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Abstract
The emergence of programmable network devices and the
increasing data traffic of datacenters motivate the idea of
in-network computation. By offloading compute operations
onto intermediate networking devices (e.g., switches, net-
work accelerators, middleboxes), one can (1) serve network
requests on the fly with low latency; (2) reduce datacenter
traffic and mitigate network congestion; and (3) save energy
by running servers in a low-power mode. However, since
(1) existing switch technology doesn’t provide general com-
puting capabilities, and (2) commodity datacenter networks
are complex (e.g., hierarchical fat-tree topologies, multipath
communication), enabling in-network computation inside a
datacenter is challenging.

In this paper, as a step towards in-network computing, we
present IncBricks, an in-network caching fabric with basic
computing primitives. IncBricks is a hardware-software co-
designed system that supports caching in the network using a
programmable network middlebox. As a key-value store ac-
celerator, our prototype lowers request latency by over 30%
and doubles throughput for 1024 byte values in a common
cluster configuration. Our results demonstrate the effective-
ness of in-network computing and that efficient datacenter
network request processing is possible if we carefully split
the computation across the different programmable com-
puting elements in a datacenter, including programmable
switches, network accelerators, and end hosts.
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1. Introduction
Networking is a core part of today’s datacenters. Modern ap-
plications such as big data analytics and distributed machine
learning workloads [7, 11, 18, 31, 49] generate a tremendous
amount of network traffic. Network congestion is a major
cause of performance degradation, and many applications
are sensitive to increases in packet latency and loss rates.
Therefore, it is important to reduce traffic, lower communi-
cation latency, and reduce data communication overheads in
commodity datacenters.

Existing networks move data but don’t perform compu-
tation on transmitted data, since traditional network equip-
ment (including NICs, switches, routers, and middleboxes)
primarily focuses on achieving high throughput with limited
forms of packet processing. Recently, driven by software-
defined networking (SDN) and rapidly changing require-
ments in datacenter networks, new classes of programmable
network devices such as programmable switches (e.g., In-
tel’s FlexPipe [5], Cavium’s XPliant [10], the Reconfig-
urable Match-Action Table architecture [16] and network
accelerators (e.g., Cavium’s OCTEON and LiquidIO prod-
ucts [9], Netronome’s NFP-6000 [13], and FlexNIC [29]
have emerged. Programmable switches allow for application-
specific header parsing and customized match-action rules,
providing terabit packet switching with a light-weight pro-
grammable forwarding plane. Network accelerators are
equipped with scalable low-power multicore processors and
fast traffic managers that support more substantial data
plane computation at line rate. Together, they offer in-
transit packet processing capabilities that can be used for
application-level computation as data flows through the net-
work.



The key idea of in-network computation (INC) is to of-
fload a set of compute operations from end-servers onto
programmable network devices (primarily switches and net-
work accelerators) so that (1) remote operations can be
served on the fly with low latency; (2) network traffic is
reduced; and (3) servers can be put in low-power mode (e.g.,
Intel C6 state) or even be turned off or removed, leading to
energy and cost savings.

However, offloading computation to the network has
three challenges. First, even though the hardware resources
associated with programmable network infrastructure have
been improving over time, there is limited compute power
and little storage to support general datacenter computation
or services (like a key-value store). For instance, the Intel
FlexPipe [5] chip in the Arista 7150S switch [6] has a flexi-
ble parser and a customizable match-action engine to make
forwarding decisions and control flow state transitions. The
switch is programmed with a set of rules, and then it applies
data-driven modifications to packet headers as packets flow
through the switch. The 9.5 MB packet buffer memory on
this switch is not exposed for storing non-packet data; even
if it was, the bulk of it would still be needed to buffer incom-
ing traffic from dozens of ports in the case of congestion,
leaving limited space for other uses. Network accelerators
have less severe space and processing constraints, but that
flexibility comes at the cost of reduced interface count and
lower routing and traffic management performance when
compared with switches. Second, datacenter networks offer
many paths between end-points [24, 39, 44], and network
component failures are commonplace, so keeping computa-
tions and state coherent across networking elements is com-
plex. Finally, in-network computation needs a simple and
general computing abstraction that can be easily integrated
with application logic in order to support a broad class of
datacenter applications.

In this paper we address the challenges outlined above
and make the first step towards enabling in-network compu-
tation. We propose IncBricks, an in-network caching fabric
with basic computing primitives, based on programmable
network devices. IncBricks is a hardware/software co-designed
system, comprising IncBox and IncCache. IncBox is a hy-
brid switch/network accelerator architecture that offers flex-
ible support for offloading application-level operations. We
choose a key-value store as a basic interface to the in-
network caching fabric because it is general and broadly
used by applications. We build IncCache, an in-network
cache for key-value stores, and show that it significantly re-
duces request latency and increases throughput. IncCache
borrows ideas from shared-memory multiprocessors and
supports efficient coherent replication of key-value pairs.
To support more general offloading, we provide basic com-
puting primitives for IncCache, allowing applications to per-
form common compute operations on key-value pairs, such
as increment, compare and update, etc. We prototype IncBox
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Figure 1. An overview of the IncBricks system architecture
in a commodity datacenter network.

using Cavium’s XPliant switches and LiquidIO boards. Our
real system evaluations demonstrate that (1) in-network
caching can provide common datacenter service abstrac-
tions with lower latency and higher throughput than existing
software-only implementations; and (2) by carefully split-
ting the computation across programmable switches, net-
work accelerators, and end hosts, one can achieve fast and
efficient datacenter network request processing.

2. IncBricks system architecture
This section describes the IncBricks system architecture in
the context of a datacenter. We first present the background
of a commodity datacenter network and characteristics of
programmable network switches and network accelerators,
which are used in our work. Then we discuss the internal
architecture of IncBricks in detail and explain how IncBricks
integrates into existing networks.

