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ABSTRACT
We consider the problem of open-domain question answering
(Open QA) over massive knowledge bases (KBs). Existing
approaches use either manually curated KBs like Freebase
or KBs automatically extracted from unstructured text. In
this paper, we present oqa, the first approach to leverage
both curated and extracted KBs.

A key technical challenge is designing systems that are
robust to the high variability in both natural language ques-
tions and massive KBs. oqa achieves robustness by decom-
posing the full Open QA problem into smaller sub-problems
including question paraphrasing and query reformulation.
oqa solves these sub-problems by mining millions of rules
from an unlabeled question corpus and across multiple KBs.
oqa then learns to integrate these rules by performing dis-
criminative training on question-answer pairs using a latent-
variable structured perceptron algorithm. We evaluate oqa
on three benchmark question sets and demonstrate that it
achieves up to twice the precision and recall of a state-of-
the-art Open QA system.

Categories and Subject Descriptors
I.2.7 [Natural Language Processing]: Language parsing
and understanding

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Open-domain question answering (Open QA) is a long-

standing problem that has been studied for decades [12, 13].
Open QA systems need broad knowledge to achieve high
coverage. Early systems took an information retrieval ap-
proach, where question answering is reduced to returning
passages of text containing an answer as a substring [24].
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Question
How can you tell if
you have the flu?

Question
What are signs of the flu?

Query
?x: (?x, sign of, the flu)

Query
?x: (the flu,

symptoms, ?x)

Answer
chills:

(the flu, symptoms
include, chills)

Paraphrase
(Section 8.2)

5 million mined operators

Parse
(Section 8.1)

10 high-precision templates

Rewrite
(Section 8.3)

74 million mined operators

Execute
(Section 8.4)

1 billion assertions from
Freebase, Open IE,

Probase, and NELL

Figure 1: OQA automatically mines millions of op-
erators (left) from unlabeled data, then learns to
compose them to answer questions (right) using ev-
idence from multiple knowledge bases.

Recent advances in constructing large-scale knowledge bases
(KBs) [21, 2, 5] have enabled new systems that return an
exact answer from a KB [4, 28, 23, 25, 10, 15, 3]. Some such
systems have used curated KBs like Freebase,1 which are
high-precision but incomplete. Other systems have used ex-
tracted KBs like Open Information Extraction,2 which have
higher coverage but generally lower precision. In this paper,
we present oqa, the first Open QA system to leverage both
curated and extracted KBs.

A key challenge in Open QA is to be robust to the high
variability found in natural language and the many ways
of expressing knowledge in large-scale KBs. oqa achieves
this robustness by decomposing the full QA problem into
smaller sub-problems that are easier to solve. Figure 1 shows
an example of how oqa maps the question “How can you
tell if you have the flu?” to the answer “chills” over four
steps. The first step rewrites the input question to “What
are signs of the flu?” using a paraphrase operator mined
from a large corpus of questions. The second step uses a

1http://freebase.com
2http://openie.cs.washington.edu



hand-written template to parse the paraphrased question to
the KB query “?x : (?x, signs of, the flu).” These two steps
are synergistic; paraphrase operators effectively reduce the
variance of the input questions, allowing oqa to use a small
set of high-precision parsing rules while maintaining recall.
The third step uses a query-rewrite operator to reformulate
the query as “?x : (the flu, symptoms, ?x).” Query-rewrite
operators are automatically mined from the KB, and allow
the vocabulary mismatch between question words and KB
symbols to be solved independent of parsing. Finally, the
fourth step executes the rewritten query against the KB,
returning the final answer.

The operators and KB are noisy, so it is possible to con-
struct many different sequences of operations (called deriva-
tions), very few of which will produce a correct answer. oqa
learns from a small amount of question-answer data to find
the best derivations. Because the derivations are unobserved
in the training data, we use a latent-variable structured per-
ceptron algorithm [31, 17, 22]. oqa uses a small set of gen-
eral features that allow it to generalize from a limited num-
ber of training examples. Experiments on three benchmark
question sets show that oqa outperforms the state-of-the-art
Open QA system Paralex [10], achieving twice the preci-
sion and recall.

In summary, we make the following contributions:

• We introduce oqa, the first Open QA system to lever-
age multiple, large-scale curated and extracted KBs.

• We describe an inference algorithm for deriving high-
confidence answers (Section 6) and a hidden-variable
structured perceptron algorithm for learning a scoring
function from data (Section 7).

• We present algorithms for automatically mining para-
phrase operators from a question corpus (Section 8.2)
and KB-query rewrite operators (Section 8.3) from
multiple KBs.

• We provide an empirical evaluation (Section 9), show-
ing the relative contributions of different KBs and dif-
ferent system components across three question sets.
We also compare oqa to the state-of-the-art QA sys-
tems Paralex [10] and Sempre [3].

• We release the code and data from this work.3

In Section 2, we describe related work in more detail be-
fore moving on to the description of oqa (Sections 3–8) and
experiments (Section 9).

2. RELATED WORK
Early work in Open QA used search engines as a source of

background knowledge and relied on hand-written templates
to map questions to search engine queries [16, 1]. In con-
trast, oqa utilizes a set of KBs, which enable it to combine
knowledge extracted from Web text with curated knowledge.
The KB abstraction also allows oqa to join multiple pieces
of evidence to arrive at an answer, a technique that is not
possible using just a search engine.

