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Abstract— Recent advances in neural networks (NNs) exhibit 

unprecedented success at transforming large, unstructured data 

streams into compact higher-level semantic information for tasks 

such as handwriting recognition, image classification, and speech 

recognition. Ideally, systems would employ near-sensor com-

putation to execute these tasks at sensor endpoints to maximize 

data reduction and minimize data movement. However, near-

sensor computing presents its own set of challenges such as 

operating power constraints, energy budgets, and communication 

bandwidth capacities. In this paper, we propose a stochastic-

binary hybrid design which splits the computation between the 

stochastic and binary domains for near-sensor NN applications. In 

addition, our design uses a new stochastic adder and multiplier 

that are significantly more accurate than existing adders and 

multipliers. We also show that retraining the binary portion of the 

NN computation can compensate for precision losses introduced 

by shorter stochastic bit-streams, allowing faster run times at 

minimal accuracy losses. Our evaluation shows that our hybrid 

stochastic-binary design can achieve 9.8× energy efficiency 

savings, and application-level accuracies within 0.05% compared 

to conventional all-binary designs. 
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I. INTRODUCTION  

Sensors and actuators are critical for enabling electronic circuits 
to interact with the physical world. Information acquired from 
sensors has become essential to applications from home 
automation to medical implants to environmental surveillance. 
It is predicted that the world soon will have an average of 1,000 
sensors per person [8][11] which translates to a huge amount of 
raw data acquisition. The sheer volume of unstructured sensor 
data threatens to overwhelm storage and network communica-
tion capacities, which are increasingly limited by aggressive 
power and energy budgets.  

To reduce the storage and communication demands of raw 
sensor data, near-sensor computing has recently emerged as a 
design space for reducing these overheads [20]. Near-sensor 
computing proposes offloading portions of the application to 
computing units or accelerators co-located with the sensing 
device. The key insight is that by offloading certain portions of 
computation such as image feature extraction (of an image-
processing pipeline) to sensor end points, higher level semantic 
information can be transmitted in place of larger unstructured 
data streams. Of particular interest are neural networks (NNs) 
which are a widely used class of algorithms for processing raw 
unstructured data. NNs excel at reasoning about raw data 
streams in applications such as object detection, handwriting 
recognition, and speech processing. Recent work by Du et al. 

[12] shows how a near-sensor NN accelerator can dramatically 
reduce the energy costs of the system.  

This paper presents a near-sensor stochastic-binary NN 
design which combines stochastic computing (SC) with 
conventional “binary” processing and sensor data acquisition to 
improve energy efficiency and power consumption. SC is a re-
emerging computation technique that performs computation on 
unary bit-streams representing probabilities [14]. SC circuits are 
often cheaper than binary arithmetic circuits [25]. For instance, 
multiplication in SC can be implemented by a single AND gate. 
The primary tradeoff for SC's simplicity is increased computa-
tion time, which leads to higher energy consumption for higher 
precision calculations [2][22]. However, for applications that 
can tolerate reduced precision, SC can achieve compelling 
power and energy efficiency gains. Finally, stochastic circuits 
are smaller in size and more error tolerant, making them suitable 
for tiny sensors operating in harsh environments [3][13]. 

 Stochastic NNs have been extensively studied in the prior 
literature [7][9][15]. However, past work proposes fully 
stochastic designs that have number lengths exceeding 1,000 
clock cycles [7][15], which leads to higher energy consumption. 
In addition, errors introduced by multiple levels of SC circuits 
compound as more levels are executed [22]. In this paper, we 
present a stochastic-binary hybrid NN system that exploits the 
benefits of SC, while mitigating many of its drawbacks. We only 
employ SC in the first layer of an NN, so it operates directly on 
the sensor data thereby avoiding the issue of compounding 
errors over multiple layers. We employ a new, significantly 
more accurate SC adder and a deterministic number generation 
scheme to further reduce energy consumption. Finally, we 
compare our design’s accuracy to that of existing SC designs, 
and show our design has better energy efficiency than competing 
binary implementations. 

Our contributions are as follows: 

1. A novel stochastic adder for convolutional NNs which 
increases speed and/or accuracy, leading to a reduced 
energy cost compared to previous SC NN designs. 

