
5 

The Cambridge CAP Computer 

5. I Introduction 

In 1970, Roger Needham and Maurice Wilkes at Cambridge 
University began a research project to construct a capability- 
based machine. In contrast to the Chicago and Plessey designs, 
which included program-loadable capability registers, Need- 
ham and Wilkes’ design made registers invisible to the pro- 
grammer. That is, the machine contained a set of internal reg- 
isters that the hardware would automatically load when a 
program specified a capability. Fortunately, the construction 
of this machine was simplified by several events that had oc- 
curred in the years since Wilkes’ trip to observe the develop- 
ment of the Chicago Magic Number machine. First, it was 
possible to build reliable hardware from off-the-shelf TTL 
components. Second, and more important, it was possible for 
the computer to contain a reasonably large micro-control stor- 
age. The micro-control storage was used to implement the 
implicit loading of capabilities. 

The result of the project, the CAP computer, has been oper- 
ational at Cambridge since 1976. CAP (not an acronym) is a 
fully functional computer with an operating system, file sys- 
tem, compilers, and so on. The CAP system is the subject of 
many papers and a book [Wilkes 791, and the design decisions 
are the topic of Robin Walker’s thesis [Walker 731. 

5.2 Hardware Overview 

The basic CAP CPU consists of a microprogramming con- 
trol unit, 4K 16-bit words of micro-control storage, and an 79 



The Cambridge CAP 
Computer arithmetic unit. The CPU contains a 64-entry capability unit 

that holds evaluated capabilities, that is, capabilities and the 
primary memory locations of the segments they address. These 
64 capability unit entries are the registers implicitly loaded by 
the microprogram. The CAP CPU also contains a 2 x 256-entry 
cache and a 32-entry write buffer for performance enhance- 
ment. All CAP I/O, with the exception of a single control ter- 
minal and paper tape, is performed by an associated minicom- 
puter. 

CAP’s memory is organized into segments up to 64K 32-bit 
words in size. A segment can contain data or capabilities, but 
not both. Although a process can address up to 4096 segments, 
an executing procedure can access a maximum of 16 capability 
segments at any time. A protected procedure mechanism al- 
lows different procedures to access different capability seg- 
ments. The CAP system provides 16 general-purpose 32-bit 
registers, BO through B 15, for arithmetic and addressing; these 
registers cannot be used to hold capabilities. Register B 15 con- 
tains the current instruction address; BO is a read-only register 
that always contains zero. A single accumulator, capable of 
holding an 8-bit exponent and 64-bit mantissa, is available for 
floating point computation. In general, arithmetic functions 
operate on 32-bit integer or floating point values. 

CAP’s instruction set includes over 200 instructions. Both 
binary and floating point arithmetic are supported, as well as a 
variety of logical and control instructions, and a small set of 
capability manipulation instructions. 

5.3 CAP Process Structure 

80 

A process is the basic execution and protection entity in the 
CAP system. A process is defined by a set of data structures 
that describe a collection of accessible segments and other re- 
sources. CAP objects are addressed through capabilities con- 
tained within a process’s capability segments. Each executing 
procedure in the CAP system operates within the context of a 
process. 

Like previous capability-based designs, the CAP system 
provides a process tree structure, as shown in Figure 5-1. The 
process structure is supported by an instruction that creates 
subprocesses and an instruction that requests service from a 
parent process. At the root of the tree is a process called the 
Master Coordinator. The Master Coordinator controls all sys- 
tem hardware resources, which it allocates among level-2 user 



Level 1 

Levei2 

Level3 n Subprocess 

Figure 5-7: CAP Process Hierarchy 

processes. Each level-2 user process can, in turn, create further 
subprocesses, acting as a coordinator for them. 

CAP’s designers chose to use the process tree mechanism to 
eliminate the need for a privileged mode of operation. Each 
CAP process can control the addressing environment and exe- 
cution of its subprocesses without special privilege or operating 
system intervention. The desire to provide a very general proc- 
ess tree structure led to a design that closely linked addressing 
to process structure. This facility was probably overempha- 
sized in the design and only two levels are actually used: the 
Master Coordinator at level’ 1 and the user processes at level 2. 

5.4 CAP Addressing Overview 

A high-level view of CAP addressing is useful before delving 
into the detailed mechanism. As mentioned, addressing and 
process structure are intimately related on the CAP system. 
Figure 5-2 shows the addressing relationship between a process 
and its subprocess. Two objects of interest are pictured for 
each process: a capability segment and a data structure called 
the Process Resource List (PRL). 