A major research thread in QA has been scaling up se-
mantic parsing systems from small, single-domain KBs [30,
31, 26, 18, 7] to larger, multi-domain KBs like YAGO2 [28],

3https://github.com/afader/oqa

DBpedia [23], and Freebase [4, 3, 15]. Curated KBs like
Freebase are attractive for QA because they allow systems
to reason over high-precision knowledge and return accurate
answers. However, these systems have limited recall due
to the inherent incompleteness of curated KBs. This phe-
nomenon can be understood as a power-generality tradeoff:
QA systems can rely on the accuracy and conciseness of a
curated KB, but incomplete knowledge limits their general-
ity.

The Paralex system [10] was the first Open QA system
to operate over a noisy, extracted KB. The biggest difference
between Paralex and oqa is how they decompose the QA
problem. Paralex uses self-labeled data to learn templates
that directly map questions to queries—essentially perform-
ing paraphrasing, parsing, and query-rewriting in one step.
oqa treats these as separate problems, which allows it to
combine high-recall data mining techniques (for paraphras-
ing and query rewriting) with high-precision, hand-written
rules (for parsing).

oqa’s feature representation also differs from previous work.
Previous systems use a large number of lexicalized features—
those involving specific lexemes or KB symbols. oqa uses
unlexicalized features that operate on the level of function
words, part-of-speech tags, and corpus statistics. We found
that the an unlexicalized feature representation generalizes
better to questions involving relationships that were never
seen during training.

3. TASK DEFINITION AND OVERVIEW
In this section, we define the QA task and give a high-level
outline of oqa and our experiments.

Task and Metrics: We focus on the task of factoid QA,
where the system takes a natural language question like
“How can you tell if you have the flu?” as input and re-
turns a short string answer like “chills” from a KB, or “no
answer.” We use precision (fraction of answered questions
that are correct) and recall (fraction of questions that are
correctly answered) as our primary evaluation metrics.

Knowledge Base: oqa uses a simple KB abstraction where
ground facts are represented as string triples (argument1,
relation, argument2). We use triples from curated and ex-
tracted knowledge sources (Section 4.1) and provide a light-
weight query language to access the KB (Section 4.2).

Operators and Scoring Function: oqa models QA as a
process where answers are derived from questions using op-
erators Ops (Section 5.1). A sequence of operators linking
a question to an answer is called a derivation. oqa com-
putes the confidence of an answer derivation d using a linear
scoring function score(d|f ,w), which is parameterized by a
feature function f and feature weights w (Section 5.2).

Inference: In practice, the space of derivations defined by
Ops is too large to enumerate. oqa uses heuristic search
over partial derivations, guided by score(d|f ,w), to generate
high-scoring candidate answers for an input question (Sec-
tion 6).

Learning: oqa learns the weights w from a small set of
question-answer pairs. Because annotated answer deriva-
tions are difficult to obtain, we use a latent-variable struc-
tured perceptron algorithm that treats answer derivations
as unobserved variables in the training data (Section 7).



Source Type # Triples # Relation Phrases
Freebase Curated 300M 18K

Open IE [9] Extracted 500M 6M
Probase [27] Extracted 200M 1

NELL [5] Extracted 2M 300

Table 1: Knowledge bases used by OQA.

Operators and Features: oqa uses four types of opera-
tors: a small set of parsing operators (Section 8.1), a large
set of paraphrase operators mined from a question corpus
(Section 8.2), a large set of query-rewrite rules mined from
the KB (Section 8.3), and an execution operator that inter-
faces with the KB (Section 8.4). Each operator is paired
with a small set of features used to compute f . Using a
small feature set results in better generalization from lim-
ited training data.

System Evaluation: We evaluate oqa using three ques-
tion sets. We compare oqa to the Open QA system Paralex
and the Freebase QA system Sempre. We then test the con-
tributions of each knowledge source and system component
via ablation.

4. KNOWLEDGE BASE
This section describes where oqa’s knowledge comes from

and the query language it uses to access the knowledge.

4.1 Knowledge Base Sources
Table 1 summarizes the knowledge sources in oqa. oqa

uses one curated KB (Freebase) and three extracted KBs
(Open IE, Probase, and NELL).

Freebase is an open-domain, collaboratively edited KB.
Freebase has relatively comprehensive coverage of certain
domains like film or geography, but does not contain in-
formal assertions like “chicken is high in protein.” Freebase
maintains canonical string representations of its entities and
relations, which we use to coerce facts into string triples.4

Open IE [2, 9] is a family of techniques used to extract
binary relationships from billions of web pages containing
unstructured text. Open IE has the unique property that its
relations are unnormalized natural language, which results
in over two orders of magnitude more relation phrases than
Freebase. The Open IE assertions are noisy and lack the
comprehensive domain coverage found in Freebase. How-
ever, Open IE contains many of the informal assertions that
are not found in curated KBs. For example, Open IE pro-
duces assertions like (pepper, provides a source of, vitamins
a and c). Open IE triples are annotated with metadata in-
cluding extractor confidence and corpus frequency, and some
triple arguments are linked to Freebase entities [20].

Probase [27] is an extracted KB containing “is-a” relations,
e.g., (paris, is-a, beautiful city) or (physicist, is-a, scientist).
Probase triples are annotated with statistical metadata that
measure the confidence of each extraction.

NELL [5] is an extracted KB that contains approximately
300 relation phrases. NELL generally has high precision,
but low recall.

