
Currently Under MICRO 2015 Submission – Please do NOT distribute widely.

Mapping and Modeling
Approximate Computing Techniques

Mark Wyse André Baixo Thierry Moreau Bill Zorn Adrian Sampson James Bornholt
Luis Ceze Mark Oskin

University of Washington

ABSTRACT
The efficiency–accuracy trade-off of approximate com-
puting spans a diverse array of techniques at both the
hardware and software levels. While this diversity is key
to the success of approximation research, it also entails
considerable complexity in developing and validating
new approximation techniques. Researchers must relate
their ideas to a vast body of work on approximate com-
puting and invest significant software and hardware im-
plementation effort to validate their hypotheses. These
problems slow the pace of innovation and, when they
prove too much to bear, risk misdirecting research away
from promising ideas.

This paper makes two contributions to more flexible
research in approximate computing. We present the
first taxonomy of current research in approximate com-
puting, identifying two key dimensions in the space of
techniques: fine- vs. coarse-grain, and deterministic vs.
nondeterministic. We discuss underpopulated regions
of this classification and identify trends in current re-
search. Then, informed by this taxonomy, we present
REACT, an open-source modeling framework that lets
researchers rapidly evaluate approximate-computing tech-
niques and lets practitioners understand the potential
impact of approximation in their code.

REACT combines an application profiler with an en-
ergy model and error injection framework to measure
the effects of approximation on user-provided applica-
tions. We show how REACT can easily model approx-
imation techniques from diverse regions of our taxon-
omy. To demonstrate REACT’s utility, we use it to
evaluate several benchmarks for their amenability to
approximation and to individual techniques. Our ex-
ploration shows that the energy savings and error vary
widely between techniques and applications, and that
coarse-grain techniques dominate fine-grain ones.

1. INTRODUCTION
Approximate computing exploits applications’ toler-

ance of quality degradation to improve performance and
energy efficiency. Research in approximate spans the
entire system stack, from devices to software and al-
gorithms. Although recent research has demonstrated

tremendous potential for diverse application domains,
researchers and practitioners alike face the persistent
challenge of understanding the quality–energy trade-offs
associated with approximate computing.

For researchers, developing new approximation tech-
niques requires substantial investment in software and
hardware development to validate new opportunities.
Recent work has extended the reach of approximate
computing to many areas of computer architecture: float-
ing-point units [1], caches [2], DRAM [3], and acceler-
ators [4, 5, 6, 7]. Software techniques are similarly di-
verse, from transforming loops [8] to eliding synchro-
nization [9]. The diversity and reach of these tech-
niques creates a struggle for researchers to understand
the quality–energy trade-offs of their techniques and
how they relate to existing work. Evaluating hardware
techniques requires either detailed and laborious imple-
mentation work, with the risk of disappointing results,
or extensive modifications to existing power modeling
tools, with the risk of incorrect or irrelevant model-
ing [10]. Software techniques pose similar challenges
and often rely on cumbersome, manual processes to
evaluate quality degradation. There exists no general,
understandable model for researchers to rapidly evalu-
ate the potential of new approximate-computing oppor-
tunities on real applications.

Practitioners looking to employ approximation in their
systems face substantial barriers to adoption as well.
Many approximation techniques require specialized hard-
ware [11] and extensive engineering effort to implement
and evaluate. Despite ongoing work on compiler in-
frastructure for approximation [12], software techniques
still require extensive programmer intervention. This
leaves practitioners looking to exploit approximate com-
puting with no way to easily evaluate the potential of
approximation in their applications.

This paper makes two contributions to mapping and
modeling the state of the field of approximate comput-
ing. First, we present a comprehensive taxonomy of
approximate-computing techniques. To the best of our
knowledge, ours is the first classification of the nascent
approximate-computing literature. We identify the key
dimensions in the space of approximate-computing tech-
niques: hardware and software, granularity, determin-



ism, and the computational resources affected. We an-
alyze these dimensions and the benefits and properties
they can expose to researchers and practitioners. High-
lighting under-explored regions of the space, we identify
promising avenues for future work in approximation.

Based on our taxonomy, we propose REACT, a frame-
work for rapid evaluation of approximate-computing tech-
niques. REACT integrates energy models for approx-
imation techniques with dynamic profiling and error-
injection information for a user-provided application.
For programmers looking to apply approximation, RE-
ACT asks only for a small investment—annotating their
application once using the ACCEPT language [12]—
and provides a framework to explore many approxima-
tion opportunities at both the hardware and software
levels. For researchers, REACT provides rapid design
space exploration. Researchers specify energy and er-
ror models for their new technique, and then can ex-
plore its effectiveness on applications without extensive
implementation effort. We use the taxonomy of approx-
imation techniques to identify the important variables
our models must expose to be useful and accurate in
research and in practice.

The REACT framework evaluates the energy savings
and quality degradation of approximation opportunities
using a first-order energy model, coupled to a customiz-
able dynamic error injector. The custom energy model
captures the effects of system components most relevant
to approximate computing. The energy model’s input
is a dynamic application profile collected using a cus-
tom Pin tool [13]. REACT uses this model to estimate
energy consumption for both precise and approximate
executions of a provided application. For approximate
executions, the energy model incorporates savings char-
acterizations from a library of approximation techniques
(which researchers can extend with new techniques).
Our energy model’s baseline mode produces energy es-
timates within 1% of McPAT [14], a widely used power
modeling tool.

REACT performs error injection to model quality
degradation in applications. Programmers provide ap-
plications with language annotations to specify where
approximations are allowed. We extend an existing
approximate compiler framework to simulate errors in
data and code deemed approximate. The compiler in-
strumentation injects errors at run time according to
characterizations from a library of approximation tech-
niques (which, again, can be extended with new tech-
niques). The error injection framework operates at the
instruction granularity and, by calling a user-defined
hook, can support arbitrarily complex error models.
REACT also supports error injection at the function
level, allowing accelerators and other coarse-grained tech-
niques to be applied to the program.

To demonstrate the utility of REACT for rapidly
evaluating approximation techniques, we implement a
selection of techniques from our taxonomy and apply
them to a suite of approximate-computing benchmarks.
We find that each benchmark is amenable to different
approximation techniques, and that the overall effec-

Nondeterministic Deterministic

F
in

e
G

ra
in

ed DRAM Refresh Rate [3, 15]
SRAM Soft Error Exposure [2, 16]
Soft Fault Tolerance [17, 18, 19]
Synchronization Elision [9, 20, 21]
Voltage Overscaling (ALU) [15, 6]

Bit-Width Reduction [22]
Float-to-Fixed Conversion [23]
Fuzzy Memoization [24]
Hierarchical FPU [1]
Load Value Approximation [25, 26]
Lossy Compression and Data
Packing [27]
Precision Scaling (ALU) [5]
Reduced-Precision FPU [15, 28]
Underdesigned Multiplier [29]

C
o

ar
se

G
ra

in
ed

Error-Prone Processors [30, 31, 32]
Neural Acceleration (Analog) [33]

Algorithm Selection [34, 35]
Code Perforation [8]
Interpolated Memoization [36]
Neural Acceleration (ASIC) [11]
Neural Acceleration (FPGA) [4]
Neural Acceleration (GPU) [37]
Parallel Pattern Replacement [38]
Parameter Adjustment [39]

Figure 1: Classification of approximation techniques
among the two key dimensions.

tiveness of approximation varies widely between bench-
marks. At a high level, we find that the benefits of
coarse-grain techniques dominate fine-grain ones. We
characterize the low effort required to develop tech-
nique models and to annotate benchmark suites with
ACCEPT.