2.1 Datacenter network
Figure 1 shows a typical datacenter network [24, 39, 45],
with a hierarchical topology reaching from a layer of servers
in racks at the bottom to a layer of core switches at the
top. Each rack contains roughly 20 to 40 nodes, which con-
nect to a Top of Rack (ToR) switch via 10 Gbps links. ToR
switches connect to multiple aggregation switches (for both
redundancy and performance) using 10–40 Gbps links, and
these aggregation switches further connect to core switches
with a higher bandwidth (e.g., 100 Gbps) link. To offer
higher aggregate bandwidth and robustness, modern data-
centers create multiple paths in the core of the network by
adding redundant switches. Switches usually run a variant of
ECMP [2] routing, hashing network flows across equal cost
paths to balance load across the topology. Multiple paths
bring coherence challenges to our IncBricks system design,
which we discuss in Section 4.

Traditional Ethernet switches take an incoming packet
and forward it based on a forwarding database (FDB). They
comprise two parts: a data plane, which focuses on process-
ing network packets at line rate, and a control plane, which



is used for configuring forwarding policies. The data plane
consists of specialized logic for three core functions: (1)
an ingress/egress controller, which maps transmitted and re-
ceived packets between their wire-level representation and
a unified, structured internal format; (2) packet memory,
which buffers in-flight packets across all ingress ports; and
(3) a switching module, which makes packet forwarding de-
cisions based on the forwarding database. The control plane
usually contains a low-power processor (e.g., an Intel Atom
or ARM chip) that is primarily used for adding and remov-
ing forwarding rules. SDN techniques enable dynamic con-
trol and management by making the control plane more pro-
grammable [36, 43].

2.2 Programmable switch and network accelerator
Programmable switches add reconfigurability in their for-
warding plane in order to overcome limitations of previous
fixed-function switches [16]. Intel FlexPipe [5] and Cavium
XPliant [10] are two examples. These switches include three
core configurable units: a programmable parser, a match
memory, and an action engine. This provides two benefits.
First, packet formats are customizable and can be defined
to suit application needs. For example, a key-value appli-
cation can define a custom field that contains the key and
the switch can perform match-action operations based on
this field. Second, they support simple operations based on
the headers of incoming packets. One can perform adaptive
routing based on a custom field, store state on the switches
based on packet contents, and perform packet transforma-
tions (e.g., header modifications) based on stored state.

Network accelerators provide fast packet processing with
three major architectural components: (1) a traffic man-
ager, supporting fast DMA between TX/RX ports and in-
ternal memory; (2) a packet scheduler, maintaining the in-
coming packet order and distributing packets to specific
cores; (3) a low-power multicore (or manycore) proces-
sor, performing general payload modifications. Cavium’s
OCTEON/LiquidIO [9], Netronome’s NFP-6000 [13], and
Mellanox’s NPS-400 [12] are recent commodity products
that are widely used for deep packet inspection, SDN, and
NFV applications. However, these accelerators support only
a few interface ports, limiting their processing bandwidth.

In this work, we build a network middlebox by combining
the above two hardware devices. We discuss our design
decisions in Section 3.1 and show that one can achieve
fast and efficient datacenter network request processing by
taking advantage of all computing units along the packet
path.

2.3 IncBricks
IncBricks is a hardware/software co-designed system that
enables in-network caching with basic computing primi-
tives. It comprises two components, IncBox and IncCache,
shown in Figure 1.

IncBox is a hardware unit consisting of a network ac-
celerator co-located with an Ethernet switch. After a packet
marked for in-network computing arrives at the switch, the
switch will forward it to its network accelerator, which per-
forms the computation.

IncCache is a distributed, coherent key-value store aug-
mented with some computing capabilities. It is responsible
for packet parsing, hashtable lookup, command execution,
and packet encapsulation.

Our IncBricks implementation highly depends on the ex-
ecution characteristics of switches. For example, a core or
aggregation switch with higher transmit rate and more ports
might enclose a larger hash table inside its IncCache com-
pared to the hash table of a ToR switch. Moreover, IncBricks
requires that the datacenter has a centralized SDN controller
connecting to all switches so that different IncBricks in-
stances can see the same global view of the system state.

Next we explore the design and implementation of In-
cBricks’ main components.

3. IncBox: Programmable Network
Middlebox

This section describes IncBox, our middlebox. We first dis-
cuss our design decisions and then show the internal archi-
tecture of IncBox.

3.1 Design decisions
A design must support three things to enable in-network
caching: (1) it must parse in-transit network packets and ex-
tract some fields for the IncBricks logic (F1); (2) it must
modify both header and payload and forward the packet
based on the hash of the key (F2); (3) it must cache key/value
data and potentially execute basic operations on the cached
value (F3). In terms of performance, it should provide
higher throughput (P1) and lower latency (P2) than exist-
ing software-based systems for forwarding packets or for
processing payloads.

A network switch is the ideal place to do in-network
computation since all packets are processed by its forward-
ing pipeline. However, traditional fixed-function switches
struggle to meet F1 since their packet parser configura-
tion is static. Software switches (such as Click [30], Route-
Bricks [22] and PacketShader [25]) are able to perform dy-
namic header parsing but they remain two orders of mag-
nitude slower at switching than a hardware switch chip.
This means they fail to meet P1 and P2 in terms of for-
warding, not to mention header or payload modifications.
Programmable switches seem a promising alternative. Their
configurable parsers use a TCAM and action RAM to ex-
tract a customized header vector. During ingress processing,
they could match on different parts of a packet based on user
defined rules and apply header field modifications. Neverthe-
less, programmable switches have two drawbacks: first, they
can support only simple operations, such as read or write to a
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Figure 2. IncBox internal architecture.

specified memory address, or primitive compute operations
(e.g., add, subtract, shift) on counters. There is no support for
more complicated operations on payloads. Second, the size
of packet buffer (along with TCAM and action RAM) is on
the order of a few tens of megabytes; most of that is needed
to store incoming packet traffic and match-action rules, leav-
ing little space for caching. They meet F1 and F2, but to sat-
isfy F3, P1, and P2 in terms of payload-related operations,
we must take advantage of other devices.