The union of these KBs forms a single resource contain-
ing a billion noisy, redundant, and inconsistent assertions.
While there is a vast body of literature exploring the prob-

4We discard Freebase facts that are not binary relations.

What fruits are a source of vitamin C?

?x : (?x, is-a, fruit) (?x, source of, vitamin c)

SELECT t0.arg1 FROM triples AS t0, triples AS t1
WHERE
keyword-match(t0.rel, "is-a") AND
keyword-match(t0.arg2, "fruit") AND
keyword-match(t1.rel, "source of") AND
keyword-match(t1.arg2, "vitamin c") AND
string-similarity(t0.arg1, t1.arg1) > 0.9

t0.arg1 t0.rel t0.arg2 t1.arg1 t1.rel t1.arg2

Lychee is a fruit Lychees good source
of

vitamin c

star-fruit is a tropical
fruit

starfruit source of vitamin c

pepper is a fresh fruit pepper provides a
source of

vitamins
c and a

Figure 2: Top: An example question and query used
by OQA. Middle: The query semantics expressed as
SQL. Bottom: The results when executed against a
knowledge base (answers highlighted).

lem of data-integration [8], these techniques require a target
schema, which does not exist for our knowledge sources. In-
stead of making an offline commitment to a single schema,
at runtime oqa hypothesizes many interpretations for each
question. These hypotheses are encoded using the query
language described in the next section.

4.2 Query Language
The query language used in oqa provides a lightweight

interface between natural language and KB assertions. In
contrast to the semantic parsing literature [30], a oqa query
is not intended to represent the complete, formal semantic
interpretation of a question. Instead, the query language is
used to separate the parsing problem (identifying predicate-
argument structure) from the vocabulary-matching problem
(matching natural language symbols to KB symbols) [12,
15]. This factorization is at the core of the oqa approach,
which uses different operators to solve each problem.

oqa’s query language is capable of representing conjunc-
tive queries [6]. Because our KB is unnormalized and con-
tains only strings, oqa uses keyword matching and string
similarity as primitive operations. Figure 2 shows how the
question “What fruits are a source of vitamin C?” can be
represented as the query ?x : (?x, is-a, fruit) (?x, source of,
vitamin c). This particular query represents one possible
mapping of the question to a predicate-argument structure.
The middle box of Figure 2 shows how the semantics of the
query can be interpreted as a SQL expression over a single
table triples with string columns arg1, rel, and arg2. A
oqa query consists of a projection variable (e.g., ?x) and a
list of conjuncts. Each conjunct contains a mix of string lit-
erals (e.g., fruit) and variables. String literals correspond to
keyword-matching constraints on the table columns, while
variables correspond to string-similarity join constraints.

Having keyword matching and string similarity incorpo-
rated into the query semantics leads to another useful fac-
torization. The query language provides a general, high-
recall solution to the problem of minor surface-form varia-
tions (e.g., joining “star-fruit” with “starfruit” or matching
“source of” with “provides a source of” in Figure 2). oqa
can then increase precision by computing question- or KB-
specific features as soft constraints on the output. For ex-



ample, it uses a feature that checks whether two join keys
are linked to the same Freebase entity, if this information
is available. This lets oqa maintain a simple data model
(entity-linking is not required) while allowing for domain
knowledge to be modeled via features.

5. DERIVING AND SCORING ANSWERS
oqa factors question answering into a set of smaller, re-

lated problems including paraphrasing, parsing, and query
reformulation. The solutions to each of these sub-problems
can then be applied in sequence to give a complete mapping
from question to answer. Figure 3 shows example deriva-
tions for the question “How can you tell if you have the flu?”
Our approach consists of two parts: (1) derivation operators,
which define the space of possible answers for a given ques-
tion, and (2) a scoring function, which returns a real-valued
confidence for a derivation.

5.1 Derivation Operators
More formally, we model question answering as the pro-

cess of mapping a question q to an answer a by apply-
ing operators from some set Ops. Each operator o ∈ Ops
takes a state object s ∈ States as input and returns a set
o(s) ⊆ States of successor states as output. State objects en-
code intermediate values that are used during the question-
answering procedure. In Figure 3, the intermediate question
“What are signs of the flu?” is a state object that is related
to the query “?x : (?x, sign of, flu)” via a parsing operator.
We use three types of states: question states, query states,
and answer states.

Operations can be chained together into a derivation. A
single derivation step encodes the process of applying an
operator o to some state s and picking a successor state
s′ ∈ o(s) from the output. A derivation d = (o, s, k) consists
of a sequence of k operators o = (o1, . . . , ok) and a sequence
of k+1 states s = (s0, s1, . . . , sk) satisfying si ∈ oi(si−1) for
all 1 ≤ i ≤ k.5

An answer a is derivable from a question q under the op-
erator set Ops if there exists some derivation (o, s, k) such
that s0 = q and sk = a. We use the notation Derivs(q,Ops)
to represent the space of all possible derivations from the
question q under the operations Ops ending at answer a.

In our implementation of oqa, the operator set Ops con-
tains millions of operators, combining both hand-written op-
erators and operators learned from data. These operators
are noisy: incorrect answers can be derived from most ques-
tions. Thus, estimating the confidence of a derivation is
necessary for returning answers with high precision.

5.2 Scoring Function
To compute the confidence of a derivation, oqa uses a

scoring function. The scoring function computes a real value
for a given derivation, where large, positive scores are as-
signed to high-confidence derivations.