On CAP, a process must possess a capability for any object 
to be accessed. Capabilities are stored in capability segments. 
In contrast to the Plessey and CAL-TSS designs, in which 
capabilities refer to entries in a system-wide table, capabilities 

5.4 CAP Addressing 
Overview 

81 



The Cambridge CAP 
Computer PRL entry 

. E ~-- 

Capability 

Capability 

Level N Level N 
Process Resource List Capabiiity Segment 

82 

4 
I 

Capability 

Levei N+ 7 
I Capability Segment 

Levei N+ 1 
Process Resource List 

figure 5-2. CAP Process Addressing 

on CAP refer to entries in a process-local table, the Process 
Resource List. The Process Resource List differs from previ- 
ous schemes in another important way. PRL entries do not 
contain primary memory addresses, but instead refer to capa- 
bilities in capability segments of the parent process. This upward 
indirection is shown in Figure 5-2 by the arrow leading from 
the level N-t 1 PRL entry to the level N capability segment. 
Indirection continues from there to the level N Process Re- 
source List, and so on, until the Master Coordinator is reached 
at the top of the tree. The Master Coordinator’s Process Re- 
source List contains the primary memory address for each seg- 
ment. 

The following sections describe this addressing structure in 
more detail, but the reason for the extra indirection is worth 
noting here: it provides a process with the freedom to control 
its subprocesses. In the CAP system, a process can directly 
write the PRL and capability segments of its subprocesses. In 
this way, a process can dynamically control the addressing en- 
vironment of its inferiors without operating system interven- 



5.5 Capabilities and 
tion. Permitting a process data access to its subprocesses’ capa- Virtual Addresses 

bility segments does not violate the protection system because 
of the indirection in addressing. Ultimately, all capabilities and 
PRL entries in a subprocess must refer to valid capabilities 
held by its parent process. Therefore, although a parent proc- 
ess can create capabilities for its offspring, these capabilities 
can only address objects that are accessible to the parent. 

5.5 Capabilities and Virtual Addresses 

Within a CAP process, an executing procedure addresses 
segments through capabilities stored in its capability segments. 
Capabilities can be specified by CAP instructions and manipu- 
lated in controlled ways by user programs. Figure 5-3 shows 
the CAP capability format. As described above, each capability 
refers to one entry in the Process Resource List. Each capabil- 
ity also contains a type field in the two high-order bits that 
differentiates segment capabilities, enter capabilities, and so 
on. The bits marked Wand U are set by hardware to indicate 
that a segment has been written or accessed, respectively. 

The encoding of the access field is shown also in Figure 5-3. 
CAP permits read and/or write access to a capability segment, 
or read, write, and/or execute access to a data segment. Write 
capability access permits a process to execute instructions to 
move capabilities to a segment; it does not allow data opera- 
tions on the segment. The base, size, and access fields in a 
capability can be used to refine access to a segment defined by a 
PRL entry. For example, a program can create a new capabil- 
ity with read-only access to a segment for which the PRL per- 
mits read/write access. Or, using base and size, a capability can 
be refined to address only a contiguous subset of a segment. 
The REFINE instruction performs these operations. 

. 
PRLindex Base 

Capability 
Type WU Access Size 

31 29 23 21 15 0 

WC RC R W E Capability 
Access Rights 

21 20 19 18 17 16 

Figure 5-3: CAP Capability and Access Rights Formats 83 



The Cambridge CAP 
Computer To reference a word in memory, the CAP programmer must 

specify a capability for a segment and the offset of the word 
within that segment. The capability is specified by an index 
in one of the 16 capability segments. A complete CAP virtual 
address, then, consists of three parts: a capability segment 
number, a capability index, and an offset into the selected seg- 
ment. 

Figure 5-4 shows the format of a CAP virtual address when 
stored in memory or a general register. The upper 16 bits of 
the address are known as the segment specifier because they 
select a capability for the addressed segment. The segment 
specifier consists of two values: I, the number of one of the 16 
capability segments, and F, the index of a capability within 
that segment. The capability selected in Figure 5-4 contains 
the index of PRL entry M, which points to a data segment 
(although the addressing is indirect). The value K in the virtual 
address is the offset of the target word in this data segment. 

Note that each capability segment can hold a maximum of 
256 capabilities because the capability index field in Figure 5-4 

32 :I: ::lz 
Capability index within capability segment 

84 

i: 

J: M, 

M: 

. H 

El 

Capabiiity Segment I 

K. 
Process PRL 

Data Segment 

Figure 5-4: CAP Virtual Address 



5.6 Process Data 
is 8 bits long. There are 16 capability segments, so the process Structures 

can address a maximum of 4096 capabilities at a given time. 

