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The IBM System/38 

8.1 Introduction 

IBM’s capability-based System38 [Berstis 80a, Houdek 81, 
IBM Sa, IBM 82b], announced in 1978 and delivered in 1980, 
is an outgrowth of work that began in the late sixties and early 
seventies on IBM’s future system (FS) project. Designers at 
the IBM Development Laboratory in Rochester, Minnesota 
incorporated ideas from FS, modified by their needs, to pro- 
duce a system for the commercial marketplace. It is interesting 
that such an advanced, object-based architecture has been ap- 
plied to a very traditional product space. Initially, only the 
COBOL and RPG III languages were provided. The system, 
which includes the CPF (Control Program Facility) operating 
system, is intended to support transaction processing and data- 
base applications constructed in commercial languages. 

A major goal of the System38 design is to maintain pro- 
grammer independence from the system implementation 
[Dahlby SO]; IBM wished to retain maximum flexibility to 
modify System38’s implementation for future technologies 
while supporting previously written System38 programs. The 
designers also wished to support a high level of integrity and 
security at the machine interface and to support commonly 
executed user and system functions efficiently, such as data- 
base searches and memory management [Hoffman 801. To 
meet these goals, IBM chose a layered machine structure with 
a high-level programming interface. The layers of this design 
are shown in Figure 8-l. 

At the lowest level is a hardware machine that directly exe- 137 
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Figure 8-1: System/38 Implementation Layers 

cutes 32-bit horizontal microcode. This horizontal microcode 
implements a more-or-less standard 32-bit register machine 
that executes vertical microcode.’ The interface above the ver- 
tical microcode, called the high-level architecture interface in 
Figure 8-1, is the level described in this chapter; it supports 
the user-visible (or CPF-visible) System38. 

This high-level architecture interface is supported across 
implementations, while the structure of the underlying layers 
can change. For example, performance-critical functions, such 
as interprocess communication and memory allocation, are 
handled by the horizontal microcode. The system object and 
capability support is handled in part by both microcode layers. 
Different functions can be moved between microcode levels or 
into hardware in future versions, as performance experience is 
gained. In fact, this movement has already occurred on newer 
System38 releases and models. 

The CPF operating system and the vertical microcode are 
implemented in PLiS, a PLiI-like system programming lan- 
guage. There are approximately 900,000 lines of high-level 
PWS code and an additional 400,000 lines of microcode sup- 
port needed to implement CPF and its program products, The 
System38 hardware includes a non-removable disk that holds 
this large store of microcode. 

The System38’s high-level architecture interface is actually 
an intermediate language produced by all System38 compilers. 
Before a program is executed, CPF translates this intermediate 
language into vertical microcode and calls to vertical microcode 
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‘Although IBM calls this layer vertical microcode, it would generally not be 
considered microcode because it resembles a traditional IBM 370-like 32-bit 
instruction set and is programmed in a high-level language. 



procedures. That is, the high-level interface is not directly exe- 8.2 System Objects 

cuted. This translation process is described later. 
IBM terminology is used throughout this chapter for com- 

patibility with System/38 publications; it differs somewhat 
from that used in previous chapters. In particular, IBM uses 
the following terms: space for segment, pointer for capability, 
authority for rights, and context for directory. These synonyms 
will be presented again as each of the terms is introduced. 

8.2 System Objects 

System/38 instructions operate on two types of entities: 
scalar data elements and system objects. The scalar types are 16- 
and 32-bit signed binary, zoned and packed decimal, and char- 
acter strings. The machine supports 14 types of system objects, 
described in Table 8-1. A set of type-specific instructions is 
provided for each system type. 

SPACE byte-addressable storage segment 
PROGRAM procedure instructions and associated data 
USER PROFILE object containing information about user’s 

resource limits and authority to access any 
system objects 

CONTEXT directory of object names and capabilities 
QUEUE message queue for interprocess communica- 

tion 
DATA SPACE collection of identically-structured records 
DATA SPACE INDEX 

object used to provide logical ordering for 
data space entries 

CURSOR direct interface to entries in a data space, or 
indirect interface through a data space index 

INDEX accesses data sequences based on key values 
PROCESS CONTROL SPACE 

object containing state information for a 
process 

ACCESS GROUP set of objects grouped together for paging 
performance reasons 

LOGICAL UNIT DESCRIPTION 
object describing an I/O device 

CONTROLLER DESCRIPTION 
object describing the attributes of a device 
controller 

NETWORK DESCRIPTION 
object describing a communications port 

Tab/e 8-1: Systemi System Object Types 139 



The IBM System138 Each system object consists of two parts: a functional por- 
tion and an optional space portion, as shown in Figure 8-2. 
The functional portion of an object is a segment containing ob- 
ject state (its representation); the data in the functional portion 
can be examined and modified only by microcode as a result of 
type-specific instructions. Thus, the functional portion is said 
to be encapsulated because it is not accessible to programs 
[Pinnow 801. Optionally, a space portion can be associated with 
an object (IBM uses the word space to refer to a storage seg- 
ment). The space portion is an attached segment for storing 
scalars and pointers that can be directly manipulated by user 
programs. 