We make two assumptions about the form of the scoring
function. First, we assume that the score is a linear function
over features computed from a derivation. This will allow us
to use familiar algorithms to learn the function from data.

5In oqa, 2 ≤ k ≤ 4: parsing and execution steps are re-
quired to derive an answer, and we limit derivations to have
at most one paraphrase step and one query-rewrite step.

Question
How can you tell if
you have the flu?

Question
What are signs

of the flu?

Query
?x : (?x, signs

of, the flu)

Query
?x : (?x,

causes, the flu)

Answer
the virus:

(the virus, cause,
flu symptoms)

f = {tuple conf: 0.3,
. . .}

Query
?x : (the flu,

symptoms, ?x)

Answer
chills:

(the flu, symptoms
include, chills)

f = {tuple conf: 0.8,
. . .}

f = {rewrite conf: 0.6,
. . .}

f = {rewrite conf: 0.2,
. . .}

f = { template What RV NP: 1.0
relation VB NNS IN: 1.0
. . . }

f = { paraphrase conf: 0.6
argument DT NN: 1.0
. . . }

score = w ·


0.6
0.8

.

.

.

 = 1.2 score = w ·


0.2
0.3

.

.

.

 = −0.1

Figure 3: OQA compute operator-specific features
to discriminate between correct derivations (left)
and incorrect derivations (right).

Second, we assume that the feature function decomposes
over derivation steps. This allows us to use the scoring func-
tion to score partial derivations, which is useful for searching
over Derivs(q,Ops) (discussed further in Section 6).

Under these assumptions, the score of a derivation d =
(o, s, k) can be written as

score(d|f ,w) =

k∑
i=1

w · f(s0, si−1, oi, si), (1)

where f is an n-dimensional feature function that maps a
derivation step into Rn and w is an n-dimensional weight
vector. Because s0 (the input question) is a constant in
all derivations, we pass it as an argument to the feature
function. This allows features to compute properties relating
derivation steps to the input question.

Figure 3 shows an example of how the scoring function can
discriminate between a correct answer (left) and an incor-
rect answer (right). The derivation on the left rewrites the
original query using a high-confidence rule and uses high-
confidence evidence returned from the KB. The derivation
on the right uses a low-confidence rewrite rule and low-
confidence evidence—and is thus assigned a lower score.



In our implementation of oqa, we learn w from a small set
of question-answer pairs (Section 7) and define f to compute
operator-specific features (Section 8).

6. INFERENCE
We focus on the task of finding a single answer with the

highest confidence under the scoring function, which amounts
to solving the following equation for an input question q:

d∗ = arg max
d∈Derivs(q,Ops)

score(d|f ,w). (2)

The underlying knowledge base and set of operators are both
large enough that exhaustively enumerating Derivs(q,Ops) is
not feasible. Instead, oqa uses beam search informed by the
scoring function to explore Derivs(q,Ops). We refer to the
beam search routine as DeriveAnswers.

The algorithm takes a question q as input and returns a set
of derivations D ⊆ Derivs(q,Ops). The output set D is con-
structed by iteratively growing partial derivations starting
at the initial question state s0 = q. The algorithm maintains
a beam of partial derivations, each scored by the function
score(d|f ,w). At every iteration, a partial derivation is se-
lected to be extended. Extending a derivation d = (o, s, k)
amounts to computing successors to the state sk and ap-
pending the successors to construct new derivations. This
process is repeated until there are no partial derivations left
to extend or until a time limit is reached.

In practice, the scoring function score(d|f ,w) generally as-
signs higher scores to short derivations, e.g. derivations that
do not use a query-rewrite operator. We found that this
bias will flood the beam with high-scoring partial deriva-
tions occurring early in the search, and later options will
not be considered. To avoid this problem, we maintain sep-
arate beams for each state-type in the search, similar to the
decoding algorithms used in statistical machine translation
[14]. oqa uses beam search both at runtime and during
learning, which we describe in the next section.

7. LEARNING
A key challenge in learning score(d|f ,w) is that obtaining

labeled answer derivations requires expert annotators and
is extremely time consuming. Following recent work in se-
mantic parsing [7, 3, 15], we use question-answer pairs as
indirect supervision and treat answer derivations as unob-
served variables in the training data. Question-answer pairs
like q =“How can you tell if you have the flu?”, A = {“chills”,
“fever”, “aches”} are significantly easier to obtain and do not
require expert annotators.

We use the latent-variable structured perceptron algo-
rithm [31, 17, 22] to learn w from example question-answer
pairs. Figure 4 shows the pseudocode for the LearnWeights
algorithm.

The algorithm takes as input a set of N pairs (qi, Ai) for
i = 1, . . . , N , where Ai is a set containing string answers
to qi. For each training example, the algorithm calls De-
riveAnswers to generate a candidate set of answer deriva-
tions D. The algorithm then chooses a derivation d̂ that
has the highest score according to the current weights and
makes the prediction â = answer(d̂). If â is correct (i.e.,
it is in Ai), the algorithm proceeds to the next example.
If â is incorrect, then the learner picks the highest scoring
derivation d∗ such that answer(d∗) is in Ai. The algorithm

function LearnWeights

Inputs:
Number of iterations T
N example questions with answers (q1, A1), . . . , (qN , AN )
Initial model (Ops, f ,w) (Defined in Section 5)
Function DeriveAnswers (Defined in Section 6)

Output:
Learned weights w

for t = 1, . . . , T
for i = 1, . . . , N

D = DeriveAnswers(qi,Ops, f ,w)

d̂ = arg maxd∈D score(d|f ,w)

if answer(d̂) 6∈ Ai

D∗ = {d ∈ D : answer(d) ∈ Ai}
d∗ = arg maxd∈D∗ score(d|f ,w)

w = w + f(d∗)− f(d̂)

return average of w over all iterations

Figure 4: The weight-learning algorithm.

then performs an additive update w = w + f(d∗)− f(d̂). If
there are no derivations with a correct answer in D, then
the learner immediately proceeds to the next example with-
out performing an update. Finally, the algorithm returns
the average value of w over all iterations, which improves
generalization [11].