We choose network accelerators to satisfy the rest of our
requirements for three reasons. First, their traffic managers
can serve packet data to a processing core in hundreds of
nanoseconds (e.g., 200ns for our OCTEON board), which is
significantly faster than kernel bypass techniques [41]. Sec-
ond, their multicore processors are able to saturate 40Gbps–
100Gbps of bandwidth easily, which is hard to achieve with
general purpose CPUs. Third, they support multiple giga-
bytes of memory, which can be used for caching.

FPGA accelerators like Catapult [17] could also fit our
scenario, but the general purpose processors in the network
accelerator are more flexible and easier to program com-
pared with a FPGA.

3.2 IncBox design and prototype
We carefully split IncBox’s functionality across a pro-
grammable switch and a network accelerator. Figure 2 shows
our design. The switch performs three tasks. The first is
packet checking, which filters in-network caching packets
based on the application header (Section 4.1). If there is
a match, the packet will be forwarded to a network accel-
erator. Otherwise, it will be processed in the original pro-
cessing pipeline. The second is key hit checks, which de-
termines whether the network accelerator has cached the
key or not. This is an optimization between the two hard-
ware units (Section 4.5) and can be bypassed depending on
the switch configuration. The third is packet steering, which
forwards the packet to a specific port based on the hash
value of the key. This will be used when there are multiple
attached network accelerators, to ensure that the same key
from the same network flow will always go the same accel-
erator, avoiding packet reordering issues. Since IncCache is
based on the UDP protocol (Section 4.1), packet reordering
will cause incorrect results (e.g., a GET after SET request

might fail since it could be processed out of order). We ex-
pect that more capabilities will be provided in the upcom-
ing programmable switches (i.e., Barefoot’s Tofino) due to
deeper ingress pipelines and more flexible rewrite engines.
For example, a switch could maintain a Bloom filter of keys
cached by the network accelerator or could even probabilisti-
cally identify heavy-hitter keys that are frequently accessed.
Implementing these operations fully in the switch dataplane
would require reading state updated by previous packets; the
Cavium switch we use requires intervention of its manage-
ment processor to make state updated by one packet avail-
able to another.

The network accelerator performs application-layer com-
putations and runs our IncCache system. First, it extracts
key/value pairs and the command from the packet payload.
Next, it conducts memory related operations. If the com-
mand requires writing a new key/value pair, the accelerator
will allocate space and save the data. If the command re-
quires reading a value based on one key, the accelerator per-
forms a cache lookup. If it misses, the processing stops and
the network accelerator forwards the request further along
its original path. If it hits, the network accelerator goes to
the third stage and executes the command, both performing
any operations on the value associated with the key as well
as conducting cache coherence operations. Finally, after ex-
ecution, the accelerator rebuilds the packet and sends it back
to the switch.

Our IncBox prototype consists of (1) one 3.2 Tbps
(32x100Gbps) Cavium XPliant switch and (2) one Cavium
OCTEON-II many-core MIPS64 network accelerator card.
We use two types of OCTEON-II devices: an OCTEON-
II evaluation board with 32 CN68XX MIPS64 cores and
2GB memory, and a lightweight LiquidIO adapter, enclos-
ing 8 CN66XX MIPS64 cores and 2GB memory. We pro-
gram the switch by (1) adding packet parsing rules for
the new packet header; (2) changing the ingress process-
ing pipeline; and (3) modifying the forwarding database
(FDB) handlers. We program the network accelerator us-
ing the Cavium Development kit (CDK), which provides a
thin data plane OS (OCTEON simple executive) along with
a set of C-language hardware acceleration libraries (such
as compression/decompression, pattern matching, and en-
cryption/decryption). Our software stack uses the hardware
features of this network accelerator for fast packet process-
ing.

4. IncCache: a distributed coherent
key-value store

This section describes the IncCache system design. Inc-
Cache is able to (1) cache data on both IncBox units and
end-servers; (2) keep the cache coherent using a directory-
based cache coherence protocol; (3) handle scenarios related
to multipath routing and failures; and (4) provide basic com-
pute primitives.
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A common design pattern in datacenter applications to-
day is to have two distributed storage layers: a high-latency
persistent storage layer (like MySQL), and a low-latency in-
memory cache layer (like Memcached). IncCache acceler-
ates the latter; when data requests go through the datacenter
network, our IncCache will (1) cache the value in the hash
table (Section 4.2); (2) execute a directory-based cache co-
herence protocol (Sections 4.3, 4.4, 4.5); and (3) perform
computation involving cached values (Section 4.6).

4.1 Packet format
Packet format is one of the key components enabling Inc-
Cache. There are three design requirements: (1) it should
be a common format agreed to by the client, server, and
switch; (2) it should be parsed by the network switch effi-
ciently without maintaining network flow states; and (3) it
should be flexible and easily extended.

We target UDP-based network protocols, which have
been shown to reduce client-perceived latency and over-
head [40] and are also amenable for switch processing with-
out requiring per-flow state. Our in-network computing mes-
sages are carried in the UDP payload; their format is shown
in Figure 3 and described in detail here:

• Request ID (2 bytes): A client-provided value for match-
ing responses with their requests.

•Magic field (6 bytes): Labels in-network cache packets,
allowing switches to filter other UDP packets that should
not be handled by IncCache.

• Command (4 bytes): Selects which operation should be
performed on the key and value in the payload.