2. A hybrid stochastic-binary NN design which combines 
signal acquisition and SC in the first NN layer, and uses 
binary for the remaining layers to avoid compounding 
accuracy losses. 

3. Showing that retraining these remaining NN layers can 
compensate for precision loss introduced by SC. 

The rest of the paper is organized as follows. Section II provides 
background on SC and NNs. Section III introduces the new 



 

stochastic adder design. Section IV presents our hybrid NN 
design, and results are discussed in Sections V and VI.  

II. BACKGROUND 

This section briefly reviews the relevant concepts of stochastic 

computing and neural networks. 

A. Stochastic Computing 

Stochastic computing is an alternative method of computing first 
proposed in the 1960s [14]. In SC, numbers are encoded as bit-
streams that are interpreted as probabilities. For instance, the bit-
stream X = 001011… denotes a stochastic number (SN) with 
value pX = 0.5 because the probability of seeing a 1 at a randomly 
chosen position of X is 0.5. This interpretation allows arithmetic 
functions to be implemented via simple logic gates. For instance, 
the AND gate in Fig. 1a performs multiplication on uncorrelated 
inputs. The SC probability pX or unipolar range [0, 1], does not 
include negative numbers, which are usually needed for NNs. 
As a result, NNs often use bipolar numbers, where the value of 

X is interpreted as 2pX  1, and therefore has range [1, 1]. The 
precision of SC is mainly determined by the length N of the bit-
stream. A bit-stream of length N encodes a number at log2 N  bits 
of precision. For example, a unipolar bit-stream of length 16 can 
encode the range [0, 15] which is equivalent to the range of a 
binary number with log216 = 4 bits of precision. 

 In this work, we use four SC primitives: adders, multipliers, 
stochastic number generators (SNGs), and stochastic-to-digital 
converters (Fig. 1). These components operate on unipolar 
numbers; they may implement a different function when 
interpreted in the bipolar domain. To perform conventional 
stochastic addition, two bit-streams X and Y are applied to the 
data inputs of a multiplexer with the select bit driven by a bit-
stream R of unipolar value pR = 0.5 (Fig. 1b). The output bit-
stream encodes pZ = 0.5(pX + pY). Notice the scale factor of 0.5, 
a necessary feature of SC, keeps the probability in the unit 
interval [0, 1]. When compounded over many additions, the 
scale factor can lead to severe loss of precision. Similar 
precision losses also occur with SC multiplication, which is 
realized with an AND gate (Fig. 1a) since pZ = pX × pY. One way 
to improve the quality of a function is to increase the length of 
the input bit-streams. However, since each bit of additional 
precision requires a doubling of bit-stream length this quickly 
leads to excessive run times. As a result, researchers have 
proposed alternative designs that approximate the add operation. 
One example is to use an OR gate as an adder, which only works 
accurately if both inputs are close to zero [21]. Hence, all 
existing SC adder designs need additional uncorrelated random 
number sources and/or have limited accuracy. The need for extra 
random number sources becomes severe when many numbers 
are to be added. Ideally, we would like an adder that operates 

accurately on many inputs in short periods of time, without 
requiring additional uncorrelated number sources. 

 Binary-to-stochastic converters, which are commonly 
referred to as stochastic number generators (SNGs), and 
stochastic-to-binary converters are SC primitives that allow 
conversion between the binary and stochastic domain. An SNG 
comprises a comparator and a random number generator (Fig. 
1c). For a given number pX, the SNG will produce a 1 with that 
probability if the random number is less than pX. Converting 
analog signals to the stochastic domain can be achieved by 
replacing the SNG comparator with an analog one. In this paper, 
we use an analog-to-stochastic converter to convert the sensor 
data directly to stochastic encodings, without the need for 
analog-to-digital converters (ADCs). We also use a set of SNGs 
to generate the NN weights.  

 The choice of SNG configuration affects the accuracy and 
consequently the energy consumption of the SC circuit. Table 1 
shows the mean square error (MSE) of a 4-bit and 8-bit SC 
multiplier for the following SNG schemes: (i) using the same 
linear feedback shift register (LFSR) for both inputs, (ii) using a 
separate LFSR for each input, (iii) using low-discrepancy 
sequences [4], and (iv) using a ramp-compare analog-to-
stochastic converter [13] for one input, and a low-discrepancy 
sequence for the other. For this work, we employ the last number 
generation scheme as it provides the best accuracy. The MSEs 
are calculated by exhaustively testing the multipliers for every 
possible input value.  