8. OPERATORS AND FEATURES
In this section, we describe the operators that oqa uses

to derive answers. The operators factor the end-to-end QA
problem into smaller subproblems:

Parsing operators (Section 8.1) are responsible for inter-
facing between natural language questions and the KB query
language described in Section 4.2. oqa uses a small number
of high-precision templates to map questions to queries.

Paraphrase operators (Section 8.2) are responsible for
rewording the input question into the domain of a parsing
operator. In an offline process, oqa mines 5 million lex-
icalized paraphrase-templates from an unlabeled corpus of
open-domain questions.

Query-rewrite operators (Section 8.3) are responsible for
interfacing between the vocabulary used in the input ques-
tion and the internal vocabulary used by the KBs. oqa im-
plements its query-rewrite operators by mining a set of 75
million relation-entailment pairs from the knowledge bases
described in Section 4.1.

The execution operator (Section 8.4) is responsible for
fetching and combining evidence from the KB, given a query.

For each operator, oqa computes general, domain indepen-
dent features that are used in the scoring function. These
features are unlexicalized in the sense that they do not com-
pute any values associated with content words in either the
question or the KB.

In the following subsections, we describe each type of op-
erator in detail and describe the operator-specific features
used by the scoring function.

8.1 Parsing Operators
To map questions to queries, we use the set of 10 hand-

written operators shown in Table 2. Each operator consists
of a question pattern and a query pattern.



Question Pattern Query Pattern Example Question Example Query
Who/What RVrel NParg (?x, rel, arg) Who invented papyrus? (?x, invented, papyrus)
Who/What Aux NParg RVrel (arg, rel, ?x) What did Newton discover? (Newton, discover, ?x)
Where/When Aux NParg RVrel (arg, rel in, ?x) Where was Edison born? (Edison, born in, ?x)
Where/When is NParg (arg, is in, ?x) Where is Detroit? (Detroit, is in, ?x)
Who/What is NParg (arg, is-a, ?x) What is potassium? (potassium, is-a, ?x)
What/Which NPrel2 Aux NParg RVrel1 (arg, rel1 rel2, ?x) What sport does Sosa play? (Sosa, play sport, ?x)
What/Which NPrel is NParg (arg, rel, ?x) What ethnicity is Dracula? (Dracula, ethnicity, ?x)
What/Who is NParg’s NPrel (arg, rel, ?x) What is Russia’s capital? (Russia, capital, ?x)
What/Which NPtype Aux NParg RVrel (?x, is-a, type) (arg, rel, ?x) What fish do sharks eat? (?x, is-a, fish) (sharks, eat, ?x)
What/Which NPtype RVrel NParg (?x, is-a, type) (?x, rel, arg) What states make oil? (?x, is-a, states) (?x, make, oil)

Table 2: High-precision parsing operators used to map questions to queries. Question templates are expressed
using noun phrases (NP), auxiliary verbs (Aux), and ReVerb patterns (RV). Subscripts denote regex-style
capture groups.

A question pattern is expressed as a regular expression
over part-of-speech (POS) tags and function words. To de-
tect noun phrases (NPs), we use a POS pattern that matches
a sequence of nouns, determiners, and adjectives. We use the
ReVerb pattern [9] to detect relation phrases. Each ques-
tion pattern uses named capture-groups to select substrings
from the input question.

A query pattern consists of a query (defined in Section
4.2) containing pointers to capture groups from the ques-
tion pattern. When a question pattern matches a question,
the captured strings are substituted into the query pattern
to generate a complete query. For example, the question
pattern in the first row of Table 2 matches “Who invented
papyrus?” and captures the substrings {rel → invented, arg
→ papyrus}. These are substituted into the query pattern
(?x, rel, arg) to produce the output (?x, invented, papyrus).

Features: Because some question patterns may be more
reliable than others, we include an indicator feature for each
question pattern. We also include indicator features for the
POS sequence of the capture groups and the POS tags to
the left and right of each capture group.

8.2 Paraphrasing Operators
The parsing operators in Table 2 have high precision but

low recall. To increase recall, we use paraphrase operators
to map questions onto the domain of the parsing operators.
Each paraphrase operator is implemented as a pair of para-
phrase templates like the examples in Table 3.

Each paraphrase template consists of a natural language
string with a slot that captures some argument. For exam-
ple, the first source template in Table 3 matches the question
“How does nicotine affect your body?” This question can
then be paraphrased by substituting the argument“nicotine”
into the target template, yielding the new question “What
body system does nicotine affect?”

We follow the work of Paralex and automatically mine
these source/target template pairs from the WikiAnswers6

paraphrase corpus [10]. The WikiAnswers paraphrase cor-
pus consists of 23 million question-clusters that WikiAn-
swers users have grouped as synonymous. Each question
cluster contains an average of 25 questions. In general, the
clusters have low precision due to mistakes or users group-
ing related, but non-synonymous questions (e.g., “How to
say shut up in french?” is grouped with “Is it nice to say
shut up?”).

