Question-Answer Driven Semantic Role Labeling

Using Natural Language to Annotate Natural Language

Luheng He, Mike Lewis, Luke Zettlemoyer

University of Washington

EMNLP 2015
Semantic Role Labeling (SRL)

who did what to whom, when and where?
Semantic Role Labeling (SRL)

Predicate

They *increased* the rent *drastically* this year

Role

Agent

Patent

Time

Manner
Semantic Role Labeling (SRL)

They increased the rent drastically this year.

- **Agent**: They
- **Predicate**: increased
- **Argument**: the rent, drastically, this year
- **Role**: Argument
- **Manner**: drastically
- **Time**: this year

- Defining a set of roles can be difficult
- Existing formulations have used different sets
Existing SRL Formulations and Their Frame Inventories

FrameNet
1000+ semantic frames,
10,000+ frame elements (roles)

PropBank
10,000+ frame files
with predicate-specific roles

Frame: Change_position_on_a_scale
This frame consists of words that indicate the change of an Item’s position on a scale (the Attribute) from a starting point (Initial_value) to an end point (Final_value). The direction (Path) …

Lexical Units:
..., reach.v, rise.n, rise.v, rocket.v, shift.n, ...

Roleset Id: rise.01, go up

Arg1-: Logical subject, patient, thing rising
Arg2-EXT: EXT, amount risen
Arg3-DIR: start point
Arg4-LOC: end point
Argm-LOC: medium

Unified Verb Index, University of Colorado http://verbs.colorado.edu/verb-index/
PropBank Annotation Guidelines, Bonial et al., 2010
FrameNet II: Extended theory and practice, Ruppenhofer et al., 2006
FrameNet: https://framenet.icsi.berkeley.edu/
This Talk: QA-SRL

• Introduce a new SRL formulation with no frame or role inventory

• Use question-answer pairs to model verbal predicate-argument relations

• Annotated over 3,000 sentences in weeks with non-expert, part-time annotators

• Showed that this data is high-quality and learnable
Our Annotation Scheme

Given sentence and a verb:

They *increased* the rent this year.
Our Annotation Scheme

Given sentence and a verb:

They *increased* the rent this year.

Step 1: Ask a question about the verb:

Who increased something?
Our Annotation Scheme

Given sentence and a verb:

They *increased* the rent this year.

Step 1: Ask a question about the verb:

Who increased something?

Step 2: Answer with words in the sentence:

They
Our Annotation Scheme

Given sentence and a verb:
They *increased* the rent this year.

Step 1: Ask a question about the verb:
Who increased something?

Step 2: Answer with words in the sentence:
They

Step 3: Repeat, write as many QA pairs as possible ...
Our Annotation Scheme

Given sentence and a verb:

They *increased* the rent this year.

Step 1: Ask a question about the verb:
Who increased something?

Step 2: Answer with words in the sentence:
They

Step 3: Repeat, write as many QA pairs as possible ...
What is increased? the rent
When is something increased? this year
The rent rose 10% from $3000 to $3300.

Frameset: rise.01, go up

ARG1-: Logical subject, patient, thing rising
ARG2-EXT: EXT, amount risen
ARG3-DIR: start point
ARG4-LOC: end point
Argm-LOC: medium

• Depends on pre-defined frame inventory
• Annotators need to:
 1) Identify the Frameset
 2) Find arguments in the sentence
 3) Assign labels accordingly
• If frame doesn’t exist, create new

The Proposition Bank: An Annotated Corpus of Semantic Roles, Palmer et al., 2005
http://verbs.colorado.edu/propbank/framesets-english/rise-v.html
Our Method: Q/A Pairs for Semantic Relations

The rent rose 10% from $3000 to $3300

Wh-Question

What rose?
the rent

How much did something rise?
10%

What did something rise from?
$3000

What did something rise to?
$3300
Comparing to Existing SRL Formulations

No Role Inventory!