5.6 Process Data Structures 

A CAP Process Resource List defines all of the resources 
available to a CAP process. Figure 5-5 shows the structure of 
entries in a PRL. A PRL entry is identical in format to a capa- 
bility, except that the PRL index of the capability is replaced 
by the segment specifier field. The segment specifier selects a 
capability in one of the capability segments of the parent proc- 
ess. Just as the base, size, and access fields in a capability can 
be used to refine the access permitted by a PRL entry, these 
fields in the PRL entry can be used to refine the access permit- 
ted by the parent’s capability. 

PRL entries resemble capabilities in structure; however, the 
PRL is not a C-list and differs from a C-list in two important 
ways. First, PRL entries cannot be manipulated by programs 
executing within the process. Second, the PRL must contain 
entries for objects needed by all procedures that the process 
executes. In contrast, most capability systems allow proce- 
dures to access private objects not available to the C-list of their 
caller. Different procedures executing within a CAP process 
can be restricted to different capability segments and, hence, 
to different objects; but all of the objects that they collectively 
address must have entries in the PRL. 

In addition to the PRL, each process has a data structure 
called the Process Base, which contains the state of the process. 
By convention, the first entry in the PRL addresses the Process 
Base. The first 16 words of the Process Base define the 16 
process capability segments by indicating the offset of the PRL 
entry for each segment, as shown in Figure 5-6. The V bit in 
each word specifies whether or not that capability segment 
exists; and the 8-bit offset field indicates which PRL entry 

I Segmenf specifier I Base I I 
Type WU Access Size 

I 
31 29 23 21 15 0 

Segment specifier< 31:28> = Parent capabiiity segment 
Segment specifier< 23:16> = index of capability within specified 

parent segment 

Figure 5-5: CAP PRL Entry 85 



The Cambridge CAP 
Computer 

86 

0 v 0 

Capabiilly segmenl pointers 

Offset 

15 

76 

v 0 Offset 

80 

Genera/ registers 

615 (PC) 

32 Microprogram storage/slate 

33 Accumulator high ha/f 

34 I Accumulator low ha/f I 

35 

36 

37 

Count-down timer 

EC instruction information 

Microprogram register 

38 I Unused 

39 Wakeup waiting swlfch 

40 C-stack nexl entry 

41 I C-stack current frame 

Used by software 

figure 5-6: CAP Process Base 

addresses the corresponding capability segment. All capability 
segments accessible to a process must, therefore, be addressed 
through the first 256 PRL entries. The remaining words in the 
Process Base contain copies of the general registers, a count- 
down timer, and pointers to the C-stack-a data structure used 
to save capabilities during procedure invocation. 

5.7 Memory Address Evaluation 

This section reviews the translation process from virtual 
address to primary memory location. Because each process 



5.8 Subprocess 
owns all segments available to its children, the Master Coordi- Creation 

nator at the root of the tree must have capabilities for all seg- 
ments in the system. In fact, the Master Coordinator is the 
only process that addresses memory directly. In the PRL of the 
Master Coordinator, called the Master Resource List (MRL), 
are capabilities similar in format to that shown in Figure 5-5; 
however, word 0 of these MRL entries contains a memory 
address in the low-order 20 bits. All capabilities ultimately 
refer to these MRL entries. 

The steps to translating an address are as follows: 

1. Locate the specified capability segment in the process, and 
select the capability in the index contained in the virtual 
address. 

2. Follow the capability link to the entry in the process PRL. 
Mimze access rights through a logical AND operation, 
and compute new base and length if required. 

3. From the PRL entry, locate a capability in the parent proc- 
ess’s capability segment. Once again, apply rights, base, and 
length minimization. 

4. Follow this capability back to the entry in the parent’s PRL. 
5. Continue this process until the MRL is reached, at which 

time the physical address can be calculated. Check the offset 
supplied in the original general address for legality and make 
the requested reference. 

Certain facts are apparent about this mechanism. First, sev- 
eral levels of indirection, and hence, several memory refer- 
ences, are required before an actual operand can be accessed. 
This problem can be handled with the special hardware that 
the CAP provides. Second, because capabilities refer to a proc- 
ess-local structure, the PRL, they cannot easily be transferred 
between processes even at the same level of the hierarchy. Ca- 
pabilities cannot be copied between processes unless both 
processes have identical PRLs. Third, capabilities cannot be 
copied directly from parent to child, but must be passed by 
constructing PRL entries and corresponding capabilities in the 
child that refer to the parent capability. Fourth, because of the 
indirection in both capabilities and PRL entries, a process is 
totally free to create capability segments and PRL entries for 
its subprocesses. 