• Hash (4 bytes): The hash of the key, which is used to
guarantee ordering inside the network switch.

• Application payload (variable bytes): The key-value pair,
including key, type, value length, and value.

4.2 Hash table based data cache
We use a hash table to cache the key-value data on both
network accelerators and endhost servers. To achieve high
throughput, the hash table should (1) support concurrent
accesses from multiple processing cores and (2) provide
full associativity for cached keys. It should also respect the
constraints of the hardware.

Hash Index Table
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Figure 4. Bucket splitting hash table design. The prefix of a
key’s hash code is looked up in an index table, which points
to (square) sentinel bucket nodes in the bucket list. Hash
table entries are stored in entry lists from each bucket node.
As the table expands, buckets are inserted to create (round)
overflow bucket nodes and the index is extended, and more
sentinel (square) nodes are added.

4.2.1 Fixed size lock-free hash table
We designed the hash table on the network accelerator to
have fixed size due to the limited memory space. It consists
of a set of buckets, each containing an ordered linked list of
entries. Each node in the bucket list has a unique hash code
and serves as the head of an entry list. Items with the same
hash code but different keys are stored on the same entry
list, in sorted order based on the key. The hash table uses
lock-free operations to access and modify its state [26, 37].
For set or delete operations, the hash table interacts with
the memory allocator module to allocate and free data. Our
allocator maintains a fixed number of data items and applies
a least frequently used eviction policy.

4.2.2 Extensible lock-free hash table
On the server side, we implemented an extensible hash table
due to the server’s more relaxed memory constraints. It is
also lock-free, using the split-ordered list technique [47].
Figure 4 shows the structure of the hash table.

Search and insert are the two primary operations, and be-
have similarly. When looking for an item, the hash table first
traverses the bucket list to match a hash code. If there is a
match, the corresponding entry list is searched for an exact
key match. In order to accelerate this lookup process, our
hash table maintains a set of hash indexes that are shortcuts
into the bucket list. We build the hash index by examining
the prefix of the hash code of a given item. An insert op-
eration follows a similar procedure, except that it atomically
swaps in a new node (using compare-and-swap) if there is no
match. To guarantee a constant time lookup, the hash table
dynamically expands the size of the hash index and exam-
ines a progressively longer prefix of an item’s hash code. The
newer elements in the expanded hash index are ordered to
appear after the elements that existed before the expansion,
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resulting in what is known as a recursively split-ordered list.
By recursively splitting the hash indexes with this technique,
we introduce finer-grained shortcuts in a lock-free manner,
without having to copy the index.

4.3 Hierarchical directory-based cache coherence
IncCache allows data to be cached in both IncBox units
and servers. A cache coherence protocol is required to keep
data consistent without incurring high overheads. Maintain-
ing the sharers list (tracking who has the data) is a challenge
since (1) servers don’t know the details of the network topol-
ogy, and (2) there is no shared communication media like the
coherence bus in commodity processors.

Therefore, we propose a hierarchical directory-based
cache coherence protocol. Our key ideas are: (1) take ad-
vantage of the structured network topology by using a hi-
erarchical distributed directory mechanism to record the
sharers information; (2) decouple the system interface and
program interface in order to provide flexible programma-
bility; (3) support sequential consistency for high perfor-
mance SET/GET/DEL requests. We outline the scheme be-
low, wherein we initially constrain the network topology
to a tree topology and then generalize it to a multi-rooted
multi-path topology in the subsequent section.

We place the home directory at the end-host server. Note
that in the tree topology, a source-destination pair uniquely
determines the entire communication path and all of the
switches that can potentially cache the key-value entry.
Hence, the directory only needs to record the source ad-
dress to be able to infer all other potential sharers along the
path. Switches (including ToR/Aggregation/Core) will route
an “in-network” labeled packet to the IncBox unit for fur-
ther processing. For a GET request (Figure 5-a), if there is a
hit, the IncBox replies with the key’s value directly. If not,
the GET request will be forwarded to the end-host server to
fetch the data. For a GET reply (Figure 5-a), each IncBox
on the path will cache the data in the hash table. For SET
and DELETE operations (Figure 5-b), we use a write invali-
dation mechanism. On a SET or DELETE request, switches
first forward the request to the home node and then the home
node issues an invalidation request to all sharers in the direc-
tory. IncBox units receiving this request will delete the data

(specified in the request) from the hash table. The IncBox at
the client-side ToR switch will respond with an invalidation
ACK. After the home node receives all the expected inval-
idation ACKs, it performs the SET or DELETE operation
and then sends a set/delete ACK to the client.

4.4 Extension for multi-rooted tree topologies
We discuss how to address the issue of multiple network
paths between source-destination pairs as would be the case
in multi-rooted network topologies. As existing data centers
provide high aggregate bandwidth and robustness through
multiple paths in a multi-rooted structure, this creates a chal-
lenge for our original cache coherence design—recording
only the source/destination address is not sufficient to re-
construct the sharers list. For example, GET and SET re-
quests might not traverse the same path, and a SET invalida-
tion message might not invalidate the switches that were on
the path of the GET response. We adapt our original cache
coherence protocol to record path-level information for data
requests and also traverse predictable paths in the normal
case, thus minimizing the number of invalidate or update
messages for the cache coherence module.

