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Abstract

Recently-proposed processor microarchitectures for high Mem-
ory Level Parallelism (MLP) promise substantial performance gains.
Unfortunately, current cache hierarchies have Miss-Handling Archi-
tectures (MHAs) that are too limited to support the required MLP —
they need to be redesigned to support 1-2 orders of magnitude more
outstanding misses. Yet, designing scalable MHAs is challenging:
designs must minimize cache lock-up time and deliver high band-
width while keeping the area consumption reasonable.

This paper presents a novel scalable MHA design for high-MLP
processors. Our design introduces two main innovations. First, it is
hierarchical, with a small MSHR file per cache bank, and a larger
MSHR file shared by all banks. Second, it uses a Bloom filter
to reduce searches in the larger MSHR file. The result is a high-
performance, area-efficient design. Compared to a state-of-the-art
MHA on a high-MLP processor, our design speeds-up some SPECint,
SPECfp, and multiprogrammed workloads by a geometric mean of
32%, 50%, and 95%, respectively. Moreover, compared to two
extrapolations of current MHA designs, namely a large monolithic
MSHR file and a large banked MSHR file, all consuming the same
area, our design speeds-up the workloads by a geometric mean of
1-18% and 10-21%, respectively. Finally, our design performs very
close to an unlimited-size, ideal MHA.

1. Introduction

A flurry of recent proposals for novel superscalar microarchitec-
tures claim to support very high numbers of in-flight instructions and,
as a result, substantially boost performance [1, 3, 7, 12, 16, 22, 25].
These microarchitectures typically rely on processor checkpoint-
ing, long speculative execution, and sometimes even speculative re-
tirement. They often seek to overlap cache misses by using pre-
dicted values for the missing data, by buffering away missing loads
and their dependents, or by temporarily using an invalid token in
lieu of the missing data. Examples of such microarchitectures in-
clude Runahead [16], CPR [1], Out-of-order Commit [7], CAVA [3],
CLEAR [12], and CFP [22].

Not surprisingly, these microarchitectures require dramatic in-
creases in Memory Level Parallelism (MLP) — broadly defined as
the number of concurrent memory system accesses supported by the
memory subsystem [5]. For example, one of these designs assumes
support for up to 128 outstanding L1 misses at a time [22]. To reap
the benefits of these microarchitectures, cache hierarchies have to be
designed to support this level of MLP.
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Current cache hierarchy designs are woefully unsuited to support
this level of demand. Even in designs for high-end processors, the
norm is for L1 caches to support only a very modest number of
outstanding misses at a time. For example, Pentium 4 only sup-
ports 8 outstanding L1 misses at a time [2]. Unless the architecture
that handles misses (i.e., the Miss Handling Architecture (MHA))
is redesigned to support 1-2 orders of magnitude more outstanding
misses, there will be little gain to realize from the new microarchitec-
tures.

A brute-force approach to increasing the resources currently de-
voted to handling misses is not the best route. The key hardware
structure in the MHA is the Miss Status Holding Register (MSHR),
which holds information on all the outstanding misses for a given
cache line [9, 13]. Supporting many, highly-associative MSHRs in a
unified structure may end up causing a bandwidth bottleneck. Alter-
natively, if we try to ensure high bandwidth by extensively banking
the structure, we may run out of MSHRs in a bank, causing cache
bank lock-up and eventual processor stall. In all cases, since the
MHA is located close to the processor core, it is desirable to use the
chip area efficiently.

To satisfy the requirements of high bandwidth and low lock-up
time in an area-efficient manner, this paper presents a new, scalable
MHA design for the L1 cache. More specifically, the paper makes
the following three contributions.

First, it shows that state-of-the-art MHAs are unable to leverage
the new high-MLP processor microarchitectures.

Second, it proposes a novel, scalable MHA design for these mi-
croarchitectures that delivers the highest performance for a given area
consumption. The proposed organization, called Hierarchical, intro-
duces two main innovations. First, it is a hierarchical design, com-
posed of a small per-cache-bank MSHR file, and a larger MSHR file
shared by all the cache banks. The per-bank files provide high band-
width, while the shared one minimizes cache lock-up in the presence
of cross-bank access imbalances in an area-efficient manner. The sec-
ond innovation is a Bloom filter that eliminates the large majority of
unnecessary accesses to the shared MSHR file, therefore removing a
possible bottleneck.

Third, the paper evaluates Hierarchical in the context of a high-
MLP processor for some SPECint, SPECfp, and multiprogrammed
workloads. Compared to a state-of-the-art MHA similar to that of
Pentium 4, Hierarchical speeds-up the workloads by a geometric
mean of 32%, 50%, and 95%, respectively. We also compare Hi-
erarchical to two intuitive extrapolations of current MHA designs,
namely a large monolithic MSHR file and a large banked MSHR file.
For the same area consumption, Hierarchical is faster by a geomet-
ric mean of 1-18% and 10-21%, respectively. Finally, Hierarchical
performs very close to an unlimited-size, ideal MHA.

The paper is organized as follows: Section 2 presents a back-
ground and motivation; Section 3 assesses the new MHA challenges;



Sections 4 and 5 present our MHA design and its implementation;
and Sections 6 and 7 evaluate the design.

2. Background and Motivation
2.1. Miss Handling Architectures (MHAs)

The Miss Handling Architecture (MHA) is the logic needed to
support outstanding misses in a cache. Kroft [13] proposed the first
MHA that enabled a lock-up free cache (one that does not block on
a miss) and supported multiple outstanding misses at a time. To sup-
port a miss, he introduced a Miss Information/Status Holding Regis-
ter (MSHR). An MSHR stored the address requested and the request
size and type, together with other information. Kroft organized the
MSHRs into an MSHR file accessed after the L1 detects a miss (Fig-
ure 1(a)). He also described how a store miss buffers its data so that
it can be forwarded to a subsequent load miss before the full line is
obtained from main memory.
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Figure 1. Examples of Miss Handling Architectures
(MHAs).

Scheurich and Dubois [19] described an MHA for lock-up free
caches in multiprocessors. Later, Sohi and Franklin [21] evaluated
the bandwidth advantages of using cache banking in non-blocking
caches. They used a design where each cache bank has its own
MSHR file (Figure 1(b)), but did not discuss the MSHR itself.

A cache miss on a line is primary if there is currently no outstand-
ing miss on the line and, therefore, a new MSHR needs to be allo-
cated. A miss is secondary if there is already a pending miss on the
line. In this case, the existing MSHR for the line can be augmented to
record the new miss, and no request is issued to memory. In this case,
the MSHR for a line keeps information for all outstanding misses on
the line. For each miss, it contains a subentry (in contrast to an en-
try, which is the MSHR itself). Among other information, a subentry
for a read miss contains the ID of the register that should receive the
data; for a write miss, it contains the data itself or a pointer to a buffer
with the data. Once an MHA exhausts its MSHRSs or subentries, it
locks-up the cache (or the corresponding cache bank). From then on,
the cache or cache bank rejects further requests from the processor.
This may eventually lead to a processor stall.

