

Energy-Efficient Hybrid Stochastic-Binary Neural

Networks for Near-Sensor Computing
Vincent T. Lee†, Armin Alaghi†, John P. Hayes*, Visvesh Sathe‡, Luis Ceze†

†Department of Computer Science and Engineering, University of Washington, Seattle, WA, 98198
*Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109

‡Department of Electrical Engineering, University of Washington, Seattle, WA, 98195

{vlee2, armin}@cs.washington.edu, jhayes@eecs.umich.edu, sathe@uw.edu, luisceze@cs.washington.edu

Abstract— Recent advances in neural networks (NNs) exhibit

unprecedented success at transforming large, unstructured data

streams into compact higher-level semantic information for tasks

such as handwriting recognition, image classification, and speech

recognition. Ideally, systems would employ near-sensor com-

putation to execute these tasks at sensor endpoints to maximize

data reduction and minimize data movement. However, near-

sensor computing presents its own set of challenges such as

operating power constraints, energy budgets, and communication

bandwidth capacities. In this paper, we propose a stochastic-

binary hybrid design which splits the computation between the

stochastic and binary domains for near-sensor NN applications. In

addition, our design uses a new stochastic adder and multiplier

that are significantly more accurate than existing adders and

multipliers. We also show that retraining the binary portion of the

NN computation can compensate for precision losses introduced

by shorter stochastic bit-streams, allowing faster run times at

minimal accuracy losses. Our evaluation shows that our hybrid

stochastic-binary design can achieve 9.8× energy efficiency

savings, and application-level accuracies within 0.05% compared

to conventional all-binary designs.

Keywords—neural networks, stochastic computing

I. INTRODUCTION

Sensors and actuators are critical for enabling electronic circuits
to interact with the physical world. Information acquired from
sensors has become essential to applications from home
automation to medical implants to environmental surveillance.
It is predicted that the world soon will have an average of 1,000
sensors per person [8][11] which translates to a huge amount of
raw data acquisition. The sheer volume of unstructured sensor
data threatens to overwhelm storage and network communica-
tion capacities, which are increasingly limited by aggressive
power and energy budgets.

To reduce the storage and communication demands of raw
sensor data, near-sensor computing has recently emerged as a
design space for reducing these overheads [20]. Near-sensor
computing proposes offloading portions of the application to
computing units or accelerators co-located with the sensing
device. The key insight is that by offloading certain portions of
computation such as image feature extraction (of an image-
processing pipeline) to sensor end points, higher level semantic
information can be transmitted in place of larger unstructured
data streams. Of particular interest are neural networks (NNs)
which are a widely used class of algorithms for processing raw
unstructured data. NNs excel at reasoning about raw data
streams in applications such as object detection, handwriting
recognition, and speech processing. Recent work by Du et al.

[12] shows how a near-sensor NN accelerator can dramatically
reduce the energy costs of the system.

This paper presents a near-sensor stochastic-binary NN
design which combines stochastic computing (SC) with
conventional “binary” processing and sensor data acquisition to
improve energy efficiency and power consumption. SC is a re-
emerging computation technique that performs computation on
unary bit-streams representing probabilities [14]. SC circuits are
often cheaper than binary arithmetic circuits [25]. For instance,
multiplication in SC can be implemented by a single AND gate.
The primary tradeoff for SC's simplicity is increased computa-
tion time, which leads to higher energy consumption for higher
precision calculations [2][22]. However, for applications that
can tolerate reduced precision, SC can achieve compelling
power and energy efficiency gains. Finally, stochastic circuits
are smaller in size and more error tolerant, making them suitable
for tiny sensors operating in harsh environments [3][13].

 Stochastic NNs have been extensively studied in the prior
literature [7][9][15]. However, past work proposes fully
stochastic designs that have number lengths exceeding 1,000
clock cycles [7][15], which leads to higher energy consumption.
In addition, errors introduced by multiple levels of SC circuits
compound as more levels are executed [22]. In this paper, we
present a stochastic-binary hybrid NN system that exploits the
benefits of SC, while mitigating many of its drawbacks. We only
employ SC in the first layer of an NN, so it operates directly on
the sensor data thereby avoiding the issue of compounding
errors over multiple layers. We employ a new, significantly
more accurate SC adder and a deterministic number generation
scheme to further reduce energy consumption. Finally, we
compare our design’s accuracy to that of existing SC designs,
and show our design has better energy efficiency than competing
binary implementations.