Figure 6-a shows a multi-path scenario. It has three lay-
ers of switches: ToR, Aggregation, and Core. Each switch
connects to more than one upper layer switch for greater
reliability and performance. We assume each switch routes
based on ECMP. To handle the multi-path scenario, our key
ideas are as follows. (1) Designated caching ensures that
data is only cached at a set of predefined IncBox units for a
given key. Any IncBox units between the designated IncBox
units will not cache that key, meaning that routing between
designated units can use any of the feasible paths. (2) De-
terministic path selection ensures that for a given key and
given destination, the end-host and IncBox units will choose
a consistent set of designated caching IncBox units to tra-
verse. (3) A global registration table (Figure 6-b), replicated
on each IncBox, is used to identify the designated cache lo-
cations and designated paths for a given key and destination
(indexed by a hash of the key rather than the key itself to
bound its size). (4) A fault tolerance mechanism uses non-
designated paths in the event of failures, but will not allow
the data to be cached on the IncBox units traversed along the
non-designated paths.

Our mechanism addresses the multi-path scenario by
breaking a single (src, dest) flow into several shorter dis-
tance flows; for example, the path tuple (client, server) is
transformed to a sequence of sub-paths: (client, designated
ToR1) + (designated ToR1, designated Aggregation1/Core1)
+ ... + (designated ToR2, server). This means that we have
to perform additional packet re-encapsulation operations at
designated IncBox units along a designated path, which is
not necessary in the single path case. The global registration
table is preloaded on each IncBox and will be updated by a
centralized SDN controller upon failures.
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Figure 6. Cache coherence for a multi-rooted tree topology. (a) presents a typical multi-path scenario. Specially, it shows two
communication paths between server A and server B; (b) gives an example about the global registration table and designated
caching; (c) and (d) shows how to use proposed methods to maintain coherence for GET/SET/DELETE requests.

We illustrate our proposal using the example in Figure 6-
a and Figure 6-b. The designated path between Server A and
Server B for Key1 is shown as the green/light colored path:
Server A ↔ ToR1 ↔ Aggregation1 ↔ Core1 ↔ Aggrega-
tion4↔ ToR4↔ Server B. Note that this is symmetric; com-
munication in either direction uses the same path for a given
key.

This designated path is always chosen for Key1 when
there are no failures. If Core1 or ToR1 detect a malfunc-
tion on one of Aggregation4’s links, they will instead use
the secondary path through Aggregation3 (the dark/blue
path). However, given the global registration table at Core1
(Figure 6-b), Key1 will not be cached at Aggregation3. In-
cBox routes to the next designated caching location using
network-layer ECMP, utilizing any of the paths connect-
ing the IncBox to the next designated caching location, and
skipping over the intermediate IncBox units.

We see two benefits of our design. First, the use of a des-
ignated path ensures that coherence messages traverse the
same paths as the original cache request. It also increases
the effectiveness of caching as the same key is not cached at
multiple IncBox units at the same level of the network topol-
ogy (other than ToR); this better utilizes total cache space
and reduces invalidation overheads. Second, the ability to
label designated caching locations provides a flexible pol-
icy mechanism that can take advantage of deployment and
workload properties of the application. For example, Face-
book deploys Memcached servers within a cluster and the
clients in a different cluster. In such a setting, it might be
more beneficial to perform caching only inside the client

cluster as opposed to doing it also in the server cluster. The
designated caching locations mechanism helps address such
deployment concerns.

Now, we discuss in detail how to handle different re-
quests:
GET requests and replies: As Figure 6-c shows, GET re-
quests and replies behave similarly as in the single-path case.
There are three differences. First, both IncBoxes and end
servers calculate the next designated caching location based
on the global registration table. Second, since the original
packet flow has been transformed as discussed above, the
IncBox unit at the first ToR switch (which connects to the
client) will “expand” the packet to include a copy of the
original client source address to be used in forming the re-
ply. This address is removed from the packet (the packet is
“shrunk”) before sending the reply to the client. (3) For a
GET reply, an IncBox will cache the data only if it is one of
the designated caching locations.
SET/DEL requests and ACKs: As Figure 6-d shows, for
a SET/DEL request, the IncBox unit will (1) interact with
the global registration table and (2) perform packet expan-
sion/shrink operations, which are the same as in GET re-
quests and replies. Invalidation requests are generated by the
home server. When a switch receives one, if the associated
IncBox is not the destination, the packet will be forwarded;
otherwise, it will be sent to its network processor, which will
(1) invalidate the data, (2) calculate the next IncBox to be in-
validated using the global registration table, and (3) modify
the packet header and send it out. The IncBoxes at client-side
ToRs respond to the home server with invalidation ACKs,



and the home server sends a SET/DEL ACK back to the re-
quester when the coherence operation is complete (which is
detected by counting the number of invalidation ACKs).

4.5 Optimization between switch and network
processor

As described previously, the switch in an IncBox by default
forwards any in-network caching requests to its network pro-
cessor for further processing. For GET or DEL requests, if
the key is not cached at the IncBox, this default operation
will waste (1) one round trip between a switch and its net-
work processor and (2) some processing time within the net-
work processor. We observe that for a 1KB packet, these
missed GET/DEL requests on average add 2.5us forwarding
time at the switch and 2.7–5.0us computation time at the In-
cBox. This becomes even worse if it happens multiple times
along one request path. Therefore, we propose an optimiza-
tion that uses the switch’s Forwarding Database (FDB) and
associated management handlers to mitigate this overhead.

Our proposal works in the following way. First, we pro-
gram the switch parser to extract the key hash field (Section
4.1) as well as MAC source and destination addresses. Sec-
ond, we modify the behavior of the layer 2 processing stage
of the switch’s forwarding pipeline for certain in-network
cache packets. For GET requests, instead of using the MAC
destination address to perform FDB lookup, we use an ar-
tificial MAC address formed by concatenating a locally ad-
ministered MAC prefix [4] with the key hash. If it’s a hit,
the packet is forwarded to the attached IncBox network pro-
cessor that caches the key. Otherwise, the switch forwards it
to the end server. For GET replies, after the IncBox network
processor finishes cache operation execution and responds to
the switch, we trigger the switch’s MAC learning handler on
its management CPU, using it to insert the key hash into the
FDB. For invalidations, the ACK from the IncBox’s network
processor triggers another handler that removes the key hash
from the FDB. To guarantee consistency, these switch FDB
operations are triggered only after the IncBox network pro-
cessor’s work is complete.