2. TAXONOMY OF APPROXIMATIONS
Approximate computing encompasses a broad spec-

trum of techniques that relax accuracy to improve effi-
ciency. Although the term is new, the principle is not:
floating-point numbers, for example, efficiently but ap-
proximately represent the real numbers in the digital
domain. Efficiency–accuracy trade-offs are also com-
monplace in digital signal processing applications, where
techniques such as quantization and decimation are cru-
cial for tractable designs. Any lossy compression scheme
trades off quality for space savings.

The diversity of approaches can complicate discus-
sions on the topic and obscure common patterns. A
single monolithic category, approximate computing, that
spans ideas as disparate as floating-point numbers, volt-
age overscaling [40], and loop perforation [8] is too broad
to establish the general principles of the field. The liter-
ature needs finer distinctions within the umbrella term
approximate computing to help define better abstrac-
tions. Which techniques are appropriate for which kinds
of applications? Which mechanisms are amenable to
different strategies for establishing quality guarantees?
How do applications communicate their intent to a cor-
nucopia of approximate software and hardware?

This section outlines a taxonomy of current research
in approximate computing. The goals are to analyze the
different dimensions that define the space of techniques,
to relate them to applications, and to identify potential
for future research in unpopulated regions. The taxon-
omy also defines the breadth of the interface REACT
needs to provide to model the full space of approxima-
tion techniques.

2



Software Technique Granularity Deterministic Computational Resource(s)

Algorithm Selection [34, 35] Coarse Yes Compute, Storage, Communication
Bit-Width Reduction [22] Fine Yes Compute
Code Perforation [8] Coarse Yes Compute, Communication
Float-to-Fixed Conversion [23] Fine Yes Compute
Lossy Compression and Data Packing [27] Fine Yes Communication
Neural Acceleration (GPU) [37] Coarse Yes Compute
Parallel Pattern Replacement [38] Coarse Yes Compute, Communication
Parameter Adjustment [39] Coarse Yes Compute, Storage, Communication
Synchronization Elision [9, 20, 21] Fine No Communication

Hardware Technique Granularity Deterministic Computational Resource(s)

DRAM Refresh Rate [3, 15] Fine No Storage
Error-Prone Processors [30, 31, 32] Coarse No Compute
Fuzzy Memoization [24] Fine Yes Compute
Hierarchical FPU [1] Fine Yes Compute
Interpolated Memoization [36] Coarse Yes Compute, Storage
Load Value Approximation [25, 26] Fine Yes Storage, Communication
Neural Acceleration (ASIC) [11] Coarse Yes Compute, Storage, Communication
Neural Acceleration (Analog) [33] Coarse No Compute, Storage, Communication
Neural Acceleration (FPGA) [4] Coarse Yes Compute, Storage, Communication
Precision Scaling (ALU) [5] Fine Yes Compute
Reduced-Precision FPU [15, 28] Fine Yes Compute
SRAM Soft Error Exposure [2, 16] Fine No Storage
Soft Fault Tolerance [17, 18, 19] Fine No Compute, Storage
Underdesigned Multiplier [29] Fine Yes Compute
Voltage Overscaling (ALU) [15, 6] Fine No Compute

Table 1: Taxonomy of approximation techniques from the literature.

2.1 Dimensions
Table 1 enumerates the techniques in the literature

and the dimensions in our taxonomy, and Figure 1 shows
the same set of techniques laid out along the two dimen-
sions we considered most important: determinism and
granularity. We detail each dimension below.

Hardware vs. Software
One basic distinction categorizes techniques by whether
or not they require new hardware. Software techniques,
such as reducing the width of numerical representa-
tions [22], can work on today’s commodity hardware.
Hardware techniques, such as those that exploit ana-
log circuits [33], can unlock new opportunities for re-
source savings that are unavailable when the hardware–
software interface is left unchanged. Hardware- and
algorithm-level approximation are not mutually exclu-
sive: some of the literature’s most promising techniques
combine algorithmic transformations with new hard-
ware support [11].

Research on hardware techniques requires new ISA
support. Crucially, work has demonstrated that hard-
ware abstractions need to expose approximation as an
opt-in property: imprecision should only be allowed
when the programmer and compiler explicitly allow it.
This requires that approximations be configurable at
some granularity: instructions [25, 26], memory address
ranges [3], or dynamic code regions [41], for example.

(See the Granularity dimension below.) Making ap-
proximation optional is critical because even approxi-
mate applications tend to need some precise data and
computation [15].

Determinism
Approximations can be either deterministic or nondet-
erministic. Floating-point and digital neural accelera-
tion [11] are examples of deterministic approximations.
Their output is always the same for a given input. Con-
versely, nondeterministic approximations such as volt-
age overscaling [40] can produce different errors for the
same input.

Determinism plays an important role in the feasibil-
ity of reasoning about and debugging approximations.
Deterministic approximations can make bugs more re-
producible, but they do not eliminate all testing chal-
lenges: catastrophic cancellation in floating point num-
bers, for example, can be difficult to discover at testing
time. Nondeterministic approximations that follow sta-
tistical distributions are suitable for program analyses
that reason about probabilistic program behavior [42,
43].

The kinds of errors that arise from deterministic ver-
sus nondeterministic techniques can look very different.
Many deterministic approximations, such as floating-
point rounding errors, are small but frequent, while non-
deterministic approaches, such as voltage overscaling,
yield infrequent but arbitrarily large errors.

3



Determinism defines the kinds of accuracy guaran-
tees that are possible. For a deterministic approximate
program, it is possible to prove a hard bound: a state-
ment of the form for any input, the output can be at
most ε from the correct output. This kind of guarantee
is important in the context of long-running computa-
tions, such as scientific computing applications, where
errors can compound catastrophically. A nondetermin-
istic program can only offer a statistical bound: for any
input, the probability that the output exceeds a bound
is less than P . This weaker kind of guarantee is ap-
propriate in contexts that compute many independent
outputs: pixels, video frames, or particle positions, for
example.

Granularity
We classify a technique as fine-grained if it applies to in-
dividual memory locations, instructions, or data pack-
ets. A technique is coarse-grained if it affects entire
blocks, functions, or data structures.

An approximation technique’s granularity is a criti-
cal factor in its generality and efficiency gains. A fine-
grained approximation, such as one that applies to indi-
vidual arithmetic instructions [40], can be very general:
it can potentially apply to any multiplication in a pro-
gram. But the efficiency gains are fundamentally lim-
ited to non-control components, since control errors can
disrupt execution arbitrarily. Even if an approximate
multiplier unit can be very efficient, the same technique
can never improve the efficiency of a branch, an address
calculation, or even the scheduling of an approximate
multiply instruction. Approximations that work at a
coarser granularity can apply holistically to entire al-
gorithms, so their potential gains are larger. But these
techniques tend to apply more narrowly: neural accel-
eration [11], for example, can replace large subcompu-
tations but only when they meet a list of restrictions.

Computational Resource
Approximate computing techniques generally offer ben-
efits in resource efficiency. The resource they benefit
can vary: storage techniques can provide better den-
sity, for example, and CPU optimizations can improve
performance and energy. We classify techniques accord-
ing to the three classical resources in computer systems:
compute, storage, and communication.

