
VisualCloud Demonstration: A DBMS for Virtual Reality
Brandon Haynes, Artem Minyaylov, Magdalena Balazinska, Luis Ceze, Alvin Cheung

Department of Computer Science & Engineering, University of Washington
Seattle, Washington

{bhaynes, artemvm, magda, luisceze, akcheung}@cs.washington.edu

ABSTRACT
We demonstrate VisualCloud, a database management system de-
signed to efficiently ingest, store, and deliver virtual reality (VR)
content at scale. VisualCloud targets both live and prerecorded
spherical panoramic (a.k.a. 360◦) VR videos. It persists content as a
multidimensional array that utilizes both dense (e.g., space and time)
and sparse (e.g., bit and frame rate) dimensions. VisualCloud uses
orientation prediction to reduce data transfer by degrading out-of-
view portions of the video. Content delivered through VisualCloud
requires 40% less bandwidth than existing methods and scales to
many concurrent connections.

This demonstration will allow attendees to view both live and
prerecorded VR video content served through VisualCloud. Viewers
will be able to dynamically adjust tuning parameters (e.g., bitrates
and path prediction) and observe changes in visual fidelity.

1 INTRODUCTION
Recent advances in computing and network hardware have increased
interest in immersive 3D virtual reality (VR) applications. Spherical
panoramic VR videos (a.k.a. 360◦ videos) are one popular example
of these applications; other examples include VR games and aug-
mented reality (AR). 360◦ videos allow a user, through the use of a
VR head-mounted display or mobile device (a headset), to observe
a scene from a fixed position at any angle. The videos are captured
using multiple cameras and produced using software that stitches
together parts of each frame to produce an approximate (potentially
stereoscopic) spherical representation [14]. Devices that support
the ability to record and view VR video have become increasingly
popular, and efficiently managing this type of data has thus become
increasingly important.

Data volume is a major challenge of VR applications, especially
in the presence of mobile viewers, which are subject to bandwidth
and battery power constraints. Data sizes involved in streaming and
storing 360◦ videos far exceed those seen with ordinary 2D videos.
A single frame of uncompressed 2D ultra high-definition (UHD)
video at 4K resolution (3840 × 2160 pixels) requires approximately
24MB to store [1]. In contrast, to render UHD 360◦ video on a
headset with a 120◦ field of view (FOV), we need a much larger
frame (∼3× higher resolution) since only a portion of the projection
is viewed at any time (see Figure 1). Persisting each such frame

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD, 2017
© 2016 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

Equirectangular Projection Spherical Projection

Figure 1: An equirectangular frame encoded within each 360◦
video (left) and it’s projection onto a sphere. Only a small por-
tion of the sphere is within a user’s field of view at any time.

requires more than 9× space compared to its 2D counterpart. For
stereoscopic videos, this requirement doubles!

Existing streaming VR video platforms (e.g., [12]) treat VR video
in the same way as ordinary 2D video, and are thereby poorly-suited
for dealing with the massive quantities of data that high-resolution
VR video streaming requires. When 360◦ video is delivered over a
network, these approaches reduce bandwidth only in the face of net-
work congestion and do so by sacrificing quality. The approach that
they use, called adaptive streaming (e.g., DASH [11]), is illustrated
in Figure 2: The server temporally segments an input video and
encodes each n-second fragment at various qualities. A client then
requests fragments at appropriate quality based on available network
capacity. The fragments are concatenated on the client before being
rendered. Typical fragment sizes generally fall into the range of
one to twenty seconds, and the encoding process may be performed
either as a preprocessing step or at time of request (e.g., for live
video).

In contrast to the above, our approach is to develop a system that
can dramatically cut bandwidth requirements without significant
impact on quality. To achieve this goal, we have built a prototype
of a new system, called VisualCloud. The system’s goal is to better
support VR applications through existing and novel data manage-
ment techniques. The current version of the system focuses on 360◦

videos, but we plan to generalize this in the future. The initial design
and prototype further target the effective reduction of bandwidth
at the viewer without impacting the immersive experience of 360◦

videos. Reducing the amount of data streamed to viewers has been
shown to reduce both network traffic and also battery consumption
on viewers [2].