Our contributions are as follows:

1. A novel stochastic adder for convolutional NNs which
increases speed and/or accuracy, leading to a reduced
energy cost compared to previous SC NN designs.

2. A hybrid stochastic-binary NN design which combines
signal acquisition and SC in the first NN layer, and uses
binary for the remaining layers to avoid compounding
accuracy losses.

3. Showing that retraining these remaining NN layers can
compensate for precision loss introduced by SC.

The rest of the paper is organized as follows. Section II provides
background on SC and NNs. Section III introduces the new

stochastic adder design. Section IV presents our hybrid NN
design, and results are discussed in Sections V and VI.

II. BACKGROUND

This section briefly reviews the relevant concepts of stochastic

computing and neural networks.

A. Stochastic Computing

Stochastic computing is an alternative method of computing first
proposed in the 1960s [14]. In SC, numbers are encoded as bit-
streams that are interpreted as probabilities. For instance, the bit-
stream X = 001011… denotes a stochastic number (SN) with
value pX = 0.5 because the probability of seeing a 1 at a randomly
chosen position of X is 0.5. This interpretation allows arithmetic
functions to be implemented via simple logic gates. For instance,
the AND gate in Fig. 1a performs multiplication on uncorrelated
inputs. The SC probability pX or unipolar range [0, 1], does not
include negative numbers, which are usually needed for NNs.
As a result, NNs often use bipolar numbers, where the value of

X is interpreted as 2pX  1, and therefore has range [1, 1]. The
precision of SC is mainly determined by the length N of the bit-
stream. A bit-stream of length N encodes a number at log2 N bits
of precision. For example, a unipolar bit-stream of length 16 can
encode the range [0, 15] which is equivalent to the range of a
binary number with log216 = 4 bits of precision.

 In this work, we use four SC primitives: adders, multipliers,
stochastic number generators (SNGs), and stochastic-to-digital
converters (Fig. 1). These components operate on unipolar
numbers; they may implement a different function when
interpreted in the bipolar domain. To perform conventional
stochastic addition, two bit-streams X and Y are applied to the
data inputs of a multiplexer with the select bit driven by a bit-
stream R of unipolar value pR = 0.5 (Fig. 1b). The output bit-
stream encodes pZ = 0.5(pX + pY). Notice the scale factor of 0.5,
a necessary feature of SC, keeps the probability in the unit
interval [0, 1]. When compounded over many additions, the
scale factor can lead to severe loss of precision. Similar
precision losses also occur with SC multiplication, which is
realized with an AND gate (Fig. 1a) since pZ = pX × pY. One way
to improve the quality of a function is to increase the length of
the input bit-streams. However, since each bit of additional
precision requires a doubling of bit-stream length this quickly
leads to excessive run times. As a result, researchers have
proposed alternative designs that approximate the add operation.
One example is to use an OR gate as an adder, which only works
accurately if both inputs are close to zero [21]. Hence, all
existing SC adder designs need additional uncorrelated random
number sources and/or have limited accuracy. The need for extra
random number sources becomes severe when many numbers
are to be added. Ideally, we would like an adder that operates

accurately on many inputs in short periods of time, without
requiring additional uncorrelated number sources.

 Binary-to-stochastic converters, which are commonly
referred to as stochastic number generators (SNGs), and
stochastic-to-binary converters are SC primitives that allow
conversion between the binary and stochastic domain. An SNG
comprises a comparator and a random number generator (Fig.
1c). For a given number pX, the SNG will produce a 1 with that
probability if the random number is less than pX. Converting
analog signals to the stochastic domain can be achieved by
replacing the SNG comparator with an analog one. In this paper,
we use an analog-to-stochastic converter to convert the sensor
data directly to stochastic encodings, without the need for
analog-to-digital converters (ADCs). We also use a set of SNGs
to generate the NN weights.

