Lectures 10-11: Parsing

Luke Zettlemoyer - University of Washington

[Most slides from Dan Klein]
Topics

- Parse Trees
- (Probabilistic) Context Free Grammars
 - Supervised learning
 - Parsing: most likely tree, marginal distributions
- Treebank Parsing (English, edited text)
The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market
Penn Treebank Non-terminals

Table 3
The Penn Treebank syntactic tagset.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ADJP</td>
</tr>
<tr>
<td>2.</td>
<td>ADVP</td>
</tr>
<tr>
<td>3.</td>
<td>NP</td>
</tr>
<tr>
<td>4.</td>
<td>PP</td>
</tr>
<tr>
<td>5.</td>
<td>S</td>
</tr>
<tr>
<td>6.</td>
<td>SBAR</td>
</tr>
<tr>
<td>7.</td>
<td>SBARQ</td>
</tr>
<tr>
<td>8.</td>
<td>SINV</td>
</tr>
<tr>
<td>9.</td>
<td>SQ</td>
</tr>
<tr>
<td>10.</td>
<td>VP</td>
</tr>
<tr>
<td>11.</td>
<td>WHADVP</td>
</tr>
<tr>
<td>12.</td>
<td>WHNP</td>
</tr>
<tr>
<td>13.</td>
<td>WHPP</td>
</tr>
<tr>
<td>14.</td>
<td>X</td>
</tr>
</tbody>
</table>

Null elements

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>*</td>
</tr>
<tr>
<td>2.</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>T</td>
</tr>
<tr>
<td>4.</td>
<td>NIL</td>
</tr>
</tbody>
</table>
Phrase Structure Parsing

- Phrase structure parsing organizes syntax into constituents or brackets.
- In general, this involves nested trees.
- Linguists can, and do, argue about details.
- Lots of ambiguity.
- Not the only kind of syntax…

```
new art critics write reviews with computers
```
Constituency Tests

- How do we know what nodes go in the tree?

Classic constituency tests:

- Substitution by *proform*
 - *he, she, it, they, ...*
- Question / answer
- Deletion
- Movement / dislocation
- Conjunction / coordination

Cross-linguistic arguments, too
Conflicting Tests

- Constituency isn’t always clear
 - Units of transfer:
 - think about ~ penser à
 - talk about ~ hablar de
 - Phonological reduction:
 - I will go → I’ll go
 - I want to go → I wanna go
 - a le centre → au centre
 - Coordination
 - He went to and came from the store.

La vélocité des ondes sismiques
Non-Local Phenomena

- **Dislocation / gapping**
 - Why did the postman think that the neighbors were home?
 - A debate arose which continued until the election.

- **Binding**
 - **Reference**
 - The IRS audits itself
 - **Control**
 - I want to go
 - I want you to go
Classical NLP: Parsing

- Write symbolic or logical rules:
 - Grammar (CFG)
 - Lexicon
 - ROOT → S
 - NP → NP PP
 - S → NP VP
 - VP → VBP NP
 - NP → DT NN
 - VP → VBP NP PP
 - NP → NN NNS
 - PP → IN NP
 - NN → interest
 - NNS → raises
 - VBP → interest
 - VBZ → raises
 - ...

- Use deduction systems to prove parses from words
 - Minimal grammar on “Fed raises” sentence: 36 parses
 - Simple 10-rule grammar: 592 parses
 - Real-size grammar: many millions of parses

- This scaled very badly, didn’t yield broad-coverage tools
Ambiguities: PP Attachment

The board approved [its acquisition] [by Royal Trustco Ltd.]
[of Toronto]
[for $27 a share]
[at its monthly meeting].
Attachments

- I cleaned the dishes from dinner
- I cleaned the dishes with detergent
- I cleaned the dishes in my pajamas
- I cleaned the dishes in the sink
Syntactic Ambiguities I

- **Prepositional phrases:**
 They cooked the beans in the pot on the stove with handles.