This approach adds no additional latency to the switch’s
forwarding pipeline, and all non-INC packet types are pro-
cessed exactly as before.

This approach has two limitations. First, two keys may
have the same hash, so requests for keys not cached in an
IncBox could be forwarded to its network processor. In this
case the request is forwarded back towards the end server
as it would be without this optimization. Two keys with the
same hash may also be cached in the same IncBox; in this
case, reference counts in the hash table can be used to ensure
the FDB entry is not removed until both keys are evicted.

Second, the FDB has limited size due to the switch’s
resource constraints (16K entries in our testbed). To cache
more than this many keys in an IncBox, a smaller, more
collision-prone hash may be used in the FDB. Alternatively,
heavy-hitter detection techniques may be used to identify

a subset of frequently-accessed keys that can benefit from
this optimization, while other keys would follow the normal,
slower path.

4.6 Fault tolerance
In this section, we discuss how to handle failures. Gener-
ally, a failure must be one of the following: a client fail-
ure, a non designated switch/IncBox failure, a designated
switch/IncBox failure, or a server failure. We categorize link
failures as that of a switch/IncBox that is reached through
that link.

Client failures could happen at three points in time: (1)
before sending a request; (2) after sending a request but be-
fore receiving an ACK or data response packet; or (3) af-
ter receiving an ACK. None of these have an impact on
the behavior of other clients and servers. Non-designated
switch failure will result in path disconnection, in which case
the preceding switch/IncBox would choose another path us-
ing ECMP. For a designated switch/IncBox failure, a re-
quest’s whole communication path will be disconnected, and
a backup path without caching will be employed until the
global controller recomputes a new global registration table.
Messages sent by a server (e.g., invalidations) could be lost,
in which case the messages are retransmitted after a timeout.
The server itself could fail either before or after sending the
ACK or data result back. In the latter case, the data in the In-
cCache will be consistent but not available for updates. In the
former case, the data will be inconsistent, cannot be updated,
but the operation would not have been deemed complete, so
the application can perform appropriate exception handling.

4.7 Compute primitives and client side APIs
IncCache’s flexible packet format supports multiple com-
pute primitives. While this work focuses primarily on the
cache, we implemented two simple compute operations as
a case study: conditional put and increment. They work as
follows. When a IncBox or home server receives a com-
pute request, it (1) reads the value from the cache; (2) if it
is a miss, the request is forwarded; (3) if it is a hit, the In-
cBox or server directly performs the operation on the cached
value (e.g., increments the value); (4) coherence operations
are then performed; and (5) the response is sent back to the
client. As should be apparent, there are many design trade-
offs about how the compute layer should interact with the
caching layer. For example, when there is a key miss, it is
also possible for the IncBox to issue a fetch request and per-
form the operation locally (as in a write-allocate cache). For
this case study, we left our cache behavior unchanged. A
more complete API and exploration of design tradeoffs is
left to future work.

The client side API includes three classes of opera-
tions: (1) initialization/teardown calls, (2) IncCache ac-
cesses, and (3) compute case-study operations. inc init()

can be used to enable/disable the IncCache layer and con-
figure the coherence protocol; inc close() tears it down.



inc {get(), set(), del()} read, write, and delete keys
from the IncCache and block to guarantee data coherence.
inc increment() adds its integer value argument to a
specified key. inc cond put() sets a key to its value ar-
gument if the cached value is smaller or unset.

4.8 IncCache Implementation
IncCache is implemented across end-host servers, switches,
and network accelerators. The server side implementation is
built following the model of Memcached and can support
native Memcached traffic with modifications to the packet
format. We do not take advantage of fast packet processing
libraries (e.g., DPDK [1]) at present because most GET re-
quests are served by IncBox units. Moreover, our server side
could be easily replaced with a high performance key-value
store, like MICA [33] or Masstree [35], with modifications
to perform coherence operations.

We program the Cavium XPliant switch with its SDK,
which includes C++ APIs to access hardware features from
the management processor, as well as a proprietary language
to program the forwarding pipeline.

The implementation of the network accelerator com-
ponent is based on the Cavium Development Kit [8] and
makes heavy use of the hardware features provided by
the OCTEON-II network processor. We use a fixed length
header for INC packets to accelerate parsing. For hashtable
entries, we pre-allocate a big memory space (“arena” in the
CDK) during the kernel loading phase and then use a private
memory allocator (dlmalloc2) to allocate from that arena.
There are multiple memory spaces in the processor, and
we found that careful use is required to avoid considerable
overhead. We also use the hardware-accelerated hash com-
putation engine and the fetch and add accelerator (FAU) to
hash keys and access lock-free data structures. As packet
headers need frequent re-encapsulation, we use fast packet
processing APIs to read and write the header. When generat-
ing a packet inside the accelerator, we take advantage of the
DMA scatter and gather functions provided by the transmit
units.

5. Evaluation
In this section, we demonstrate how IncBricks impacts a
latency-critical datacenter application—an in-memory key-
value store similar to Memcached [23]. Similar architec-
tures are used as a building block for other datacenter work-
loads [18, 31]. We evaluate this with a real system prototype,
answering the following questions:

• How does IncBricks impact the latency and throughput of
a key-value store cluster under a typical workload setup?

• What factors will impact IncBricks performance?

• What are the benefits of doing computation in the cache?

Component Description
Server Dual-socket. A total of two Intel Xeon 6-core

X5650 processors (running at 2.67GHz) and
24GB memory. The server is equipped with a
Mellanox MT26448 10Gbit NIC.