 The choice of SNG configuration affects the accuracy and
consequently the energy consumption of the SC circuit. Table 1
shows the mean square error (MSE) of a 4-bit and 8-bit SC
multiplier for the following SNG schemes: (i) using the same
linear feedback shift register (LFSR) for both inputs, (ii) using a
separate LFSR for each input, (iii) using low-discrepancy
sequences [4], and (iv) using a ramp-compare analog-to-
stochastic converter [13] for one input, and a low-discrepancy
sequence for the other. For this work, we employ the last number
generation scheme as it provides the best accuracy. The MSEs
are calculated by exhaustively testing the multipliers for every
possible input value.

 To convert from stochastic to binary, we simply count the 1s
in the bit-stream by using a binary counter (Fig. 1d). In our work,
we use asynchronous counters because they allow us to clock
the SC part of the circuit faster. It is sufficient to apply a new
input to an asynchronous counter, even if the previous inputs
have not propagated through the counter. The delay of a
synchronous counter, on the other hand, is relatively large, so it
cannot keep up with the speed of the SC circuit feeding it. Unlike
the asynchronous counter, a synchronous counter fails if the next
input arrives before the previous input is propagated.

B. Neural Networks

NNs come in a wide range of network topologies, and generally

consist of an input layer, an output layer, and a number of

hidden layers in between [24]. A layer is composed of neurons,

each of which has a set of inputs, an output, and an activation

function f(x), e.g., a rectified linear unit. Each neuron is

connected to neurons in the previous layer; a connection is

defined by a weight that is multiplied by the previous neuron’s

output. These values are summed with other connections’

outputs and passed to an activation function. For instance, given

a neuron y that is connected to k neurons in the previous layer

(c) (d)

B
k

x

(b)

x

(a)

AND gate

y
z

pZ = pX × pY

Binary counterBinary counter

B = i x, iϵ[0, 2k]

Multiplexer

pZ = (pX + pY)/2

x

y

z

r

0

1

0

1

Multiplexer

pZ = (pX + pY)/2

x

y

z

r

0

1

Comparatork
A

B

A < B

Binary number B
pX = B/2k

k

Random no.

generator
x

Comparatork
A

B

A < B

Binary number B
pX = B/2k

k

Random no.

generator
x

Fig. 1. Unipolar stochastic arithmetic primitives: (a) multiplier, (b) scaled adder, (c) comparator-based stochastic number generator, and (d)

stochastic-to-binary converter implemented as a binary counter.

with output values 𝑥⃗ = {x0, x1, …, xk1} and connection weights

𝑤⃗⃗⃗ = {w0, w1, …, wk1} respectively, the output of neuron y is

defined as 𝑦𝑜𝑢𝑡 = 𝑓(∑ 𝑥𝑖𝑤𝑖
𝑘−1
𝑖=0).

Neuron connection topologies can either be fully connected

or locally connected to the previous layer. In fully connected

layers, each neuron is connected to every neuron of the previous

layer. In the locally connected case, neurons are connected to a

subset of neurons in the previous layer. Locally connected

layers are often referred to as convolutional layers because its

connections from the previous layer take the form of a window.

The resulting operation is mathematically equivalent to a

convolution where the convolutional kernel is simply a matrix

of the connection weights. Finally, NNs also may have max

pooling layers, which are locally connected layers that

subsample a window in the previous layer and output the

maximum value.

To determine the weights for each layer, NNs are trained

over an input training set using backpropagation [24]. This is a

technique that iterates over the training dataset and gradually

adjusts the weights based on the gradient of the error in the

NN’s output function. The error metric varies across

applications but a commonly used one for NN classification is

the cross-entropy loss. One iteration over the entire training set

is known as an epoch. Training is often supplemented by

dropout which is a training technique that randomly removes

connections during the training process at certain layers to

prevent overfitting. Once the training process converges to a set

of weights, a test set is used to evaluate the quality of the NN

model. The quality metric varies across applications but a

commonly used metric is classification accuracy based on the

outputs of the NN model.

Using SC for NNs has a well-established history [7][17]

dating back to the 1990s. Recent work proposes fully stochastic

NN designs using FPGA fabrics and full custom ASICs [16].

Similarly, Ardakani et al. [6] propose an SC NN for digit

recognition which outperforms binary designs by using shorter

bit-streams (down to length 16). To the best of our knowledge,

this is the only SC NN design that outperforms, albeit

marginally, its binary counterpart in terms of energy efficiency.