Every object in the system has several associated attributes. 
First is a type that identifies it as one of the 14 system object 
types listed in Table 8-1. (Objects can also have subtypes for 
further software classification.) Second is a symbolic text name 
chosen by the user to refer to the object. Last is a unique identi- 
fier (ID) that uniquely specifies an object for the life of the 
system. Object identifiers are never reused. When an object is 
created, the object ID is assigned by the system, while the text 
name and type are specified by the programmer. 

Although the contents and format of the encapsulated data 
in an object are not programmer accessible, programmers must 
be able to specify initial object values or examine an object’s 
state. The System/38 instruction set uses templates to convey 
initial information and communicate encapsulated data. A 
template is simply a data structure with defined fields used to 
transmit information at the instruction level. For example, the 
CREATE QUEUE instruction needs to specify some information 
about the maximum number of messages, the size of messages, 
the queueing discipline, and so on. This information is 

140 Figure 8-2. IBM System138 System Object 



conveyed by creating a template in a space and specifying a 8.3 Object Addressing 

capability to that space as a parameter to the instruction. 
Later, an instruction can be executed to produce a template 
showing information about the queue. Although the architec- 
ture fixes the format of the template used to communicate in- 
formation at the high-level interface, it does not dictate how 
that information is maintained once it is encapsulated within 
the object. 

The only object not containing a functional part is a space 
object. A space object is a contiguous segment and is the only 
object that can be manipulated at the byte level by scalar 
instructions. 

A system object, then, is an instance of an abstract data 
type. System/38 instructions exist to create, manipulate, exam- 
ine, and delete each of the system object types. The machine 
provides an interface that hides the implementation of an ob- 
ject from the user. An object’s state is stored in one or more 
segments; its attributes include a type that indicates what oper- 
ations are allowed and an identifier that uniquely specifies the 
object. A base segment for each object contains pointers to any 
other segments composing the object, as well as type and ID 
information. 

8.3 Object Addressing 

Before examining object addressing in detail, it is necessary 
to describe memory management and segment addressing on 
the System38. Object addressing, using capabilities, is based 
on lower-level segment addressing mechanisms. 

8.3.1 Virtual Memory 

The IBM System38 architecture supports a flat, single- 
level, 64-bit virtual address space. To the user at the high-level 
interface (either the operating system or application program- 
mer), all addressable objects and segments are in directly ac- 
cessible memory; there is no concept of secondary storage. The 
System/38 microcode is responsible for moving segments be- 
tween primary and secondary storage to create this virtual 
memory environment. 

The structure of a 64-bit virtual address is shown in Figure 
8-3. The System38 segment size is 64K bytes. Each segment is 
divided into 512-byte pages. The low-order 16 bits of the ad- 141 
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Figure 8-3: System138 Virtual Address 

dress thus provide the page number and byte offset for the. 
pages of a segment. For larger objects, up to 256 segments can 
be grouped together into segment groups. The group ID field 
specifies which 64K-byte segment is being addressed within a 
16M-byte segment group. The next 24 bits of the address pro- 
vide a unique segment ID for the segment group. 

The System38 hardware only supports 48-bit physical ad- 
dresses composed of these fields. However, when an object is 
created, the microcode extends the address to 64 bits by adding 
an additional 16-bit field. 

The full 64-bit address is stored in a special header with the 
segment. When a 64-bit address is used to access a segment, 
the upper 16 bits of the address are compared with the upper 
16 bits of address in the segment’s header. If a mismatch oc- 
curs, the addressed object has been destroyed and the refer- 
ence is not allowed. At any one time, then, there can only be 
224 or 16 million segment groups in existence. 