Farkas and Jouppi [9] examined Implicitly- and Explicitly-
addressed MSHR organizations for read misses. In the Implicit one,
the MSHR has a pre-allocated subentry for each word in the line.
In the Explicit one, any of the (fewer) subentries in the MSHR can

be used by any miss on the line. However, a subentry also needs to
record the line offset of the miss it handles.

Current MHA designs are limited. For example, Pentium 4’s L1
only supports 8 outstanding misses at a time [2] — as communicated
to us by one of the designers, this includes both primary and sec-
ondary misses.

2.2. Microarchitectures for High MLP

Many proposed techniques to boost superscalar performance sig-
nificantly increase MLP requirements. Among these techniques,
there are traditional ones such as prefetching, multithreading, and
other techniques discussed in [5]. Recently, however, there have been
many proposals for novel processor microarchitectures that substan-
tially increase the number of in-flight instructions [1, 3, 7, 12, 14, 16,
22, 25]. They typically leverage state checkpointing and, sometimes,
retirement of speculative instructions. Unsurprisingly, they also dra-
matically increase MLP requirements (e.g., [22] assumes support for
128 outstanding L1 misses).

One of them, Runahead execution [16], checkpoints the proces-
sor and retires a missing load, marking the destination register as in-
valid. The instruction window is unblocked and execution proceeds,
prefetching data into the cache. When the load completes, execu-
tion rolls back to the checkpoint. A related scheme by Zhou and
Conte [25] uses value prediction on missing loads to continue exe-
cution (no checkpoint is made) and re-executes everything on load
completion.

Checkpoint-based value prediction schemes like CAVA [3] and
CLEAR [12] checkpoint on a long-latency load miss, predict the
value that the load will return, and continue execution using the pre-
diction. Speculative instructions are allowed to retire. If the predic-
tion is later shown to be correct, no rollback is necessary.

CPR [1] and Out-of-order Commit [7] processors remove scal-
ability bottlenecks from the I-window to substantially increase the
number of in-flight instructions. They remove the ROB, relying on
checkpointing (e.g., at low-confidence branches) to recover in case
of misspeculation. CFP [22] frees the resources of a missing load
and its dependent instructions without executing them. This allows
the processor to continue fetching and executing independent instruc-
tions. The un-executed instructions are buffered and executed when
the data returns from memory.

2.3. Vector MHAs

Vector machines have MHASs that differ markedly from the ones
that we will consider here. The reason is two fold. First, classical
vector machines have memory systems that return misses in FIFO
order. As a result, the MSHR file does not need to support associa-
tive searches and can be a simple, large FIFO file [6] — e.g., sup-
porting 384 outstanding misses in the Cray SV1. In superscalar ma-
chines, we cannot afford such expensive memory systems and, there-
fore, need associative, more complex MHAs. The second difference
is that many vector machines, such as the Cray SV1, have one-word
lines, which simplifies the MHA substantially. Even in vector designs
that use multi-word lines, such as the Cray X1 [8], the use of vector
loads/stores (and vector prefetches) enables a simpler MHA design
targeted to relatively few secondary misses. Our MSHR designs have
to support many secondary misses, as will be shown later.

2.4. Why Not Reuse the Load/Store Queue State?

The microarchitectures of Section 2.2 generate a large number of
concurrent memory system accesses. These accesses need support
at two different levels, namely at the load/store queue (LSQ) and at
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Figure 2. Number of outstanding L1 read misses at a time in Conventional (a), Checkpointed (b) and LargeWindow (c).
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Figure 3. Number of L1 MSHR entries in use at a time in Conventional (a), Checkpointed (b) and LargeWindow (c). Only

read misses are considered.

the cache hierarchy level. First, they need an LSQ that provides ef-
ficient address disambiguation and forwarding. Second, those that
miss somewhere in the cache hierarchy need an MHA that efficiently
handles many outstanding misses. While previous work has proposed
solutions for scalable LSQs [10, 17, 20], the problem remains unex-
plored at the MHA level. Our paper addresses this problem.

It is possible to conceive a design where the MHA is kept to a
minimum by leveraging the LSQ state. Specifically, we can allocate
a simple MSHR on a primary miss and keep no additional state on
secondary misses — the LSQ entries corresponding to the secondary
misses can keep a pointer to the corresponding MSHR. When the data
arrives from memory, we can search the LSQ with the MSHR ID and
satisfy all the relevant LSQ entries.

However, we argue that this is not a good design for the advanced
microarchitectures described.

First, it induces global searches in the large LSQ. Recall that scal-
able LSQ proposals provide efficient search from the processor-side.
The processor uses the word address to search. In the approach dis-
cussed, LSQs would also have to be searched from the cache-side,
when a miss completes. This would involve a search using the MSHR
ID or the line address, which (unless the LSQ is redesigned) would
induce a costly global LSQ search. Such search is eliminated if the
MHA is enhanced with subentry pointer information.

Second, some of these novel microarchitectures speculatively re-
tire instructions and, therefore, deallocate their LSQ entries [3, 12].
Consequently, the MHA cannot rely on information in LSQ entries
because, by the time the miss completes, the entries may be gone.

Finally, LSQs are timing-critical structures. It is best not to aug-
ment them with additional pointer information or support for addi-
tional types of searches. In fact, we claim it is best to avoid restricting
their design at all.

Consequently, we keep primary and secondary miss information
in the MHA and rely on no specific LSQ design.

3. Requirements for the New Miss Handling
Architectures (MHA)

The MLP requirements of the new microarchitectures described
put major pressure on the cache hierarchy, especially at the L1 level.
To handle it, we can use known techniques, such as banking the L1
and making it set-associative. However, a lesser known yet acute
problem remains, namely that the MHA in the L1 is asked to store
substantially more information and sustain a higher bandwidth than
in conventional designs. This is a new challenge.

In this section, we assess this challenge by comparing three pro-
cessors: Conventional, Checkpointed, and LargeWindow. Conven-
tional is a 5-issue, 2-context SMT processor slightly more aggres-
sive than current ones. Checkpointed is Conventional enhanced with
checkpoint-based value prediction like CAVA [3]. On L2 misses, it
checkpoints, predicts the value and continues, retiring speculative in-
structions. LargeWindow is Conventional with an unrealistic 512-
entry instruction window and 2048-entry ROB. All processors have
a 32-Kbyte 2-way L1 organized in 8 banks. The bandwidth of the
memory bus is 15GB/s. The rest of the parameters are in Table 4
and will be discussed in Section 6. For this section only, we model
an MHA with ideal characteristics: unless otherwise indicated, it has
an unlimited number of entries (MSHRS), and an unlimited number
of subentries per MSHR. A summary of this section plus additional
details are available in [4].

3.1. The New MHAs Need High Capacity

Figure 2 shows the distribution of the number of outstanding L1
read misses at a time. It shows the distributions for the three proces-
sors. Each line corresponds to one workload, which can be either one
or two concurrent applications from SPECint2000 and SPECfp2000
— the workloads will be discussed in Section 6.2.

