Ceja et al. [15] recently
find that bars with wide aspect ratios are overestimated, bars with
tall ratios are underestimated, and bars with square ratios show no
systematic bias.

Line Charts. We only find one paper that studies line charts solely.
Aigner et al. [1] evaluate three types of line charts (juxtaposition
on linear scale, superimposition on log scale, and indexing) with
various tasks. They find that using indexing generally yields higher
accuracy and user preference than the two other types; the advan-
tages with completion time are less clear, although some benefits
are shown.

Small Multiples. Both Ondov et al. [70], and Jardine et al. [40]
study how different arrangements of small multiples would af-
fect the task performance. In their experiments, five arrangements
(stacked, adjacent, mirrored, overlaid, animated) are tested with
three chart types—bar charts (with find extremum, correlate,
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determine range, aggregate tasks), line and donut charts (with
find extremum task only). The results suggest that it is unlikely
to discover an easy guideline that specifies the best arrangement
or encoding for a given task.

Takeaways: Research Challenges. Our summary tables pro-
vide not only an overview of the current literature studying different
chart types but also design guidelines that can be applied by visu-
alization designers and visualization recommendation systems to
generate effective visualizations. For example, using CS rather than
Ar to represent quantitative data might improve the performance
of scatterplots in aggregate tasks, and using redundant encodings
might not provide any additional benefit (in Table 7). However, we
also find some limitations in the existing literature:

o The literature tends to focus more on studying variants of
scatterplots and bar charts than other chart types. We suggest
the community study more variants of the underexplored
chart types to better understand the interference effects be-
tween different encoding channels.

e Although the line chart is one of the most popular chart
types used on the web [8], not many evaluations of variants
exist; thus, we urge more experiments examining different
variations of line charts.

e We also find that existing study results differ based on in-
dividual factors like data characteristics, tasks, experiment
setups, and participants. We suggest more experiments and
theories for concluding which visualization design to pick
under different analysis scenarios.

5.2.3 Between Chart Type Comparison.

Time Series Data. We observe that visualizing time series data is
often discussed in existing literature [2, 6, 18, 28, 41, 71]. Correll et
al. [18] perform an empirical experiment of a aggregate task for
time series data; four display conditions were tested: ordered/per-
muted line chart and ordered/permuted colorfield chart. The results
suggest that colorfield charts outperform in accuracy across all
difficulty levels. Albers et al. [2] extend the work of Correll et al.
in a follow-on experiment by testing more visualization designs
with more tasks. The results confirm that different designs support
different tasks; position-based charts outperform in some tasks
(find extremum, determine range) while color-based charts per-
form better in others (aggregate, find anomalies). Instead of
testing encoding performance (position vs. color), Javed et al. [41]
explore user performance for find extremum, determine range,
sort tasks for different line graph techniques (shared-space vs.
split-space). They find no significant difference between these two
techniques in terms of accuracy; however, shared-space techniques
are faster in find extremum while split-space ones are faster in
sort tasks.

Systematic Bias. Bias evaluation has attracted more attention
recently [15, 19, 27, 110]. Godau et al. [27] test whether there is
a bias in the central tendency perceived in bar charts, and they
find that the mean value is systematically underestimated in bar
charts (but not in scatterplots). Their other experiments also confirm
that the underestimation of the average persists with varying bar
heights or adding outliers. However, Xiong et al. [110] reach a
completely different conclusion. They conducted three empirical

Zeng and Battle

studies to investigate position perception bias with visualizations
containing a single bar/line, multiple bars/lines, and one line with
one set of bars. In contrast to the results of Godau et al., they
found that the perceived average position was significantly biased
in both single line charts and single bar charts. Line positions are
consistently underestimated, while bar positions are overestimated.
In the experiments involving multiple data series (multiple lines
and/or bars), they also observe an effect of “perceptual pull”, where
the average position estimate for each series was “pulled” toward
the other. Aiming to explain this contradiction, recent research by
Ceja et al. [15] finds that the systematic bias in bars is related to the
aspect ratio of bars. No systematic bias is shown with square bars,
while wide bars are overestimated, and tall bars are underestimated.
We summarize the study outcomes in Table 8.

Scatterplots vs. Parallel Coordinates. Several current works focus
on comparing scatterplots with parallel coordinates [33, 42, 44, 53].
Li et al. [53] focus on studying correlate task performance be-
tween scatterplots and parallel coordinates and find that the de-
gree of correlation between attributes is underestimated in par-
allel coordinates, suggesting that scatterplots are better options
for correlate tasks. Kanjanabose et al. [42] also perform experi-
ments comparing scatterplots and parallel coordinates but focus on
other visual analysis tasks, including retrieve value, cluster,
find anomalies and determine range. The results suggest that
parallel coordinates outperform in accuracy across cluster, find
anomalies and determine range tasks, and in completion time
with retrieve value and determine range tasks.