Because the address space is so large, particularly with the 
i6-bit extension to the segment ID field, segment IDS are 
never reused. The system assigns a new segment ID at creation 
that is unique for the life of the system. If the object is deleted, 
references to the segment ID are not allowed. The system need 
not search for dangling references when an object is deleted. 
The segment ID, therefore, provides a mechanism for deter- 
mining the unique ID for system objects. System objects are 
named with the unique ID of the first segment containing the 
functional portion of the object. The unique ID is the upper 
six bytes of the virtual address. 
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8.3.2 Pointers 

As in other capability systems, objects as well as scalar data 
elements are addressed through capabilities. System/38 capa- 
bilities are known as pointers. There are four types of pointers 
in the System38: 



l system pointers address the 14 system object types (listed in 
Table 8-l), 

l space pointers address a specific byte within a space object 
(segment), 

l data pointers address a specific byte within a space and also 
contain attribute information describing the type of element 
(e.g., character or decimal), and 

l instruction pointers address branch targets within programs. 

8.3 Object Addressing 

Each System/38 pointer is 16 bytes long. In order to access an 
object or an element within a segment, a program must specify 
a pointer that addresses the object or segment element. Point- 
ers can contain different information at various times, includ- 
ing symbolic text names, authorization information (access 
rights), the object type, and the unique ID for system pointers 
or virtual address for data and space pointers. The information 
within a pointer can be modified, for example, from text name 
to unique ID, to allow for late binding of the pointer to the 
object. 

Unlike the systems previously examined, which use C-lists 
for the storage of capabilities, System38 pointers can be freely 
mixed in segments along with scalar data. To allow storing of 
capabilities with data in the same segment while still maintain- 
ing capability integrity, the System38 implements a memory 
tagging scheme. Memory is byte addressable and words are 
32 bits long. However, physical words of primary memory are 
actually 40 bits wide. Invisible to the programmer are a l-bit 
tag field and a 7-bit error correcting code. Pointers must be 
aligned on 16-byte boundaries. When a pointer is stored in a 
segment by a valid pointer instruction, the hardware sets the 
associated tag bits for the four consecutive 32-bit words used to 
hold the pointer. Any instruction that requires a pointer oper- 
and checks that the pointer is aligned and that the four tag bits 
are set before using the element for addressing. Program data 
instructions can freely examine pointers. However, if a pro- 
gram instruction modifies any data in a pointer, the microcode 
turns off the tag bit in the associated word or words, invali- 
dating the pointer. 

Table 8-2 lists some of the instructions that operate on Sys- 
tem/38 pointers. Note that a space object (a memory segment) 
is a system object that is addressed by a system pointer. A space 
pointer, on the other hand, is a capability that addresses a 
particular byte in a space object. 143 



The IBM System138 ADD SPACE POINTER 
adds a signed offset to the byte address in a 
space pointer 

COMPARE POINTER FOR ADDRESSABILITY 
compares two pointers to see if they address 
the same object, the same space, or the same 
space element 

RESOLVE POINTER searches a directory (see Section 8.3.3) for a 
named object and returns a pointer for that 
object 

SET DATA POINTER 
returns a data pointer for an element in a 
space 

SET SPACX POINTER 
returns a space pointer for an element in a 
space 

SET SPACE POINTER FROM POINTER 
if the source is a space or data pointer, 
creates a space pointer for the specified byte; 
or if the source is a system pointer, returns a 
space pointer for the associated space 

SET SYSTEM POINTER FROM POINTER 
if the source is a space or data pointer, re- 
turns a pointer for the system object con- 
raining the associated space; if the source is a 
system pointer, returns a system pointer for 
that same object 

Tab/e 8-2: Svstemi38 Pointer Instructions 
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8.3.3 Contexts 

Pointers are used to address objects; however, users refer to 
objects by symbolic text names. System objects called contexts 
implement directories for storing symbolic object names and 
pointers. When a new object is created, its symbolic name and 
an associated pointer are stored in a specified context. Table 
8-3 lists the context instructions supported by the Systemi38. 

The symbolic names stored in contexts are not necessarily 
unique, and a user can possess several contexts containing the 
same name but referring to different objects. This feature al- 
lows for testing and logical object substitution. A program that 
refers to an object by name can receive different objects de- 
pending on what context is used for name resolurion. When a 
reference is made to a pointer containing an object name, the 
system examines the user’s Name Resolution List (NRL). The 
NRL contains pointers to user contexts in the order that they 
should be searched. By changing the context ordering or ma- 
nipulating entries, the user can change the objects on which 
the program operates. 
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creates a new context object and returns a 
system pointer to address it 

DESTROY CONTEXT 
deletes a context object 

MATERIALIZE CONTEXT 
returns name and pointer for one or more 
objects addressed by a context 

RENAME OBJECT changes the symbolic name for an object in a 
context 

Tab/e 8-3: System/38 Context Instructions 

8.3.4 Physical Address Mapping 

Because of the large size of a System38 virtual address, 
standard address translation schemes involving indexing of 
segment/page tables with the segment/page number address 
field cannot be used. Instead, the System38 hardware uses 
hashing with linked list collision resolution to find the primary 
memory address for a specified virtual address. 