We see that, for Conventional, most workloads have 16 or fewer
outstanding load misses 90% of the time. These requirements are
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roughly on a par with the MHA of state-of-the-art superscalars. On
the other hand, Checkpointed and LargeWindow are a stark contrast,
with some workloads sustaining 120 outstanding load misses for a
significant fraction of the time.

The misses in Figure 2 include both primary and secondary
misses. Suppose now that a single MSHR holds the state of all the
misses to the same L1 line. In Figure 3, we redraw the data showing
the number of MSHRs in use at a time. We use an L1 line size of 64
bytes.

Compared to the previous figure, we see that the distributions
move to the upper left corner. The requirements of Conventional are
few. For most workloads, 8 MSHRs are enough for 95% of the time.
However, Checkpointed and LargeWindow have a greater demand for
entries. For Checkpointed, we need about 32 MSHRs to have a simi-
lar coverage for most workloads. LargeWindow needs even more.

3.2. The New MHAs Need High Bandwidth

The MHA is accessed at two different times. First, when an L1
miss is declared, the MHA is read to see if it contains an MSHR for
the accessed line. In addition, at this time, if the L1 miss cannot be
satisfied by data forwarded from the MHA, the MHA is updated to
record the miss. Second, when the requested line arrives from the L2,
the MHA is accessed again to pull information from the correspond-
ing MSHR and then clear the MSHR. Based on the assumed width
of the MHA ports in this experiment, we need one access per write
subentry or per four read subentries.

We compute the number of MHA accesses for both read and write
misses during 100-cycle intervals for Conventional, Checkpointed,
and LargeWindow. Figure 4 shows the distribution of the number
of accesses per interval. For Conventional, many workloads have at
most 40 accesses per interval about 90% of the time. For Check-
pointed, the number of accesses to reach 90% of the time is often

around 60. For LargeWindow, still more accesses are required to
reach 90%. Overall, new MHAs need to have higher bandwidth than
current ones.

3.3. Banked MHAs May Suffer From Access Imbalance
Lock-ups

To increase MHA bandwidth, we can bank it like the L1 cache
(Figure 1(b)). However, since the number of MSHRs in the MHA
is limited due to area constraints, heavy banking may be counter-
productive: if the use of the different MHA banks is imbalanced,
one of them may fill up. If this happens, the corresponding L1 bank
locks-up; it rejects any further requests from the processor to the L1
bank. Eventually, the processor may stall. This problem is analogous
to a cache bank access conflict in a banked L1 [11], except that a
“conflict” in a fully-associative MHA bank may last for as long as a
memory access time.

To assess this problem, we use an MHA with 16 MSHRs (unlim-
ited number of subentries) and we run experiments grouping them
into different numbers of banks: 1 bank of 16 entries, 2 of 8, 4 of 4,
or 8 banks of 2 MSHRs. In all cases, a bank is fully associative and
has no bandwidth limitations. The L1 has 8 banks.

Figure 5 shows the resulting performance of Checkpointed. The
figure has three sets of bars, which correspond to the geometric
mean of the SPECint2000 applications used (Int.GM), SPECfp2000
(FP.GM), and multiprogrammed mixes of both (Mix.GM). The figure
shows that, as we increase the number of MHA banks, the perfor-
mance decreases. Since a bank has unlimited bandwidth, contention
never causes stalls. Stalls occur only if an MHA bank is full. There-
fore, we need to be wary of banking the new MHAs too much since,
if each MHA bank has modest capacity, access imbalance may cause
cache bank lock-up.



3.4. The New MHAs Need Many Entries, Read Subentries,
and Write Subentries

L1 misses can be either primary or secondary, and be caused by
reads or writes. For each case, the MHA needs different support.
For primary misses, it needs MSHR entries; for secondary ones, it
needs subentries. The latter typically need different designs for reads
and for writes. To assess the needs in number of entries, read suben-
tries, and write subentries, we use a single-bank MHA with unlimited
bandwidth in Checkpointed. We vary one parameter while keeping
the other two unlimited. If the varying dimension runs out of space,
the L1 refuses further processor requests until space opens up.

In Figure 6(a), we vary the number of MSHR entries. Our work-
loads benefit significantly by going from 8 to 16 MSHRs, and to a
lesser extent by going from 16 to 32 MSHRs. In Figure 6(b), we vary
the number of read subentries per MSHR. Secondary read misses are
frequent, and supporting less than 16-32 read subentries hurts perfor-
mance. Finally, in Figure 6(c), we vary the number of write subentries
per MSHR. Secondary write misses are also important, and we need
around 16-32 write subentries.

An additional insight is that individual MSHRs typically need
read subentries or write subentries, but less frequently both kinds.
This data is shown in Table 1 for Checkpointed running with an un-
limited MHA. This behavior is due to the spatial locality of read and
write misses. We will leverage it in Section 5.5.

Workload Number of used MSHRs (%)
Read Sub Only | Write Sub Only [ Read+Write Sub
Int Avg. 67.8 26.5 5.7
FP Avg. 85.3 10.8 39
Mix Avg. 85.1 10.9 4.1
Total Avg. 79.4 16.1 4.6

Table 1. Usage of MSHRs in Checkpointed.

4. An MHA for High MLP

Given these requirements for the MHA, it follows that current de-
signs such as the one in Pentium 4, which only support 8 outstanding
misses (of primary or secondary type) at a time [2], will be insuffi-
cient. One solution is to build a large, associative, centralized MSHR
file. We call this design Unified (Table 2). It has a high capacity
and does not cause L1 bank lock-up due to access imbalance (Sec-
tion 3.3). However, its centralization limits its bandwidth.

l [ Design [ [ Characteristics [ ‘
Current 8 outstanding L1 misses like Pentium 4
Unified Large centralized associative MSHR file with
many entries and subentries
Banked Large associative MSHR file with many entries

and subentries, banked like L1

Two-level design with a small per-bank MSHR
file (Dedicated) and a larger MSHR file shared
by all banks (Shared)

Hierarchical

Table 2. MHA designs considered.

Another solution is a large, associative MSHR file that is banked
like the L1 cache. We call this design Banked. It has higher band-
width than Unified. However, under program behavior with access
imbalance, one of the banks may fill up, causing L1 bank lock-up.

We address these shortcomings with our proposed two-level MHA
design. We call it Hierarchical (Table 2). It has a small per-bank

MSHR file called Dedicated and a larger MSHR file shared by all
banks called Shared. The Dedicated and Shared files have exclusive
contents and are accessed sequentially. Entries that overflow from
a Dedicated file are collected in the Shared file. Figure 7 shows the
design. Table 3 lists our scheme’s key innovations, which we consider
next.
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Figure 7. Proposed hierarchical MHA.

4.1. Minimize L1 Lock-up With Area Efficiency

A key goal of any MHA is to minimize the time during which it
is out of MSHR file entries or subentries, while using the area ef-
ficiently. The latter is important because the MHA uses area close
to the processor core. Consequently, we prefer MHA designs that
minimize L1 lock-up time per unit area.