5.8 Subprocess Creation 

Any CAP process is capable of creating subprocesses to 
which it can pass access rights to various objects. The creation 87 



The Cambridge CAP 
Computer - 

88 

of a subprocess is accomplished by the ENTER SUBPROCESS (ESP) 
instruction. One operand of the ESP instruction is a segment 
that will become the PRL of the new subprocess. Another op- 
erand is the index of the PRL entry in that segment for the 
subprocess’s Process Base. 

A parent process creates a subprocess PRL by allocating a 
data segment and constructing PRL entries that refer to the 
parent’s capabilities. Because of the way PRL addressing is 
implemented, the construction of subprocess PRL entries re- 
quires no special privilege. It is impossible for the parent to 
construct a PRL capability for its offspring that allows it to 
address an object not addressable by the parent. Since the ac- 
cess rights are minimized at each level during the address eval- 
uation, it is also impossible to increase access rights to an 
addressable object. 

The ESP instruction allows any process to create a sub- 
process, to define the resources of the subprocess, and to pro- 
tect itself from the subprocess. Each parent can also service 
requests from its subprocesses. The subprocess issues an 
ENTER COORDINATOR (EC) instruction, specifying a code for the 
operation to be performed. Execution of the EC instruction 
causes resumption of the parent process at the instruction fol- 
lowing the ESP that initiated the subprocess. The code is placed 
in a general register specified by the original ESP. 

Multiprogramming on the CAP system is implemented by 
using the countdown timer stored in each Process Base. When 
an ESP instruction is executed, control passes to the sub- 
process. The subprocess continues execution until either its 
timer expires or it eXeCUteS an EC inStrUCtiOn, CaUSing return 
of control to the parent. The parent process can service the EC 
or timer expiration, resuming the interrupted process or an- 
other subprocess if it likes. The parent might also request serv- 
ice from its own parent via an EC instruction. Before resuming 
a subprocess by ESP, the parent resets the countdown timer in 
the process base of the subprocess. 

Thus, any process can coordinate the execution of its sub- 
processes, relinquishing its own allotted processor time for 
each subprocess to run. In fact, the current process is allowed 
to run because a set of processes, rooted in the Master Coordi- 
nator and terminating with the current process, have each re- 
linquished processor time via ESP. Each process in the list is at 
a different level of the process tree, and each executes under a 
time limit specified by its parent. The CAP hardware must, 
therefore, maintain timers for each level of the process tree 



because a timer could expire at any level, thereby returning 5.9 The Capability Unit 

control to the parent of the expiring process. 

5.9 The Capability Unit 

The CAP capability unit contains storage elements used by 
the microprogram to enhance system performance. The stor- 
age elements include 64 capability registers and 16 tag memory 
registers, whose use will be described in this section. The prin- 
cipal function of the capability unit is to reduce the effect of 
CAP’s multiple levels of indirection. The capability unit acts as 
a cache memory (or what is commonly called a translation 
buffer) for storing recently used segment virtual addresses and 
their corresponding segment physical addressing information. 

Figure 5-7 shows the structure of a capability unit capability 
register. Each capability register contains information about a 
segment capability. The base, size, and access fields are used to 
compute the primary memory address and to validate the at- 
tempted memory access. Two tag fields uniquely identify the 
capability within the capability unit; the segment tag identifies 
the capability segment that holds the capability, and the capa- 
bility tag contains the capability’s index within that segment. 
The segment tag is the number of another capability register in 
the capability unit. Each capability is contained in one of 16 
capability segments, and to load a capability into a register, the 
capability for its capability segment must also be loaded in a 
register. The number of that register is used as the segment tag 
field. 

8 6 20 16 7 7 
\ 

capamy Segment 
tag tag Base Size Access Count 

. 
Capabiiity tag Contains the index of this capability within its 

capabiiity segment. 

Segment tag 

Base 

Size 

Access 

Count 

identifies the segment containing the capability. 

Contains the primary memory address of the segment. 

Contains the size of the segment in words. 

indicates the permitted segment access rights 

Contains a count of the number of references to the 
capability from within the capability unit. 