However, unlike our approach, prior SC work uses older, fully

connected NN topologies with only two hidden layers which

are smaller and less accurate than current state-of-the art NN

topologies like LeNet-5 (used in our evaluation). Finally, fully

stochastic NNs need longer bit-streams (N = 256 to 1024) to

achieve reasonable accuracy. In contrast, our work does not

execute the entire NN in the stochastic domain. Instead, we

execute the first layer using SC, then allow higher precision

binary units to finish the NN calculation.

III. STOCHASTIC ADDER DESIGN

 Unlike the basic stochastic multiplier, the conventional

stochastic add operation has undesirable properties such as the

enforced scaling factor and an extra bit-stream. Furthermore,

the discarding of some bits of each number (through

multiplexing) leads to accuracy loss, which compounds with

multiple additions.

 We now propose a new stochastic adder that is more accurate
and does not require additional random inputs. But first we
introduce a simple circuit that implements the SC function pC =
pA/2. A rudimentary implementation is to use the multiplier of
Fig. 1a where we assign A to one input, and a randomly
generated bit-stream B of value 1/2 to the other. Note that for the
multiplication to work accurately, B has to be uncorrelated to A.
Fig. 2a shows another implementation of the same function, in
which a bit-stream B with value 1/2 is generated from the bit-
stream of A without requiring an additional input. A toggle flip-
flop (TFF), which switches its output between 0 and 1 when its
input is 1, is used for this purpose. The area cost of a TFF is no
more than a random number generator that is required for
generating 1/2. More importantly, the bit-stream generated by
the TFF is always uncorrelated with its input bit-stream. This
means that there are no constraints on the auto-correlation of the
input bit-stream, unlike common sequential SC circuits that do
not function as intended if the input is auto-correlated [7].

 Fig. 2b shows our proposed TFF-based adder. At each clock
cycle, if the values at X and Y are equal, they propagate to the
output. Otherwise, the state of the TFF is output and the TFF is
toggled. Suppose the adder operates on two bit-streams of length
20. Recall for adds, there is a 0.5 normalization constant, so the
expected result is Z = 0.5(1/2 + 4/5) = 13/20 computed as
follows:

X = 0110 0011 0101 0111 1000 (1/2)
Y = 1011 1111 0101 0111 1111 (4/5)
Z = 0110 1011 0101 0111 1101 (13/20)

 The result of the adder is always accurate if the bit-stream
length N is sufficient to represent it. Otherwise, the output will
be rounded off to the nearest representable number. The
direction of rounding depends on the initial state S0 of the TFF.

a

(a) (b)

b

c

T Q

T Q

0

1

x
y

z

X = 0100 1010 (3/8)

Y = 0010 0010 (1/4)

Z0 = 0010 0010 (1/4)

Z1 = 0100 1010 (3/8)

(c)

Fig. 2. (a) Stochastic circuit with pC = pA/2, (b) proposed TFF-based

stochastic adder with pZ = (pX + pY)/2, and (c) example of its operation

with two different initial states.

Table 1. MSE of stochastic multiplier for different RNG methods

(lower is better)

Number generation scheme 8-Bit Prec. 4-Bit Prec.

One LFSR + shifted version 2.78×103 2.99×103

Two LFSRs 2.57×104 1.60×103

Low-discrepancy sequences [4] 1.28×105 1.01×103

Ramp-compare [13] + [4] 8.66×106 7.21×104

Table 2. MSE of stochastic addition for different SNG methods

(lower is better)

Implementation 8-Bit Prec. 4-Bit Prec.

Old adder

(Fig. 1b)

Random + LFSR 3.24×104 5.55×103

Random + TFF 5.49×104 5.49×103

LFSR + TFF 1.06×104 2.66×103

New adder (Fig. 2b) 1.91×106 4.88×104

If S0 = 0, as in the example above, the result will be rounded to
the smaller of the two neighboring numbers. Fig. 2c shows how
S0 affects the result. Z0 and Z1 are the outputs of the circuit with
S0 = 0 and 1, respectively. The expected result is Z = 0.5(3/8 +
1/4) = 5/16. Since N = 8 is not sufficient to represent 5/16
exactly, the result is rounded to either 1/4 or 3/8.