Banked does not use area very efficiently, since its capacity is
divided into banks. If there is significant access imbalance across
banks, one MHA bank can fill up and lock-up the cache bank.

Hierarchical uses area efficiently for two reasons (Table 3). First,
it provides shared capacity in the Shared file — for a given need, one
shared structure is more efficient than several private ones of the same
total combined size, when there is access imbalance across structures.
Second, a common reason for lock-up is that a few MSHRs need more
subentries than the others and run out of them. In Hierarchical, rather
than giving a high number of subentries to all the MSHRs, we design
the Dedicated files with fewer subentries. This enables area savings.
If an entry in a Dedicated file runs out of subentries, it is displaced to
the Shared file.

4.2. High Bandwidth

The other key goal of any MHA is to deliver high bandwidth.
Unified, due to its centralization, has modest bandwidth.

Hierarchical attains higher bandwidth through three techniques
(Table 3). First, it provides a per-bank Dedicated file. Second, when
a new MSHR is needed, it is always allocated in the Dedicated file.
If there is no free entry in the Dedicated file, we displace one to the
Shared file to open up space. We select as victim the entry that was
inserted first in the Dedicated file (FIFO policy). Due to the spatial
locality of cache misses, a primary L1 cache miss is often quickly
followed by a series of secondary misses on the same line. With our
policies, these secondary misses are likely to hit in the Dedicated file.
The result is higher bandwidth and lower latency.

Finally, each bank also includes a small Bloom filter. It hashes
the addresses of all the MSHR entries that were displaced from that
bank’s Dedicated file to the Shared file. The filter in a bank is ac-



H Goal H Proposed Solution

Minimize L1 lock-up while || — Shared file

using MHA area efficiently

— Fewer subentries in Dedicated files; more subentries in Shared file

High bandwidth

— Per-bank Dedicated file
— Allocate new entries always in Dedicated file:

If entry is in MHA, locality typically ensures that it is found in Dedicated file
— Bloom filter for Shared file (no false negatives, few false positives):

If entry is not in MHA, filter typically averts access to Shared file

Table 3. Innovations in the proposed hierarchical MHA.

cessed at the same time as the Dedicated file, and takes the same
time to respond. When the Dedicated file misses, the filter indicates
whether or not the requested entry may be in the Shared file. If the
filter says “no”, since a Bloom filter has no false negatives, the Shared
file is not accessed. This saves a very large number of unneeded ac-
cesses to the Shared file, enhancing the MHA bandwidth. If the filter
says “yes”, the Shared file is accessed, although there may be a small
number of false positives.

5. Implementation

This section describes several implementation aspects of our Hi-
erarchical proposal: the overall organization and timing, the Bloom
filter, the Dedicated file replacement algorithm, the implementation
complexity, and the MSHR organizations.

5.1. Overall Organization and Timing

Each Dedicated file is fully pipelined and has a single read/write
port. The Dedicated file and the filter in the same bank are accessed
in parallel (Figure 7). In most cases, the outcome is either a hit in the
Dedicated file or a miss in both the Dedicated file and filter. The first
case is a secondary L1 miss intercepted by the Dedicated file. The
second case is a primary L1 miss, in which case the Dedicated file
allocates an entry and a request is sent to L2.

When a cache miss hits in the Bloom filter and misses in the Ded-
icated file, the Shared file is accessed. Since this case is less frequent,
the Shared file is a single-ported, slow and large structure. It is highly
associative and unpipelined. Each entry has many subentries to sup-
port many outstanding secondary misses per line.

5.2. Bloom Filter

We use a Bloom filter without false negatives, although some false
positives can occur. Some Bloom filter designs require that the filter
be periodically purged, so that aliasing does not create too many false
positives. However, retraining the filter during operation could lead
to false negatives. Consequently, we choose a counter-based Bloom
filter design similar to the counter array in [15], which requires no
purging. Every time that an entry is displaced from the corresponding
Dedicated to the Shared file, a set of counters are incremented to add
the address to the filter. The same counters are decremented when the
entry is deallocated from the Shared file. The counters to increment
or decrement are determined by several bit-fields in the line address.
Finally, an access hits in the filter if all the counters corresponding to
the address being checked are non-zero.

Figure 8 shows the structure of the filter. In the figure, the bits in
the address bit-fields are hashed before using them to index into the
arrays of counters.

5.3. Replacement of Entries in the Dedicated File

Since each Dedicated file only has a handful of MSHRYs, it is easy
to implement a FIFO replacement algorithm. Moreover, once we
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Figure 8. Per-bank Bloom filter in the proposed Hierar-
chical design. In the figure, H represents a hash operation.

move the contents of an MSHR to the Shared file, we never move
it back to a Dedicated file. This general policy leverages the spatial
locality of misses, to capture the active entries (those with frequent
secondary misses) in the Dedicated files, and push the inactive entries
(typically corresponding to long-latency main memory accesses) to
the Shared file.

5.4. Complexity of the Hierarchical Implementation

Hierarchical is simple to implement. To start with, no changes
are needed to the cache interface. Compared to other MHAs, any
complexity of Hierarchical might come from four sources: allocating
MSHRs, displacing them into the Shared file, handling replies from
memory, and supporting the Bloom filter. Since the filter is a simple
counter array that adds little complexity, we focus on the first three
concerns.

Before allocation, the MHA uses an Available signal to tell the
cache bank that it has space to take in a new request. This signal is
the logical OR of one signal coming from the Dedicated file in the
bank and one from the Shared file. If neither file has space (Available
is false), the cache bank locks-up. Otherwise, allocation proceeds in
the Dedicated file. This step may involve a displacement.

The complexity of a displacement lies in solving three races or
problems: (i) two Dedicated files want to displace into the same
Shared file entry; (ii) an MSHR is needed while it is in transit from
the Dedicated to the Shared file; and (iii) an entry being displaced
finds that, despite initial indications to the contrary, there is no space
in the Shared file. We avoid these problems using a simple algorithm.
Specifically, on a displacement, the Dedicated file retains the MSHR
being displaced and the corresponding bank of the L1 is locked-up to
incoming requests, until the Shared file reports that it has taken in the
data and the filter reports that it has been updated. Moreover, during
the actual data transfer, the MSHR being displaced stays in the Ded-



l \ Processors

H Memory System H

All Conventional and Checkpointed

I-window: 92

ROB size: 192

Int regs: 192

FP regs: 192

Ld/St Q entries: 60/50

Frequency: 5GHz

Fetch/issue/comm width: 6/5/5

LdSt/Int/FP units: 4/3/3

SMT contexts: 2

Branch penalty: 13 cyc (min)

RAS: 32 entries

BTB: 2K entries, 2-way assoc.