More specifically, VisualCloud is a new database management
system for the storage, retrieval, and streaming of both archived
and live VR data. To reduce the amount of data that needs to be
transferred to viewers, VisualCloud segments 360◦ videos both in
time and in space. This design is inspired by recent work that
demonstrated substantial savings from degrading the out-of-view
portions of each frame [13]. Since it is advantageous to deliver
out-of-view segments at lower quality, VisualCloud prefetches and
prioritizes the spatiotemporal segments that are most likely to be

Segment
1

Segment
2

Segment
𝑛

Temporal
Segmentation

(1 − 20 seconds)

Time

Segment
Encoding

Segment 𝑛
Low

Quality

Segment 𝑛
Medium
Quality

Segment 𝑛
High

Quality

Adaptive Streaming Server Client

Adaptive Segment Requests

…

Projection

Playback

Segment 1
Low

Quality

Segment 2
Medium
Quality

Segment 𝑛
High

Quality

…

Equirectangular
Video

Figure 2: Adaptive streaming in a VR context. On the server, a
video is temporally segmented into 1-20 second slices. Each slice
is encoded at various qualities. A client then requests segments
at a given quality based on network congestion. Segments are
concatenated, projected, and rendered on a headset.

viewed. It transfers those segments using the highest resolution and
other segments with lower resolutions. Additionally, VisualCloud
implements in-memory and near real-time 360◦ video partitioning
and preprocessing to generate multi-resolution data segments and
reduce bandwidth utilization even for live streams.

VisualCloud builds on recent work in multidimensional array
processing [9] and develops new techniques for VR data storage and
retrieval and near real-time in memory processing of VR videos. Our
system combines the state of the art in array-oriented systems (e.g.,
efficient multidimensional array representation, tiling, prefetching)
with the ability to apply recently-introduced optimizations by the
multimedia (e.g., motion-constrained tile sets) and machine learning
communities (e.g., path prediction). VisualCloud reduces bandwidth
(and thus also power) consumption on client devices, scales to many
concurrent connections, and offers an enhanced viewer experience
over congested network connections.

The VisualCloud demonstration will enable attendees to view both
archived and live 360◦ video content served through the VisualCloud
system. Each participant will begin by specifying VisualCloud
tuning parameters (see Figure 5) and then view 360◦ videos served
using those parameters. Participants will be invited to contrast video
fidelity for their hand-selected configuration against an expert-tuned
configuration and video served using naı̈ve 2D streaming techniques.
Attendees will also be able to view the performance advantages
afforded by VisualCloud (see Figure 6). Bystanders will be able
to view the content delivered to users and bandwidth totals on a
separate monitor.

In sum, this demonstration makes the following contributions:
• It presents the architecture of the VisualCloud system.
• It demonstrates that content streamed through VisualCloud

is of similar visual fidelity to video transmitted naı̈vely; in
particular, an appropriate set of tuning parameters leads to
a viewing experience indistinguishable from naı̈ve delivery.

• It demonstrates that VisualCloud delivers video using ap-
proximately 40% less bandwidth when compared to naı̈ve
adaptive streaming approaches.

• It demonstrates the above two points on both archived and
new streaming data.

2 BACKGROUND
As illustrated in Figure 1, a VR headset accomplishes the illusion
of immersion by mapping video data onto a spherical geometry and
displaying only the subset of the data that is within the user’s current
field of view (FOV; typically 90-110◦). Video frames are often
represented internally in rectangular form; this approach allows for
existing 2D video encoding and decoding techniques to be leveraged.
To convert spherical video frames into rectangular form, a capture
device performs an equirectangular (ER) projection; the headset
performs the inverse projection prior to rendering.