A given technique may affect any or all of these re-
sources. The boundaries between the resources are of-
ten fluid: an optimization that reduces the width of
floating-point numbers reduces the storage footprint, for
example, but the same change intrinsically reduces the
bandwidth demands between the processor and mem-
ory.

2.2 Discussion
The taxonomy’s categorization reveals several insights

about the landscape of current approximate-computing
research. Figure 1 highlights two important dimensions,
determinism and granularity, to visualize the popula-
tion of the technique space.

Many approximation techniques are both determin-
istic and fine grained, but we find that benefits of such
techniques might be limited (Section 4). Instruction
control takes a significant fraction of energy and is typ-
ically not approximable. This finding suggests further
effort for making control approximate will be fruitful.
For example, one important direction isolates the effects
of a whole processor, which permits arbitrarily bad con-
trol signals while preventing them from compromising
the overall system [31].

The coarse-grain, deterministic quadrant is populated
by several techniques characterized by their algorithmic
approximation. These techniques can be realized in ei-
ther hardware or software (e.g., interpolated memoiza-
tion, alternative algorithm selection, etc.). This points
to opportunities in designing approximate accelerators,
whose energy efficiency benefits come from both approx-
imation as well as specialization. This has potential be-
cause approximation enables accelerator design to ex-
ploit a broader set execution models [11] and optimiza-
tions.

The coarse-grain, nondeterministic quadrant is un-
derpopulated. This is where approximation is likely to
lead to the most energy benefits, as the techniques can
both reduce the cost of control and avert the digital
abstraction tax. Analog NPUs [33] are an important
example. However, this quadrant is also where the risk
of approximation is highest—controlling quality is chal-
lenging and there is more technological uncertainty in
being able to design effective mixed-signal systems.

3. FRAMEWORK
With the diversity of techniques for approximate com-

puting, it is difficult to evaluate which approaches are
the most beneficial for a particular application. It is
doubly challenging to predict how multiple techniques
will interact. For example, what do the probabilistic,
analog errors of voltage overscaling have in common
with deterministic errors of reduced precision compu-
tation? How do we compare loop perforation of a code
region in software to offloading all or a portion of that
region to a neural network accelerator? The challenges
of understanding energy and error trade-offs of differ-
ent approximation techniques has motivated us to de-
velop REACT, a tool for researchers and practitioners
to rapidly and accurately explore approximate comput-
ing techniques. In this section, we present the details of
REACT and how it enables understanding of the tax-
onomy dimensions.

REACT consists of an application profiler, an energy
model, and an error analysis tool. We implement a cus-
tom profiler and linear energy model, and extend AC-
CEPT [12], an approximate computing compiler frame-
work, to inject errors and measure quality. Figure 2
provides a high level overview of REACT’s workflow.
We logically divide the flow into an energy path and a
quality path.

The energy path uses a dynamic application profiler
to record architectural events, such as instruction cat-
egories, and micro-architectural events, such as cache

4



Our Framework

ACCEPT

Energy Model

 

Approximation
Energy Models

 

Energy

Approximation
Error Models

Error

Profiler

Application Error

E
ne

rg
y 

S
av

in
gs

Pareto
Frontier

Application

Phases

 

Figure 2: High level overview of REACT.

misses and branch mispredictions. We then feed this
profile information into a linear energy model to esti-
mate total energy consumption. The energy model in-
corporates the effects of each approximation technique
to produce an estimate of energy savings. Sections 3.1
and 3.2 details the energy model.

The quality path uses a compiler pass to instrument
the code and inject errors. The instrumentation makes
calls to a library that implements an error-injection
API, where the user can define arbitrary error behav-
ior without modifying the compiler itself. Section 3.4
details this process.

Finally, REACT combines the energy and quality
paths to search the efficiency–accuracy trade-off space
for a given application. It produces a collection of con-
figurations of the program and applies the modeled ap-
proximation techniques to different phases in the pro-
gram. Section 3.5 describes the interaction between the
two paths.

3.1 Application Profiling
The application profiler in REACT collects perfor-

mance statistics, which are the inputs to the energy
model. The profiler is implemented using Intel’s Pin [13]
dynamic binary instrumentation tool. It observes x86
instructions, from which we extract memory operations
to produce a load/store instruction set. REACT’s Pin
tool executes programs with minimal overhead but col-
lects only first-order architectural statistics—a trade-off
with respect to full-system simulators that lets REACT
quickly run full applications many times on large input
sets.

The profiler groups the micro-operations into cate-
gories for the energy model. Table 2 enumerates these
categories, which we selected while concurrently devel-
oping the energy model, error injection tool, and ap-
proximation techniques taxonomy to provide flexibility,
simplicity, and accomodate for approximation strate-
gies.

Using the instruction stream from the its front end,
the profiler uses simple architectural models to collect
micro-architectural statistics. It models a branch pre-
dictor and a memory hierarchy representative of a mid-
range, low power processor, in the same class as an
ARM Cortex-A9. We model a tournament-style branch
predictor with a 4096-entry selection table, 12-bit Global

Category Description

alusimple Integer +, -, bitwise
alucomplex Integer *, /, sqrt
fpusimple Floating point +, -
fpucomplex Floating point *, /, sqrt
branch.correct Correct branch prediction
branch.mispredict Branch mispredictions
l1d.hit L1 D-cache access hit
l1d.miss L1 D-cache access miss
other All remaining instructions

Table 2: Application Profile Instruction Categories

History Register (GHR), 4096 entry Pattern History
Table (PHT), and a 4096 entry Branch History Ta-
ble (BHT) of local predictors. The data cache model
mirrors the Cortex A9’s parameters: a 4-way set asso-
ciative, 32 KB L1 cache with 32 B blocks. We do not
model an L2 cache. Together, these models provide the
micro-architectural statistics—hits, misses, predictions,
and mispredictions—that the energy model uses.

3.2 Energy Model
REACT uses a simplified linear energy model to es-

timate the total energy consumption of an execution.
Figure 3 provides the overview of our energy model.
The model has three components for static power: core,
L1 data cache, and DRAM memory. For dynamic power,
we assign a fixed cost to micro-architectural and archi-
tectural events, each indicated by a gray shaded box in
the figure. The linear energy model accommodates a
variety of approximation strategies that scale its coeffi-
cients: for example, by reducing the dynamic power of
multiply operations. REACT uses the model’s outputs—
one precise energy total, and one scaled approximate en-
ergy total—to estimate energy savings from executing
a program approximately in comparison to the precise
execution baseline.

Precise Baseline
We first describe the parameterized linear energy model.
Section 3.3, below, describes our methodology for deriv-
ing the parameters from a more complex energy model.

The energy model computes the precise baseline cost

5



Core

Register 
File

Fetch Decode

I-Cache

Int Simple
Int Complex

FP Complex
FP Simple

L1 D-
Cache

DRAM

Branch 
Predictor
Correct
Misspredict

Instruction

Access Access Access

Events used in our energy model

Figure 3: Overview of our energy model. The gray shaded boxes indicate events that are used by our model.

using the following linear equations.

Energyphase =

Staticcompute + Dynamiccompute

+ Staticmemory +Dynamicmemory (1)

Static = Power × CPI × Instructions (2)

Dynamic = Energyevent × Countevent (3)

In these equations, the Power and Energy terms are
architecture-dependent parameters defining the cost of
various operations or structures. CPI is the average
cycles per instruction for the target architecture. The
Count terms are properties of the program’s dynamic
profile and correspond to the events shown in Figure 3
(e.g., arithmetic operations and memory accesses).