Branch pred. (spec. update):
bimodal size: 16K entries
gshare-11 size: 16K entries

Checkpointed only:

Val. pred. table: 2048 entries
Max outs. ckps: 1 per context

LargeWindow I-L1 | D-L1 | L2
I-window: 512 Size: 32KB | 32KB | 2MB
ROB size: 2048 Assoc: 2-way | 2-way | 8-way
Int regs: 2048 Line size: 64B | 64B | 64B
FP regs: 2048 Round trip: | 2 cyc | 3 cyc | 15 cyc
Ld/St Q entries: 768/768 Ports/Bank: 2 1 1

Banks: - 8 -

HW prefetcher: 16-stream strided
(Between L2 and memory)

Mem bus bandwidth: 15GB/s

Round trip to memory: 500 cyc

Table 4. Processors simulated. In the table, latencies are shown in processor cycles and represent minimum values.

icated file in locked state (inaccessible). If the transfer temporarily
fails, the MSHR in the Dedicated file is unlocked, but the L1 bank
remains locked-up until the whole process completes.

For replies coming from memory, we reuse the path just described.
Replies first check their home Dedicated file and, if they miss, they
then check the Shared file. If a reply finds its corresponding MSHR
in the locked state, it stalls until the MSHR 1is unlocked.

Overall, based on this discussion, we feel that Hierarchical has a
simple implementation.

5.5. MSHR Organizations for High MLP

We consider three different MSHR organizations. They extend
Farkas and Jouppi’s [9] Explicit and Implicit organizations. However,
Farkas and Jouppi’s MSHRs only record read information, since their
caches are write-through and no-allocate. In our case, MSHRs also
need to record write information. Kroft’s design allocates an empty
line in the cache immediately on a miss [13]. As a result, a write on a
pending line deposits the update in the empty cache line. In our case,
cache misses can take a long time to complete. Therefore, we do not
want to allocate an empty line in the cache right away. Instead, we
design MSHR organizations with subentries that keep information on
many read and write misses on the line.

The first of our three organizations is Simple (Figure 9). An
MSHR includes an array of N explicit subentries, where each one can
correspond to a read or a write. A read subentry stores the line offset
and the destination register; a write subentry stores the line offset and
a pointer into a companion N-entry data buffer where the update is
stored. This organization leverages our observations in Section 3.4
that MSHRSs need to hold many read and/or write subentries. While
this organization is simple, it has two shortcomings. First, to check
for forwarding on a read, all the subentries in the MSHR need to be
examined, which is time consuming. Second, this design consumes
substantial area, since the data buffer needs to be very large in case
all subentries are writes.

Simple (N)
Explicit
N Rd/Wr DataBuffer: N Entries
T | ]
Split (N,M)
Explicit Explicit
N Reads M Writes DataBuffer: M Entries
T (I [
Explicit Write ImplicitWr ImpSplit (N)
N Reads Mask DataBuffer: Size of Cache Line
[T 1 |

Figure 9. Three different MSHR organizations.

The Split organization separates N explicit read from M explicit
write subentries (Figure 9). This design is motivated by the obser-
vation in Table 1 that many MSHRs do not need write subentries.
Consequently, we reduce the number of supported write subentries to
M, and only need M entries in the data buffer. This design improves
area efficiency if M is significantly smaller than N. However, Split has
the shortcomings of expensive checks for forwarding (like in Simple),
and that it causes a stall if an MSHR receives more than M writes.

To solve these problems, ImpSplit keeps the explicit organization
for N read subentries, but uses the implicit organization for writes
(Figure 9). Each MSHR has a buffer for writes that is as large as a
cache line, and a bit-vector mask to indicate which bytes have been
written. Writes deposit the update at the correct offset in the buffer
and set the corresponding bits in the mask. Multiple stores to the
same address use a single buffer entry because they overwrite each
other. Forwarding is greatly simplified because it only requires read-
ing from the correct offset in the buffer. Moreover, this organization
supports any number of writes at the cost of a buffer equivalent to a
cache line; for the numbers of secondary write misses that we see in
our experiments, this is area-efficient.

6. Experimental Setup

We use execution-driven simulations to evaluate the MHA designs
of Table 2 for the Conventional, Checkpointed, and LargeWindow
processors. The architecture of the processors is shown in Table 4.
Conventional is a 5-issue, 2-context SMT processor. Checkpointed
extends Conventional with support for checkpoint-based value pre-
diction like CAVA [3]. Its additional parameters in Table 4 are the
Value Prediction Table and the maximum number of outstanding
checkpoints. Each hardware thread has its own checkpoint and can
rollback without affecting the other thread. LargeWindow is Conven-
tional with a 512-entry instruction window and 2048-entry ROB.

The three processors have identical memory systems (Table 4),
including two levels of on-chip caches. The exception is that Check-
pointed has the few extensions required by the CAVA support [3],
namely speculative state in L1 and a table with the value of the predic-
tions made. All designs have a 16-stream strided hardware prefetcher
that prefetches into L2 and, therefore, does not use L1 MSHRs.

The evaluation is performed using the cycle-accurate SESC sim-
ulator [18]. SESC models in detail the processor microarchitectures
and the memory systems.

6.1. Comparing MHAs That Use the Same Area

MHAs offer a large design space from which a designer must
choose. In this paper, we compare different designs that use the same
area. We think that this is a fair constraint. We consider three de-



Area MHA MSHR Number | Assoc. | Tag & Data | Approx. Area | Cycle Time | Access Time
Design Point | Design Organization of MSHRs Size (Bytes) | (% of L1) (Proc Cyc) | (Proc Cyc)
Ordinary- | Unified ImpSplit(24) 8 Full 1029 8 2 4
Sized: 8% | Banked ImpSplit(8) 2x8banks=16| Full 1550 9 1 3
of L1 Area |Hierarchical Dedicated: ImpSplit(4) || 1x8banks=8 | Full 1227 8 1 3
Shared: ImpSplit(24) 4 Full 2 4
Medium- Unified ImpSplit(32) 32 Full 4620 15 2 4
Sized: 15% | Banked ImpSplit(8) 3x8banks=24| Full 2325 15 1 3
of L1 Area | Hierarchical Dedicated: ImpSplit(8) || 2x8banks=16 | Full 2379 15 1 3
Shared: ImpSplit(24) 8 Full 2 4
Unified ImpSplit(32) 48 Full 6930 24 2 4
Large- Unified 2-ports | ImpSplit(8) 8 Full 773 25 2 4
Sized: 25% | Banked ImpSplit(12) 4x8banks=32 | Full 3352 26 1 3
of L1 Area | Hierarchical Dedicated: ImpSplit(8) || 2x8banks=16| Full 5885 24 1 3
Shared: ImpSplit(32) 30 Full 2 4
Other Banked Simple(10) 3x8banks=24 | Full 2505 15 1 3
MSHR Banked Split(8,8) 3x8banks=24 | Full 2514 16 1 3
Organizat- | Hierarchical Dedicated: Simple(8) || 2x8banks=16 | Full 2379 15 1 3
ions at 15% Shared: ImpSplit(32) 8 Full 2 4
of L1 Area | Hierarchical Dedicated: Split(8,8) 2x8banks=16 | Full 2065 16 1 3
Shared: ImpSplit(24) 8 Full 2 4

Table 5. Area, cycle time, and access time for the MHA designs and MSHR organizations considered.

sign points: a Medium-Sized design, where the MHA uses an area
equivalent to 15% of the area of our 8-bank 32-Kbyte L1 cache; a
Large-Sized design, where it uses the equivalent of 25% of the cache
area; and an Ordinary-Sized design where, like the Pentium 4 MSHR
file, the MHA uses the equivalent of ~8% of the cache area.