Bar Charts vs. Pie Charts. We find five papers [17, 34, 50, 76, 99]
comparing bar charts and pie charts. Cleveland & McGill [17] pro-
pose an order of encoding channels based on graphical perception
but also test parts of this theory through experiments. They use
bar charts to assess position and length encodings and pie charts for
angle encoding. Heer & Bostock [34] replicate these experiments
but also adjust the experiments to make results between length and
angle encodings comparable. They conduct the experiments with
sort tasks, and both of the results suggest that bar charts perform
better than pie charts in terms of the accuracy metric. Later on,
Waldner et al. [99] also report that radial charts perform less accu-
rately, efficiently, and preferably than bar charts in many analytical
tasks. Kosara [50] also has similar findings (bar > pie) with find
extremum tasks. However, by comparing the performance of pie
charts and bar charts with multiple variants, Redmond [76] finds
that pie charts perform more accurately with retrieve value
tasks.

Multi-Chart Comparisons. Some experiments involve a large
range of chart types [20, 33, 67, 78, 79, 90]. Saket et al. [78] conduct
an experiment to evaluate the effectiveness of five 2-encoding visu-
alization designs across all ten analysis tasks (mentioned in Table 1):
line chart, bar chart, scatterplot, pie chart, and table. They confirm
that no specific visualization outperforms in every task, and suggest
using bar charts for clustering, line charts for correlation, and
scatterplots for finding anomalies. Harrison et al. [33] conduct
a crowdsourced experiment to evaluate the human perception of
correlation among nine commonly used visualization types, like
scatterplots, area charts, line charts, bar charts, pie charts, parallel
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Table 8: Study outcomes from experiments evaluating systematic bias. In general, there exist systematic bias in bar charts, while
one experiment [27] found overestimates in bars, and another [110] found overestimates in bars. A more recent experiment [15]
found that the systematic bias in bars is related to the aspect ratio of bars.

Underestimate Overestimate Perception Pull No Bias Ref.
ﬂﬂuﬂ (bar) e (point)  [27]
AN (line)

ﬂﬂﬂﬂ (bar) Y (line & bar) [110]

I (tall bars) (wide bars)
B

1 (square bars)  [15]

coordinates, etc. The results reveal significant differences in the cor-
relation perception across visualizations, and the results also vary
significantly across different data characteristics (different correla-
tion coefficients r). Skau & Kosara [90], on the other hand, compare
the effectiveness of pie charts, donut charts, arc charts, and area
charts with retrieve value tasks. The results show no significant
difference between pie charts and donut charts in accuracy, and
both perform better than arc and area charts.

Takeaways: Design Guidelines. Although we observe gaps in
the literature for specific analysis tasks and performance metrics,
current studies do provide some guidance on which visualization
types work best for common analysis tasks. In Table 9, we synthe-
size these results into concrete design guidelines for ten different
tasks:

o Existing literature suggests using bar charts for the majority
of the tasks (six out of ten tasks: cluster, filter, sort,
distribution, find extremum, and aggregation). How-
ever, some literature [15, 27, 110] also found that there exist
systematic bias in bars.

e Parallel Coordinates are also top choices for four tasks: cluster,

retrieve value, find anomalies, determine range.

e Currently, no systematic bias is found with point marks [27].
Scatterplots are also top choices for correlate and find
anomalies tasks.

6 DISCUSSION: APPLICATIONS & RESEARCH
CHALLENGES

In this paper, we present a literature review to investigate how
visualization designs are compared and ranked in existing theory
and experimental work, but also contribute a dataset and synthesize
guidelines to facilitate the generation of encoding rules for visual-
ization recommendation systems. In this section, we show how our
contributions could be used directly within these systems. We also
outline the challenges we observed in the literature and suggest
research directions in developing new theories and experiments
to further encapsulate, enrich and evaluate our understanding of
graphical perception.

Table 9: Visualization types recommended by empirical work
for each visual analysis task. Multiple visualizations recom-
mended for the same task might not be comparable.

Tasks Designs

=R

Filter |—| [78]
[

Sort |—||_| (1 117, 34, 78]

Cluster |—|ﬂ_ [78], % [42]
>

Retrieve Value

[20, 78]

o
C lat 53],
orrelate OOO [53]

Aggregate |—| i [78]
[

[50, 78]

Find Extremum |—|

]
Qo 1781, % [42]

6.1 Examples of Using Graphical Perception
Data to Augment Visualization
Recommendations

Determine Range

Characterize Distribution

Find Anomalies

Although current literature does not cover the entire visualization
design space, we can still apply existing graphical perception guide-
lines to visualization recommendation systems. Here we use three
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Figure 5: An example of improving Voyager’s [107, 108] rec-
ommendations using our synthesized guidelines (specifically,
using [23, 92]).

representative visualization recommendation systems as examples
to demonstrate how our survey data can inform encoding decisions.