Figure 5-7: Capability Unit Register Format 89 



The Cambridge CAP 
Computer 

90 

When a program attempts to access a virtual address, the 
microprogram loads that address into the virtual address regis- 
ter of the capability unit, as shown in Figure 5-8. The capabil- 
ity unit then autonomously attempts to locate the capability 
register containing the physical attributes of the segment ad- 
dressed. If the capability is found, the capability unit validates 
the requested access and performs the primary memory re- 
quest. If the capability is not found, the capability unit notifies 
the microprogram, which must then load the needed informa- 
tion into a capability register. 

The capability register search uses one of the 16-tag mem- 
ory registers shown in Figure 5-g. Each of the 16-tag memory 
registers corresponds to one of the 16-process capability seg- 
ments. Whenever the microprogram loads a capability for ca- 
pability segment I into a register, it also loads the number of 
that register into the corresponding tag memory register. 
Therefore, tag memory register I specifies the location of the 
capability for capability segment I in the capability unit. A 
valid bit in each tag memory register indicates whether or not 
that register has been loaded. 

From the virtual address presented to the capability unit, 
the unit selects one tag memory register based on the capability 
segment specifier (the upper 4 bits). The capability unit then 
uses the tag memory register in an associative search. The ca- 
pability unit searches for a capability register whose segment 
tag field matches the contents of the tag memory register. If 
the tag fields match, then the register contains a capability that 
is stored in the correct capability segment. The unit must then 
check the capability index field in the virtual address, shown as 
J is Figure 5-8, with the capability tag field in the register. If 
these fields match, the correct segment register has been 
found. If the J fields do not match, the search continues. The 
capability unit is able to examine four capability registers at a 
time during the search. 

5.10 Protected Procedures 

The protected procedure is the principal CAP protection 
mechanism. Although other capability systems execute pro- 
tected procedures in a new process, all procedures called from 
within a CAP process execute within that same process. How- 
ever, different procedures may have access to different capabil- 
ity segments and, hence, to different objects. The protected 
procedure mechanism causes switching of capability segments 
and, therefore, changes the access domain of a procedure. 



- 

- 

- 

- 

- 

z 

- 

3 

- 



The Cambridge CAP 
Computer Protected procedures are used extensively both within the 

CAP operating system and by user programs. All operating 
system services are programmed as protected procedures, and 
all compilers output protected procedures. The use of pro- 
tected procedures to perform system functions is particularly 
important within the CAP system. Although services could be 
provided through ENTER COORDINATOR instructions to the 
Master Coordinator, such instructions would cause a serial- 
ization of service. That is, once the Master Coordinator is en- 
tered, the service routine would have to complete before an- 
other process could execute. By placing operating system 
services within protected procedures available to every proc- 
ess, several processes can execute service routines simultane- 
ously. 

A protected procedure can be called only through an enter 
capability which the caller must possess. Figure 5-9 shows an 
enter capability and the PRL entry to which it refers. The 
execution of a protected procedure call causes 5 of the 16 capa- 
bility segments to be changed. These new capability segments 
form part of the new domain in which the protected procedure 
executes. The enter PRL entry shown in Figure 5-9 contains 
fields that define three of the new capability segments. The 
creator of a protected procedure is free to use these segments in 
any way; however, the conventional name and use of the new 
capability segments are as follows: 

A The argument capability segment contains capabilities passed 
as parameters to the currently executing procedure. 

N The new argument segment is used to construct an argument 
list for a procedure to be called. This segment becomes the 
A segment of the called procedure. 

92 

PRL Offset 0 

01 Access 

31 29 27 15 0 

29 19 9 

00 P / R 

01 Access 

31 29 27 15 0 

Figure 5-9. CAP Enter Capability and Enter PRL Formats 

Enter 
Capability 

Enter 
PRL 
Entry 



5.10 Protected 
P The procedure segment contains capabilities for code and 

data segments that are shared by all processes executing a 
protected procedure. 

I The interface segment contains capabilities that are used by 
the procedure but are specific to the executing process, for 
example, a process-local workspace. 

R The resource segment contains capabilities specific to one 
instance of the protected procedure. For example, the R 
segment might be used to address the representation of an 
object managed by a protected type manager. The represen- 
tation would be accessible only to the protected procedure. 

Procedures 

A program executes an ENTER instruction to call the pro- 
tected procedure. The single operand to the ENTER instruction 
is the location of the enter capability. Parameters are 
passed in the N segment. The ENTER instruction then 
changes the execution environment, using a data structure 
called the C-stack to save information about the current proce- 
dure. The C-stack is a segment in which the invocation stack 
(the procedure-calling record) is maintained. Each procedure 
call causes the hardware to place a new invocation frame on the 
C-stack by updating the C-stack pointers in the Process Base. 
The RETURN instruction restores information placed on the 
C-stack, removing the current frame and returning control to 
the caller. 