The basic units of physical and virtual storage are 5 12-byte 
pages. A translation scheme is used to locate a page in primary 
memory. The upper 39 bits of a 48-bit virtual address, encom- 
passing the unique segment ID, specify a unique virtual page 
address for the page. A hashing function is applied to these bits 
to obtain an index into a data structure called the Hash Index 
Table (HIT), shown in Figure 8-4. The hashing function is an 
EXCLUSIVE-OR of low-order bits from the segment ID and 
group ID fields, and reverse-order bits from the page number 
field. This function provides uniform mapping from the sparse 
address space to the HIT [Houdek 801. 

The HIT entry contains an index of an entry in the Page 
Directory Table (PDT). The PDT contains one entry for each 
page of primary memory. Each entry contains the virtual ad- 
dress of a corresponding primary memory page. That is, the 
index into the PDT is the page frame number for the virtual 
address described in the entry. Each entry also contains a link. 
The hardware checks the virtual address at the first entry 
pointed to by the HIT and follows the linked list until a virtual 
address match is found or the list ends. If a match is found, the 
index of that entry is used as the page frame number in the 
primary memory address. If no match is found, the page is not 145 
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in primary memory and the hardware must load the page from 
secondary storage. 

The performance of this search depends on the uniformity 
of the hashing function and the length of the lists in the Page 
Directory Table. In order to shorten the list lengths, the Hash 
Index Table is constructed to be twice the size of the Page 
Directory Table. 

Two optimizations are used to avoid this two-level table 
search on every reference. First, the hardware contains a two- 
way associative translation buffer to cache recent address trans- 
lations (the buffer size is different for different System38 mod- 
els, typically 2 x 64 or 2 x 128 entries). To check the translation 
buffer, the virtual page field is hashed to an offset that selects 
one entry in each half of the buffer. The two selected entries, 
which contain a virtual page address and translated primary 
memory page frame number, are checked for a match. If the 
virtual address matches, the page frame number is used to 
construct the primary memory address. If no match occurs, 
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the table search proceeds, eventually replacing one of the se- Authority 

lected translation buffer entries with its data, based on a least 
recently used bit. 

The second optimization is the use of resolved address regis- 
ters in the hardware. These registers are used in the CPU to 
hold virtual page, physical page, and byte offset information 
while a page is being processed. As long as references are made 
to the addressed page (e.g., during the sequential search of 
elements of an array), the hardware need not search the trans- 
lation buffer for consecutive accesses. 

8.4 Profiles and Authority 

The System/38 hardware provides a mechanism for ensur- 
ing privacy and separation of data and for sharing information 
between users. The basic unit of computation, from which 
protection stems, is the process. Each user process is defined by 
a Process Control Space object that contains its state. When a 
user logs onto the system, a new process is created; a user pro- 
file object is associated with that process based on the user’s 
name. The user profile contains: 

l the user’s name, 
l the user’s password, 
l any special authorization or privileges the user possesses, 
l the maximum priority, 
l the maximum storage usage, 
l an initial program to run upon log-in (if any), 
l a list of objects that the user owns, and 
l a list of non-owned objects that the user is authorized to ac- 

cess, and the permitted authorities. 

All authority to perform operations on objects is rooted in 
the user profile. When an object is created, it is created with an 
attribute stating whether the object is permanent or tempo- 
rary. The profile associated with the process issuing the 
CREATE operation on a permanent object becomes the owner 
of the object. An owner has all rights to the object and can 
perform any operations, including deletion. Temporary objects 
receive no protection and have no owner. They are destroyed 
when the system is booted. 

The owner of an object can grant various types of access to 
other user profiles in the system. There are a number of au- 
thorities, or access rights, that a process can have with respect 
to an object. The authorities define what object operations the 147 



The IBM System138 process can perform. The authorities also define what opera- 
tions can be performed on pointers for the object. Object au- 
thorities are divided into three categories: 

l object control authority gives the possessor control of the ob- 
ject’s existence (for example, the right to delete or transfer 
ownership), 

l object management authority permits the holder to change 
addressability (for example, to rename the object or grant 
authority to other profiles), and 

l operational management authority includes basic access rights 
to the contents of the object, such as retrieve, insert, delete, 
and update entry privilege. 