 To convert from stochastic to binary, we simply count the 1s 
in the bit-stream by using a binary counter (Fig. 1d). In our work, 
we use asynchronous counters because they allow us to clock 
the SC part of the circuit faster. It is sufficient to apply a new 
input to an asynchronous counter, even if the previous inputs 
have not propagated through the counter. The delay of a 
synchronous counter, on the other hand, is relatively large, so it 
cannot keep up with the speed of the SC circuit feeding it. Unlike 
the asynchronous counter, a synchronous counter fails if the next 
input arrives before the previous input is propagated. 

B. Neural Networks 

NNs come in a wide range of network topologies, and generally 

consist of an input layer, an output layer, and a number of 

hidden layers in between [24]. A layer is composed of neurons, 

each of which has a set of inputs, an output, and an activation 

function f(x), e.g., a rectified linear unit. Each neuron is 

connected to neurons in the previous layer; a connection is 

defined by a weight that is multiplied by the previous neuron’s 

output. These values are summed with other connections’ 

outputs and passed to an activation function. For instance, given 

a neuron y that is connected to k neurons in the previous layer 
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Fig. 1. Unipolar stochastic arithmetic primitives: (a) multiplier, (b) scaled adder, (c) comparator-based stochastic number generator, and (d) 

stochastic-to-binary converter implemented as a binary counter. 



 

with output values 𝑥⃗ = {x0, x1, …, xk1} and connection weights 

𝑤⃗⃗⃗ = {w0, w1, …, wk1} respectively, the output of neuron y is 

defined as 𝑦𝑜𝑢𝑡 = 𝑓(∑ 𝑥𝑖𝑤𝑖
𝑘−1
𝑖=0 ). 

Neuron connection topologies can either be fully connected 

or locally connected to the previous layer. In fully connected 

layers, each neuron is connected to every neuron of the previous 

layer. In the locally connected case, neurons are connected to a 

subset of neurons in the previous layer. Locally connected 

layers are often referred to as convolutional layers because its 

connections from the previous layer take the form of a window. 

The resulting operation is mathematically equivalent to a 

convolution where the convolutional kernel is simply a matrix 

of the connection weights. Finally, NNs also may have max 

pooling layers, which are locally connected layers that 

subsample a window in the previous layer and output the 

maximum value. 

To determine the weights for each layer, NNs are trained 

over an input training set using backpropagation [24]. This is a 

technique that iterates over the training dataset and gradually 

adjusts the weights based on the gradient of the error in the 

NN’s output function. The error metric varies across 

applications but a commonly used one for NN classification is 

the cross-entropy loss. One iteration over the entire training set 

is known as an epoch. Training is often supplemented by 

dropout which is a training technique that randomly removes 

connections during the training process at certain layers to 

prevent overfitting. Once the training process converges to a set 

of weights, a test set is used to evaluate the quality of the NN 

model. The quality metric varies across applications but a 

commonly used metric is classification accuracy based on the 

outputs of the NN model. 

Using SC for NNs has a well-established history [7][17] 

dating back to the 1990s. Recent work proposes fully stochastic 

NN designs using FPGA fabrics and full custom ASICs [16]. 

Similarly, Ardakani et al. [6] propose an SC NN for digit 

recognition which outperforms binary designs by using shorter 

bit-streams (down to length 16). To the best of our knowledge, 

this is the only SC NN design that outperforms, albeit 

marginally, its binary counterpart in terms of energy efficiency. 

However, unlike our approach, prior SC work uses older, fully 

connected NN topologies with only two hidden layers which 

are smaller and less accurate than current state-of-the art NN 

topologies like LeNet-5 (used in our evaluation). Finally, fully 

stochastic NNs need longer bit-streams (N = 256 to 1024) to 

achieve reasonable accuracy. In contrast, our work does not 

execute the entire NN in the stochastic domain. Instead, we 

execute the first layer using SC, then allow higher precision 

binary units to finish the NN calculation.   