Question

(Verbal) Predicate

Answer

Predicate

Role

Argument

Question-Answer Driven SRL (QA-SRL)

Large Role Inventory

SRL
Advantages

• Easily explained
• No pre-defined roles, few syntactic assumption
• Can capture implicit arguments
• Generalizable across domains
Advantages
- Easily explained
- No pre-defined roles, few syntactic assumption
- Can capture implicit arguments
- Generalizable across domains

Limitations
- Only modeling verbs (for now)
- Not annotating verb senses directly
- Can have multiple equivalent questions
Advantages
• Easily explained
• No pre-defined roles, few syntactic assumption
• Can capture implicit arguments
• Generalizable across domains

Limitations
• Only modeling verbs (for now)
• Not annotating verb senses directly
• Can have multiple equivalent questions

Challenges
• What questions to ask?
• Quality - Can we get good Q/A pairs?
• Coverage - Can we get all the Q/A pairs?
Outline

- Motivation and Intuition
- Data Collection and Analysis
- Learning Tasks and Baselines
- Future Work and Conclusion

- Semantic Role Labeling
- Our Method: QA-SRL
- Annotation Task Design
- Dataset Statistics
- Quality Analysis
Question-Answer Driven SRL

Given sentence s, target verb v

Annotate all possible question-answer pairs $\langle q, a \rangle$
Question-Answer Driven SRL

Given sentence s, target verb v

Annotate all possible question-answer pairs $<q,a>$

- Question q should start with a **wh-word** and contain the target verb v
- Answer a should be a phrase from the sentence s. Multiple correct answers are allowed.
Writing Questions

\[q \in \text{WH} \times \text{AUX} \times \text{SBJ} \times \text{TRG} \times \text{OBJ1} \times \text{PP} \times \text{OBJ2} \]
Writing Questions

\[q \in \text{WH} \times \text{AUX} \times \text{SBJ} \times \text{TRG} \times \text{OBJ1} \times \text{PP} \times \text{OBJ2} \]

Writing Questions

$q \in \text{WH} \times \text{AUX} \times \text{SBJ} \times \text{TRG} \times \text{OBJ1} \times \text{PP} \times \text{OBJ2}$

WH: Who, What, When, Where, Why, How, How much

AUX: Auxiliary verbs, including negations. i.e. is, might, won’t
Writing Questions

\[q \in WH \times AUX \times SBJ \times TRG \times OBJ1 \times PP \times OBJ2\]

WH: Who, What, When, Where, Why, How, How much

AUX: Auxiliary verbs, including negations. i.e. is, might, wo n’t

SBJ, OBJ1, OBJ2: someone, something, do something, etc.
Writing Questions

$q \in \text{WH} \times \text{AUX} \times \text{SBJ} \times \text{TRG} \times \text{OBJ1} \times \text{PP} \times \text{OBJ2}$

WH: Who, What, When, Where, Why, How, How much

AUX: Auxiliary verbs, including negations. i.e. is, might, wo n’t

SBJ, OBJ1, OBJ2: someone, something, do something, etc.

TRG: Target verb, including inflected forms.
Writing Questions

\[q \in \text{WH} \times \text{AUX} \times \text{SBJ} \times \text{TRG} \times \text{OBJ1} \times \text{PP} \times \text{OBJ2} \]

AUX: Auxiliary verbs, including negations. i.e. is, might, won’t

SBJ, OBJ1, OBJ2: someone, something, do something, etc.

TRG: Target verb, including inflected forms.