In more detail, the ENTER instruction causes the following 
events to occur: 

l A new C-stack frame is allocated. This 6-word frame is loaded 
with procedure state information, including the PRL indices 
for the current P, I, and R segments. 

. The PRL indices for the new P, I, and R segments, stored in 
the enter PRL entry, are used to modify the three words in 
the Process Base that address these three capability segments. 

l The PRL index for the current A segment is saved on the 
C-stack. The A segment slot in the Process Base is loaded 
with the PRL index of the current N segment. The Process 
Base slot for the N segment is invalidated. 

l The current program counter (B15) is saved on the C-stack. 
l The access rights specified by the enter capability and the 

enter PRL entry are ANDed and placed in B14, for examina- 
tion by the procedure. 

l The program counter is loaded with the address of the first 
word of the segment addressed by the new P capability. 

The protected procedure begins execution at the first word 
of the P segment. It executes in the new domain created by the 93 



The Cambridge CAP 
Computer ENTER instruction and has access to new A, I’, I, and R 

segments. When the procedure is entered, no N segment 
exists. Should the procedure wish to create a new argument 
segment for a further procedure call, it executes a MAKEIND 
instruction to specify the length of the new N segment. The N 
segment is also allocated on the C-stack. Execution of a RE- 
TURN instruction destroys the N segment and replaces the pre- 
vious I?, I, R, and A segments. 

Each CAP user program is, in fact, a protected procedure, 
and is restricted to a subset of the objects addressed by its 
process’ PRL. This subset is defined by the I?, I, and R capa- 
bility segments made available to the program by its enter ca- 
pability. Other procedures callable by the program can have 
access to different segments. The enter PRL entry for a pro- 
tected procedure seals three capabilities, making them availa- 
ble to the protected procedure when it is called. 

The protected procedure mechanism supports the creation 
of protected objects and object type managers. For example, 
Figure 5-10 shows the implementation of a subsystem support- 
ing protected objects of type message port. Each instance of a 
port object is represented by a new instance of the port pro- 

Enter 
PRL Entry 
for Port1 

Port 1 Resource Port 1 

Send 
procedure 

L 

PRL Entry 
, In; for Porf2 

Procedure 
capamy 
Segment 

Operation 
Procedures 

Data capabiiity 

Data capabiiify 

t Port 
data 

. 
Port2 

Port2 Resource 
Capabiiity Segment 

Figure 5-10 CAP Protected Object Implementation 

Data Segment 

94 



5.11 LoncpTerm 
Storage and Long- 

tected procedures. Each instance of the port system contains a Term Names 

pointer to the port protected procedures and a pointer to the 
segments containing the data structures for one port instance. 
Figure 5-10 shows enter PRL entries for two ports. Both PRL 
entries address the same P segment and share the procedures 
that operate on the ports, but every object has a different R 
segment that contains the representation of that object in- 
stance. 

To create a new object, then, the type manager creates an 
instance of itself with a new R segment. All PRL entries for 
objects of the same type share a I’ capability but have different 
R capabilities for the segments containing the object’s repre- 
sentation. Processes are given enter capabilities that address 
these PRL entries. The type manager defines and interprets 
the access rights in its enter capabilities. The ENTER instruction 
makes those access rights easily accessible by placing them 
in a register. 

5. If Long-Term Storage and Long-Term Names 

Like the Plessey 250, the CAP operating system provides 
for long-term storage of objects. Three types of objects can be 
preserved on secondary storage: segments, directories, and 
Procedure Description Blocks. A Procedure Description Block 
is a segment created by the operating system that defines how a 
protected procedure should be constructed, including its seg- 
ments and the capabilities in those segments. 

CAP capabilities, like Plessey 250 ~capabilities, contain the 
index of a data structure in memory (the PRL). This index is a 
short-term identifier for an object and is meaningful on the 
CAP system only during the lifetime of a single process. There- 
fore, in order to preserve and name objects with a long life- 
time, each object must have a unique long-term name. When 
object names are saved on secondary memory, they must be 
stored as long-term names. 

Each CAP object’s long-term name is unique for the life of 
that object. The long-term name is called the system internal 
name of the object. An object’s system internal name is con- 
structed from the disk block address where the object is stored. 
The CAP operating system maintains a list of all long-term 
objects that includes the number of references to each object 
on secondary storage. In addition, the operating system main- 
tains a list for each CAP process that contains the system inter- 
nal names for all objects addressed by that process’s PRL. 95 



96 

Every CAP user has one or more directories in which to 
store text names of long-term objects and their associated sys- 
tem internal names. Directories are managed by a protected 
procedure known as the directory manager. 