- **Particle vs. preposition:**
 The puppy tore up the staircase.

- **Complement structures**
 The tourists objected to the guide that they couldn’t hear.
 She knows you like the back of her hand.

- **Gerund vs. participial adjective**
 Visiting relatives can be boring.
 Changing schedules frequently confused passengers.
Syntactic Ambiguities II

- Modifier scope within NPs
 impractical design requirements
 plastic cup holder

- Multiple gap constructions
 The chicken is ready to eat.
 The contractors are rich enough to sue.

- Coordination scope:
 Small rats and mice can squeeze into holes or cracks in the wall.
Dark Ambiguities

- **Dark ambiguities**: most analyses are shockingly bad (meaning, they don’t have an interpretation you can get your mind around)

This analysis corresponds to the correct parse of

“This will panic buyers!”

- Unknown words and new usages
- **Solution**: We need mechanisms to focus attention on the best ones, probabilistic techniques do this
Probabilistic Context-Free Grammars

- A context-free grammar is a tuple \(<N, T, S, R> \)
 - \(N \): the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
 - \(T \): the set of terminals (the words)
 - \(S \): the start symbol
 - Often written as ROOT or TOP
 - \textit{Not} usually the sentence non-terminal S
 - \(R \): the set of rules
 - Of the form \(X \rightarrow Y_1 \ Y_2 \ ... \ Y_k \), with \(X, Y_i \in N \)
 - Examples: \(S \rightarrow \text{NP} \ \text{VP} \), \(\text{VP} \rightarrow \text{VP} \ \text{CC} \ \text{VP} \)
 - Also called rewrites, productions, or local trees

- A PCFG adds:
 - A top-down production probability per rule \(P(X \rightarrow Y_1 \ Y_2 \ ... \ Y_k) \)
((S (NP-SBJ The move))
 (VP followed)
 (NP (NP a round))
 (PP of)
 (NP (NP similar increases))
 (PP by)
 (NP other lenders))
 (PP against)
 (NP Arizona real estate loans))))

(S-ADV (NP-SBJ *))
 (VP reflecting)
 (NP (NP a continuing decline))
 (PP-LOC in)
 (NP that market))))

))
Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn’t work well):

```
ROOT → S 1
S → NP VP . 1
NP → PRP 1
VP → VBD ADJP 1
.....
```

- Better results by enriching the grammar (e.g., lexicalization).
- Can also get reasonable parsers without lexicalization.
Treebank Grammar Scale

- Treebank grammars can be enormous
 - As FSAs, the raw grammar has ~10K states, excluding the lexicon
 - Better parsers usually make the grammars larger, not smaller
Chomsky Normal Form

- **Chomsky normal form:**
 - All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals

- Unaries / empties are “promoted”
- In practice it’s kind of a pain:
 - Reconstructing n-aries is easy
 - Reconstructing unaries is trickier
 - The straightforward transformations don’t preserve tree scores
- Makes parsing algorithms simpler!
The Parsing Problem

critics write reviews with computers

S

NP

NP

NP

NP

VP

VP

NP

PP

new art critics write reviews with computers
A Recursive Parser

bestScore(X,i,j,s)
 if (j = i+1)
 return tagScore(X,s[i])
 else
 return max score(X->YZ) *
 bestScore(Y,i,k,s) *
 bestScore(Z,k,j,s)

- Will this parser work?
- Why or why not?
- Memory/time requirements?
- Q: Remind you of anything? Can we adapt this to other models / inference tasks?
A Memoized Parser

- One small change:

```java
bestScore(X,i,j,s)
    if (scores[X][i][j] == null)
        if (j = i+1)
            score = tagScore(X,s[i])
        else
            score = max score(X->YZ) * 
                bestScore(Y,i,k,s) * 
                bestScore(Z,k,j,s)
    scores[X][i][j] = score
return scores[X][i][j]
```
A Bottom-Up Parser (CKY)