PP: Preposition. i.e. to, for, from, about, etc.
Writing Questions

<table>
<thead>
<tr>
<th>WH*</th>
<th>AUX</th>
<th>SBJ</th>
<th>TRG*</th>
<th>OBJ1</th>
<th>PP</th>
<th>OBJ2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who</td>
<td></td>
<td></td>
<td>built</td>
<td>something</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What</td>
<td>had</td>
<td>someone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>said</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>When</td>
<td>was</td>
<td>someone</td>
<td>expected</td>
<td></td>
<td>to</td>
<td>do something</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Where</td>
<td>might</td>
<td>something</td>
<td>rise</td>
<td></td>
<td>from</td>
<td></td>
</tr>
</tbody>
</table>
Revenue **rose** 33% to $378.1 million from $283.8 million.

But Western Union has said it must **lower** the interest rate on its debt to regain full financial health.
Revenue **rose** 33% to $378.1 million from $283.8 million.

But Western Union has said it must **lower** the interest rate on its debt to regain full financial health.
Dataset Statistics

- **newswire (PropBank)**
 - Sentences: 1,241
 - Verbs: 3,336
 - QA Pairs: 8,109

- **Wikipedia**
 - Sentences: 8,109
 - Verbs: 3,336
 - QA Pairs: 1,241
Dataset Statistics

<table>
<thead>
<tr>
<th></th>
<th>newswire (PropBank)</th>
<th>Wikipedia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentences</td>
<td>1,241</td>
<td>10,798</td>
</tr>
<tr>
<td>Verbs</td>
<td>1,959</td>
<td>4,440</td>
</tr>
<tr>
<td>QA Pairs</td>
<td>3,336</td>
<td>8,109</td>
</tr>
</tbody>
</table>
Cost and Speed

- Part-time freelancers from upwork.com (hourly rate: $10)
- ~2h screening process for native English proficiency
• Part-time freelancers from upwork.com (hourly rate: $10)
• ~2h screening process for native English proficiency
Cost and Speed

- Part-time freelancers from upwork.com (hourly rate: $10)
- ~2h screening process for native English proficiency
Sentence: Clad in his trademark black velvet suit, the soft-spoken clarinetist announced that . . . and that it was his mother’s birthday, so he was going to **play** her favorite tune from the record.

<table>
<thead>
<tr>
<th>QA-SRL</th>
<th>PropBank (CoNLL-2009)</th>
</tr>
</thead>
</table>
| Who would play something?
the soft-spoken clarinetist / **he** | ARG0: **he** |
| What would be played?
her favorite **tune** from the record | ARG1: **tune** |
| When would someone play something?
his mother’s birthday | / |
Sample Annotation

Sentence: Clad in his trademark black velvet suit, the soft-spoken clarinetist announced that . . . and that it was his mother’s birthday, so he was going to **play** her favorite tune from the record.

<table>
<thead>
<tr>
<th>QA-SRL</th>
<th>PropBank (CoNLL-2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who would play something?</td>
<td>ARG0: he</td>
</tr>
<tr>
<td>the soft-spoken clarinetist /</td>
<td></td>
</tr>
<tr>
<td>he</td>
<td></td>
</tr>
<tr>
<td>What would be played?</td>
<td>ARG1: tune</td>
</tr>
<tr>
<td>her favorite tune from the</td>
<td></td>
</tr>
<tr>
<td>record</td>
<td>/</td>
</tr>
<tr>
<td>When would someone play</td>
<td>/</td>
</tr>
<tr>
<td>something?</td>
<td></td>
</tr>
<tr>
<td>his mother’s birthday</td>
<td></td>
</tr>
</tbody>
</table>

match

precision loss
Agreement with PropBank: Results

Core Roles: A0-A5

Adjuncts: ADV, CAU, DIR, EXT, LOC, MNR, PNC, PRD, TMP

Agreement with PropBank: Results

Core Roles: 86.3

Adjuncts: 81.4
Agreement with PropBank: Results

Core Roles: A0-A5

Adjuncts: ADV, CAU, DIR, EXT, LOC, MNR, PNC, PRD, TMP
Agreement with PropBank: Results