We extracted 200,000 templates that occurred in at least
10 question clusters. For each pair of templates (t, t′), we de-
fine the co-occurrence count c(t, t′) to be the number of clus-

6http://wiki.answers.com

Source Template Target Template

How does affect your body? What body system does affect?
What is the latin name for ? What is ’s scientific name?
Why do we use ? What did replace?
What to use instead of ? What is a substitute for ?
Was ever married? Who has been married to?

Table 3: Example paraphrase operators that ex-
tracted from a corpus of unlabeled questions.

Source Query Target Query

(?x, children, ?y) (?y, was born to, ?x)
(?x, birthdate, ?y) (?x, date of birth, ?y)
(?x, is headquartered in, ?y) (?x, is based in, ?y)
(?x, invented, ?y) (?y, was invented by, ?x)
(?x, is the language of, ?y) (?y, languages spoken, ?x)

Table 4: Example query-rewrite operators mined
from the knowledge bases described in Section 4.1.

ters where t and t′ both occur with the same argument. For
example, if a cluster contains the questions “Why do we use
computers?” and “What did computers replace?” we would
increment the count c(Why do we use ?, What did replace?)
by 1. For each template pair (t, t′) such that c(t, t′) ≥ 5,
we define paraphrase operators t → t′ and t′ → t. This
generates a set of 5 million paraphrase operators. During
inference, all possible paraphrases of a question q are com-
puted by considering all substrings of q (up to 5 tokens) as
the argument.

Features: The paraphrase operators are automatically
extracted from a noisy corpus, and are not always reliable.
We compute statistical and syntactic features to estimate
the confidence of using the operator t → t′ to paraphrase
a question q to a new question q′ using argument a. The
statistical features include the pointwise mutual information
(PMI) between t and t′ in the WikiAnswers corpus and a
language model score of q′. The syntactic features include
the POS sequence of the matched argument a, and the POS
tags to the left and right of a in q.

8.3 Query-Rewrite Operators
To handle the mismatch between natural language vocab-

ulary and the KB vocabulary, we mine query rewrite rules.
We focus on handling the mismatch between relation words
in the question and relation words in the KB.7 Table 4 lists
example query rewrite rules. Each rule encodes a transla-

7Rewriting arguments is future work.



tion from one relation phrase to another, with a possible
re-ordering of the arguments. For example, the first row
in Table 4 is an operator that allows the relation phrase
“children” to be rewritten as “was born to−1,” where the
superscript denotes inverted argument ordering.

We follow previous work on mining equivalent relations
[19, 29] and count the number of shared argument-pairs be-
tween two relation phrases. For example, the tuples (her-
mann einstein, children, albert einstein) and (albert einstein,
was born to, hermann einstein) both appear in the KB,
so “children” and “was born to−1” share the argument pair
(hermman einstein, albert einstein). We construct a query
rewrite operator for each pair of relation phrases (r, r′) that
share at least 10 argument pairs. This results in a set of 74
million (r, r′) pairs that we include as operators.

Features: As with the paraphrase templates (Section
8.2), we compute the PMI for each pair of relation phrases
as a feature.

8.4 Execution Operator
The execution operator takes a query as input and returns

a set of tuples, as shown in Figure 2. We store the KB
(arg1, relation, arg2) triples in an inverted index8 that allows
for efficient keyword search over the three triple fields. We
implemented a simple query optimizer that performs joins
over triples by making multiple queries to the KB. Due to the
size of the KB, we limit each keyword search over the triples
to return the top 100 hits. The output of the execution
operator is an answer state, containing a string answer and
a joined tuple of evidence.

Features: We use features to estimate the reliability of
the KB output. The features examine properties of the
query, the returned tuple evidence, and the answer.

We measure the keyword similarity between two strings
by lemmatizing them, removing stopwords, and computing
the cosine similarity. We then include the keyword similar-
ity between the query and the input question, the keyword
similarity between the query and the returned evidence, and
an indicator feature for whether the query involves a join.

The evidence features compute KB-specific properties. Ex-
tracted triples have confidence scores, which are included as
features. We compute the join-key string similarity mea-
sured using the Levenshtein distance. We also include indi-
cator features for the source of each triple (e.g., whether the
triple is from Open IE or Freebase).

The answer features compute conjunctions of properties
of the input question and the answer. We compute whether
the question begins with some common prefixes (e.g., Who,
What, When, How many, etc.). For the answer, we com-
pute word-shape features (e.g., “Kansas” has the word shape
“Aaaa” and “December 1941” has the word shape “Aaaa
1111”). This allows the system to learn that features like
question starts with When ∧ answer has shape 1111 are in-
dicative of a correct answer.

9. EXPERIMENTAL SETUP
We are interested in answering three questions: (1) How

does oqa compare to the state-of-the-art systems Paralex
and Sempre? (2) How do the different knowledge sources
affect performance? (3) How do the different system com-
ponents affect performance?

8https://lucene.apache.org/solr/

WebQuestions who influenced wolfgang amadeus mozart?
3,778 train who won the super bowl xliv 2010?
2,032 test where was nicki minaj born?

what is in liverpool england?
who is the leader of france 2012?

TREC What other countries do Kurds live in?
962 train What year was Barry Manilow born?
517 test What format was VHS’s main competition?