Equation (1) computes the energy cost of a phase as
the sum of the static and dynamic costs for compute and
memory within the system. The total precise baseline
cost is then the sum of Equation (1) over all phases of
application execution.

Fine-Grained Approximations
Fine-grained approximation techniques operate at the
event level, replacing individual operations with approx-
imate versions. In REACT, the model for a fine-grained
technique modifies one or more of the architectural pa-
rameters of the baseline system. For example, a model
might reduce the energy consumption of integer arith-
metic operations to model approximate arithmetic in-
structions. The energy cost of a fine-grained approxima-
tion is computed in the same way as the precise baseline
cost, but using the appropriate modified architectural
parameters. Multiple orthogonal fine-grained approxi-
mations can be aggregated into a single set of modified
parameters.

Coarse-Grained Approximations
Coarse-grained approximation techniques replace entire
application phases with approximate implementations.
In REACT, we restrict such phases to functions. Our
energy model for a coarse-grained technique modifies
one or more of the terms on the right-hand side of Equa-
tion (1), and adds additional cost specific to the coarse-
grained technique. To compute total energy of a coarse-

Architecture 

Specification

Synthetic 

Profiles

McPAT

Energy Model 

Equation

Linear 

Regression

Learned 

Energy Model

Figure 4: The coefficients in REACT’s energy model
are learned through linear regression using synthetically
generated application profiles.

grained phase, we first compute the precise baseline cost
of the phase. Then, each term affected by the coarse-
grained approximation is scaled by a user-specified fac-
tor (e.g., for placing the processor in a low-power mode).
We also account for speedup (or slowdown) afforded by
the technique, and prorate the static costs accordingly.
Lastly, we introduce the technique specific dynamic in-
vocation and static costs. The dynamic invocation cost
is the number of invocations of the region multiplied by
a per invocation cost. The static cost is computed in
the same manner as Equation (2).

3.3 Energy Model Training & Validation
To make the abstract model above concrete, we need

to calibrate its parameters. While the focus on first-
order terms enables rapid exploration of energy savings
and provides a simple interface to the tool, it potentially
sacrifices the accuracy attainable using previous energy
and power modeling research. To minimize modeling
inaccuracies, we ground our model using McPAT [14],
a widely used power modeling framework.

Figure 4 shows the workflow employed to learn the co-
efficients of our linear model. We first analyzed program
traces to formulate a generative model that produces
realistic synthetic program profiles. These synthetic
profiles contain the same high-level micro-architectural
events as detected by our profiler. In order to derive
the micro-architectural statistics (e.g., BTB reads and
writes, RAT and CDB access, etc.) required by Mc-
PAT from these synthetic profiles, we use conversion
paramters found in popular performance simulators such
as Gem5 [44] and Sniper [45]. The micro-architectural
statistics complemented with a single-core ARM Cortex-
A9 architecture description are passed into McPAT to

6



Energy Model Parameter Cost

Dynamic Cost Per Event

Instruction (fetch, decode, . . . ) 60.33 pJ
Simple ALU access 19.48 pJ
Complex ALU access 29.14 pJ
Simple FPU access 34.27 pJ
Complex FPU access 34.27 pJ
Branch (correctly predicted) 14.80 pJ
Branch (mispredict) 17.15 pJ
Register file access 3.87 pJ
DRAM memory access 171.70 pJ
L1 D-cache access 34.34 pJ

Static Cost

Core (excluding register file) 44.43 mW
L1 D-cache 4.86 mW
DRAM memory 44.01 mW

Table 3: Learned Architectural Parameters for the
ARM Cortex-A9 Class Processor.

Architecture 

Specification

Learned 

Energy Model

?=
Error

McPAT

Test Profiles

Figure 5: Energy model validation flow.

produce power results. McPAT’s Cortex-A9 processor
description itself has been validated against published
data [46].

We derive an energy cost from the McPAT power out-
put obtained from each program trace, the CPI and fre-
quency, both specific to the ARM Cortex-A9 processor.
In order to derive the coefficients for the dynamic ele-
ments of our energy model, we run linear regression on
the synthetic profile data and the energy output pro-
duced by McPAT. Collecting the static costs is simpler
since those are program-independent and directly pro-
duced by McPAT.

The resulting model provides the Energy and Power
terms used in Equations (2)–(3) for the processor and
cache, but not for DRAM. We assume a DRAM access
costs 5 pJ per bit for a 64-bit access [47], plus and addi-
tional penalty of one hundred stalled cycles on the CPU.
We assume DRAM static power to be on the same or-
der of magnitude of processor static power, informed by
previous results [48].

Table 3 lists the final learned parameters. We vali-
date the calibrated model against McPAT on real pro-
gram traces. We collect traces from the PERFECT [49]
and PARSEC-3.0 [50] benchmark suites, generate en-
ergy values using McPAT and REACT, then compare
the results. Overall, we observe an average total energy
error of 0.87%, ranging from 0.31% to 1.38%, where our
model consistently calculates a slightly greater energy

value that McPAT. These results lead us to conclude
that our energy model, which focuses on only first-order
concerns, is a reasonable simplification of the reference
model.

3.4 Quality Modeling
REACT also needs to model the quality impacts of

approximation. To do so, it instruments programs to
inject errors at execution time and provides an API for
defining the errors to inject. REACT’s instrumenta-
tion extends ACCEPT [12], an approximate-computing
compiler framework, to inject errors at two granulari-
ties: at a fine granularity after each instruction, and at a
coarse granularity on the output of functions. Users can
implement REACT’s error API to supply error models
without modifying the compiler instrumentation.

This section details each error injection style.

Fine-Grained Error Injection
Fine-grained error injection occurs at the instruction
level in REACT. As with EnerJ [15], values are marked
as either approximate or precise, with precise being the
implicit default. For instance, the program snippet:

APPROX int a;
int b;

defines an approximate integer variable a and a precise
integer variable b. When compiled with ACCEPT, all
instructions manipulating or depending solely on ap-
proximate values (e.g., a store to a) are marked as be-
ing approximate and intercepted with a hook to a user-
defined error injection routine. At runtime, that hook
receives information about the dynamic execution of the
instruction, including opcode and operands. The hook
invokes the user-defined error routine to modify the in-
struction and inject error appropriately. All approxi-
mate instructions within a given function are subjected
to the same error injection routine, but the particular
routine used may differ across functions.

Much like a conventional architectural simulator, the
error injection models can be arbitrarily complex, and
rely on an arbitrarily large amount of bookkeeping, since
they are only intended to model the approximation tech-
niques. For example, we implement Load Value Ap-
proximation [25], a complex technique that relies on log-
ging the history of loads following a cache miss to avoid
fetching data from memory by predicting the next load
data value. REACT’s expressiveness allows simulating
error in both ALU operations and memory.

Coarse-Grained Error Injection
ACCEPT has also been modified to allow coarse-grained
error injection at the function level. In this approach,
an injection routine is specified to modify the outputs
of a function, i.e. the live-outs of that function. The
user-specified routine should be representative of the
particular approximation technique it represents, and
ACCEPT imposes no restrictions on the type of error
introduced. For instance, when implementing neural ac-
celeration, a user may choose to evaluate a neural net-
work, or instead sample a probability distribution that

7



produces a similar whole-application quality degrada-
tion.