Core Roles: A0-A5

Adjuncts: ADV, CAU, DIR, EXT, LOC, MNR, PNC, PRD, TMP
Inter-Annotator Agreement

- **QA Equivalence:** Same wh-word + Overlapping answers
- **Agreed QA Pairs:** Proposed by at least 2 of the 5 annotators
Inter-Annotator Agreement

- Agreed QA pairs by five annotators: 2.6-2.8 QA/verb
- One annotator can recover: 2.2-2.3 QA/verb (80%)
Wh-words vs. PropBank Roles

<table>
<thead>
<tr>
<th></th>
<th>Who</th>
<th>What</th>
<th>When</th>
<th>Where</th>
<th>Why</th>
<th>How</th>
<th>HowMuch</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARG0</td>
<td>1575</td>
<td>414</td>
<td>3</td>
<td>5</td>
<td>17</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>ARG1</td>
<td>285</td>
<td>2481</td>
<td>4</td>
<td>25</td>
<td>20</td>
<td>23</td>
<td>95</td>
</tr>
<tr>
<td>ARG2</td>
<td>85</td>
<td>364</td>
<td>2</td>
<td>49</td>
<td>17</td>
<td>51</td>
<td>74</td>
</tr>
<tr>
<td>ARG3</td>
<td>11</td>
<td>62</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>16</td>
<td>31</td>
</tr>
<tr>
<td>ARG4</td>
<td>2</td>
<td>30</td>
<td>5</td>
<td>11</td>
<td>2</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>ARG5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>AM-ADV</td>
<td>5</td>
<td>44</td>
<td>9</td>
<td>2</td>
<td>25</td>
<td>27</td>
<td>6</td>
</tr>
<tr>
<td>AM-CAU</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>23</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>AM-DIR</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>13</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>AM-EXT</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>AM-LOC</td>
<td>1</td>
<td>35</td>
<td>10</td>
<td>89</td>
<td>0</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>AM-MNR</td>
<td>5</td>
<td>47</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>108</td>
<td>14</td>
</tr>
<tr>
<td>AM-PNC</td>
<td>2</td>
<td>21</td>
<td>0</td>
<td>1</td>
<td>39</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>AM-PRD</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>AM-TMP</td>
<td>2</td>
<td>51</td>
<td>341</td>
<td>2</td>
<td>11</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>
Outline

Motivation and Intuition

Data Collection and Analysis

Learning Tasks and Baselines

Future Work and Conclusion

• Semantic Role Labeling
• Our Method: QA-SRL

• Annotation Task Design
• Dataset Statistics
• Quality Analysis

• Question Generation
• Answer Identification
Question Generation

Task
Given sentence s and target verb v, predict a set of questions that are *grammatical* and *answerable*.

Motivation
In the future, automate part of the annotation process, further reduce cost and speed up annotation.
Question Generation: Basic Idea

- Pick a role in the sentence
- Predict the right pronoun.
- Fill in the rest of the question.

\[s = \text{They increased the rent this year.} \]
Question Generation: Basic Idea

Pick a role in the sentence
- Predict the right pronoun.
- Fill in the rest of the question.

\[s = \text{They} \text{ increased} \text{ the rent this year}. \]

✓ Who increased something?

✗ Why was something increased?

role not present
Question Generation: Basic Idea

- Pick a role in the sentence
- Predict the right pronoun.
- Fill in the rest of the question.

$s = \text{They increased the rent this year.}$

✓ Who increased something?

✗ Why was something increased?