To estimate area, we use the newly available CACTI 4.1 [23]. This
version of CACTI is more accurate than the previous 3.2 version, as it
has been specifically designed for nanoscale technologies such as the
65nm one considered here. Appendix A gives details on our CACTI
runs. As of September 2006, the authors of CACTI acknowledge a
bug in the area calculation for a banked cache. For our experiments,
we have modified CACTI 4.1 to correct the bug.

We consider combinations of MHA design, MSHR organization,
number of MSHRs, number of subentries, and associativity that
match each of the three target area points, or come very close. We
have an automated script that generates all possible combinations,
and computes area, cycle time, and access time. We then use our
cycle-accurate processor-memory simulator to evaluate the overall
performance of workloads using each design.

Table 5 lists the best designs that we have found. Column 1 shows
the four sets of experiments that we perform. The top three com-
pare MHA designs that take the equivalent of 8%, 15%, and 25%
of the L1 area, respectively. For each experiment, we use the best
Unified, Banked, and Hierarchical designs — although, for the 25%
area experiment, we consider two different Unified designs, as we
will discuss. The third column shows the MSHR organization used,
with the number of explicit subentries in parenthesis as in Figure 9.
We find that all the best designs use the ImpSplit MSHR organization.
For completeness, we also perform a fourth experiment (last row of
Column 1 of Table 5) comparing designs that use Simple and Split
organizations.

For each MHA design and MSHR organization, Table 5 shows the
number of MSHRs used (Column 4), their associativity (Column 5),
the size of the tag and data arrays in bytes (Column 6), the area of the
tag and data arrays as a fraction of the L1 area (Column 7), the cycle
time (Column 8), and the access time (Column 9). All cycle counts
are in processor cycles. The size and area of Hierarchical are the

addition of the contributions of the Dedicated and Shared files. We
pipeline all these structures except the Shared file in Hierarchical.

The L1 is a 32 Kbyte 2-way cache organized in 8 banks with 1
read/write port per bank. Such a cache in 65nm technology is esti-
mated to be 0.6965 mm?. We simulate it with a cycle time of 1 cycle
and an access time of 3 cycles.

6.2. Workloads

We run our experiments using SPECint2000 codes, SPECfp2000
codes, and workload mixes that combine two applications at a time
(Table 6). From SPECint, our infrastructure does not support eon,
which is written in C++. Moreover, there are 7 SPECint codes
that have so few misses that a perfect MHA (unlimited number of
MSHRs, subentries, and bandwidth) makes not even a 5% perfor-
mance impact in any of the architectures analyzed. Consequently, we

([ SPECint2000 | SPECfp2000 |
256.bzip2 (bzip2) 188.ammp (ammp)
254.gap (gap) 173.applu (applu)
181.mcf (mcf) 179.art (art)
253.perlbmk (perlbmk) | 183.equake (equake)

177.mesa (mesa)
172.mgrid (mgrid)

171.swim (swim)
168.wupwise (wupwise)
[ Mix [
179.art, 183.equake (artequake)

179.art, 254.gap (artgap)

179.art, 253.perlbmk (artperlbmk)
183.equake, 253.perlbmk (equakeperlbmk)
177.mesa, 179.art (mesaart)

172.mgrid, 181.mcf (mgridmcf)

171.swim, 181.mcf (swimmcf)

168.wupwise, 253.perlbmk (wupwiseperlbmk)

Table 6. Workloads used in our experiments.
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Figure 10. Performance of the different MHA designs at the 15% target area for the Checkpointed processor.

only analyze the remaining 4 SPECint codes in the rest of the paper.
In the conclusion section, we average out the performance impact of
our designs over the 11 SPECint applications that we can simulate.

From SPECfp, we use all the applications except for six that our
infrastructure does not support (four that are in Fortran 90 and two
that have unsupported system calls). Finally, for the workload mixes,
the algorithm followed is to pair one SPECint and one SPECfp such
that one has high MSHR needs and the other low. In addition, one mix
combines two lows, two combine two highs, and two others combine
2 SPECfps. Overall, we cover a range of behaviors in the mixes. In
these runs, each application is assigned to one hardware thread and
the two applications run concurrently.

We compile the codes using gcc 3.4 -O3 into MIPS binaries and
use the ref data set. We evaluate each program for 0.6-1.0 billion
committed instructions, after skipping several billion instructions as
initialization. To compare performance, we use committed IPC.
When comparing the performance of multiprogramming mixes, we
use weighted speedups as in [24].

7. Evaluation

In this evaluation, we compare the performance of the different
MHA designs at the Medium-Sized area point (15% of the L1 area)
and at other area points, characterize Hierarchical, and evaluate dif-
ferent MSHR organizations. Unless otherwise indicated, the MHA
designs are those shown in the first three rows of Column 1 of Ta-
ble 5. Also, plots are normalized to the performance of Banked.

7.1. Performance of MHA Designs at 15% Area

Figure 10 compares the performance of the different MHA de-
signs of Table 5 at the 15% target area for the Checkpointed proces-
sor. As a reference, the figure also includes Current and Unlimited.
The former is a design like that of Pentium 4 (Table 2); the latter is
an infeasible MHA design that supports an unlimited number of out-
standing misses with unlimited bandwidth. The rightmost three sets
of bars in the figure show the geometric mean of the integer, FP, and
mix workloads.

The Current design is much worse than the other MHAs for
Checkpointed processors. Such processors are bottlenecked by Cur-
rent and need aggressive MHA designs. For example, Hierarchi-
cal speeds-up execution over Current by a geometric mean of 32%
for SPECint, 50% for SPECfp, and 95% for mixes. These are sub-
stantial speedups.

Among the aggressive designs, Hierarchical performs the best,
and is very close to Unlimited. Compared to Unified, Hierarchi-
cal has lower capacity but, thanks to the three techniques of Table 3, it

offers higher bandwidth to accesses. As aresult, Hierarchical is faster
than Unified by a geometric mean of 1% (SPECint), 7% (SPECfp),
and 18% (mixes). The speedups are highest for high-MLP scenarios,
such as when these SMT processors run a multiprogrammed load.

On average, Banked is worse than Unified. This is because the
higher bandwidth that it provides is not fully leveraged due to ac-
cess imbalance (Section 3.3). There are some exceptions, such as
the workloads with art, which benefit more from higher bandwidth
than are hurt by imbalance. On average, Hierarchical 1is faster than
Banked for the three workload groups by a geometric mean of 10%,
16%, and 21%. Overall, Hierarchical delivers significant improve-
ments over the other aggressive designs for a very modest complexity
(Section 5.4).