To quantify the accuracy of our proposed adder, we compare
it to the adder of Fig. 1b with three different SNG config-
urations: (i) random bit-streams used for the data inputs and an
LFSR used for the select input, (ii) random bit-streams for the
data inputs and a TFF that toggles every cycle for the select
input, and (iii) an LFSR used for the data inputs and a TFF for
the select inputs. While the first configuration is more
commonly used, we tried two more configurations that provide
a slight improvement. However, as seen in Table 2, our proposed
adder achieves significantly better accuracy. Once again, the
MSEs are calculated by exhaustively testing the adders for every
possible input value.

IV. STOCHASTIC-BINARY NEURAL NETWORK DESIGN

We now present our stochastic-binary hybrid design for near-

sensor NN computation. Fig. 3 gives an overview of the

proposed neural network layer and system design. To evaluate

its utility, we will use it to implement the first layer of the

LeNet-5 NN topology [19].

A. Signal Acquisition

Image sensors capture light intensity and convert it to analog

signals, which are converted to digital numbers for processing.

In this work, we use parts of a ramp-compare analog-to-digital

converter (ADC) to convert the analog signal to the stochastic

domain. The conversion circuit shown in Fig. 3 is functionally

equivalent to an SNG (Fig. 1c), with some modifications: (i) the

inputs are analog, and (ii) a ramp signal is applied to the second

input of the comparator rather than a random number generator.

Despite becoming heavily auto-correlated, the bit-stream

generated by this conversion circuit is still usable for our SC

design, because the proposed adder circuits are insensitive to

input auto-correlation. Previous work has shown such analog-

to-stochastic converters are comparable, in terms of cost and

performance to regular ADCs [3][13]. Furthermore, prior work

[26] has shown such conversions operate on the order of 100

pJ, which is much lower than the energy consumed by

computation (100s of nJ/image). Thus, we do not include the

cost of sensor data conversion in our evaluations.

B. Stochastic Convolutional Neural Network Layer

The stochastic NN layer consists of 784 stochastic dot-product

units shown in Fig. 3 which process the sensor input in parallel.

Because there are 32 different first layer kernels, we perform

parallel convolutions 32 times per image. The convolution

engines perform a basic dot-product operation followed by

stochastic-to-binary conversion and an activation function.

More precisely, each convolution engine implements:

𝑔(𝑥⃗, 𝑤⃗⃗⃗) = 𝑠𝑖𝑔𝑛(𝑥⃗ ∘ 𝑤⃗⃗⃗)

where 𝑥⃗ and 𝑤⃗⃗⃗ denote input window and kernel weights,

respectively, and ∘ denotes the dot-product operation (𝑥⃗ ∘ 𝑤⃗⃗⃗ =
 ∑ 𝑥𝑖𝑤𝑖

𝑘−1
𝑖=0). The activation function simply outputs the sign of

the dot product results and outputs either 1, 0, or 1. The weight

inputs are shared among all convolution engines, so the cost of

generating them is amortized across all units.

Since the computation involves negative numbers, the

bipolar SC domain [1, 1] is a natural choice [7]. However, by

employing bipolar SC, the decision point of activation

functions maps to bit-streams with maximum fluctuation (i.e.,

unipolar value 0.5). This increases power usage and decreases

accuracy. Therefore, we adopt a different approach which uses

only unipolar operations by dividing the weights into positive

and negative bit-streams 𝑤⃗⃗⃗𝑝𝑜𝑠 and 𝑤⃗⃗⃗𝑛𝑒𝑔. We then perform two

unipolar dot product operations, 𝑔𝑝𝑜𝑠 = 𝑥⃗ ∘ 𝑤⃗⃗⃗𝑝𝑜𝑠 and 𝑔𝑛𝑒𝑔 =

𝑥⃗ ∘ 𝑤⃗⃗⃗𝑛𝑒𝑔, followed by two asynchronous counters to convert the

Fig. 3. System diagram of our proposed near-sensor stochastic NN. Bottom – LeNet-5 NN topology. Middle – system pipeline. Top –

microarchitecture. Purple, grey, and blue regions denote analog, stochastic, and binary domains, respectively.

results 𝑔𝑝𝑜𝑠 and 𝑔𝑛𝑒𝑔 to the binary domain. Finally, the binary

activation function is implemented by a simple comparator. As

shown in Fig. 3, the rest of the NN operates in the binary

domain.

V. EXPERIMENTAL RESULTS

This section presents the results of experiments with the

proposed SC NN design. We mainly compare our design with

a similar all-binary implementation, but when possible we also

provide comparisons with existing SC-based NNs.