The operating system maintains the storage for an object as 
long as a reference to that object exists in a directory, in a 
Procedure Description Block, or in the PRL of an executing 
process. When a process requests an object from a directory, 
the system first checks the process-local system internal name 
list to see if that object is currently in memory. If so, the proc- 
ess will already have a PRL entry addressing the object and a 
capability can be constructed. Otherwise, the system’s long- 
term system internal name list must be consulted and the ob- 
ject fetched from secondary storage. This operation will cause 
a PRL entry to be allocated, a capability to be constructed, and 
a notation to be made in the process-local system internal name 
list. 

Protected procedures are stored on secondary memory as 
Procedure Description Blocks. A protected procedure, as previ- 
ously described, consists of three capability segments (proce- 
dure, interface, and resource) that are made available as the 
result of an ENTER instruction. These segments contain capa- 
bilities that are used by the protected procedure but may be 
hidden from other process procedures. 

When a protected procedure is created, the operating sys- 
tem constructs a Procedure Description Block containing sys- 
tem internal names of the objects accessible to the protected 
procedure. The operating system returns an enter capability 
and places an enter PRLentry in the Process Resource List of 
the creating process. The PRL entry is constructed so that a 
trap will occur if an ENTER instruction attempts to use that 
entry. If a trap occurs, the operating system builds the P, I, 
and R capability segments from the system internal names in 
the Procedure Description Block. In this way, such segments 
do not need to be allocated unless the procedure is actually 
called. 

5.12 Discussion 

The Cambridge CAP computer is the first successful uni- 
versity-built hardware and software capability system. Unlike 
previous university efforts, the CAP implementors completed 
a system that serves both as a research tool and as a useful 
service facility. The CAP system is interesting because of sev- 



era1 design aspects, including the addressing structure and the 5.12 Discussion 

use of the microprogram and capability unit for implicit capa- 
bility loading. 

The most influential decision made in CAP’s design was the 
choice of a capability protection system based on a process 
hierarchy. The goal was to allow any process complete freedom 
to supervise the activities of its subprocesses. The CAP system 
permits a process to control the processor scheduling as well as 
the memory resources of its offspring. The ENTER SUBPROCESS 
and ENTER COORDINATOR instructions operate at any level of 
the tree, allowing any process to act as a complete coordinator. 

CAP’s addressing structure permits direct control of 
subprocess addressing domains by a parent process. In con- 
trast, a parent process on other capability systems must call a 
supervisor service to place a capability in a subprocess’s C-list. 
On CAP, however, a process can have data access to its sub- 
processes’ capability segments. No protection violation occurs 
because of the indirection in subprocess capabilities, although 
this indirection reduces the efficiency of capability addressing. 

An additional problem is caused by the local nature of the 
Process Resource List. Because all capabilities address the 
PRL, a process-local structure, they cannot be passed easily 
between processes. CAP capabilities are different from capabil- 
ities on previous systems because they do not contain a global 
context-independent identifier. Although each CAP object has a 
system-wide unique name, a CAP capability contains a PRL 
index which is a process-local object name. 

Following their initial experience, CAP’s designers felt that 
the process tree had been much overemphasized in the design. 
The generality of a multi-level process structure, while provid- 
ing conceptual advantages, led to performance and implemen- 
tation difficulties. Therefore, only two levels of process struc- 
ture are actually used in the CAP-the Master Coordinator 
and the level-2 processes. However, the effect of the process 
tree design on addressing remains. 

A more essential CAP mechanism is the protected proce- 
dure. Protected procedures are widely used, both within the 
operating system and by user programs. Most of CAP’s operat- 
ing system is implemented as protected procedures that exe- 
cute within the domain of each process; this alleviates the bot- 
tleneck that would be caused if all services were performed 
directly by the Master Coordinator. 

Protected procedures are also useful for implementing type 
managers and protected objects. The procedure (P) segment 97 



The Cambridge CAP 
Computer for the protected procedure specifies the protected object man- 

agement routines, while the resource (R) segment can be used 
to specify the representation of a single object instance man- 
aged by those routines. When a new object instance is created, 
the type manager creates a new instance of its protected proce- 
dure system. This new instance is represented by a new enter 
capability and enter PRL entry that have access to a new R 
segment. 