Who is the chairman of WWE?
What is Muscular Dystrophy?

WikiAnswers What is Matthew henson’s mothers name?
1,334 train Who is a retired gay nfl football player?
7,310 test Do beluga whales eat penguins?

Why were the conquistadors important?
How does psychiatry benefit society?

Table 5: The three question sets used in our exper-
iments.

We investigate these questions by comparing performance
on three question sets. Given a question q, each system re-
turns an answer a with confidence c ∈ R or “no answer.”
We then measure the precision (correct answers/answers re-
turned), recall (correct answers/questions), and F1 score
(harmonic mean of precision and recall). We also compute
precision-recall curves that show how precision is traded for
recall as the minimum confidence to return an answer is var-
ied. We describe the three question sets in Section 9.1 and
the system settings in Section 9.2.

9.1 Question Sets
In our experiments, we use three question sets: WebQues-

tions, TREC, and WikiAnswers. Figure 5 shows statistics
and example questions from each set.

WebQuestions was introduced by the authors of the Sem-
pre system [3]. The questions were generated from Google
Autocomplete using a seed set of Freebase entities. Amazon
Mechanical Turk users then provided answers in the form
of Freebase concepts. Questions that could not be answered
using Freebase were filtered out. Out of the three test sets,
WebQuestions has the unique property that the questions
are known a priori to be answerable using Freebase.

TREC was introduced for the purpose of evaluating infor-
mation retrieval QA systems [24]. We re-purpose the TREC
questions to test our KB-based Open QA systems. While
the TREC questions were designed to be answerable using a
small collection of test documents, they are not guaranteed
to be answerable using any of the KBs described in Section
4.1.

WikiAnswers is a set of questions that were randomly
sampled from a crawl of WikiAnswers. The WikiAnswers
question set is completely disjoint from the corpus used to
extract the paraphrasing operators described in Section 8.2.
WikiAnswers questions are very challenging and ambiguous,
and are not necessarily answerable by any KB.

WebQuestions and TREC both have gold-standard answer
sets for each question, and WikiAnswers questions often
have no answers available. However, due to the open-domain
nature of our experiments, the gold-standard answer sets
are incomplete. If a system’s top answer was not already
included in the provided gold-standard sets, we manually
tagged the answers as correct or incorrect.
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tion sets leads to greater precision and recall than
training on domain questions only.
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Figure 6: OQA has higher precision and recall than
the Open QA system Paralex.

9.2 System Settings
OQA: We examine two different training settings for oqa.
In the first setting, we trained oqa on each question set
independently, resulting three different sets of weights. In
the second setting, we trained oqa on the union of the We-
bQuestions, TREC, and WikiAnswers training sets, result-
ing in one set of weights.

For inference, we used a beam capacity of 1,000 and a
search time limit of 20 seconds. For learning, we initialized
10 of the feature weights to be +1/-1 based on whether the
features are indicative of good derivations (e.g., PMI scores)
or bad derivations (e.g., verbs as paraphrase-template argu-
ments). We set the number of perceptron iterations (be-
tween 1 and 5) using a fraction of held-out training data.
For the first perceptron iteration, we interactively trained
the system by providing the set D∗ in Figure 4.

Paralex: The authors of Paralex provide a learned model.9

We used Paralex to parse questions to queries, and then
execute them against the same KB as oqa. Paralex pro-
vides a score for each query. For each answer that the query
returns, we use the score from the query as a measure of
confidence.

Sempre: The authors of Sempre also make it available for
download.10 Sempre comes with a model trained on the
WebQuestions question set. We attempted to train Sempre
with questions from TREC and WikiAnswers, but found
that the WebQuestions model had higher performance on
held-out development questions, so we use the WebQues-
tions model in our experiments.

10. EXPERIMENTAL RESULTS
Figure 5 shows the precision-recall curves comparing oqa

under the two different training settings. Training the scor-

9http://knowitall.cs.washington.edu/paralex/
10https://github.com/percyliang/sempre
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Figure 7: Sempre has higher precision and recall on
WebQuestions, which are known to be answerable
in Freebase. However, OQA outperforms Sempre on
TREC and WikiAnswers, which were not developed
for any particular KB.

ing function on questions from all three question sets re-
sulted in higher precision and recall on TREC and WikiAn-
swers, but had no effect on WebQuestions performance. This
is likely due to the fact that oqa is unable to derive correct
answers for many of the questions in TREC and WikiAn-
swers, so the effective number of training examples is smaller
than WebQuestions.

Figure 6 shows the precision-recall curves of oqa and
Paralex on the test questions. oqa achieves both higher
precision and recall than Paralex across all three question
sets. oqa’s scoring function was able to avoid many of the
errors made by Paralex. For example, Paralex made a
systematic error confusing “Where” and “When” questions,
e.g., it was unable to tell that“1985” is an unlikely answer to
a question that begins with “Where.” In contrast, oqa was
able to compute features of the full derivation (including the
answer), which allowed it to learn not to make this type of
error.

Figure 7 shows the precision-recall curves of oqa and
Sempre on the test questions. In this case, Sempre is
has higher precision and recall than oqa on WebQuestions.
Sempre performs better on WebQuestions through its use of
lexicalized features, e.g., there is a single feature indicating
that the string “see in” corresponds to the Freebase relation
“tourist attraction.” These features allow Sempre to better
fit the distribution of relations and entities in WebQuestions.
In contrast, oqa uses only unlexicalized features like POS
tags and corpus statistics like PMI, which limit oqa’s ability
to fit the WebQuestions training data.