✗ What increased someone?
They increased the rent this year.

\[s = \text{They increased the rent this year.} \]

\textbf{Who increased something?}
\textbf{Wrong pronoun}

\textbf{Why was something increased?}
\textbf{Role not present}

\textbf{What increased someone?}
\textbf{Wrong pronoun}

\textbf{When increased someone something?}
\textbf{Wrong template}
Question Generation: 2-Step Method

Step 1: Role/Pronoun Prediction as Multi-label Learning

\[\mathcal{R} = \{\text{R0, R1, R2, R2[pp], wh, wh[pp]}\} \]
\[\text{wh} \in \{\text{Where, When, Why, How, HowMuch}\} \]
\[\mathcal{L} = \{\text{role:pronoun_val | role} \in \mathcal{R}\} \]

Details can be found in paper
Question Generation: 2-Step Method

Step 1: Role/Pronoun Prediction as Multi-label Learning

\[\mathcal{R} = \{ R_0, R_1, R_2, R_2[^{pp}], wh, wh[^{pp}] \} \]

\[wh \in \{ \text{Where, When, Why, How, HowMuch} \} \]

\[\mathcal{L} = \{ role:pronoun_val \mid role \in \mathcal{R} \} \]

Step 2: Template-based Generation with Abstract Questions

\[R_0: \text{someone} \quad R_1: \text{something} \]

Who increased something?

Details can be found in paper
Question Generation: Results

<table>
<thead>
<tr>
<th>Grammatical</th>
<th>Answerable</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>67.5%</td>
<td></td>
</tr>
<tr>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>22.5%</td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>prec@1</th>
<th>prec@3</th>
<th>prec@5</th>
<th>prec@1</th>
<th>prec@3</th>
<th>prec@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>newswire</td>
<td></td>
<td></td>
<td>Wikipedia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Question Generation: Results

<table>
<thead>
<tr>
<th>Metric</th>
<th>newswire</th>
<th>Wikipedia</th>
</tr>
</thead>
<tbody>
<tr>
<td>prec@1</td>
<td>84%</td>
<td>86%</td>
</tr>
<tr>
<td>prec@3</td>
<td>78.7%</td>
<td>82%</td>
</tr>
<tr>
<td>prec@5</td>
<td>77.2%</td>
<td>86%</td>
</tr>
<tr>
<td>prec@1</td>
<td>90%</td>
<td>86%</td>
</tr>
<tr>
<td>prec@3</td>
<td>86%</td>
<td>82%</td>
</tr>
<tr>
<td>prec@5</td>
<td>82%</td>
<td>86%</td>
</tr>
</tbody>
</table>
Question Generation: Results

<table>
<thead>
<tr>
<th></th>
<th>Grammatical</th>
<th>Answerable</th>
</tr>
</thead>
<tbody>
<tr>
<td>prec@1</td>
<td>84%</td>
<td>66%</td>
</tr>
<tr>
<td>prec@3</td>
<td>78.7%</td>
<td>51.3%</td>
</tr>
<tr>
<td>prec@5</td>
<td>77.2%</td>
<td>38.4%</td>
</tr>
<tr>
<td>prec@1</td>
<td>90%</td>
<td>72%</td>
</tr>
<tr>
<td>prec@3</td>
<td>86%</td>
<td>53.3%</td>
</tr>
<tr>
<td>prec@5</td>
<td>82%</td>
<td>40%</td>
</tr>
</tbody>
</table>

newswire Wikipedia
Question Generation: Results

In question prediction: 2 Question/verb answerable
In annotated data: 2.6-2.8 QA/verb
Answer Identification

<table>
<thead>
<tr>
<th>Task</th>
<th>Given sentence s, target verb v, and question q, predict a word in the sentence that answers the question q.</th>
</tr>
</thead>
</table>

| Motivation | In the future, build an end-to-end SRL system trained by QA-SRL data. (Analogy to SRL - questions:roles, answers:arguments). |
Answer Identification: Basic Idea

\[s = \text{The leasing office said they would increase the rent.} \]

\[v = \text{increase} \quad q = \text{Who would increase something?} \]

Arcs from k-best dependency trees

Annotated answer spans. Space: \(2^{|s|}\)
Answer Identification: Basic Idea

\[s = \text{The leasing office said they would } \textbf{increase} \text{ the rent.} \]

\[v = \textbf{increase} \quad q = \text{Who would increase something?} \]