A. Experimental Setup

We use the MNIST database [18], a standard machine learning

benchmark for handwritten digit recognition, to evaluate

accuracy. The benchmark consists of M = 70,000 images of

handwritten digits (0 to 9); each image uses a 28×28 8-bit

greyscale encoding. A subset of 60,000 images are used to train

the NN, while the remaining 10,000 images are used to test its

accuracy. Classification accuracy is defined as the ratio of

correctly classified test images to the total number of test

images. Then the misclassification rate is defined as one minus

the classification accuracy. These metrics are often multiplied

by 100 and reported as a percentage. All NN training was

performed using the TensorFlow framework [1], and the Keras

library [10] using a NVIDIA Titan X GPU. For each stochastic

design, we built a custom C++ model to evaluate its accuracy.

Previous work on SC NNs [6][16] evaluates NN topologies

with only fully connected layers and achieves misclassification

rates between 1.95% and 2.41%. On the other hand, our work

uses the LeNet-5 topology which has both convolutional and

fully connected layers, and achieves misclassification rates

around 1%. In practice, the number of convolutional layer

kernels and the size of the kernels used in LeNet-5 vary; for our

evaluation, we use a variant provided by the Keras library

which has the topology shown in Fig. 3.

B. Accuracy Results and Neural Network Retraining

A key tradeoff in SC is reducing precision to enhance

performance. To quantify the impact of reduced precision on

classification accuracy, we build separate NN models which

execute the first layer of LeNet-5 at different precision levels (2

to 8 bits). We also replace the standard rectified linear

activation function with a sign function, which does not impose

a significant accuracy loss, but has a much simpler implement-

tation in SC. We do not execute subsequent layers in the

stochastic domain since precision losses would compound and

require longer bit-streams to achieve accurate results.

For comparison, we evaluate how precision reduction

affects the fully binary implementation. Our experiments show

that simply quantizing the first layer weights and replacing the

activation function with sign detection reduces classification

accuracy by several percentage points (up to 6.85% mis-

classification rate for 4-bit precision). However, by retraining

the rest of the NN weights, the NN model is able to recover

from the noise introduced by losses in precision and the new

activation function (Table 3). Interestingly, we find that we can

reduce precision down to 3 or 4 bits and still achieve excellent

misclassification rates (below 1%) after retraining. Since the

training process is also noisy, the classification accuracy does

not always exhibit monotonically decreasing behavior as

precision is reduced.

Bit reduction of SC designs exhibits similar accuracy losses,

but leads to exponential run time reduction and energy savings.

However, stochastic convolutions present unique challenges.

SC can be inexact at near-zero input values, and output values

are sensitive to errors. Prior work [5] shows that a non-trivial

percentage of NN values are near zero, so we use weight scaling

and soft thresholding as proposed by Kim et al. [16] to mitigate

these errors. Weight scaling normalizes the values of each

convolution kernel to use the full dynamic range [1, 1] while

soft thresholding forces a result to zero if it is within some

threshold. Finally, we also employ the retraining techniques

introduced earlier in the binary domain of the design.

We now compare the resulting classification accuracy using

SC with our new adder and multiplier, and the conventional

adder and multipliers introduced earlier in Fig. 1 that are used

in prior work. Table 3 shows misclassification rates (lower is

better) for each design. The results indicate that our new adder

and multiplier generally achieve lower misclassification rates

than those in prior SC work (up to 2.92% better). We are also

able to achieve misclassification rates which are within 0.05%

and 0.25% of the binary design for 8-bit and 4-bit precision

respectively. Further, the results show that retraining the NN

model can compensate for noise introduced by both precision

reduction and SC. In particular, for our more accurate adder and

multiplication scheme there is less noise that the retraining

process must compensate for than the old adder. Note that the

benefits of the retraining are only possible because we can

operate in the higher precision binary domain. Finally, our

results confirm that there is significant opportunity for precision

Table 3. Misclassification rates for full binary and hybrid stochastic-binary designs, and throughput-normalized power, energy efficiency, and

area results for binary and stochastic convolution designs.