3.5 Linking Energy & Quality
REACT coordinates the energy and quality paths by

applying corresponding sets of energy and error models
to each phase in the program. In the current implemen-
tation, “phases” are defined by function boundaries, so
all categories of models—coarse grain and fine grain, en-
ergy and error—apply to an entire function at a time.

For fine-grained approximations, REACT makes the
simplifying assumption that energy scaling applies uni-
formly to the statistics for an entire phase. In practice,
this means that some precise instructions, where error
is not injected, are nonetheless counted as approximate
in the energy model. We accept this simplification in
the energy results in favor of an easily understandable
and usable energy model.

4. EVALUATION
In this section, we evaluate REACT’s usefulness as a

tool for exploring approximate-computing techniques.
We implement a selection of techniques from the tax-
onomy presented in Section 2 within REACT’s infras-
tructure and apply them to a collection of benchmarks.
The goals of this evaluation are to demonstrate the ap-
plication of a broad range of techniques within REACT,
and to compare the potential benefits of different ap-
proaches.

4.1 Techniques and Benchmarks
Table 4 lists the approximation techniques we model,

which include a variety of fine-grained and coarse-grained
hardware mechanisms. We list the components of the
energy model affected and the type of error model re-
quired for each technique. The fine-grained techniques
we consider are reduced-precision floating-point compu-
tation [28], voltage overscaled ALU units [51], and unre-
liable DRAM [3] and SRAM [2] arrays. We implement
models for neural accelerators [11, 33], representative of
coarse-grained techniques from literature. In addition,
we model special-purpose, spatially laid-out accelera-
tors for three benchmarks (blackscholes, jpeg, and so-
bel). We model both precise and approximate versions
of these spatial accelerators to contrast the benefits of
specialization and approximation.

We evaluate benchmarks written in C and C++ drawn
from two benchmark suites: three applications from
the ACCEPT approximate compiler [12] (sobel, blacksc-
holes, and jpeg) and two from the PERFECT suite [49]
(histogram-equalization and fft-1d). Both suites include
output quality metrics; the accuracy measurements in
our evaluation use these specifications. Each bench-
mark uses lightweight type annotations in the style of
ACCEPT [12] and EnerJ [15] to distinguish approxi-
mate code from critical, non-approximatable code; Sec-
tion 4.5 reports on the effort required to add these an-
notations.

Specialized Accelerator Models
As described in Section 3.2, coarse-grained accelerators
incur both a dynamic per invocation and static cost.
To calculate these costs for our models of custom fixed-
function accelerators, we first count the number of arith-
metic operations, cache accesses, and register accesses
in the accelerated region of code. The dynamic cost
is the sum of these counts multiplied by a per-event
cost. Precise accelerators use the same per-operation
cost as the baseline precise energy model, scaled by the
width of the operation. Approximate accelerators in-
corporate approximate hardware components by replac-
ing precise ALUs with voltage-overscaled ALUs, and
floating-point hardware with reduced-precision floating-
point units. In addition we assume the use of low-refresh
rate DRAM, while cache and local register accesses are
precise. Similarly, the static power cost is the sum of
the arithmetic unit count multiplied by a per-unit power
cost, plus the cost of a register file. We derive the power
costs of each structure from CACTI [52].

4.2 Overview of Results
Figure 6 displays REACT’s output for each bench-

mark. The plots show error–savings trade-off spaces.
Each point represents a configuration of the applica-
tion, which composes REACT’s simulated techniques
in different ways and at different levels of aggressive-
ness. In these configurations, each technique applies
globally at a uniform level to all approximate code in
the benchmark. The energy axis reflects our model for
the approximate region of interest for each program,
and the error axis shows the application-specific output
quality metric.

One of REACT’s goals is to enable researchers and
practitioners to produce this type of trade-off plot. From
these plots, we can examine the optimal configurations
that are on the Pareto frontier. Across all benchmarks,
we observe energy savings from none to nearly 100%
and quality degradation on the application output from
none to unacceptable. For example, Figure 6d, shows
how fft-1d is not amenable to most of the approxima-
tion techniques we explored. This result does not mean
approximation should not be applied to FFT routines,
but rather suggests that these particular techniques are
not a good choice. These widely varying results allow
us to examine the benefits from approximate comput-
ing along many dimensions, including granularity and
specialization. We discuss these observations in the fol-
lowing sections.

Figure 7 shows the breakdown of energy consump-
tion by component for precise, fine-grained, and coarse-
grained approximations. As with the results in Figure 6,
we examine the energy consumed during the approxi-
mation amenable regions of each benchmark. For the
fine- and coarse-grained bars, we select the approximate
techniques exhibiting the greatest energy savings with
at most 10% error. We omit coarse-grained techniques
for fft-1d and histeq, as we did not implement coarse-
grained models for these techniques. Benchmarks from
the same suite exhibit similar energy breakdown by

8



Technique Energy Terms Affected Error Model Description

Reduced-Precision FPU [28] FP Arithmetic Instructions Reduced Mantissa Floating Point
Voltage Overscaling (ALU) [6] Int Arithmetic Instructions Random Bit Flips
DRAM Refresh Rate [51, 3] MemorySt Last-Access Dependent Bit Flip
Load Value Approximation [25] Memory Access Energy Load Value Predictor Model
Neural Acceleration [11, 33] ComputeDyn/St & MemoryDyn Per-Invocation Random Error
Spatial Sobel Kernel ComputeDyn/St & MemoryDyn Reduced Mantissa Floating Point
Spatial JPEG Kernel ComputeDyn/St & MemoryDyn Reduced Mantissa Floating Point
Spatial Blackscholes Kernel ComputeDyn/St & MemoryDyn Reduced Mantissa Floating Point

Table 4: Selected approximation techniques implemented in REACT. “Dyn” indicates that the dynamic energy of
the component is affected, while “St” indicates an effect on the static energy.

component: the benchmarks from the PERFECT suite
tend to be more memory intensive. We suspect this
is due to the selection of approximate regions in each
benchmark.

4.3 Fine- vs. Coarse-Grained Approximations
REACT’s results let us examine the potential of ap-

proximation techniques along each dimension in our
taxonomy. The granularity dimension yields a stark
contrast in efficiency. Previous work [4, 11, 33] has
observed that coarse-grained accelerators benefit from
their ability to reduce the costly control overhead of
general purpose processors.

Our results confirm this trend. Figures 6a–6c show
the results for the three benchmarks where we applied
coarse-grained techniques. In each plot, we observe a
group of configurations demonstrating energy savings
below around 20%, and a small number above 50%. All
of the fine-grained techniques are in the former group,
and all of the coarse-grained techniques are in the lat-
ter group. On average, the coarse-grained techniques
achieve energy savings of 74%, while the average for
the fine-grained techniques is only 7%.

4.4 Specialization and Acceleration
Our results also reveal conclusions surrounding the

coupling of approximation and specialization. REACT
includes models for approximate and precise versions of
custom accelerators for blackscholes, jpeg, and sobel. On
average, our precise spatial accelerators achieve energy
gains of 69% while the approximate versions demon-
strate gains of 80%, or 35% savings over the precise
spatial accelerator. These results suggest that most
of the benefit of these spatially laid-out accelerators
comes from specialization, not approximation. That
said, applying approximation on top of specialization
can enable significant additional energy efficiency, rang-
ing from 30% to 36%, at the cost of an average 12%
application error. Comparatively, the same approxima-
tion strategy applied to traditional CPU designs yields
an average 13% energy savings on the same benchmarks.
This indicates that approximation techniques are more
effective on fixed-function accelerators compared to CPU
designs. This is due to the large control overheads tra-
ditionally found in CPUs that are incompressible when
applying approximation techniques.