However, oqa performs significantly better on TREC and
WikiAnswers for two reasons. First, oqa is uses both ex-
tracted and curated knowledge sources, so it is more likely
to have an answer in its KB. Second, Sempre requires sig-
nificant lexical overlap in its training and testing set, which
is not satisfied in the TREC and WikiAnswers questions.

Figure 8 shows the effects of removing different compo-
nents from oqa. The weight-learning algorithm significantly
improves performance over the default weights defined in the
experimental setup.

The paraphrase operators improve performance on We-
bQuestions and WikiAnswers, but not on TREC. We found
that many TREC questions were covered by the parser op-
erators in Table 2, so the paraphrase operators did not add
much. In contrast, the WebQuestions and WikiAnswers
questions exhibit much more lexical and syntactic variation,
so the paraphrase operators were more useful.

The query-rewrite operators led to only a slight improve-
ment on the TREC question set, and had at best no effect on
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WebQuestions and WikiAnswers. We examined the output
and found some high-confidence examples where the query-
rewrite operators helped, e.g., the question “When did the
Big Dig begin?” was answered by rewriting “(big dig, begin
in, ?x)” to “(big dig, broke ground in, ?x).” However, most
derivations that used a query-rewrite operator were assigned
low confidence, and had limited effect on recall.

Figure 9 shows the effects of removing a knowledge source
from oqa on system performance. Removing Open IE from
the KB lowers the F1 score across all test sets. Freebase
helps the most on the WebQuestions set (which was de-
signed specifically for Freebase), but is less useful for TREC
and WikiAnswers. Probase is most useful for WikiAnswers,
which contains many “What is. . . ” questions that can be
answered using Probase’s is-a relations. NELL is largely a
subset of the other KBs, so it had no effect on oqa’s perfor-
mance.

11. DISCUSSION
The experimental results in the previous section exem-

plify the power-generality tradeoff discussed in the introduc-
tion: oqa uses a small number of general, unlexicalized fea-
tures, which provided better generalization. However, this
limits oqa’s ability to take full advantage of the training
data. For example, oqa was unable to answer questions
like “What time zone is in South Africa have?” despite see-
ing several nearly-identical questions in the WebQuestions
training data. A challenge for the future is to engineer oqa
to take advantage of lexical cues when they are available.
Extending oqa to induce higher-precision operators during
discriminative training may be one way.

One problem that has gone unaddressed by all of the dis-
cussed QA systems is modeling whether a given question is
answerable with the given KB and operators. For exam-
ple, oqa currently has no way to answer truth-false ques-
tions like “Are dogs mammals?” Yet oqa systematically
chains low-confidence operators together to derive incorrect

Operator State

Input Who did Michael J Fox marry?

Parse ?x: (Michael J Fox, marry, ?x)

Rewrite ?x: (Michael J Fox, has wife, ?x)

Execute Tracy Pollan:

(Michael J. Fox, has wife, Tracy Pollan)

Input What are brake pads made of?

Paraphrase What material are brake pads made of?

Parse ?x: (?x, is-a, material) (brake pads, made of, ?x)

Execute copper:

(copper, is-a, material)

(The brake pads, were made of, copper)

Input What are some examples of building

maintenance jobs?

Parse ?x: (?x, example of, building maintenance jobs)

Rewrite ?x: (?x, is-a, building maintenance jobs)

Execute changing light bulb:

(changing light bulb, is-a,

small building maintenance job)

Table 6: Examples from the test data where OQA
derives a correct answer.

Operator State

Input What animal represents California?

Paraphrase What are California’s symbols?

Parse ?x: (california, symbols, ?x)

Execute CWT:

(California Water Service, Trading symbol, CWT)

Input Who did George Washington admire?

Parse ?x: (George Washington, admire, ?x)

Execute presidents and generals:

(George Washington, was admired by,

presidents and generals)

Table 7: Example derivations from the test data
where OQA derives an incorrect answer.

answers for them, which hurts precision. A measure of an-
swerability would be useful in scenarios where high-precision
is required.

Table 6 shows examples from the test data where oqa
derives correct answers. The first example shows a query
rewrite operator that modifies the relation “marry” to “has
wife.” The second example shows a paraphrase operator
that maps “What are made of?” to “What material are
made of?” In this case, the paraphrase operator introduces
a type constraint that does not appear in the input question,
which is beneficial for selecting the correct answer. The third
example highlights the benefit of extracted knowledge, which
contains obscure assertions like “(changing light bulb, is-a,
small building maintenance job).”

Table 7 shows examples where oqa derives incorrect an-
swers. The first example shows that the paraphrase opera-
tors can be too general, in this case overgeneralizing“animal”
to “symbol.” This combines with “California Water Service”
incorrectly matching “California,” resulting in the incorrect
answer “CWT.” The second example shows that better fea-
tures are needed to prevent errors like matching an active



voice (“admire”) with the passive voice (“was admired by”).

12. CONCLUSION
We introduced oqa, a novel Open QA system that is the

first to leverage both curated and extracted knowledge. We
described inference and learning algorithms that oqa uses
to derive high-confidence answers. Our experiments demon-
strate that oqa generalizes well to unseen questions and
makes significant improvements over a state-of-the-art Open
QA baseline. The data and code for this work is available
at https://github.com/afader/oqa.
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