6.1.1 Draco [65]. The Draco system models visualization design
guidelines as hard or soft constraints. Draco first excludes the visu-
alizations that violate the hard constraints and then searches for
the most preferred visualizations using soft constraints. Although
Draco already applies some of the existing visualization design
knowledge in its applications (Draco-APT [61], Draco-CQL [61, 62],
and Draco-Learn [46, 78]), the number of utilized research papers is
limited. In this paper, we collect graphical perceptual results from
59 existing literature works. First, our synthesized guidelines in Sec-
tion 5 could be translated into hard or soft constraints to further
enhance Draco’s recommendations. For example, we translate two
visualization design rules from Section 5.2.2 (e.g., preferring color
encodings for the aggregate task) into Draco soft constraints in
Listing 3.

Listing 3: Examples of translating our synthesized guidelines
into Draco soft constraints [65].

%Prefer to use fewer encodings with fields

soft(encoding_field,E) :- encoding(E), field(E,_).

%Prefer to use color for aggregate task

soft(aggregate_color,E) :- task(aggregate), channel(E,
color).

Second, our synthesized dataset of perceptual results (in Sec-
tion 4) can be used as an input corpus for Draco-Learn. We provide
scripts in the supplemental material to automatically translate our
datasets into pairs of ranked visualizations as the training dataset
for Draco-Learn. By learning visualization rankings from a large
number of research papers (instead of two papers), Draco-Learn
could potentially support more chart types and produce more ef-
fective recommendations for observed data characteristics and task

types.

6.1.2  Voyager [107, 108]. The Voyager system suggests both data
attributes and visual encodings. Voyager uses CompassQL [106] as
the recommendation engine and Vega-lite [82] as the visualization
renderer. Figure 5a shows one of the visualizations recommended
by Voyager, which is a colored scatterplot using a Vega-lite color
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palette (mmmmmmmmnw) for nominal data. We re-generate the rec-
ommended chart (as shown in Figure 5b) using the design guidelines
from Section 5.1.2: (1) the re-ordered color palette (mmmmmmmmmm)
can maximize perceptual distance [23]; and (2) colors are more dis-
criminable with filled shapes [92]. We can see that each category
(species) is more distinguishable from the other in the improved
recommendation compared to the Voyager original recommenda-
tion (Figure 5). In the same spirit, we can use suggested palettes for
shape, color hue, and area from existing literature [23, 25, 30, 101] to
improve the effectiveness of Voyager’s recommended visualizations.
We provide the Vega-Lite [82] specifications for suggested color
palettes in the supplemental material. They can be ingested by visu-
alization recommendation systems that use Vega-Lite as a visualiza-
tion renderer, similar to existing work (e.g., [47, 55, 65, 107, 108]).
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Figure 6: A screenshot of the Foresight system [24] showing
3 of the 12 supported insight classes: heavy tails, outliers,
and correlations.

6.1.3  Foresight [24]. The Foresight system suggests data attributes
based on their “insight” scores and presents the recommendation
with either a bar chart, a box plot, or a scatterplot. As we can
see from Figure 6, Foresight uses different chart types to visualize
different “insight classes”. Bar charts are used for distributions
(heavy tails), while box plots are used for outliers and scatterplots
for correlations. However, the results from experiments by Saket
et al. [78] suggest that scatterplots perform the best for finding
anomalies, while line charts for correlation, and bar charts for
distribution tasks. Thus, replacing existing chart types with the
best ones (see Table 9) based on empirical results for corresponding
tasks might help users gain more insights more effectively with
Foresight.

6.2 Challenges & Open Research Areas

Here we synthesize our takeaways from Section 5 into open re-
search challenges toward a comprehensive ranking of visualization
designs and discuss directions for future research based on our
analysis.

6.2.1 Gaps in Visualization Comparison Coverage.
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Gaps in theoretical work. As mentioned in Section 4, theory work
is critical to generalizing the findings of specific experiments as
the takeaways can be applied broadly in visualization. Although all
twelve encodings are ranked (or pruned) according to theoretical
hypotheses (see Table 2, Table 3), only a few visualization types
(scatterplot, bar chart, line chart, and cartogram) are discussed in
theory work (see Table 6). Other chart types, such as area charts, pie
charts, and heatmaps, are never ranked theoretically. In other words,
interference effects among visual encodings are rarely theoretically
studied. Solutions: An impactful area would be deriving theoret-
ical principles from existing experiment results for multi-encoding
designs to infer how well different encodings will work together
and whether the performance of encoding combinations still follow
the same rankings. New theories can also help to prune the design
space to identify gaps that truly warrant new experiments.