- Can also organize things bottom-up

```plaintext
bestScore(s)
    for (i : [0,n-1])
        for (X : tags[s[i]])
            score[X][i][i+1] =
                tagScore(X,s[i])
        for (diff : [2,n])
            for (i : [0,n-diff])
                j = i + diff
                for (X->YZ : rule)
                    for (k : [i+1, j-1])
                        score[X][i][j] = max score[X][i][j],
                        score(X->YZ) * 
                        score[Y][i][k] * 
                        score[Z][k][j]
```
Unary Rules

- Unary rules?

\[
\text{bestScore}(X,i,j,s) \\
\quad \text{if} \ (j = i+1) \\
\quad \quad \text{return} \ \text{tagScore}(X,s[i]) \\
\text{else} \\
\quad \text{return} \ \max \ \max \ \text{score}(X\rightarrowYZ) \ * \\
\quad \quad \text{bestScore}(Y,i,k,s) \ * \\
\quad \quad \text{bestScore}(Z,k,j,s) \\
\quad \quad \max \ \text{score}(X\rightarrowY) \ * \\
\quad \quad \text{bestScore}(Y,i,j,s)
\]
We need unaries to be non-cyclic

- Can address by pre-calculating the *unary closure*
- Rather than having zero or more unaries, always have exactly one

Alternate unary and binary layers

Reconstruct unary chains afterwards
Alternating Layers

\[
\text{bestScoreB}(X,i,j,s) = \begin{cases}
\text{tagScore}(X,s[i]) & \text{if } (j = i+1) \\
\max \max \text{score}(X\rightarrow YZ) \times \text{bestScoreU}(Y,i,k) \times \text{bestScoreU}(Z,k,j) & \text{else}
\end{cases}
\]

\[
\text{bestScoreU}(X,i,j,s) = \begin{cases}
\text{tagScore}(X,s[i]) & \text{if } (j = i+1) \\
\max \max \text{score}(X\rightarrow Y) \times \text{bestScoreB}(Y,i,j) & \text{else}
\end{cases}
\]
Memory

- How much memory does this require?
 - Have to store the score cache
 - Cache size: \(|\text{symbols}| \times n^2\) doubles
 - For the plain treebank grammar:
 - \(X \sim 20K, n = 40, \text{double} \sim 8\) bytes = \(
 \sim 256\)MB
 - Big, but workable.

- Pruning: Beams
 - score\([X][i][j]\) can get too large (when?)
 - Can keep beams (truncated maps score\([i][j]\)) which only store
 the best few scores for the span \([i,j]\)

- Pruning: Coarse-to-Fine
 - Use a smaller grammar to rule out most \(X[i,j]\)
 - Much more on this later…
Time: Theory

- How much time will it take to parse?

- For each diff (<= n)
 - For each i (<= n)
 - For each rule $X \rightarrow YZ$
 - For each split point k
 Do constant work

- Total time: $|\text{rules}| \times n^3$
- Something like 5 sec for an unoptimized parse of a 20-word sentences
Time: Practice

- Parsing with the vanilla treebank grammar:
 - ~ 20K Rules
 - (not an optimized parser!)
 - Observed exponent: 3.6

- Why's it worse in practice?
 - Longer sentences "unlock" more of the grammar
 - All kinds of systems issues don't scale
Efficient CKY

- Lots of tricks to make CKY efficient
 - Most of them are little engineering details:
 - E.g., first choose k, then enumerate through the Y:[i,k] which are non-zero, then loop through rules by left child.
 - Optimal layout of the dynamic program depends on grammar, input, even system details.
 - Another kind is more critical:
 - Many X:[i,j] can be suppressed on the basis of the input string
 - We’ll see this next class as figures-of-merit or A* heuristics
Best Outside Scores

Want to compute the best parse missing a specific word span:

- Tree rooted at Y from words s[i:j] is left unspecified
- this is the “opposite” of the bestScore / inside score

$$\text{bestOutside}(Y,i,j,s)$$
bestOutside(Y, i, j, s)
 if (i==0 && j==n)
 return 1.0
 else
 return max
 max score(X->YZ) *
 bestOutside(X, i, k, s) *
 bestScore(Z, j, k, s)
 max score(X->ZY) *
 bestOutside(X, k, j, s) *
 bestScore(Z, k, i, s)
Agenda-Based Parsing

- Agenda-based parsing is like graph search (but over a hypergraph)
- Concepts:
 - Numbering: we number fenceposts between words
 - “Edges” or items: spans with labels, e.g. PP[3,5], represent the sets of trees over those words rooted at that label (cf. search states)
 - A chart: records edges we’ve expanded (cf. closed set)
 - An agenda: a queue which holds edges (cf. a fringe or open set)
Word Items

- Building an item for the first time is called discovery. Items go into the agenda on discovery.
- To initialize, we discover all word items (with score 1.0).

AGENDA

| critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5] |

CHART [EMPTY]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>critics</td>
<td>write</td>
<td>reviews</td>
<td>with</td>
<td>computers</td>
<td></td>
</tr>
</tbody>
</table>
Unary Projection

- When we pop a word item, the lexicon tells us the tag item successors (and scores) which go on the agenda.

```
critics[0,1]  write[1,2]  reviews[2,3]  with[3,4]  computers[4,5]
```
Item Successors

- When we pop items off of the agenda:
 - Graph successors: unary projections (NNS \rightarrow critics, NP \rightarrow NNS)

 \[Y[i,j] \text{ with } X \rightarrow Y \text{ forms } X[i,j] \]

 - Hypergraph successors: combine with items already in our chart

 \[Y[i,j] \text{ and } Z[j,k] \text{ with } X \rightarrow Y \ Z \text{ form } X[i,k] \]

 - Enqueue / promote resulting items (if not in chart already)
 - Record backtraces as appropriate
 - Stick the popped edge in the chart (closed set)

- Queries a chart must support:
 - Is edge $X[i,j]$ in the chart? (What score?)
 - What edges with label Y end at position j?
 - What edges with label Z start at position i?
An Example

critics write reviews with computers
Empty Elements

- Sometimes we want to posit nodes in a parse tree that don’t contain any pronounced words:

 I want you to parse this sentence
 I want [] to parse this sentence

- These are easy to add to a chart parser!
 - For each position i, add the “word” edge $\varepsilon:[i,i]$
 - Add rules like $\text{NP} \rightarrow \varepsilon$ to the grammar
 - That’s it!
With weighted edges, order matters
- Must expand optimal parse from bottom up (subparses first)
- CKY does this by processing smaller spans before larger ones
- UCS pops items off the agenda in order of decreasing Viterbi score
- A* search also well defined

You can also speed up the search without sacrificing optimality
- Can select which items to process first
- Can do with any “figure of merit” [Charniak 98]
- If your figure-of-merit is a valid A* heuristic, no loss of optimiality [Klein and Manning 03]
(Speech) Lattices

- There was nothing magical about words spanning exactly one position.
- When working with speech, we generally don’t know how many words there are, or where they break.
- We can represent the possibilities as a lattice and parse these just as easily.

```
```

```
```
Treebank PCFGs [Charniak 96]

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn’t work well):

```
ROOT → S 1
S → NP VP . 1
NP → PRP 1
VP → VBD ADJP 1
```

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>72.0</td>
</tr>
</tbody>
</table>
Conditional Independence?

- Not every NP expansion can fill every NP slot
 - A grammar with symbols like “NP” won’t be context-free
 - Statistically, conditional independence too strong
Non-Independence

- Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!
Grammar Refinement

- Example: PP attachment

```
They
  VP
  |
raise
  |
a point of order
```
Grammar Refinement

- Structure Annotation [Johnson ’98, Klein&Manning ’03]
- Lexicalization [Collins ’99, Charniak ’00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. ’06]
Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation
Typical Experimental Setup

- Corpus: Penn Treebank, WSJ

 Training: sections 02-21
 Development: section 22 (here, first 20 files)
 Test: section 23

- Accuracy – F1: harmonic mean of per-node labeled precision and recall.