Benchmark APPROX ENDORSE

sobel 6 2
blackscholes 50 10
jpeg 3 9
fft 12 5
histogram-equalization 17 3

Table 5: Annotation counts for evaluated benchmarks.

In addition to fixed-function accelerators, we evalu-
ate digital and analog variants of neural acceleration.
The data in Figures 6a–6c demonstrate the power of
neural-network–based approximate accelerators. Both
the analog and digital neural network models demon-
strate greater energy savings and lower quality degra-
dation than the approximate spatial accelerators. The
analog neural networks achieve energy savings of 97%
on average with only 7% average error and the digi-
tal neural networks have average energy savings of 68%
with an average error of only 2%. The results strongly
suggest that coarse-grained techniques carry great po-
tential when they are coupled with algorithmic trans-
formations.

4.5 Programmer Effort
Programmer effort is an important factor in the fea-

sibility of approximate computing. To measure effort,
we quantify the annotation overhead for REACT’s an-
notations, which are based on the type qualifier sys-
tem of EnerJ [15] and ACCEPT [12]. Table 5 lists the
number of source-code annotations for each benchmark.
In the type system, APPROX mark data that is safe
to approximate and ENDORSE denotes points where
data transitions from approximate to precise. Overall,
a small number of annotations are required to make
REACT aware of approximation opportunities in each
benchmark. Blackscholes requires the greatest number
of modifications: 50 APPROX qualifiers and 10 EN-
DORSE markers.

The framework was useful in debugging the approx-
imation annotations. REACT reveals unexpected be-
havior from programs, e.g. segmentation faults. These
reports led us to fix the annotations for sobel and histo-

9



●● ●●0%

25%

50%

75%

100%

0.0% 2.5% 5.0% 7.5%
Application Error

E
ne

rg
y 

S
av

in
gs

(a) Blackscholes

●●●●0%

25%

50%

75%

100%

0% 10% 20%
Application Error

E
ne

rg
y 

S
av

in
gs

(b) JPEG

●●●●0%

25%

50%

75%

100%

0% 2% 4%
Application Error

E
ne

rg
y 

S
av

in
gs

(c) Sobel

●●

Precise SNR

0%

20%

40%

04080120
Signal−Noise Ratio

E
ne

rg
y 

S
av

in
gs

(d) FFT-1D

●●●●

0%

20%

40%

60%

0% 1% 2% 3% 4% 5%
Application Error

E
ne

rg
y 

S
av

in
gs

(e) Histogram Equalization

●●●●●● ● ● ● ● ● ● ●

Precise SNR

0%

20%

40%

050100
Signal−Noise Ratio

E
ne

rg
y 

S
av

in
gs

(f) SAR - Backprojection

●●●●
●● ● ● ● ● ● ● ●

Precise SNR

0%

10%

20%

30%

40%

50%

050100
Signal−Noise Ratio

E
ne

rg
y 

S
av

in
gs

(g) SAR - PFA1

●●●●
●● ● ● ● ● ● ● ●

Precise SNR

0%

20%

40%

050100
Signal−Noise Ratio

E
ne

rg
y 

S
av

in
gs

(h) SAR - PFA2

Technique

●

●

ALU; FPU

ALU; Mem; FPU

DRAM Refresh

Load Value Approximation

Low Voltage SRAM

Reduced−Precision FPU

Spatial Accelerator

Voltage Overscaling ALU

Figure 6: Efficiency–accuracy trade-offs for eight benchmarks as explored by REACT using the techniques in Table 4.

gram-equalization so that they ran with gradual quality
degradation but without catastrophic failure.

4.6 PERFECT Benchmarks
To further explore the benefits of approximation, we

discuss the application of approximate computing to
the PERFECT benchmark suite. Figures 6d–6h dis-
play the results of applying approximation to a selec-
tion of kernels from the PERFECT suite. PERFECT
is composed of a set of required kernels and four sets
of domain specific kernels. One of the domains in-
volves image processing while the other three are fo-
cused on radar data processing. The fft-1d kernel covers
the required domain, histogram-equalization represents
the image processing domain, and we use the Synthetic
Aperture Radar (SAR) kernels to represent the radar
data processing domains.

The PERFECT suite focuses on image and signal
processing applications common on embedded comput-
ing platforms. These classes of applications are gen-
erally considered amenable to approximation, which is
confirmed by our results. We observe energy savings
greater than 50% across the selected PERFECT ker-
nels when applying coarse-grained approximation tech-
niques.

Key Takeaways
In studying the PERFECT kernels, we formulate a few
key takeaways regarding approximate computing.

First, coarse-grained approximation techniques vastly
outperform fine-grained techniques, offering significant
energy-efficiency gains at similar error behavior to fine-
grained techinques. As noted in our analysis of other
benchmarks, coarse-grained techniques benefit from both
specialization and approximation. The combination of
these approaches eliminate inefficiences such as control
overhead found in traditional, general-purpose proces-
sors and exploit the relaxed accuracy and precision re-
quirements of signal processing applications.

Second, applying approximation requires a deep un-
derstanding of the algorithm in question. The fft-1d
kernel, shown in Figure 6d, exhibits what can happen
when approximation is not applied properly. Most of
the techniques applied to this application resulted in
unacceptable output quality, well below the acceptable
SNR of 100 suggested by the documentation. This be-
havior potentially implies the application is not amenable
to approximation, the approximations applied were the
wrong type of approximation for this application, or
the approximations were applied at the wrong locations

10



blackscholes fft1d histeq jpeg sobel

0%

25%

50%

75%

100%

P F C P F C P F C P F C P F C
Approximation Granularity

P
ro

po
rt

io
n 

of
 P

re
ci

se
 E

ne
rg

y

Component

Cache (dynamic)
Cache (static)
Coarse (dynamic)
Coarse (static)
Compute (execute)
Compute (overhead)
Compute (static)
Memory (dynamic)
Memory (static)

Figure 7: Component-wise energy breakdown for the Precise and best Fine-grained and Coarse-grained executions.
We define best as the approximation technique exhibiting the greatest energy savings with at most 10% error.

within the application. In the case of fft-1d, we know
from previous work that coarse-grained approximation
via neural acceleration is profitable, providing energy
savings of around 2x [4] at negligible quality degrada-
tion. The SAR kernels also exhibit potentially unac-
ceptable error behavior, but show a moderately more
graceful degradation of quality. We suspect this behav-
ior is a result of the provided implemenations already
being finely tuned for accuracy and precision require-
ments. Algorithms that have already been tuned for
precision may be more sensitive to approximate com-
puting techniques. A comprehensive understanding of
the application can unlock large energy savings while
lack of algorithmic knowledge may imply a false barrier
for approximation.

Third, we expect the fraction of energy expended on
memory and communication of data to increase in the
future as applications continue to focus on data inten-
sive algorithms. Examining Figure 7, we see energy con-
sumption from memory associated costs, which includes
communication in our model, accounting for more than
half of the total energy consumed. This data implies
that memory and communication costs are prime tar-
gets for approximation through techniques, such as low
refresh rate DRAM, low voltage SRAM, or lossy com-
pression, and significant energy-efficiency gains are pos-
sible.