Gaps in experimental work. On the one hand, we observe much
fewer experiments evaluating how effectively each encoding could
convey ordinal data (only CH and CS are tested). Solutions: We
urge more empirical work to conclude which encoding to pick
under different task scenarios.

On the other hand, existing evaluations mainly focus on spe-
cific encodings (PX, PY, L, Ar, CS, CH) or charts (scatterplots and
bar charts), while other chart types are either only compared with
one or two other charts, or never studied with different variants
(see Section 5.2). Solutions: Evaluating the performance of pre-
viously ignored encodings (e.g., T, S) and chart types (e.g., area
charts, heatmap) under different analysis tasks would contribute
more “ground truth” evidence to further validate our approaches
to automating the visualization design process.

6.2.2 Inconsistencies and Conflicts in the Literature.

Between theories and experiments. We observe that theoretical hy-
potheses might not necessarily be “correct” in a practical sense. For
example, as previously mentioned, five attribute-encoding pairs ((Q,
T/S), (O, S), (N, Ar/CS) are considered inexpressive based on Mackin-
lay’s work [61] (see Table 3); however, a more recent evaluation [16]
shows different results. Mackinlay suggests that T and S are not rel-
evant to quantitative data, but according to the results from Chung
et al’s experiments, both T and S encodings perform better in ac-
curacy than O conveying quantitative data with estimate trend
and find extremum tasks. Solutions: Refining core theory work
in light of recent experimental results could further enhance the
performance of visualization recommendation systems.

Between different experiments. Even when experiments were sim-
ilar, we may find contradictory results. Even though Godau et
al. [27] and Xiong et al. [110] both conducted experiments to test
human bias in perceiving average position for length (bar charts)
and position encodings (scatterplot or line charts), they have com-
pletely different results (as shown in Table 8). Godau et al. only
find underestimation in bar charts but no bias for point positions
(scatterplots). However, Xiong et al. find significant bias in both
bar charts and line charts, where line positions are underestimated
while bar positions are overestimated. In another example, Harri-
son et al. [33] find Weber’s law to be a convincing model for how
people perceive data correlations; however, in a re-analysis of the
same data, Kay and Heer [44] find Weber’s Law not to be a good
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fit. It is natural in science to improve upon existing results and the-
ories; however, there is currently no easy way to identify and track
these discrepancies within the literature and translate them into
concrete improvements to visualization recommendation systems.
Solutions: Redesigning experiments to test visualizations with
controversial results, conducting more comprehensive comparisons
between more nuanced design decisions, and involving more met-
rics could lead to more precise visualization design rankings for
recommendation systems.

Summary. Given the (multiple) discrepancies we have observed,
we argue that the findings of both visualization theory and experi-
mental research should be treated as hypotheses until subsequent
experiments converge on a consistent set of results. Furthermore,
we argue that replication experiments should be held in high re-
gard within the visualization community regardless of whether
their findings reinforce or challenge our current assumptions, since
either way, they are the only way to validate our understanding of
how people perceive and use visualizations. We need them to en-
sure that visualization recommendation algorithms are built upon
a solid foundation of theoretical and empirical findings; we should
reward them accordingly.

6.3 Limitations & Future Work

Our literature review contributes a detailed record of how different
visualization designs are compared and ranked in 59 different theo-
retical and experimental papers. This record not only specifies all
researched visualization designs but also keeps track of the ranking
of their performance (accuracy, bias, JND, time, user-preference)
under different task scenarios. A next step to extend this work
could be to apply the findings to develop better encoding strategies
within visualization recommendation systems, such as adapting
the recommendation strategy based on the user’s current analysis
task.

Given our initial goal is to understand how different visualization
designs (especially different encodings) are ranked in the current
theoretical and experimental work, our schema only records {data
types, data characteristics, data transformations, encoding channels,
mark types, scales} for each covered design (details in Listing 1). For
more granular design decisions, we add notes to specify them. For
example, to record Talbot et al’s experiments testing bar charts [95],
we add notes to specify each variant of the bar chart tested, such
as whether two bars are aligned or separated, whether distractors
are added, the indicator location, etc. However, it is hard to parse
these notes automatically. We see our schema as a starting point for
collating existing encoding design knowledge and encourage the
visualization community to extend this schema to support more
nuanced visualization designs.

Informed by existing work on visualization design spaces and
graphical perception studies, we excluded (1) 3D visualizations,
(2) graph visualizations, and (3) visualizations with animations or
interactions from our defined visualization space. When more theo-
retical and experimental findings become available in the literature,
expanding our work to include these excluded designs would be
interesting.

We also note that by focusing on graphical perception, we are
unable to account for other factors that may influence the overall
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effectiveness of a visualization design, such as visual aesthetics [97],
intuition, and metaphors [114], as well as user background and
preferences [115]. Developing a broader framework encompassing
both graphical perception and these other factors would be exciting
future work.
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