3 THE VISUALCLOUD SYSTEM
The VisualCloud system contains two major subcomponents – the
VisualCloud Server (VCS), which operates on one or more external
servers, and the VisualCloud Client (VCC), which runs on a user’s
headset. The main unit of data exchanged between the VCS and
VCC is a video segment, which is a spatiotemporal subset of a video
encoded at a particular quality level. The VCS is responsible for
ingesting live or prerecorded video, spatiotemporally partitioning
and encoding it, and serving segments to clients. The VCC, as it
receives segments from a server, reconstructs them into a playable
video stream and renders it on a headset. These components and
their interactions are illustrated in Figure 3.

Both the VCS and VCC contain logic (respectively labeled as the
predictor and prefetcher on Figure 3) that serves to identify segments
that are likely to be subsequently viewed, based on a user’s current
position and the behavior of previous users. They also contain a
caching layer used to improve performance through the staging of
predicted and prefetched segments.

We discuss the VCS and VCC in the following two sections.

3.1 VisualCloud Server Architecture
3.1.1 Storage Manager. There are several challenges associ-

ated with building a storage layer for VR video applications. The first
challenge lies in choosing the best partitioning of videos into spa-
tiotemporal fragments. The partitioning must ensure that adaptively
streaming fragments yields a high-quality experience for end-users
while effectively reducing bandwidth. The second challenge lies
in laying out the segments on disk taking into account the fact that
spatiotemporal segments may be encoded at various qualities to
reduce data transfer bandwidth. Finally, for performance reasons
it is critical that, where possible, video is stored in a manner that
avoids an expensive intermediate decode and encode step.

Addressing these challenges, the VCS storage manager (SM) is
responsible for decomposing ingested (potentially live) video and
storing it for subsequent delivery to a client. The SM temporally
decomposes each video into n-second fragments, and then spatially
decomposes each fragment into a grid of video segments. Each three-
dimensional segment is then associated with an encoding quality.
This decomposition is illustrated in Figure 4.

When persisting each segment, we use the TileDB array-based
database system [9], which we extended to support the VP9 [8]
codec as an internal compression method. TileDB offers an efficient,
low-level API for data represented as a multidimensional array,
and allows arrays to be represented using both dense and sparse
dimensions. Data tiles are compressed using our integrated video
codec and persisted on disk as distinct files.

Tile
Stitcher

Headset

Tile
Client

Prefetcher

Client
Cache

Tile
Server

Prediction
Engine

Storage
Manager

Tile
Cache

Client (VCC) Server (VCS)
Data Flow

Control Flow
Live Video

Figure 3: The VisualCloud architecture. The server-based components (VCS) are responsible for ingesting, segmenting, transmitting,
and storing video. The VCC requests tiles in prediction-based order, stitches segments together, and displays the result on the headset.

0 𝑚

Time 0

𝑚

VisualCloud
Segment

Video
Encoder

360° Video

Video Frames

Time

Segments

Figure 4: The video spatiotemporal segmentation process, used
both in the storage manager and during in-memory stream pro-
cessing. 360◦ videos are segmented in time and then spatially
decomposed into segments. Each segment is stored as a single
encoded fragment.

3.1.2 Prediction. A key challenge for VisualCloud involves
predicting which video segments should be downloaded at high
quality. For example, downloading all segments at the highest qual-
ity wastes bandwidth and risks degraded client performance, while
choosing to download important segments at low quality leads to
poor user experience. Correctly predicting user behavior to select
only those segments a user will actually view is critical for perfor-
mance.

The VCS prediction component (predictor) is used to predict
which video segment a user is likely to look at next. VisualCloud
uses the model in two ways. First, the predictor applies the model
when selecting which segments to degrade in quality (and by how
much). Second, the VCC prefectcher (see Section 3.2.1) applies the
model to determine the order in which video segments are down-
loaded, along with what quality to request.

We build on the orientation prediction approach outlined in the
Outatime system [7] to make these predictions. Outatime builds a
Markov-based model where transition probabilities are applied to
estimate a position and orientation at some future time. Outatime
makes its predictions based on network round trip time. VisualCloud,
on the other hand, predicts farther into the future based on the length
of the video segments stored in the SM.