Arrows from k-best dependency trees

- Annotated answer spans. Space: \(2^{|s|}\)
- Training samples: \(\langle s, v, q, \text{office}\rangle, \langle s, v, q, \text{they}\rangle\) Space: \(|s|\)
Answer Identification: Basic Idea

\[s = \text{The leasing office said they would } \boxed{\text{increase}} \text{ the rent}. \]

\[v = \boxed{\text{increase}} \quad q = \text{Who would increase something?} \]

Arcs from k-best dependency trees

- Annotated answer spans. Space: \(2^{|s|}\)
- Training samples: \(\langle s, v, q, \text{office} \rangle, \langle s, v, q, \text{they} \rangle\) Space: \(|s|\)
- Ex. of correct predictions: “\text{office}”, “\text{leasing}”, “\text{they}”
- Ex. of wrong predictions: “\text{rent}”
Answer Identification: Results

- **Random**
 - Newswire: 26.3
 - Wikipedia: 26.9
- **Classifier**
Answer Identification: Results

- **Newswire**
 - Random: 26.3
 - Classifier: 78.7

- **Wikipedia**
 - Random: 26.9
 - Classifier: 82.3
Outline

Motivation and Intuition

Data Collection and Analysis

Learning Tasks and Baselines

Future Work and Conclusion

- Semantic Role Labeling
- Our Method: QA-SRL

- Annotation Task Design
- Dataset Statistics
- Quality Analysis

- Question Generation
- Answer Identification

- Generalization
- Question Suggestion
- Training a Joint Parser
Future Work: Generalization

- Generalize to non-verbal predicates:

 S: The rent increase came as a *shock* to us.

 Q: Who was *shocked*? **A:** us

- Generalize to other languages:

 他们 今年 涨了 房租。

 Q: 房租 什么 时候 涨了? **A:** 今年
Future Work: Automatic Question Suggestion

Given new sentence and verb:

“I can’t believe they **increased** the rent by so much .”

![Diagram showing the process of training with annotated QA pairs leading to an automatic question generation system.]
Future Work:
Automatic Question Suggestion

Given new sentence and verb:

“I can ’t believe they *increased* the rent by so much .”

Annotated QA Pairs \(\rightarrow\) training \(\rightarrow\) Automatic Question Generator \(\rightarrow\) suggest

Who increased something ?
What increased ?
How did something increase ?
When did someone increase ?
Future Work: Automatic Question Suggestion

Given new sentence and verb:

“I can’t believe they increased the rent by so much.”

- Annotated QA Pairs
 - training
 - Automatic Question Generator
 - suggest
 - Who increased something?
 - What increased?
 - How did something increase?
 - When did someone increase?

- Human Annotators
 - write answers
Future Work: Automatic Question Suggestion

Given new sentence and verb:

“I can’t believe they **increased** the rent by so much.”

Annotated QA Pairs → training → Automatic Question Generator → suggest → write answers

Who increased something? - **they**
What increased? - **the rent**
How did something increase? - **by so much**
When did someone increase? - **unanswerable**

Human Annotators
Future Work: Training a Joint Parser

- Use question-answer pairs to train a joint parser, to improve on both syntax and semantics
- Combine with other SRL data, i.e. PropBank, FrameNet

Joint A* CCG Parsing and Semantic Role Labeling, Lewis et al., EMNLP-2015. *(Presentation: Sunday 6B)*
Contributions

• Introduced question-answer driven semantic role labeling (QA-SRL).

• High quality QA annotation with a lightweight template-based scheme.

• Two new QA-SRL learning baselines: question generation and answer identification.

• Releasing data and annotation tool - https://dada.cs.washington.edu/qasrl/
Thank You! Questions?

No Frame Inventory!

Wh-Question

Predicate

Answer

QA-SRL Project Page:
https://dada.cs.washington.edu/qasrl/