The authority information for each object is thus profile-based. 
Each user has a profile that indicates what objects are owned 
and what access is permitted to other objects. If a user wishes 
to allow access for an owned object to another user, the owner 
grants authority for the object to the sharer’s profile. To exe- 
cute a GRANT AuTHoRrTY instruction, a user must own an 
object or have object management rights. A user cannot grant 
an authority that the user does not possess. 

Table 8-4 lists some of the profile/authority management 
instructions supported by the Systemi38. These instructions 
allow a properly authorized user to grant access privileges to 
other users, to examine what objects are authorized to him or 
her, and to see what authorizations have been given to other 
users for owned objects. 

In addition to specific object authority granted to specific 
profiles, each object can have an associated public authorization. 
The object’s owner grants public authority with the GRANT 
AUTHORITY instruction by omitting the profile parameter. 
The public authority is stored in the object’s header and allows 
any user to access the object in the permitted modes. When an 
attempt is made to access an object, the public authority is 
checked first. If the access is not permitted by the object’s 
public authority, the user’s profile is then examined. 
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8.4.1 Authority/Pointer Resolution 

Thus far, the System38 protection mechanism has been 
described from the perspective of the profile object. The pro- 
file provides a standard Access Control List mechanism. The 
owner of an object can explicitly permit other profiles to have 
access to that object and can later revoke that access. 



CREATE USER PROFILE 
builds a new user profile (this operation is 
privileged) 

DESTROY USER PROFILE 
deletes a profile 

GRANT AUTHORITY 
grants specified authorities for an object to a 
specified user profile 

MATERIALIZE AUTHORIZED OBJECTS 
returns list of all owned objects or author- 
ized objects 

MATERIALIZE AUTHORIZED USERS 
returns a list of owning or authorized users 
for a specified object 

RETRACT AUTHORITY 
revokes or modifies authority for an object 
from a specified user profile 

TEST AUTHORITY tests if specified authorities are granted to 
the current process for a specified object 

TRANSFER OWNERSHIP 
transfers ownership of an object to another 
profile 

Tab/e 8-4: System38 Authority Management Instructions 

The ability to revoke object access is an important part of 
the System38 design; this feature has not been provided in any 
of the previously examined systems. Revocation is, in fact, a 
difficult problem in capability systems and is generally expen- 
sive to implement in terms of addressing overhead. The IBM 
System38 design allows an object’s owner to decide whether 
revocation is needed for the object. The System/38 provides 
two pointer formats: one for which access can be revoked and 
another for which access cannot be revoked. An object’s owner 
can decide which type of pointer to use for each object in each 
instance depending on the relative importance of revocation 
and addressing efficiency. 

In order to access an object in the System38 a process must 
possess a pointer for that object. Pointers can be stored in two 
formats: unauthorized and authorized. An unauthorized pointer 
contains an object’s unique identifier but does not contain au- 
thorizations (i.e., access rights) to the object. When an unau- 
thorized pointer is used to access an object, the hardware 
checks the profile of the executing process to verify that the 
requested operation is permitted. Without this check, revoca- 

8.4 Profiles and 
Authority 
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The IBM System138 tion of authority would be impossible. An unauthorized 
pointer, then, cannot be used in the way that traditional capa- 
bilities can be used. Additional overhead is added to pointer 
usage because of the profile check. 

In cases where revocation is not required or higher perform- 
ance is needed, access rights can be stored in a pointer, creat- 
ing an authorized pointer. An authorized pointer acts as a capa- 
bility, and reference to an object with an authorized pointer 
does not require a profile lookup. The RESOLVE SYSTEM 
POINTER instruction is used to create authorized pointers. 
An authorized pointer can only be created by a user whose 
profile has object management authority for the object; the 
created pointer cannot have rights not available to the creating 
profile. Once constructed, an authorized pointer maintains 
authority to access an object for the life of that object. The 
pointer can be stored and passed to other processes. Because 
the profile check is avoided with authorized pointer usage, au- 
thority cannot be revoked later. 
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8.5 Programs/Procedures 

IBM uses the term program to refer to what is typically 
called a procedure or subroutine. A System38 program is an 
executable system object. A program object is created by a 
CREATE PROGRAM instruction, which specifies a template con- 
taining System38 instructions and associated data structures. 
The CREATE PROGRAM instruction returns a system pointer al- 
lowing the program to be called. 