For completeness, we also examine the effect of MHA designs on
Conventional and LargeWindow processors, although we only show
the geometric means. They are shown in Figures 11(a) and 11(b),
respectively. With Conventional processors, the performance differ-
ence between Current and the aggressive designs is much smaller.
This shows that state-of-the-art, relatively low-MLP processors can-
not leverage aggressive MHAs as much. Still, Hierarchical and
Banked are consistently the best.
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Figure 11. Performance of the different MHA designs at
the 15% target area for the (a) Conventional processor and
(b) LargeWindow processor.

With LargeWindow processors (Figure 11(b)), we again see that
Current bottlenecks the processor, and that Hierarchical is signifi-
cantly faster than the other two aggressive MHA designs — Hierar-
chical is faster than Unified by 2%, 23%, and 29% in the three work-
load groups. In this processor, the profile of speedups is somewhat
different than in Checkpointed — most notably, Banked is better than
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Unified, and SPECint codes show smaller speedups. The reason for
the first effect is that LargeWindow’s outstanding misses require more
bandwidth than the Checkpointed ones (Figure 4). Consequently,
Banked works relatively better. The reason for the second effect is
that, thanks to value prediction and speculative retirement, Check-
pointed presents a longer effective window than LargeWindow for
SPECint codes, which enables higher speedups for these codes. Over-
all, these results show that processors other than Checkpointed can
also use aggressive MHA designs. Most likely, any high-MLP archi-
tecture will benefit from aggressive MHA designs.

7.2. Performance at Different Area Points

Hierarchical maintains its performance advantage over
Banked and Unified across a wide range of area points. This
is seen for Checkpointed in Figure 12. Figure 12(a) is organized per
workload type. For each workload, as we go from left to right, we
increase the target area from 8% (Ordinary-Sized design) to 15%
(Medium-Sized design) and 25% (Large-Sized design). In each
workload, the bars are normalized to Banked with 15%.

At each workload and area point, Hierarchical is the fastest de-
sign. Moreover, Hierarchical at the 15% target area is better than
Unified or Banked at the 25% target area — which use much more
area.

Unified is most competitive at the 8% target area, where its better
use of area relative to the other designs has the highest impact. As the
target area scales up, however, the performance of Unified levels out,
even though its capacity is the highest (Table 5). The lower bandwidth
of Unified prevents it from exploiting its higher capacity. To address
this problem, we also evaluated a second design for Unified at the
25% target area: one with two ports (Table 5). This Unified design has
higher bandwidth but, to keep the area constant, we have to reduce its
number of MSHRs significantly to 8. The performance of this design
is shown in Figure 12(a) as the lower end of the line segments in the
Unified 25% bars. We can see that the performance is always lower
than the Unified 25% single-ported design. Even though the dual-
ported design has higher bandwidth, it is crippled by its low capacity.

If we focus on Banked, we see that it is unattractive for the 8% and
15% target areas. This is because it suffers from load imbalance due
to its low per-bank capacity. As it gains capacity at the 25% target
area, it outperforms Unified for FP and Mix workloads, although it
does not match Hierarchical yet.

Figure 12(b) repeats the information in Mix.GM of Figure 12(a)
in a format that emphasizes the scaling trends of each design. In
the figure, the performance of Unlimited is shown as the dashed hor-

izontal bar. Hierarchical offers the highest performance across all
area points, obtaining close to Unlimited performance already at 15%
area. Unified’s performance saturates at around the 15% target area
due to limited bandwidth. Only by adding a second port at the cost
of much higher area can Unified achieve better performance. Finally,
Banked improves its performance as we keep increasing the target
area. Eventually, there may be a point where it will match the perfor-
mance of Hierarchical. However, such a design point will be much
less area-efficient than the ones presented here.

7.3. Characterization of Hierarchical at 15% Area

Table 7 characterizes Hierarchical for Checkpointed at the 15%
target area. The first group of columns (Columns 2-4) shows how the
L1 misses are processed by the different files in Hierarchical. Misses
can be of three types: primary (Column 2), secondary that hit in a
Dedicated file (Column 3), and secondary that hit in the Shared file
(Column 4). Primary misses create an entry in a Dedicated file. Of the
three types of misses, only the last one involves storing information
on the miss in the Shared file. Overall, we see that this happens for
only 17-23% of the L1 misses on average.

Column 5 shows the effectiveness of the Bloom filter at saving
accesses to the Shared file. The numbers listed are the fraction of
primary misses that are prevented from accessing the Shared file by
the Bloom filter — in other words, the fraction of unnecessary ac-
cesses to the Shared file that are eliminated by the Bloom filter. They
are unnecessary because they would miss in the Shared file anyway.
The numbers shown are averages across all banks. From the table,
we see that the Bloom filter eliminates on average 90-96% of useless
accesses to the Shared file. It does not remove them all because of
false positives. Overall, the Bloom filter ensures that the Shared file
does not become a bottleneck.

The third group of columns (Columns 6-7) shows data regarding
the displacement of entries from the Dedicated files to the Shared
file. Column 6 shows the fraction of such displacements triggered by
lack of subentries. This number is on average 18-41%. The other
displacements are triggered by lack of entries. Column 7 shows the
fraction of all the displacements that are also L2 cache misses. Such
fraction is on average 33-42%. Consequently, the Shared file often
holds long-latency misses.

The last group of columns shows information about the rest of the
memory system: L1 and L2 miss rates, fraction of L1 read misses
that get their data forwarded from an MSHR (a significant 15% for
SPECints), and bus utilization.



L1 Miss Breakdown Accesses || Displacement Stats |[ L1 Miss | L2 Miss | MSHR Fwd | Bus

Workload Primary | Dedicated Hit | Shared Hit || Removed || Sub Full [ L2 Miss Rate Rate L1 misses | Util
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