III. STOCHASTIC ADDER DESIGN 

 Unlike the basic stochastic multiplier, the conventional 

stochastic add operation has undesirable properties such as the 

enforced scaling factor and an extra bit-stream. Furthermore, 

the discarding of some bits of each number (through 

multiplexing) leads to accuracy loss, which compounds with 

multiple additions.   

 We now propose a new stochastic adder that is more accurate 
and does not require additional random inputs. But first we 
introduce a simple circuit that implements the SC function pC = 
pA/2. A rudimentary implementation is to use the multiplier of 
Fig. 1a where we assign A to one input, and a randomly 
generated bit-stream B of value 1/2 to the other. Note that for the 
multiplication to work accurately, B has to be uncorrelated to A. 
Fig. 2a shows another implementation of the same function, in 
which a bit-stream B with value 1/2 is generated from the bit-
stream of A without requiring an additional input. A toggle flip-
flop (TFF), which switches its output between 0 and 1 when its 
input is 1, is used for this purpose. The area cost of a TFF is no 
more than a random number generator that is required for 
generating 1/2. More importantly, the bit-stream generated by 
the TFF is always uncorrelated with its input bit-stream. This 
means that there are no constraints on the auto-correlation of the 
input bit-stream, unlike common sequential SC circuits that do 
not function as intended if the input is auto-correlated [7].  

 Fig. 2b shows our proposed TFF-based adder. At each clock 
cycle, if the values at X and Y are equal, they propagate to the 
output. Otherwise, the state of the TFF is output and the TFF is 
toggled. Suppose the adder operates on two bit-streams of length 
20. Recall for adds, there is a 0.5 normalization constant, so the 
expected result is Z = 0.5(1/2 + 4/5) = 13/20 computed as 
follows: 

X = 0110 0011 0101 0111 1000 (1/2) 
Y = 1011 1111 0101 0111 1111 (4/5) 
Z = 0110 1011 0101 0111 1101 (13/20) 

 The result of the adder is always accurate if the bit-stream 
length N is sufficient to represent it. Otherwise, the output will 
be rounded off to the nearest representable number. The 
direction of rounding depends on the initial state S0 of the TFF. 
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Fig. 2. (a) Stochastic circuit with pC = pA/2, (b) proposed TFF-based 

stochastic adder with pZ = (pX + pY)/2, and (c) example of its operation 

with two different initial states. 

Table 1. MSE of stochastic multiplier for different RNG methods 

(lower is better) 

Number generation scheme 8-Bit Prec. 4-Bit Prec. 

One LFSR + shifted version 2.78×103 2.99×103 

Two LFSRs 2.57×104 1.60×103 

Low-discrepancy sequences [4] 1.28×105 1.01×103 

Ramp-compare [13] + [4] 8.66×106 7.21×104 

Table 2. MSE of stochastic addition for different SNG methods 

(lower is better) 

Implementation 8-Bit Prec. 4-Bit Prec. 

Old adder 

(Fig. 1b) 

Random + LFSR 3.24×104 5.55×103 

Random + TFF 5.49×104 5.49×103 

LFSR + TFF 1.06×104 2.66×103 

New adder (Fig. 2b) 1.91×106 4.88×104 

 



 

If S0 = 0, as in the example above, the result will be rounded to 
the smaller of the two neighboring numbers. Fig. 2c shows how 
S0 affects the result. Z0 and Z1 are the outputs of the circuit with 
S0 = 0 and 1, respectively. The expected result is Z = 0.5(3/8 + 
1/4) = 5/16. Since N = 8 is not sufficient to represent 5/16 
exactly, the result is rounded to either 1/4 or 3/8.  

To quantify the accuracy of our proposed adder, we compare 
it to the adder of Fig. 1b with three different SNG config-
urations: (i) random bit-streams used for the data inputs and an 
LFSR used for the select input, (ii) random bit-streams for the 
data inputs and a TFF that toggles every cycle for the select 
input, and (iii) an LFSR used for the data inputs and a TFF for 
the select inputs. While the first configuration is more 
commonly used, we tried two more configurations that provide 
a slight improvement. However, as seen in Table 2, our proposed 
adder achieves significantly better accuracy. Once again, the 
MSEs are calculated by exhaustively testing the adders for every 
possible input value. 