3.1.3 In-Memory Stream Processing. When serving live
streams, there is insufficient time to persist video segments on disk
through the storage manager. Instead, the VCS performs segmenta-
tion in-memory as the data arrives from the capture device. A major
challenge here is to create only those segments that will be needed,
and deliver those that are not to the SM for subsequent processing.
To accomplish this selection task, the VCS leverages the prediction
engine and prepares the top-k segments that are most likely to be
viewed using the highest quality only and increasingly less likely
segments using lower qualities.

Additionally, it is critical that the VCS maintain a sufficiently-
large buffer to allow for the various quality levels to be encoded. The
VCS ensures this by beginning with a very large initial buffer. As
this is exhausted, the VCS drops encoding quality levels until only
the lowest quality is prepared. As a last resort, the VCS load-sheds
by throttling frames received from the VR capture device.

3.2 VisualCloud Client Architecture
3.2.1 Prefetching. The VCC requests spatiotemporally-

segmented video chunks from the VCS at a given quality. There
are two challenges associated with this process. First, a client must
decide what order to use when retrieving the segments – for the best
visual experience it is advantageous to prioritize the segments that
are likely to be viewed. The client must also decide what quality to
request when obtaining segments. Segments that are rarely viewed
can be safely requested at low quality, while a segment that is likely
to be viewed (even if not in the current orientation) should be priori-
tized. These decisions must be made both for the current time and,
when possible, for future periods.

The VCC prefetcher addresses this problem by obtaining the
prediction model exposed by the predictor (see Section 3.1.2) and
using it to generate a ranking of segments viewed by previous users.
It ranks each segment using a method similar to that described in
the Forecache system [3], but extends their approach to support the
temporal dimension.

3.2.2 Stitching. Once the VCC has obtained a set of segments
(at various qualities) for a given unit of time, it must reassemble
those segments into an equirectangular video suitable for playback.
VisualCloud adopts a technique similar to that described by Zare et
al. [13] that allows the segments to be simply and efficiently concate-
nated. This avoids the need to individually decode each segment and
re-encode as a unified video, which is extremely computationally
expensive.

VisualCloud
Mode: User Configuration
Bandwidth saved: 420MB

VisualCloud
Mode: User Configuration
Bandwidth saved: 420MB

Figure 6: A user’s headset view of the 360◦ video selected and
configured in Figure 5. Overlaid is the current bandwidth con-
sumption used to deliver video under the selected configuration.

Select a video:

Roller Coaster Kittens! Concert

VisualCloud configuration:

Begin

Prediction:

Algorithm:

 Include Previous Users

Hybrid ▼

Tolerance: Low ▼

Segmentation:
Temporal: 1 second

8 columns

▼

▼

Spatial: 4 rows ▼

Quality:
Bitrates: 1500 / 500 / 50▼

Framerate: 30 ▼

Figure 5: The configuration user interface for the VisualCloud
demo. Users select a video to view along with prediction and
encoding parameters such as prediction algorithm and segment
duration.

4 DEMONSTRATION
Our demonstration will enable attendees to view 360◦ video content
served through VisualCloud at various fidelity levels. Each partici-
pant will begin by configuring his or her viewing experience. This
involves first selecting what to view; participants may choose either
a live feed or from several prerecorded videos. Participants will then
adjust VisualCloud tuning parameters, which include prediction al-
gorithm and hyperparameters, spatiotemporal segmentation strategy,
and encoding quality. The user interface for the configuration phase
is illustrated in Figure 5.

Participants will next don a headset and view 360◦ video content
delivered through VisualCloud. Each video playback session will be
segmented into three parts. In the first part, attendees will view the
video using their (potentially poorly-selected) configuration parame-
ters. Next, viewers will view video delivered using expert-selected
parameters. Finally, viewers will view video delivered using a 2D
streaming approach. As illustrated in Figure 6, participants will be
able to observe the bandwidth consumed by each method in real-
time, and will be invited to contrast the fidelity of each delivery
strategy. Bystanders will be able to view the content delivered to
users and bandwidth totals on a separate monitor.