Switch Cavium/XPliant CN88XX-based switch with
32 100Gbit ports, configured to support
10Gbit links between emulated ToR switches
and clients, and 40Gbit between emulated
ToR and Root switches.

Network
Accelerators

Two Cavium LiquidIO boards, each with one
CN6640 processor (8 cnMIPS64 cores run-
ning at 0.8GHz) and 2GB memory.
Two OCTEON-II EEB68 evaluation boards,
with one CN6880 processor (32 cnMIPS64
cores running at 1.2GHz) and 2GB memory.

Table 1. Testbed details. Our IncBox comprises a Cavium
switch and a network accelerator (OCTEON or LiquidIO).

5.1 Experimental setup
Platform. Our testbed is realized with a small-scale cluster
that has 24 servers, 2 switches, and 4 network accelerators.
Detailed information of each component is shown in Table 1.
In our experiments, we set up a two-layer network topology
where 4 emulated ToR switches connect to 2 emulated root
switches; each ToR connects to both root switches. We em-
ulate two ToR switches and one root switch in each Cavium
switch by dividing the physical ports using VLANs. The In-
cBox at each ToR and Root switch is equipped with 4096
and 16384 entries, respectively, except for the cache size ex-
periment in Section 5.3.1.

Workload. For the throughput-latency experiment, we
set up a 4-server key-value store cluster and use the other 20
servers as clients to generate requests. We use our custom
key-value request generator which is similar to YCSB [19].
Based on previous studies [15, 40], the workload is config-
ured with (1) a Zipfian distribution [3] of skewness 0.99;
(2) 95%/5% read/write ratio; (3) 1 million keys with 1024B
value size; (4) two deployments: within-cluster and cross-
cluster. The compute performance evaluation uses the full
cluster with a uniform random load generator.

5.2 Throughput and latency
In this experiment, we compare throughput and latency of
a vanilla key-value cluster with that of one augmented with
IncBricks. Figures 7 and 8 report the average latency versus
throughput under two cluster deployments. This comparison
shows:

• At low to medium request rates (less than 1 million ops/s),
IncBricks provides up to 10.4 us lower latency for the
within-cluster case. The cross-cluster deployment pro-
vides an additional 8.6 us reduction because of the ad-



Figure 7. Average latency versus throughput in the
within-cluster scenario

Figure 8. Average latency versus throughput in the
cross-cluster scenario

ditional latency at Root and ToR switches. For high re-
quest rates (at 1.2 million ops/s), IncBricks saves even
more: 85.8 us and 123.5 us for the within-cluster and
cross-cluster cases, respectively.

• IncBricks is able to sustain a higher throughput than the
vanilla key-value cluster for all scenarios. For example,
IncBricks provides 857.0K ops/s and 458.4K ops/s more
throughput for the within-cluster and cross-cluster sce-
narios, respectively. Furthermore, our measured maxi-
mum throughput is limited by the number of client nodes
in our cluster and the rate at which they generate re-
quests.

• This experiment does not include the optimization de-
scribed in Section 4.5. If it did, our measurements sug-
gest that we could save up to an additional 7.5 us in
each IncBox, by reducing both (1) communication time
between the switch and accelerator and (2) execution
time inside the accelerator. This would provide signifi-
cant benefit in the cross-cluster scenario since it has more
hops.

5.2.1 SET request latency
IncBricks SET requests have higher latency than the vanilla
case due to cache coherence overhead. In this section, we
break down SET processing latency into four components:
server processing, end-host OS network stack overhead,
switch forwarding, and IncBox processing. Figure 9 shows
this for both the within-cluster and cross-cluster scenarios.

First, server processing and the client and server OS net-
work stack take the same amount of time (20 us) for both
scenarios because the end-hosts behave the same in each.
To reduce these components, we could apply kernel by-
pass techniques[1] or use a higher-performance key-value
store instead (e.g., MICA[33] or Masstree[35]). Second, the
switch forwarding latency increases from 21.5% of the to-
tal latency in the within-cluster case to 41.2% of the total
latency in the cross-cluster case. This is due to the larger

number of hops between clients and servers, which both re-
quests and replies as well as invalidation traffic must tra-
verse. Third, IncBox processing latency is higher (36 us) in
the cross-cluster scenario compared with the within-cluster
one (12 us) for the same reason. The optimization from Sec-
tion 4.5 can help reduce this.

5.3 Performance factors of IncBricks
We explored two parameters that impact IncBricks perfor-
mance: cache size and workload skewness.

5.3.1 Cache size
Figure 10 shows the result of varying the number of entries
in the IncCache for both ToR and Root IncBoxes. We find
that ToR cache size has a significant impact. As we increase
the number of available cache entries from 512 to 16384,
the average request latency decreases from 194.2 us to 48.9
us. Since we use a Zipfian distribution with skewness 0.99,
4096 entries covers 60% of the accesses, and 16384 entries
covers 70%. That is why larger cache sizes provide less per-
formance benefit. We also find that Root cache size has little
impact on performance. This is due to our cache being inclu-
sive; it is hard for requests that miss in the ToR IncBox to hit
in a Root IncBox. This suggests that a ToR-only IncCache
might provide the bulk of the benefit of the approach, or that
moving to an exclusive cache model might be necessary to
best exploit IncCaches at root switches.

5.3.2 Workload skewness
We vary the skewness from 0.99 to 0.01 and find that the
average request latency at the client ToR IncBox increases
significantly (at most 2 ms). Since our workload generates
1M keys and there are 4096 entries in the ToR IncCache,
there will be many cache miss events as the workload ac-
cess pattern becomes more uniform. These misses will fetch
data from end-servers but also go through the IncBricks
caching layer, adding latency. This may have two other con-
sequences: the additional misses may cause network conges-
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tion on the key path, and the high miss rate may lead to high
cache eviction overhead in the memory management layer
of each IncBox unit. This suggests that a mechanism to de-
tect “heavy-hitter” keys and bias the cache toward holding
these hot keys could be beneficial. We plan to explore this in
future work.