As noted previously, the System38 source language (i.e., 
the high-level architecture interface shown in Figure S-l) is 
really an intermediate language produced by compilers. The 
effect of the CREATE PROGRAM instruction is to compile 
this intermediate language source into microcode that can be 
executed on the next lowest “level” of the machine. Source 
instructions, depending on their complexity, either compile 
directly into System38 vertical micro-instructions or into 
micro-procedure calls. The compiled program is thus encapsu- 
lated in the program object, and the form of the micro-machine 
is hidden by the CREATE PROGRAM instruction. Once en- 
capsulated, the format of a program object cannot be exam- 
med. 

Thus, the System38 high-level architecture is never directly 
executed. It is a specification for a language that all System38 
implementations support; however, that language is translated 
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into a proprietary vertical micro-language before execution. Programs/Procedures 

The format of the encapsulated program in this micro-lan- 
guage cannot be examined and can be different on different 
System38 implementations. 

8.5.1 The Instruction Stream 

The program template presented to the CREATE PROGRAM 
instruction consists of three parts: 

l a program consisting of a sequence of instructions, 
l an Object Definition Table (ODT), and 
l user data. 

Each instruction consists of a number of 2-byte fields in- 
cluding an operation code, an optional operation code ex- 
tender, and one to four operands. The operands can specify 
literals, elements in space objects, pointers to system objects, 
and so on. The information about operand addressing and 
characteristics is stored in the Object Definition Table in- 
cluded in the template. The ODT is a dictionary that describes 
operands for the instruction stream. 

Each instruction operand contains an index into the Object 
Definition Table. The ODT actually consists of two parts: a 
vector of fured-length (4-byte) elements called the Object Di- 
rectory Vector (ODV), and a vector of variable-length entries 
called the ODT Enty String (OES). An operand is either com- 
pletely described by its 4-byte ODV entry, or the ODV entry 
has a partial description and a pointer into the OES, where the 
remaining description is found. Most commonly occurring 
cases are handled by the fured-length ODV itself. Several ODV 
entries can point to the same OES entry. The ODT can contain 
information such as operand type (e.g., fixed-length decimal 
string), size, location, allocation (static or dynamic), initial 
value, and so on. Figure 8-5 shows an example of an insrruc- 
tion with three operands. The operands index ODT informa- 
tion defining their type and location. 

Each instruction operand consists of one or more 2-byte 
fields. The first 2-byte field contains a 3-bit mode field and a 
13-bit ODV index. The mode field indicates what type of ad- 
dressing is required and what additional 2-byte fields (called 
secondary operands) follow in the instruction stream to de- 
scribe the operand completely. For example, a string operand 
may require three 2-byte fields to describe a base, index, and 
length. 151 
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Since the ODT completely describes each operand, the sca- 
lar opcodes are generic. For example, there is only one ADD 
NUMERIC instruction that operates on all numeric data 
types. The machine interprets the ODT entry to decide how 
the operation should be performed and what conversions are 
required. 

The Object Mapping Table (OMT) is the final data structure 
that is part of the encapsulated program (although not 
included in the initial template). It contains 6-byte mapping 
entries for each entry in the ODV that maps to a space. 

8.5.2 Program Activation and Invocation 

A program, then, is a system object that represents a sepa- 
rately compiled unit of execution (typically known as a proce- 
dure). Programs are called by the CALL instruction. There are 
actually two parts to the initiation of a program on the Sys- 
tem/38: activation and invocation. 

Before a program can be invoked (called), it must be ac- 
tivated. Activation of the program causes static storage for the 
program to be allocated and initialized. Also, any global varia- 
bles in program static storage are made addressable. A process 
data structure called the Process Static Storage Area (PSSA) 
contains an activation entry for each activated program in the 
process. The activation entry contains status information, a 
count of the number of invocations using the activation, the 
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size of static storage, and the storage itself. The first entry in Programs/Procedures 

the PSSA contains headers for the chain of activation entries 
and a free space chain. 

invocation occurs as the result of a transfer of control to the 
program. At invocation time, program automatic (that is, dy- 
namic) storage is allocated and initialized in a process data 
structure called the Process Automatic Storage Area (PASA). 
Each invocation entry contains status information, a pointer to 
the previous invocation entry, a pointer to the program, and 
the automatic storage. After the invocation entry is allocated 
and initialized, control is transferred to the program at its entry 
point. 