bzip2 57.3 28.6 14.0 76.1 12.1 0.3 3.8 0.0 1.0 0.1
gap 17.9 39.1 43.0 99.0 80.1 47.2 0.8 0.2 49.1 4.4
mcf 39.2 37.9 22.8 95.4 27.3 84.1 15.9 7.6 4.6 45.8
perlbmk 34.2 58.7 7.2 96.6 43.0 35.9 3.3 0.2 6.6 2.7
ammp 40.5 55.5 4.1 56.1 29.7 52.3 18.4 1.7 0.8 4.5
applu 28.1 55.4 16.5 87.6 68.7 20.7 3.0 0.2 12.7 7.0
art 79.4 19.0 1.6 98.6 0.1 18.3 44.2 4.0 0.0 27.1
equake 26.3 30.6 43.1 96.3 59.2 69.2 5.3 1.7 2.0 23.3
mesa 35.2 51.5 13.3 97.6 33.9 21.2 4.8 0.2 7.3 4.8
mgrid 44.3 30.1 25.6 89.9 2.3 7.1 15.0 1.1 0.5 20.2
swim 39.0 32.1 28.9 99.8 24.7 49.9 7.3 2.8 0.7 45.1
wupwise 12.0 35.0 53.0 97.9 76.4 74.8 1.6 1.0 4.8 15.6
artequake 63.7 22.2 14.2 97.6 7.3 25.9 23.4 3.0 0.7 31.5
artgap 65.3 26.8 7.9 98.9 1.6 24.1 27.6 3.2 1.0 31.6
artperlbmk 72.8 22.4 4.8 97.9 1.1 17.3 31.3 2.6 0.4 24.5
equakeperlbmk 29.7 37.1 33.2 96.2 51.0 56.7 6.2 1.4 3.0 23.1
mesaart 67.7 25.0 7.3 98.1 2.5 15.6 28.2 2.2 0.8 25.1
mgridmef 53.6 25.9 20.5 83.0 3.9 19.6 20.4 3.2 0.9 46.1
swimmecf 44.1 31.5 24.4 98.8 17.8 74.4 11.3 4.7 2.1 51.2
wupwiseperlbmk || 26.4 47.9 25.7 98.0 61.8 28.4 4.9 0.3 8.6 8.7
Int.Avg 37.2 41.1 21.8 92.0 40.6 41.9 6.0 2.0 15.3 13.3
FP.Avg 38.1 38.6 23.3 89.9 36.9 39.2 12.5 1.6 3.6 18.5
Mix.Avg 52.9 29.8 17.3 95.9 18.4 32.7 19.2 2.6 2.2 30.2

Table 7. Characterization of the dynamic behavior of Hierarchical for Checkpointed at the 15% target area.

Finally, to assess the frequency of cache lock-up, Figure 13 shows
the fraction of the time during which at least one of the cache
banks is locked-up — because of lack of either entries (MSHRSs) or
read subentries (not due to write subentries because we use ImpSplit
MSHRs). For each workload, the bars are normalized to Banked.
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Figure 13. Breakdown of the execution time for Banked
(B), Unified (U), and Hierarchical (H) at the 15% target
area.

The figure shows that the fraction of time with lock-up tends to
increase as we go from Unified to Hierarchical and to Banked. As
discussed in Section 3.3, the reason is that load imbalance in banked
MHA designs causes some banks to fill up sooner. However, while
Unified typically has the least lock-up time, it does not have the high-
est performance; it is hurt by lower bandwidth. The figure also shows
that most of the lock-up is due to lack of entries rather than subentries.
Overall, Hierarchical performs the best because it accomplishes both
high bandwidth and modest lock-up time.

7.4. Evaluation of Different MSHR Organizations

We now compare the effect of the different MSHR organizations
of Figure 9 in Banked and Hierarchical for Checkpointed at the 15%
target area. We compare the ImpSplit-based MHA designs used so far
to the Simple- and Split-based MHA designs of the last row of Col-
umn 1 of Table 5. Figure 14 shows the performance of the different
MHA designs normalized to Banked-ImpSplit.

In Banked, Split performs slightly worse than ImpSplit due to a
lack of write subentries. Simple performs roughly as well as Imp-
Split; even though it has a few more read subentries, it does not have
as much capacity for write misses. In Hierarchical, the changes only
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Figure 14. Performance of the Checkpointed processor
with different MSHR organizations. The target area is
15%. In the figure, HR stands for Hierarchical.

have a small impact. Part of the reason is that the Shared file mini-
mizes the differences. Overall, we choose the ImpSplit organization
because it performs as well or better than the other organizations and
supports a simpler implementation of read forwarding (Section 5.5).

8. Conclusions

Recently-proposed processor microarchitectures that require sub-
stantially higher MLP promise major performance gains. Unfortu-
nately, the MHAs of current high-end systems are not designed to
support the necessary level of MLP. This paper focused on design-
ing a high-performance, area-efficient MHA for these high-MLP mi-
croarchitectures.

This paper made three contributions. First, it showed that state-
of-the-art MHAs for L1 data caches are unable to leverage the new
microarchitectures. Second, it proposed a novel, scalable MHA de-
sign that supports these microarchitectures. The proposal’s key ideas
are: (i) a hierarchical organization for high bandwidth and minimal
cache lock-up time at a reasonable area cost, and (ii) a Bloom filter
that eliminates most of the unneeded accesses to the large MSHR file.

The third contribution was the evaluation of our MHA design in
a high-MLP processor. We focused mostly on a design point where
the MHA uses an area equivalent to 15% of that of the L1 data cache.
Compared to a state-of-the-art MHA, our design delivers geometric-
mean speed-ups of 32% for a subset of SPECint (or a geometric mean
of 11% for the 11 SPECint applications that we can simulate, in-
cluding those with very few misses), 50% for SPECfp, and 95% for



multiprogrammed loads. We also compared our design to two extrap-
olations of current MHA designs, namely Unified and Banked. For
the same area, our design speeds-up the workloads by a geometric
mean of 1-18% over Unified and 10-21% over Banked — all for a
very modest complexity. Finally, our design performed very close to
an unlimited-size, ideal MHA.
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Appendix A: Details on the CACTI 4.1 Runs

To estimate areas, we use the newly available CACTI 4.1 [23]. We take
each MSHR organization in Figure 9 and break it into its substructures (Ta-
ble 8). In the table, letters N and M refer to the number of subentries as in Fig-
ure 9. Then, for each substructure and for the L1 Cache, we run CACTI. Ta-
ble 9 shows some CACTI settings we use and parameters we pass to CACTI.
In the table, BITOUT is the number of bits read out and Tag is the number
of bits modeled for the tag array. An explicit subentry is assumed to take 2
bytes. For the DataBuffer(N) Substructures, we use the SRAM model, and for
the others, we use the detailed cache interface. If we are modeling a banked
MHA structure, we calculate the area of a single bank and then multiply by
the number of banks. For the L1 cache, we use the (fixed) banking model in
CACTL

MSHR Substructures

Organization

Simple(N) ExplicitRdWr(N) + DataBuffer(N)

Split(N,M) ExplicitRd(N) + ExplicitWr(M) + DataBuffer(M)
ImpSplit(N) | ExplicitRd(N) + ImplicitWr + Mask

Table 8. MSHR organizations with their substructures.

Substructure
ExplicitRd(N)

CACTI Settings Command Line Parameters
BITOUT=32, Tag=36 line=N*2, r/w port=1
ExplicitWr(N) BITOUT=N*16, Tag=36 | line=N*2, r/w port=1
ExplicitRdWr(N) | BITOUT=N*16, Tag=36 | line=N*2, r/w port=1
ImplicitWr + Mask | BITOUT=64, Tag=42 line=64+8, r/w port=1
DataBuffer(N) BITOUT=64, Tag=36 line=N*8, r/w port=1

L1 Cache (32KB) | BITOUT=64, Tag=42 line=64, r/w port=1, 2-way

Table 9. Some CACTI settings and command line parameters.

When a structure is too small for CACTI to directly model, we model
larger structures with the same associativity and number of ports and approxi-
mate the area and timing using a linear regression. This technique is necessary
for any structure smaller than 64 bytes or fully associative structures with four
or fewer entries.