Although the protected procedure mechanism supports the 
creation of protected objects, it is not extensively used for that 
purpose within the operating system due to the cost of pro- 
tected procedures. Using this mechanism for protected ob- 
jects, a new instance of the type manager (that is, a new pro- 
tected procedure with its enter PRL entry) must be created for 
every new object. Creation of a new instance of a protected 
procedure also causes creation of a new Procedure Description 
Block, which involves both space and time overhead to the 
system. 

A less expensive mechanism is provided by software capa- 
bilities (not described in the chapter). The operating system 
uses software capabilities for addressing operating system ob- 
jects. Software capabilities can be placed in process capability 
segments and are protected in the same way that segment capa- 
bilities are protected. The type field in the capability indicates 
whether it is a software capability or another type of capability. 
A protected procedure can return a software capability to a 
process as proof of object ownership. The bits in a software 
capability can be defined by the protected procedure and used 
in any way. However, software capabilities can only be used by 
operating system protected procedures because they rely on 
convention to distinguish the type of object addressed by the 
software capability. 

CAP’s capability unit serves to reduce the overhead refer- 
ences required for address translation. A memory reference in 
a level-2 user process requires four overhead references before 
the word is accessed, because two capabilities and two PRL 
entries must be read to compute the primary memory address. 
The capability unit reduces this overhead by caching fre- 
quently used segment capabilities and their segment primary 
memory addresses. 

98 

Additionally, the use of tag memory registers and the struc- 
ture of the capability register tags permit registers to remain 
loaded over domain changes. That is, when a context switch or 
protected procedure call occurs, only the tag memory registers 



need to be changed. A call to a short protected procedure will 
not cause a turnover of registers in the capability store. How- 
ever, the capability unit requires that a large number of evalu- 
ated capabilities be loaded in registers before it can operate. 
For example, for each process capability in the capability unit, 
the unit must also hold evaluated capabilities for the segment 
containing the capability, for the process PRL and Process 
Base of the current process, and for the PRL and Process Base 
of the parent process. The overhead is significant, and the 64- 
register size of the store would make large process trees im- 
practical. 

Additional overhead always exists in capability manage- 
ment, and this can be seen in light of the CAP addressing 
structure. Because capabilities are defined indirectly, a parent 
has the ability to modify or invalidate a capability to which a 
junior process refers. Using this mechanism, it is possible to 
revoke authority to an object previously allowed a subprocess 
(and potentially, its juniors). Since the capability unit main- 
tains translated copies of capabilities, however, it is possible 
for a change at a higher level in the process tree to be made 
while a lower level capability exists in the capability unit along 
with its physical address. Therefore, each time a capability in 
memory is modified, the capability unit must ensure that no 
junior process capabilities are left in the unit that refer indi- 
rectly to the modified capability. Although this is analogous to 
the operation required on a virtual memory translation buffer 
in any virtual memory system, the operation is more frequent 
with capabilities because, while users can modify capabilities, 
only the operating system can modify process page registers. 

The CAP project has been successful for reasons related 
both to the structure of the hardware and the amount of useful 
software available to its users. Since it became operational, the 
CAP system has continued to be a useful research and compu- 
tation facility at Cambridge University, and the base hardware 
has proven flexible enough to allow further experimentation 
with capability architecture [Herbert 78a]. 

5.13 For Further Reading 

Much literature is available on the CAP system and its soft- 
ware. A general discussion of capability addressing and the 
CAP approach can be found in [Needham 72 and Needham 
741. The best overview of the CAP system is provided in the 
paper by Needham and Walker [Needham 77a], the book by 

5.13 For Further 
Reading 

99 



The Cambridge CAP 
Computer Wilkes and Needham [Wilkes 791, and the thesis by Walker 

[Walker 731. The book describes the operating and filing sys- 
tems as well as the hardware. The filing system is described 
also in [Needham 77b, Birrell78j. Performance evaluations of 
the CAP system can be found in the papers by Cook [Cook 78, 
Cook 78b]. 

Since the original CAP design, Herbert has experimented 
with a new CAP capability architecture implemented by a 
microprogrammed kernel running on the CAP hardware 
[Herbert 78a, Herbert 78b, Herbert 791. A version of [Herbert 
791 is reprinted in [Wilkes 791. Herbert’s kernel corrects some 
of CAP’s problems and supports global naming and a form of 
sealing as described by Redell [Redell 74a]. 

100 



..-- 
\ 

Id 
The Hydra/C mmp computer. (Courtesy William Wuif ) 