5.4 Case study: Conditional put and increment
This experiment demonstrates the benefit of performing
compute operations in the network. As described in Section
4.7, we use conditional puts to demonstrate this capability.
We compare three implementations: (1) client-side, where
clients first fetch the key from the key-value servers, perform
a computation, and then write the result back to the server,
(2) server-side, where clients send requests to the server and
the server performs the computation locally and replies, and
(3) IncBricks, where computation is done in the network.
We use a simple request generator for this experiment that
generates uniform random operands that are applied to one
of the keys, selected uniformly at random.

Figure 12 reports both latency and throughput for these
three cases. The client-side implementation must perform

both a GET and a SET for each operation, leading to 106.9
us latency and 113.3K ops/s. The server-side implementa-
tion only sends one message per remote operation and thus
obtains better performance: 52.8 us and 228.1K ops/s. In-
cBricks performs the best since the operation can be per-
formed directly by the IncBox, which results in 31.7 us la-
tency and 379.5K ops/s. We also conducted the same exper-
iment for increment operations, and the results were essen-
tially identical and thus are omitted.

6. Related work
In-network aggregation. Motivated by the partition/aggregation
model [14] used by many data center applications (e.g.,
[21, 27, 48]), in-network aggregation techniques have been
developed to mitigate bandwidth constraints during the ag-
gregation phase of these applications. Camdoop [20] ex-
ploits a low-radix directly-connected network topology to
enable aggregation during the MapReduce shuffle phase.
Servers are responsible for forwarding packets through the
network, making computation on data traversing the net-
work straightforward. However, this network is very differ-



ent from the high-radix indirect topologies commonly seen
in datacenters today. NETAGG [34] targets similar aggre-
gation opportunities, but on common datacenter network
topologies, by attaching software middleboxes to network
switches with high-capacity links. A set of shims and over-
lays route requests to middleboxes to be aggregated on their
way to their final destination. In contrast to these largely-
stateless approaches, IncBricks supports stateful applica-
tions with its coherent key-value cache. Data aggregation
operations could be implemented as applications on top of
IncBricks.
In-network monitoring. The limited compute capability
found in switches today is largely intended for collecting
network performance statistics (queue occupancy, port uti-
lization, etc.) in order to support tasks such as congestion
control, network measurement, troubleshooting, and verifi-
cation. Minions [28] proposes embedding tiny processors
in the switch data plane to run small, restricted programs
embedded in packets to query and manipulate the state of
the network. Smart Packets [46] explores a similar idea
but in the switch control plane, with fewer restrictions on
what could be executed, making it harder to sustain line rate.
In contrast, the vision of IncBricks is to repurpose this in-
switch compute capability (which was originally intended
for these administrator-level tasks) and network accelera-
tors, for user-level applications.
Network co-design for key-value stores. Dynamic load bal-
ancing is a key technique to ensure that scale-out storage
systems meet their performance goals without consider-
able over-provisioning. SwitchKV [32] is a key-value store
that uses OpenFlow-capable switch hardware to steer re-
quests between high-performance cache nodes and resource-
constrained backend storage nodes based on the content of
the requests and the hotness of their keys. IncBricks also
does content based routing of key-value requests, but by
dispersing its cache throughout the network it can reduce
communication in the core of the network, avoiding the hot
spots SwitchKV seeks to mitigate.

7. Discussion
IncBricks is an in-network caching system, which we be-
lieve will be an important building block for a general in-
network computing framework. The key observation in this
work is that by carefully spreading computations among pro-
grammable switches, network accelerators, and end hosts,
one can achieve fast and efficient datacenter network request
processing. Toward this end, we plan to explore the follow-
ing three topics in the future:

Programming model. As shown in this work, there are
multiple computing devices along the path of a packet, each
with their own unique hardware characteristics. It is diffi-
cult for programmers to fully utilize the aggregate comput-
ing power of all these devices without understanding their
low-level hardware details. A good programming abstraction

would not only reduce this burden but also provide a flexible
interface for future networking hardware. In this direction,
we plan to explore flow-based programming techniques [38]
to design client-side APIs for more general workloads.

Runtime computation synthesizer (or scheduler). Ef-
ficiently mapping or scheduling computational tasks onto
multiple network devices is a hard problem, since these com-
putations have different execution characteristics, and the
execution environment keeps changing. For example, a net-
work accelerator might be overloaded under a read-intensive
workload, and we might want to offload some requests to
other networking devices or remote servers along the path.
We plan to explore synthesis methods as in [42] to build an
online scheduler.

Memory model for an in-network computing system.
We’d like to provide a holistic in-network storage system, in-
cluding both caching and persistent storage. It will likely be
beneficial to provide multiple cache coherence protocols and
consistency models for different storage mediums and appli-
cation requirements. For example, a temporary local write
might be handled more efficiently with a write-update co-
herence protocol and eventual consistency model, compared
to our current approach.

8. Conclusion
This paper presents IncBricks, a hardware-software co-
designed in-network caching fabric with basic computing
primitives for datacenter networks. IncBricks comprises two
components: (1) IncBox, a programmable middlebox com-
bining a reconfigurable switch and a network accelerator,
and (2) IncCache, a distributed key-value store built on In-
cBoxes. We prototype IncBricks in a real system using Cav-
ium XPliant switches and OCTEON network accelerators.
Our prototype lowers request latency by over 30% and dou-
bles throughput for 1024 byte values in a common cluster
configuration. When doing computations on cached values,
IncBricks provides 3 times more throughput and a third of
the latency of client-side computation. These results demon-
strate the promise of in-network computation.
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