Activation can occur implicitly or explicitly. If invocation is 
requested of a program that has not been activated, activation 
is done automatically by the hardware. 

8.5.3 Protected Procedures 

The IBM System38 provides a mechanism for creating pro- 
tected subsystems. As on previous systems, a protected subsys- 
tem mechanism must allow programs to execute in an ampli- 
fied protection environment. That is, some programs must be 
able to access objects not available to their caller. Since the 
System38 profile object defines a domain of protection, pro- 
tected subsystems are provided through profile-based facilities 
called profile adoption and profile propagation. 

The authority of each System38 process is determined by 
its profile. When a process calls a program, that program gen- 
erally gains access to the process’s profne and, therefore, to the 
process’ objects. However, it is possible to construct System38 
programs that can access additional objects not available to the 
caller. When a program is created, the program’s owner can 
specify that the program retain access to the owneu’s profile, as 
well as its caller’s profile. This feature, called profile adoption, 
allows a called program to access objects not available to the 
caller and can be used to construct a protected subsystem. 

Although the general calling mechanism allows a called pro- 
gram access to its caller’s profile, a calling process can also 
restrict this ability. When a program is created, the program’s 
owner can specify whether its profile should be propagated to 
programs on calls. Thus, a program can also see that its own- 
er’s profile is protected from access by programs further down 
the call chain. 153 



The IBM System138 8.6 Special Privileges 

It is worth noting that there are some special privileges in 
the System38 authorization system. In addition to object- 
based authorities stored in a user profile, there may be other 
permitted authorities that are not connected with any particu- 
lar object. For example, the ability to create user profiles, diag- 
nose the hardware, or create objects representing physical I/O 
devices can be controlled by authorizations in a user profile. 
Also, the ability to dump and load objects to removable storage 
is protected, as well as the ability to execute operations to mod- 
ify or service system hardware attributes. Finally, some ob- 
jects, such as user proliles and device descriptions, receive spe- 
cial protection and can only be addressed through a special 
machine context (directory). 
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8.7 Discussion 

The IBM System38 is a complex architecture constructed 
from several levels of hardware, microcode, and software. Be- 
cause of its commercial orientation and the fact that it is availa- 
ble from IBM, the System38 is probably destined to become, 
at least in the immediate future, the most pervasive object 
architecture. 

The most interesting feature of the Systemi38, from the 
viewpoint of capability systems, is its use of tagging. Capabili- 
ties and data can be freely mixed in segments with no loss of 
integrity. The ability to mix data and capabilities generally 
permits more natural data structuring than the C-list approach. 
A single tag bit associated with each 32-bit word indicates 
whether or not the word is part of a capability. This tag bit is 
hidden from the programmer and accessible only to the mi- 
crocode. To be used for addressing, a pointer must be aligned 
on a 16-byte boundary and have all four tag bits set. The align- 
ment requirement prohibits the user from specifying four con- 
secutive words with tags set that lie within two contiguous 
capabilities. 

The integrity of a capability system must be ensured on 
secondary storage as well as in primary memory, and the 
pointer tags must be saved on secondary storage. On the Sys- 
tem/38, each disk page is 520 bytes long and stores a 5 12-byte 
data page and an 8-byte header. The 8-byte header for each 
block contains the virtual address for the page, an indication of 
whether or not the page contains any pointers, and if so, which 
16-byte quadword contains the first pointer in the page. Each 
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are required to specify whether each quadword contains a 
pointer. If a page contains pointers, the tag bits are stored 
within some unused bytes in the first 16-byte pointer on the 
page. When a page is written to disk, the hardware automati- 
cally writes the disk block header. When a page is read into 
primary memory, the header is automatically removed and the 
tags are reconstructed. 

The System38 architecture provides a large single-level 
address space. The details of memory management, I/O, and 
so on are hidden from the programmer. There is no need for a 
traditional file system. All objects can be declared permanent 
when created, can be stored for long periods of time, and can 
be addressed at any time as if they were in primary memory. 
Addressing is independent of the object’s memory residency 
characteristics. One problem with schemes that remove the 
abstraction of secondary storage is in transaction systems or 
reliable data‘base operations. In some instances, the program- 
mer may wish to ensure that the latest copy of a segment or 
object is checkpointed onto long-term storage. The one-level 
memory scheme has removed the ability to express the thought 
of writing the segment to disk. To solve this, CPF allows an 
object attribute that states how frequently data is to be backed 
up for a particular object. 