5. RELATED WORK
This paper builds on the expansive body of work on

techniques for approximate computing. Rather than
reiterate the individual techniques here, we refer the
reader to Section 2 for the exhaustive listing in our tax-
onomy.

Other recent works have focused on tools for explor-
ing and prototyping approximate-computing techniques.
The quality-of-service profiler by Misailovic et al. [53]
automatically explores programs for code-perforation
opportunities, and Ringenburg et al. [54] describe a
similar system for nondeterministic hardware approx-
imation. The goal in both systems is to mine recom-

mendations for approximation and report these to the
programmer. Intel’s iACT [36] is compiler and run-
time toolbox for exploring simulated approximations.
Chippa et al. [55] describe a framework for measuring
applications’“inherent”resilience and, thereby, their po-
tential for approximation.

The REACT framework’s trade-off space exploration
resembles other systems for auto-tuning approximate
programs, including ACCEPT [12], ExpAX [56], and
Green [34]. Those systems’ goal is to produce an opti-
mized version of the program—in contrast to REACT,
which is designed for prototyping and exploration.

REACT is related to other work that projects the po-
tential benefit of new hardware before the design phase.
The Aladdin framework [57], for example, models the
power–performance design space for hardware acceler-
ators derived directly from C code.

REACT uses a machine-learning approach to derive
an analytical, linear model for system energy consump-
tion. This approach builds on two bodies of work that
models power in real systems using performance coun-
ters as a proxy [58, 59, 60], and recent micro-architecture
independent analytical modeling [61].

6. CONCLUSION
While approximate computing promises to open new

doors for advancing computational efficiency, its poten-
tial benefits and impact on applications are difficult to
measure. Researchers and practitioners alike need tools
to prototype new approximate-computing ideas and to
explore their interaction with software.

This work details REACT, a framework for the rapid
exploration of approximate-computing techniques. To
inform REACT’s design, we present a comprehensive
taxonomy of current approximate computing research.
We develop an energy model that can be quickly adapted
to reflect arbitrary approximation techniques. We pro-
vide a straightforward API for injecting error into and
assessing application quality. Together, REACT ex-
poses the right set of knobs for prototyping the energy
and error characteristics of new approaches to approxi-

11



mation before proceeding to a full hardware or software
implementation.

Our taxonomy and our quantitative findings suggest
promising areas for future approximate computing re-
search. Coarse-grained techniques lead to far more ef-
ficient designs. Non-deterministic, coarse-grained tech-
niques hold great potential but are less explored in the
literature. We plan to release the REACT infrastruc-
ture as open-source software to let researchers draw
new conclusions about novel techniques as the field pro-
gresses.

Acknowledgements
This work is supported in part by a DARPA seed grant
and the Torode Family Professorship. We thank the
Sampa group at UW-CSE for feedback and especially
Joe Cross for providing detailed input during the exe-
cution of the study.

7. REFERENCES
[1] T. Y. Yeh, P. Faloutsos, M. Ercegovac, S. J. Patel, and

G. Reinman, “The art of deception: Adaptive precision
reduction for area efficient physics acceleration,” in
IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2007.

[2] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and
T. Mudge, “Drowsy caches: simple techniques for reducing
leakage power,” in International Symposium on Computer
Architecture (ISCA), 2002.

[3] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn,
“Flikker: Saving refresh-power in mobile devices through
critical data partitioning,” in International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2011.

[4] T. Moreau, M. Wyse, J. Nelson, A. Sampson,
H. Esmaeilzadeh, L. Ceze, and M. Oskin, “SNNAP:
Approximate computing on programmable SoCs via neural
acceleration,” in International Symposium on
High-Performance Computer Architecture (HPCA), 2015.

[5] S. Venkataramani, V. K. Chippa, S. T. Chakradhar,
K. Roy, and A. Raghunathan, “Quality programmable
vector processors for approximate computing,” in
IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2013.

[6] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones,
“Scalable stochastic processors,” in Design, Automation
and Test in Europe (DATE), 2010.

[7] B. Grigorian, N. Farahpour, and G. Reinman, “BRAINIAC:
Bringing reliable accuracy into neurally-implemented
approximate computing,” in International Symposium on
High-Performance Computer Architecture (HPCA), 2015.

[8] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop
perforation,” in European Software Engineering Conference
and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE), 2011.

[9] L. Renganarayana, S. Vijayalakshmi, R. Nair, and
D. Prener, “Programming with relaxed synchronization,” in
ACM Workshop on Relaxing Synchronization for Multicore
and Manycore Scalability (RACES), 2012.

[10] T. Nowatzki, J. Menon, C.-H. Ho, and K. Sankaralingam,
“gem5, GPGPUSim, McPAT, GPUWattch, 〈your favorite
simulator here〉 considered harmful,” in Workshop on
Duplicating, Deconstructing and Debunking (WDDD),
2014.

[11] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger,
“Neural acceleration for general-purpose approximate

programs,” in IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2012.

[12] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip,
L. Ceze, and M. Oskin, “ACCEPT: A programmer-guided
compiler framework for practical approximate computing,”
Tech. Rep. UW-CSE-15-01-01, University of Washington,
2015.

[13] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,
“Pin: Building customized program analysis tools with
dynamic instrumentation,” in ACM Conference on
Programming Language Design and Implementation
(PLDI), 2005.

[14] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and
N. Jouppi, “McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore
architectures,” in IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2009.

[15] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman, “EnerJ: Approximate data
types for safe and general low-power computation,” in ACM
Conference on Programming Language Design and
Implementation (PLDI), 2011.

[16] I. J. Chang, D. Mohapatra, and K. Roy, “A priority-based
6T/8T hybrid SRAM architecture for aggressive voltage
scaling in video applications,” IEEE Trans. Circuits and
Systems for Video Technology, vol. 21, no. 2, pp. 101–112,
2011.

[17] A. Sundaram, A. Aakel, D. Lockhart, D. Thaker, and
D. Franklin, “Efficient fault tolerance in multi-media
applications through selective instruction replication,” in
Workshop on Radiation Effects and Fault Tolerance in
Nanometer Technologies, 2008.

[18] D. Palframan, N. S. Kim, and M. Lipasti, “Precision-aware
soft error protection for GPUs,” in International
Symposium on High-Performance Computer Architecture
(HPCA), 2014.

[19] D. S. Khudia and S. Mahlke, “Harnessing soft computations
for low-budget fault tolerance,” in IEEE/ACM
International Symposium on Microarchitecture (MICRO),
2014.

[20] M. Rinard, “Parallel synchronization-free approximate data
structure construction,” in USENIX Workshop on Hot
Topics in Parallelism (HotPar), 2013.

[21] S. Misailovic, S. Sidiroglou, and M. C. Rinard, “Dancing
with uncertainty,” in ACM Workshop on Relaxing
Synchronization for Multicore and Manycore Scalability
(RACES), 2012.

[22] C. Rubio-Gonzalez, C. Nguyen, H. D. Nguyen, J. Demmel,
W. Kahan, K. Sen, D. H. Bailey, C. Iancu, and D. Hough,
“Precimonious: Tuning assistant for floating-point
precision,” in International Conference for High
Performance Computing, Networking, Storage and
Analysis, 2013.