IV. STOCHASTIC-BINARY NEURAL NETWORK DESIGN  

We now present our stochastic-binary hybrid design for near-

sensor NN computation. Fig. 3 gives an overview of the 

proposed neural network layer and system design. To evaluate 

its utility, we will use it to implement the first layer of the 

LeNet-5 NN topology [19]. 

A. Signal Acquisition 

Image sensors capture light intensity and convert it to analog 

signals, which are converted to digital numbers for processing. 

In this work, we use parts of a ramp-compare analog-to-digital 

converter (ADC) to convert the analog signal to the stochastic 

domain. The conversion circuit shown in Fig. 3 is functionally 

equivalent to an SNG (Fig. 1c), with some modifications: (i) the 

inputs are analog, and (ii) a ramp signal is applied to the second 

input of the comparator rather than a random number generator. 

Despite becoming heavily auto-correlated, the bit-stream 

generated by this conversion circuit is still usable for our SC 

design, because the proposed adder circuits are insensitive to 

input auto-correlation. Previous work has shown such analog-

to-stochastic converters are comparable, in terms of cost and 

performance to regular ADCs [3][13]. Furthermore, prior work 

[26] has shown such conversions operate on the order of 100 

pJ, which is much lower than the energy consumed by 

computation (100s of nJ/image). Thus, we do not include the 

cost of sensor data conversion in our evaluations.  

B. Stochastic Convolutional Neural Network Layer 

The stochastic NN layer consists of 784 stochastic dot-product 

units shown in Fig. 3 which process the sensor input in parallel. 

Because there are 32 different first layer kernels, we perform 

parallel convolutions 32 times per image. The convolution 

engines perform a basic dot-product operation followed by 

stochastic-to-binary conversion and an activation function. 

More precisely, each convolution engine implements: 

𝑔(𝑥⃗, 𝑤⃗⃗⃗) = 𝑠𝑖𝑔𝑛(𝑥⃗ ∘ 𝑤⃗⃗⃗) 

where 𝑥⃗  and 𝑤⃗⃗⃗  denote input window and kernel weights, 

respectively, and ∘ denotes the dot-product operation (𝑥⃗ ∘ 𝑤⃗⃗⃗ =
 ∑ 𝑥𝑖𝑤𝑖

𝑘−1
𝑖=0 ). The activation function simply outputs the sign of 

the dot product results and outputs either 1, 0, or 1. The weight 

inputs are shared among all convolution engines, so the cost of 

generating them is amortized across all units. 

Since the computation involves negative numbers, the 

bipolar SC domain [1, 1] is a natural choice [7]. However, by 

employing bipolar SC, the decision point of activation 

functions maps to bit-streams with maximum fluctuation (i.e., 

unipolar value 0.5). This increases power usage and decreases 

accuracy. Therefore, we adopt a different approach which uses 

only unipolar operations by dividing the weights into positive 

and negative bit-streams  𝑤⃗⃗⃗𝑝𝑜𝑠 and 𝑤⃗⃗⃗𝑛𝑒𝑔. We then perform two 

unipolar dot product operations, 𝑔𝑝𝑜𝑠 = 𝑥⃗ ∘ 𝑤⃗⃗⃗𝑝𝑜𝑠  and 𝑔𝑛𝑒𝑔 =

𝑥⃗ ∘ 𝑤⃗⃗⃗𝑛𝑒𝑔, followed by two asynchronous counters to convert the 

 
Fig. 3. System diagram of our proposed near-sensor stochastic NN. Bottom – LeNet-5 NN topology. Middle – system pipeline. Top – 

microarchitecture.  Purple, grey, and blue regions denote analog, stochastic, and binary domains, respectively.  



 

results 𝑔𝑝𝑜𝑠 and 𝑔𝑛𝑒𝑔 to the binary domain. Finally, the binary 

activation function is implemented by a simple comparator. As 

shown in Fig. 3, the rest of the NN operates in the binary 

domain. 

V. EXPERIMENTAL RESULTS 

This section presents the results of experiments with the 

proposed SC NN design. We mainly compare our design with 

a similar all-binary implementation, but when possible we also 

provide comparisons with existing SC-based NNs.  