The System 38 permits revocation by adding an access con- 
trol list mechanism to the capability addressing mechanism. 
Two types of pointers, authorized and unauth&zed, can be 
used depending on whether or not revocation is required. Au- 
thorized pointers are traditional capabilities because they con- 
tain access rights and can be freely copied. Passing an author- 
ized pointer passes both the addressing rights and privileges. 
The ability to resolve a pointer to load the access rights is 
controlled by an authorized pointer authorization. Only suita- 
bly privileged profiles can create an authorized pointer. 

In contrast, an unauthorized pointer is not a capability in 
the traditional sense. The same unauthorized pointer can per- 
mit different types of access when used by different processes. 
This is because the authorization rights are fetched from the 
process’s profile when a reference is made. This extra step in 
pointer address evaluation permits explicit control over author- 
ity and combines the advantages of standard capability systems 
and access control lists. The user can specify (and determine 
at any time) what other profues are allowed access to the 
user’s objects. If only unauthorized pointers have been distrib- 155 
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other profiles. 

Unauthorized pointers permit revocation but add complex- 
ity to the handling of pointers. For example, to pass a pointer 
to another process, the possessor of the pointer must be aware 
of whether that pointer is authorized or unauthorized. Unau- 
thorized pointers, unlike capabilities, are not context inde- 
pendent. If the pointer is unauthorized, passing it to another 
process will not permit object access unless permission has 
been granted to the other process’s profile. Also, unauthorized 
pointers cannot easily be used to build and share data struc- 
tures. For example, if a user wishes to build a tree structure of 
segments and pass the tree or subtrees to other processes, the 
authorization scheme requires that authorization for each seg- 
ment be granted separately to each profile involved. 

The structuring of System/38 authorizations permits close 
control of pointers. Given the division of authority into object 
control, management, and access, it is possible for one user to 
be able to affect the propagation of addresses but not be able to 
access object data. Another user may be able to read and write 
but not propagate pointers. 

The large size of the System38 address space simplifies 
many problems. Segment identifiers are large enough that they 
are never reused. This allows use of the segment ID as a 
unique name for an object. Since the ID is never reused, there 
is no problem with dangling references. An attempt to access a 
deleted object simply causes an exception. Large IDS also sim- 
plify the implementation of the one-level memory system. 
There is no separation of long-term unique ID and address. 
The unique ID is the virtual address used to access a specific 
object, segment, or byte. There is no need for separate inform 
and outform capabilities or for transforming capabilities in 
memory when a segment is removed from memory. 
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Although the System38 instruction stream and Object Def- 
inition Table are never used for direct execution, this interface 
has some interesting features. The ODT provides a form of 
tagging somewhat different from the tagged architectures ex- 
amined earlier. Each data element is tagged; however, the tag 
is part of the operand, not part of the element. This allows for 
several different views of the same data element; different in- 
structions can treat the same word as different data types. Op- 
eration codes can be generic, and conversion, truncation, etc. 
can be performed based on type information in the ODT. The 
information stored in the ODT and I-stream may not be ex- 
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tremely compact, but the program in this form need not be Reading 

retained after a program object is created. 
Finally, IBM has used the object programming approach to 

allow isolated construction of components of a very complex 
system. The object approach is intended to hide from the pro- 
grammer the implementation details of the System38 hard- 
ware, so that future System38 implementations can take ad- 
vantage of advances in technology without affecting existing 
programs. Although this has been a goal of other architectures, 
the System/38 has used the object approach to place the 
user/system boundary at an unusually high level, hiding many 
details of the machine. For example, the System38 high-level 
architecture has no registers, although the vertical microcode is 
free to use registers or to use different numbers of registers in 
different implementations. 

The initial System/38 product, with its limitation to com- 
mercial languages, does not stress the architecture. It will be 
interesting in future years to see if IBM approaches other mar- 
kets with this object-based machine structure. 

8.8 For Further Reading 

Detailed information about the System/38 high-level archi- 
tecture can be found in two IBM manuals [IBM 80a, IBM 821. 
IBM has also packaged a collection of 30 short technical pa- 
pers, mostly dealing with hardware and implementation issues, 
into a document called IBM System138 Technical Developments 
[IBM gob]. Several papers describing the addressing and pro- 
tection features of System38 have also been published in tech- 
nical literature [Berstis 80a, Houdek 81, Soltis 79, Soltis 811. 
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The Intel iAXP 432 computer. (Courtesy Intel Corporation.) 