[23] T. M. Aamodt and P. Chow, “Compile-time and
instruction-set methods for improving floating- to
fixed-point conversion accuracy,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 7, no. 3, 2008.

[24] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization
for floating-point multimedia applications,” IEEE
Transactions on Computers, vol. 54, pp. 922 – 927, July
2005.

[25] J. S. Miguel, M. Badr, and N. Enright Jerger, “Load value
approximation,” in IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2014.

[26] B. Thwaites, G. Pekhimenko, A. Yazdanbakhsh, J. Park,
G. Mururu, H. Esmaeilzadeh, O. Mutlu, and T. Mowry,
“Rollback-free value prediction with approximate loads,” in
International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2014.

[27] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and
S. Mahlke, “Sage: Self-tuning approximation for graphics

12



engines,” in IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2013.

[28] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar, “Reducing
power by optimizing the necessary precision/range of
floating-point arithmetic,” IEEE Transactions on Very
Large Scale Integration Systems (VLSI), vol. 8, no. 3, 2000.

[29] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading
accuracy for power with an underdesigned multiplier
architecture,” in VLSI Design, 2011.

[30] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra,
“ERSA: Error resilient system architecture for probabilistic
applications,” in Design, Automation and Test in Europe
(DATE), 2010.

[31] Y. Yetim, M. Martonosi, and S. Malik, “Extracting useful
computation from error-prone processors for streaming
applications,” in Design, Automation and Test in Europe
(DATE), 2013.

[32] Y. Yetim, S. Malik, and M. Martonosi, “CommGuard:
Mitigating communication errors in error-prone parallel
execution,” in International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2015.

[33] R. St. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites,
H. Esmaeilzadeh, A. Hassibi, L. Ceze, and D. Burger,
“General-purpose code acceleration with limited-precision
analog computation,” in International Symposium on
Computer Architecture (ISCA), 2014.

[34] W. Baek and T. M. Chilimbi, “Green: a framework for
supporting energy-conscious programming using controlled
approximation,” in ACM Conference on Programming
Language Design and Implementation (PLDI), 2010.

[35] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe, “Petabricks: A language
and compiler for algorithmic choice,” in ACM Conference
on Programming Language Design and Implementation
(PLDI), 2009.

[36] A. K. Mishra, R. Barik, and S. Paul, “iACT: A
software-hardware framework for understanding the scope
of approximate computing,” in Workshop on Approximate
Computing Across the System Stack (WACAS), 2014.

[37] B. Grigorian and G. Reinman, “Accelerating divergent
applications on simd architectures using neural networks,”
in International Conference on Computer Design (ICCD),
2014.

[38] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke,
“Paraprox: Pattern-based approximation for data parallel
applications,” in International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2014.

[39] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. C. Rinard, “Dynamic knobs for
responsive power-aware computing,” in International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011.

[40] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger,
“Architecture support for disciplined approximate
programming,” in International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2012.

[41] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax:
an architectural framework for software recovery of
hardware faults,” in International Symposium on Computer
Architecture (ISCA), 2010.

[42] M. Carbin, S. Misailovic, and M. Rinard, “Verifying
quantitative reliability of programs that execute on
unreliable hardware,” in ACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2013.

[43] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley,
D. Grossman, and L. Ceze, “Expressing and verifying
probabilistic assertions,” in ACM Conference on
Programming Language Design and Implementation
(PLDI), 2014.

[44] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH
Comput. Archit. News, vol. 39, no. 2, 2011.

[45] T. Carlson, W. Heirman, and L. Eeckhout, “Sniper:
Exploring the level of abstraction for scalable and accurate
parallel multi-core simulation,” in High Performance
Computing, Networking, Storage and Analysis (SC), 2011
International Conference for, 2011.

[46] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “The McPAT framework for
multicore and manycore architectures: Simultaneously
modeling power, area, and timing,” ACM Trans. Archit.
Code Optim., vol. 10, pp. 5:1–5:29, Apr. 2013.

[47] “LPDDR4 moves mobile.” Presented by: Skinner, Daniel.
Micron Technology, Inc. Mobile Forum 2013.

[48] A. Carroll and G. Heiser, “An analysis of power
consumption in a smartphone,” in USENIX Annual
Technical Conference, 2010.

[49] K. Barker, T. Benson, D. Campbell, D. Ediger, R. Gioiosa,
A. Hoisie, D. Kerbyson, J. Manzano, A. Marquez, L. Song,
N. Tallent, and A. Tumeo, PERFECT (Power Efficiency
Revolution For Embedded Computing Technologies)
Benchmark Suite Manual. Pacific Northwest National
Laboratory and Georgia Tech Research Institute, December
2013. http://hpc.pnnl.gov/projects/PERFECT/.

[50] C. Bienia, Benchmarking Modern Multiprocessors. PhD
thesis, Princeton University, January 2011.

[51] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and
T. Mudge, “Razor: a low-power pipeline based on
circuit-level timing speculation,” in IEEE/ACM
International Symposium on Microarchitecture (MICRO),
2003.

[52] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman,
and N. P. Jouppi, “A comprehensive memory modeling tool
and its application to the design and analysis of future
memory hierarchies,” in International Symposium on
Computer Architecture (ISCA), 2008.

[53] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard,
“Quality of service profiling,” in International Conference
on Software Engineering (ICSE), 2010.

[54] M. F. Ringenburg, A. Sampson, L. Ceze, and D. Grossman,
“Quality of service profiling and autotuning for
energy-aware approximate programming,” Tech. Rep.
UW-CSE-12-07-02, University of Washington, 2012.

[55] V. K. Chippa, S. T. Chakradhar, K. Roy, and
A. Raghunathan, “Analysis and characterization of inherent
application resilience for approximate computing,” in DAC,
2013.

[56] H. Esmaeilzadeh, K. Ni, and M. Naik,
“Expectation-oriented framework for automating
approximate programming,” Tech. Rep. GT-CS-13-07,
Georgia Institute of Technology, 2013.

[57] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks,
“Aladdin: A pre-RTL, power-performance accelerator
simulator enabling large design space exploration of
customized architectures,” in International Symposium on
Computer Architecture (ISCA), 2014.

[58] G. Contreras and M. Martonosi, “Power prediction for Intel
XScale processors using performance monitoring unit
events,” in International Symposium on Low Power
Electronics and Design (ISLPED), 2005.

[59] C. Isci and M. Martonosi, “Runtime power monitoring in
high-end processors: Methodology and empirical data,” in
IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2003.

[60] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A
comparison of high-level full-system power models,” in
USENIX Workshop on Power-Aware Computing and
Systems (HotPower), 2008.

13

http://hpc.pnnl.gov/projects/PERFECT/


[61] S. Van den Steen, S. De Pestel, M. Mechri, S. Eyerman,
T. Carlson, D. Black-Schaffer, E. Hagersten, and
L. Eeckhout, “Micro-architecture independent analytical
processor performance and power modeling,” in
International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2015.

14


	Introduction
	Taxonomy of Approximations
	Dimensions
	Discussion

	Framework
	Application Profiling
	Energy Model
	Energy Model Training & Validation
	Quality Modeling
	Linking Energy & Quality

	Evaluation
	Techniques and Benchmarks
	Overview of Results
	Fine- vs. Coarse-Grained Approximations
	Specialization and Acceleration
	Programmer Effort
	PERFECT Benchmarks

	Related Work
	Conclusion
	References