A. Experimental Setup 

We use the MNIST database [18], a standard machine learning 

benchmark for handwritten digit recognition, to evaluate 

accuracy. The benchmark consists of M = 70,000 images of 

handwritten digits (0 to 9); each image uses a 28×28 8-bit 

greyscale encoding. A subset of 60,000 images are used to train 

the NN, while the remaining 10,000 images are used to test its 

accuracy. Classification accuracy is defined as the ratio of 

correctly classified test images to the total number of test 

images. Then the misclassification rate is defined as one minus 

the classification accuracy. These metrics are often multiplied 

by 100 and reported as a percentage. All NN training was 

performed using the TensorFlow framework [1], and the Keras 

library [10] using a NVIDIA Titan X GPU. For each stochastic 

design, we built a custom C++ model to evaluate its accuracy. 

Previous work on SC NNs [6][16] evaluates NN topologies 

with only fully connected layers and achieves misclassification 

rates between 1.95% and 2.41%. On the other hand, our work 

uses the LeNet-5 topology which has both convolutional and 

fully connected layers, and achieves misclassification rates 

around 1%. In practice, the number of convolutional layer 

kernels and the size of the kernels used in LeNet-5 vary; for our 

evaluation, we use a variant provided by the Keras library 

which has the topology shown in Fig. 3. 

B. Accuracy Results and Neural Network Retraining 

A key tradeoff in SC is reducing precision to enhance 

performance. To quantify the impact of reduced precision on 

classification accuracy, we build separate NN models which 

execute the first layer of LeNet-5 at different precision levels (2 

to 8 bits).  We also replace the standard rectified linear 

activation function with a sign function, which does not impose 

a significant accuracy loss, but has a much simpler implement-

tation in SC. We do not execute subsequent layers in the 

stochastic domain since precision losses would compound and 

require longer bit-streams to achieve accurate results. 

For comparison, we evaluate how precision reduction 

affects the fully binary implementation. Our experiments show 

that simply quantizing the first layer weights and replacing the 

activation function with sign detection reduces classification 

accuracy by several percentage points (up to 6.85% mis-

classification rate for 4-bit precision). However, by retraining 

the rest of the NN weights, the NN model is able to recover 

from the noise introduced by losses in precision and the new 

activation function (Table 3). Interestingly, we find that we can 

reduce precision down to 3 or 4 bits and still achieve excellent 

misclassification rates (below 1%) after retraining. Since the 

training process is also noisy, the classification accuracy does 

not always exhibit monotonically decreasing behavior as 

precision is reduced.  

Bit reduction of SC designs exhibits similar accuracy losses, 

but leads to exponential run time reduction and energy savings. 

However, stochastic convolutions present unique challenges. 

SC can be inexact at near-zero input values, and output values 

are sensitive to errors. Prior work [5] shows that a non-trivial 

percentage of NN values are near zero, so we use weight scaling 

and soft thresholding as proposed by Kim et al. [16] to mitigate 

these errors. Weight scaling normalizes the values of each 

convolution kernel to use the full dynamic range [1, 1] while 

soft thresholding forces a result to zero if it is within some 

threshold. Finally, we also employ the retraining techniques 

introduced earlier in the binary domain of the design.  

We now compare the resulting classification accuracy using 

SC with our new adder and multiplier, and the conventional 

adder and multipliers introduced earlier in Fig. 1 that are used 

in prior work. Table 3 shows misclassification rates (lower is 

better) for each design. The results indicate that our new adder 

and multiplier generally achieve lower misclassification rates 

than those in prior SC work (up to 2.92% better). We are also 

able to achieve misclassification rates which are within 0.05% 

and 0.25% of the binary design for 8-bit and 4-bit precision 

respectively. Further, the results show that retraining the NN 

model can compensate for noise introduced by both precision 

reduction and SC. In particular, for our more accurate adder and 

multiplication scheme there is less noise that the retraining 

process must compensate for than the old adder. Note that the 

benefits of the retraining are only possible because we can 

operate in the higher precision binary domain. Finally, our 

results confirm that there is significant opportunity for precision 

Table 3. Misclassification rates for full binary and hybrid stochastic-binary designs, and throughput-normalized power, energy efficiency, and 

area results for binary and stochastic convolution designs. 