VisualCloud will operate the server-side components of the
demonstration in the Amazon EC2 cloud; a local server will be
available as a backup should on-site bandwidth be too low to ade-
quately support cloud-based delivery. Headsets will be available as
part of the demonstration; however, when a user has a mobile device
with appropriately advanced hardware, he or she may elect to use
that as an alternative by placing it inside a Google cardboard [6]
viewer supplied as part of the demonstration.

5 RELATED WORK
Current array database systems [4, 10] are oriented toward data
retrieval and analytics and are ill-suited for high-performance real-
time streaming. Additionally, array-oriented database systems lack
native support for modern video codecs (e.g., [9]) and cannot natively
take advantage of the potential optimizations that may be derived
through their use.

Some previous systems have explored prediction, prefetching,
and speculative execution in a virtual reality context [5, 7]; however,
these systems target artificial environments such as those found in
games. Other data exploration systems have explored the dynamic
prefetching of tiles in a two-dimensional context [3]. Finally, Visual-
Cloud takes advantage of prior work involving bandwidth-reduction
techniques for adaptive 360◦ videos [13].

6 CONCLUSION
In this demonstration, we introduce the VisualCloud system. By rep-
resenting VR content as a multidimensional array and performing
motion prediction, VisualCloud delivers content using less band-
width, scales to many concurrent connection, and requires less de-
coding power on client devices. In this demonstration, attendees
will observe VisualCloud, tune its parameters, and contrast its visual
fidelity with traditional video streaming techniques.

REFERENCES
[1] Parameter values for UHDTV systems for production and international pro-

gramme exchange. Technical Report BT.2020-2, International Telecommuni-
cations Union, October 2015.

[2] M. A. Baker, V. Parameswaran, K. S. Chatha, and B. Li. Power reduction
via macroblock prioritization for power aware H.264 video applications. In
CODES+ISSS, 2008.

[3] L. Battle, R. Chang, and M. Stonebraker. Dynamic prefetching of data tiles for
interactive visualization. In SIGMOD, 2016.

[4] P. Baumann, A. M. Dumitru, and V. Merticariu. The array database that is not a
database: File based array query answering in Rasdaman. In SSTD, 2013.

[5] K. Boos, D. Chu, and E. Cuervo. Flashback: Immersive virtual reality on mobile
devices via rendering memoization. In MobiSys, 2016.

[6] Google cardboard. https://www.google.com/get/cardboard.
[7] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev, S. Grizan, A. Wolman, and

J. Flinn. Outatime: Using speculation to enable low-latency continuous interaction
for mobile cloud gaming. In MobiSys, 2015.

[8] D. Mukherjee, J. Han, J. Bankoski, R. Bultje, A. Grange, J. Koleszar, P. Wilkins,
and Y. Xu. A technical overview of VP9 - the latest open-source video codec.
SMPTE, 124(1):44–54, 2015.

[9] S. Papadopoulos, K. Datta, S. Madden, and T. G. Mattson. The TileDB array data
storage manager. PVLDB, 10(4):349–360, 2016.

[10] J. Rogers et al. Overview of SciDB: Large scale array storage, processing and
analysis. In SIGMOD, 2010.

[11] T. Stockhammer. Dynamic adaptive streaming over HTTP - standards and design
principles. In MMSYS, 2011.

[12] YouTube. https://www.youtube.com/.
[13] A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj. HEVC-compliant

tile-based streaming of panoramic video for virtual reality applications. In ACMM,
2016.

[14] Z. Zhu, G. Xu, E. M. Riseman, and A. R. Hanson. Fast generation of dynamic
and multi-resolution 360◦ panorama from video sequences. In ICMCS, 1999.

https://www.google.com/get/cardboard
https://www.youtube.com/

	Abstract
	1 Introduction
	2 Background
	3 The System
	3.1 VisualCloud Server Architecture
	3.2 VisualCloud Client Architecture

	4 Demonstration
	5 Related Work
	6 Conclusion
	References