 Design 8 Bits 7 Bits 6 Bits 5 Bits 4 Bits 3 Bits 2 Bits

Misclassification

Rate (%)

Binary 0.89% 0.86% 0.89% 0.74% 0.79% 0.79% 1.30%

Old SC 2.22% 3.91% 1.30% 1.55% 1.63% 2.71% 4.89%

This Work 0.94% 0.99% 1.04% 1.12% 1.04% 2.20% 43.82%

Normalized

Power (mW)

Binary 40.95 mW 72.80 mW 121.52 mW 204.96 mW 325.36 mW 501.76 mW 683.20 mW

This Work 33.17 mW 33.55 mW 33.26 mW 33.01 mW 33.20 mW 29.96 mW 28.35 mW

Energy Efficiency

(nJ / frame)

Binary 670.92 nJ 596.38 nJ 497.74 nJ 419.76 nJ 333.17 nJ 256.90 nJ 174.90 nJ

This Work 543.42 nJ 274.82 nJ 136.22 nJ 67.60 nJ 34.00 nJ 15.34 nJ 7.26 nJ

Area

(mm2)

Binary 1.313 mm2 1.094 mm2 0.891 mm2 0.710 mm2 0.543 mm2 0.391 mm2 0.255 mm2

This Work 1.321 mm2 1.282 mm2 1.240 mm2 1.200 mm2 1.166 mm2 1.110 mm2 1.057 mm2

reduction in SC, which translates to exponential reductions in

bit-stream lengths and better run times, which we explore next.

VI. POWER, AREA, AND ENERGY EVALUATION

We synthesize, place-and-route, and measure power using

Synopsys Design Compiler, IC Compiler, and PrimeTime for

our design; we also use a 65nm TSMC library. For comparison,

we evaluate a sliding window convolution engine as our binary

baseline design [23]. Activity factors for power measurement

are recorded using traces based on MNIST test images and

weights from the TensorFlow model.

Table 3 shows the throughput-normalized power, energy

efficiency, and design area for both stochastic and binary

convolution designs. Power measurements are throughput-

normalized relative to the stochastic design. For instance, a

binary design operating at 0.25× the throughput and 2× the

power relative to a stochastic design would have a throughput-

normalized power of 8× relative to the stochastic design. Since

run times of stochastic designs decrease exponentially with

lower precision, we find that the binary design must operate at

exponentially higher frequency and power to match the increase

in throughput. Finally, we find the area and energy costs of the

SC number generators are higher than a single SC dot product

unit, but the cost is shared and amortized over many units.

Since the actual operating frequency will vary across

application demands, we contrast the throughput-normalized

power between the stochastic and binary designs. Throughput-

normalized power is more representative of energy efficiency

since it is more agnostic the differences in frequency and

number of parallel units in the design. In terms of energy

efficiency, our design breaks even with binary designs at 8-bit

precision, and is 9.8× more energy efficient at 4-bit precision.

Furthermore, it achieves these gains with better classification

accuracy than prior work.

 Finally, we see that our stochastic convolution design

achieves reasonable area overhead relative to the binary one.

The stochastic convolution engine exhibits virtually no change

in resource utilization since precision in SC only affects the

length of the bit-streams. However, binary designs benefit from

linear area reductions since reduced precision narrows the

datapath. We find that our design achieves roughly the same

area as the binary design at 8-bit precision but is 2× larger than

the binary design at 4-bit precision.

VII. CONCLUSIONS

We presented a convolutional NN system which employs a

hybrid stochastic-binary design for near-sensor computing. The

design employs near-sensor SC using a novel stochastic adder

which is significantly more accurate than previous adder

designs. Our simulations show that with this adder, the hybrid

NN achieves up to 2.92% better accuracy than previous SC

designs, and 9.8× better energy efficiency for convolutions over

all-binary designs. Finally, we show that retraining the binary

domain portion of the NN can compensate for precision losses

from SC. As NNs become increasingly commonplace in

modern applications, the energy efficiency gains offered by SC

will be invaluable for meeting the aggressive power and energy

budgets of next generation sensors and embedded devices.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by the National Science

Foundation under Grant CCF-1318091 and Grant CCF-

1518703, and generous gifts from Oracle Labs and Microsoft.

 REFERENCES

[1] M. Adabi et al., TensorFlow: Large-scale Machine Learning on
Heterogeneous Systems [Online], Available: http://tensorflow.org/,
[Accessed: 17-Sep-2016].