 Design 8 Bits 7 Bits 6 Bits 5 Bits 4 Bits 3 Bits 2 Bits 

Misclassification 

Rate (%) 

Binary 0.89% 0.86% 0.89% 0.74% 0.79% 0.79% 1.30% 

Old SC 2.22% 3.91% 1.30% 1.55% 1.63% 2.71% 4.89% 

This Work 0.94% 0.99% 1.04% 1.12% 1.04% 2.20% 43.82% 

Normalized 

Power (mW) 

Binary 40.95 mW 72.80 mW 121.52 mW 204.96 mW 325.36 mW 501.76 mW 683.20 mW 

This Work 33.17 mW 33.55 mW 33.26 mW 33.01 mW 33.20 mW 29.96 mW 28.35 mW 

Energy Efficiency  

(nJ / frame) 

Binary 670.92 nJ 596.38 nJ 497.74 nJ 419.76 nJ 333.17 nJ 256.90 nJ 174.90 nJ 

This Work 543.42 nJ 274.82 nJ 136.22 nJ 67.60 nJ 34.00 nJ 15.34 nJ 7.26 nJ 

Area 

(mm2) 

Binary 1.313 mm2 1.094 mm2 0.891 mm2 0.710 mm2 0.543 mm2 0.391 mm2 0.255 mm2 

This Work 1.321 mm2 1.282 mm2 1.240 mm2 1.200 mm2 1.166 mm2 1.110 mm2 1.057 mm2 



 

reduction in SC, which translates to exponential reductions in 

bit-stream lengths and better run times, which we explore next. 

VI. POWER, AREA, AND ENERGY EVALUATION 

We synthesize, place-and-route, and measure power using 

Synopsys Design Compiler, IC Compiler, and PrimeTime for 

our design; we also use a 65nm TSMC library. For comparison, 

we evaluate a sliding window convolution engine as our binary 

baseline design [23]. Activity factors for power measurement 

are recorded using traces based on MNIST test images and 

weights from the TensorFlow model. 

Table 3 shows the throughput-normalized power, energy 

efficiency, and design area for both stochastic and binary 

convolution designs. Power measurements are throughput-

normalized relative to the stochastic design. For instance, a 

binary design operating at 0.25× the throughput and 2× the 

power relative to a stochastic design would have a throughput-

normalized power of 8× relative to the stochastic design. Since 

run times of stochastic designs decrease exponentially with 

lower precision, we find that the binary design must operate at 

exponentially higher frequency and power to match the increase 

in throughput. Finally, we find the area and energy costs of the 

SC number generators are higher than a single SC dot product 

unit, but the cost is shared and amortized over many units.  

Since the actual operating frequency will vary across 

application demands, we contrast the throughput-normalized 

power between the stochastic and binary designs. Throughput-

normalized power is more representative of energy efficiency 

since it is more agnostic the differences in frequency and 

number of parallel units in the design. In terms of energy 

efficiency, our design breaks even with binary designs at 8-bit 

precision, and is 9.8× more energy efficient at 4-bit precision. 

Furthermore, it achieves these gains with better classification 

accuracy than prior work. 

 Finally, we see that our stochastic convolution design 

achieves reasonable area overhead relative to the binary one. 

The stochastic convolution engine exhibits virtually no change 

in resource utilization since precision in SC only affects the 

length of the bit-streams. However, binary designs benefit from 

linear area reductions since reduced precision narrows the 

datapath. We find that our design achieves roughly the same 

area as the binary design at 8-bit precision but is 2× larger than 

the binary design at 4-bit precision.  

VII. CONCLUSIONS 

We presented a convolutional NN system which employs a 

hybrid stochastic-binary design for near-sensor computing. The 

design employs near-sensor SC using a novel stochastic adder 

which is significantly more accurate than previous adder 

designs. Our simulations show that with this adder, the hybrid 

NN achieves up to 2.92% better accuracy than previous SC 

designs, and 9.8× better energy efficiency for convolutions over 

all-binary designs. Finally, we show that retraining the binary 

domain portion of the NN can compensate for precision losses 

from SC. As NNs become increasingly commonplace in 

modern applications, the energy efficiency gains offered by SC 

will be invaluable for meeting the aggressive power and energy 

budgets of next generation sensors and embedded devices. 
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