- Here: also size – number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: NP → NP CC •
Vertical Markovization

- Vertical Markov order: rewrites depend on past \(k \) ancestor nodes. (cf. parent annotation)
Horizontal Markovization

Order 1

Order ∞

Symbols

Horizontal Markov Order

Horizontal Markov Order

Symbols
Vertical and Horizontal

- **Examples:**
 - Raw treebank: $v=1$, $h=\infty$
 - Johnson 98: $v=2$, $h=\infty$
 - Collins 99: $v=2$, $h=2$
 - Best F1: $v=3$, $h=2v$

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base: $v=h=2v$</td>
<td>77.8</td>
<td>7.5K</td>
</tr>
</tbody>
</table>
Unary Splits

- Problem: unary rewrites used to transmute categories so a high-probability rule can be used.

- Solution: Mark unary rewrite sites with –U

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>77.8</td>
<td>7.5K</td>
</tr>
<tr>
<td>UNARY</td>
<td>78.3</td>
<td>8.0K</td>
</tr>
</tbody>
</table>
Tag Splits

- Problem: Treebank tags are too coarse.

- Example: Sentential, PP, and other prepositions are all marked IN.

- Partial Solution:
 - Subdivide the IN tag.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>78.3</td>
<td>8.0K</td>
</tr>
<tr>
<td>SPLIT-IN</td>
<td>80.3</td>
<td>8.1K</td>
</tr>
</tbody>
</table>
Other Tag Splits

- **UNARY-DT**: mark demonstratives as DT^U ("the X" vs. "those")
- **UNARY-RB**: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- **TAG-PA**: mark tags with non-canonical parents ("not" is an RB^VP)
- **SPLIT-AUX**: mark auxiliary verbs with –AUX [cf. Charniak 97]
- **SPLIT-CC**: separate "but" and "&" from other conjunctions
- **SPLIT-%**: "%" gets its own tag.

<table>
<thead>
<tr>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.4</td>
<td>8.1K</td>
</tr>
<tr>
<td>80.5</td>
<td>8.1K</td>
</tr>
<tr>
<td>81.2</td>
<td>8.5K</td>
</tr>
<tr>
<td>81.6</td>
<td>9.0K</td>
</tr>
<tr>
<td>81.7</td>
<td>9.1K</td>
</tr>
<tr>
<td>81.8</td>
<td>9.3K</td>
</tr>
</tbody>
</table>
A Fully Annotated (Unlex) Tree

ROOT

S^ROOT-v

"S NP^S-B

"DT-U^NP "This

V BZ^BE^VP "is

NP^VP-B

NN^NP "panic

NN^NP "buying
Some Test Set Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>LP</th>
<th>LR</th>
<th>F1</th>
<th>CB</th>
<th>0 CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magerman 95</td>
<td>84.9</td>
<td>84.6</td>
<td>84.7</td>
<td>1.26</td>
<td>56.6</td>
</tr>
<tr>
<td>Collins 96</td>
<td>86.3</td>
<td>85.8</td>
<td>86.0</td>
<td>1.14</td>
<td>59.9</td>
</tr>
<tr>
<td>Unlexicalized</td>
<td>86.9</td>
<td>85.7</td>
<td>86.3</td>
<td>1.10</td>
<td>60.3</td>
</tr>
<tr>
<td>Charniak 97</td>
<td>87.4</td>
<td>87.5</td>
<td>87.4</td>
<td>1.00</td>
<td>62.1</td>
</tr>
<tr>
<td>Collins 99</td>
<td>88.7</td>
<td>88.6</td>
<td>88.6</td>
<td>0.90</td>
<td>67.1</td>
</tr>
</tbody>
</table>

- Beats “first generation” lexicalized parsers.
- Lots of room to improve – more complex models next.