[2] J. M. de Aguiar and S. P. Khatri, “Exploring the viability of stochastic
computing,” Proc. ICCD, pp. 391-394, 2015.

[3] A. Alaghi et al., “Stochastic circuits for real-time image-processing
applications,” Proc. DAC, pp. 1-6, 2013.

[4] A. Alaghi and J. P. Hayes, “Fast and accurate computation using
stochastic circuits,” Proc. DATE, pp. 1-4, 2014.

[5] J. Albericio et al., “Cnvlutin: Ineffectual-neuron-free deep neural
network computing,” Proc. ISCA, pp. 1-13, 2016.

[6] A. Ardakani et al., “VLSI implementation of deep neural networks using
integral stochastic computing,” Proc. ISTC, pp. 216-220, 2016.

[7] B. D. Brown and H. C. Card, “Stochastic neural computation. I.
Computational elements,” IEEE Trans. Comp., pp. 891-905, 2001.

[8] J. Bryzek, “Roadmap to a $ trillion MEMS market,” MEMS Technology
Symposium, Vol. 23, 2012.

[9] V. Canals et al., “A new stochastic computing methodology for efficient
neural network implementation,” IEEE Trans. Neural Networks and
Learning Systems, pp. 551-564, 2016.

[10] F. Chollet., Keras [Online], Available: https://github.com/fchollet/keras,
[Accessed: 17-Sep-2016].

[11] H. G. Chen et al., “ASP vision: optically computing the first layer of
convolutional neural networks using angle sensitive pixels,” Proc.
CVPR, 2016.

[12] Z. Du et al., “ShiDianNao: shifting vision processing closer to the
sensor,” SIGARCH Comput. Archit. News, pp. 92-104, 2015.

[13] D. Fick et al., “Mixed-signal stochastic computation demonstrated in an
image sensor with integrated 2d edge detection and noise filtering,”
Proc. Custom Integrated Circuits Conference (CICC), pp. 1-4, 2014.

[14] B.R. Gaines, “Stochastic computing systems,” Advances in Information
Systems Science, vol. 2, pp. 37-172, 1969.

[15] Y. Ji et al., “A hardware implementation of a radial basis function neural
network using stochastic logic,” Proc. DATE, pp. 880-883, 2015.

[16] K. Kim et al., “Dynamic energy-accuracy trade-off using stochastic
computing in deep neural networks,” Proc. DAC, pp. 124:1-6 , 2016.

[17] Y.-C. Kim and M. A. Shanblatt, “Architecture and statistical model of a
pulse-mode digital multilayer neural network,” IEEE Trans. Neural
Networks, pp. 1109-1118, 1995.

[18] Y. LeCun et al., The MNIST Database of Handwritten Digits [Online],
http://yann.lecun.com/exdb/mnist/, [Accessed: 17-Sep-2016].

[19] Y. LeCun et al., “Gradient-based learning applied to document
recognition,” Proc. IEEE, vol. 86, pp. 2278-2324, 1998.

[20] R. LiKamWa et al., “RedEye: analog ConvNet image sensor architecture
for continuous mobile vision," Proc. ISCA, 2016.

[21] B. Li et al., “Using stochastic computing to reduce the hardware
requirements for a restricted Boltzmann machine classifier,” Proc.
FPGA, pp. 36-41, 2016.

[22] B. Moons and M. Verhelst, “Energy-efficiency and accuracy of
stochastic computing circuits in emerging technologies,” IEEE Jour.
Emerging and Selected Topics in Circuits Syst., pp. 475-486, 2014.

[23] A. E. Nelson, “Implementation of image processing algorithms on
FPGA hardware,” M.S. thesis, EE Dept.,Vanderbilt Univ., 2000.

[24] M.A. Nielsen, Neural Networks and Deep Learning, Determination
Press, 2015. http://neuralnetworksanddeeplearning.com/.

[25] W. Qian et al., “An architecture for fault-tolerant computation with
stochastic logic,” IEEE Trans. Comp., vol. 60, pp. 93-105, 2011.

[26] N. Verma and A. P. Chandrakasan, “An ultra low energy 12-bit rate-
resolution scalable SAR ADC for wireless sensor nodes,” IEEE Journal
of Solid-State Circuits, pp. 1196-1205, 2007.

