Nickel: A framework for design and verification of
iInformation flow control systems

Luke Nelson
Joint work with Helgi Sigurbjarnarson, Bruno Castro-Karney,

James Bornholt, Emina Torlak, Xi Wang

2018 New England Systems Verification Day

UNSAﬂ

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Motivation: high verification burden

- Verification is effective at eliminating bugs
Requires expertise

Large time investment

Approach: push-pbutton verification

Yggdrasil Crash-safe filesystems (Python)
OSDI 2016

Hyperkernel Small OS kernel (C, memory isolation)
SOSP 2017

Nickel Information flow control systems

OSDI 2018

Information flow control systems

136) 1296 | 4ooo0! 1

@}\\[Nl U.S. » Crime + Justice | Energy + Environment | Extreme Weather | Space + Science Live TV U.S. Edition + ,O —

FBI: Hacker claimed to have taken over
flight's engine controls

By Evan Perez, CNN
(®© Updated 9:19 PM ET, Mon May 18, 2015 Morning Mix

Hacker Chris Roberts told FBI he
took control of United plane, FBI
claims

By Justin Wm. Moyer
May 18, 2015

aal
e

Eddie Kohler
@xexd

mv

| spent many years after
Asbestos/HiStar down on information
flow, because it makes things too hard
to program for too little gain. Still think
that! But this keeps happening.

noreply@hotcrp.com 2:35 AM (6 hours ago) Yy &
tome ~

2018/08/08 06:30:07 h.asplos19: bad doc 403 Forbidden You aren'’t allowed to view submission #500. []
@/asplos19-paper500.pdf xxx@stanford.edu

2018/08/08 06:30:13 h.asplos19: bad doc 403 Forbidden You aren’t allowed to view submission #600. []
@/asplos19-paper600.pdf xxx@stanford.edu

2018/08/08 06:30:18 h.asplos19: bad doc 403 Forbidden You aren’t allowed to view submission #1000.]
@/asplos19-paper1000.pdf xxx@stanford.edu

2018/08/08 06:30:24 h.asplos19: bad doc 403 Forbidden You aren’t allowed to view submission #10000. []
@/asplos19-paper10000.pdf xxx@stanford.edu

5:43 AM - 8 Aug 2018

Goal: eliminate covert channels from systems

- Covert channel (Lampson '73). unintended flow
between system components

- Approach: verification-driven development
- Verity noninterference for interface specification
- Verity refinement for implementation

Limitations: no physical channels; no concurrency

Contributions

- Formulation of noninterference amenable to automated
verification

- Nickel is a framework for verifying IFC systems.
- Applied Nickel to verify systems including

- NiStar: first formally verified DIFC OS kernel

- ARINC 653 communication interface: avionics kernel
standard

—xample covert channel: resource names

Policy: process A and process B should not communicate

Interface: spawn system call returns sequential PIDs

Try to violate policy by sending a
secret (in this case, 2) to process B

Process A Process B

—xample covert channel: resource names

Policy: process A and process B should not communicate

Interface: spawn system call returns sequential PIDs

Process A Process B

10

Noninterference intuition

Process B Process A Process A Process B

l spawn > 3 l spawn > 4 l spawn > 5 I spawn e%

Process B Process B

l spawn > 3 l spawn - (4]

@

11

Noninterference intuition

Many Kinds of covert channels

SPDrgV‘;‘ + Resource names and exhaustion
‘ - Statistical information
- Error handling
» Scheduling

- . Devices and services

12

Noninterference

For any trace tr, action a, removing “irrelevant”

actions should not affect the output of a.

output(run(init, tr), a) =
output(run(init, purge*(tr, a)), a)

Information flow policies in Nickel

D : Set

A can-flow-to relation
specifying permitted
flows among domains

A function mapping an .
action in a state to a dom : (A X S) — D
domain
o - @

Automated verification of noninterterence

Proof strategy: unwinding conditions

- Together imply noninterference
Reason about one action at a time

- Amenable to SMT solving using Z3

Local respect I(s) A ~(dom(a, s) ~ v) — s = step(s, a)
. dOm(a,S)
Output consistency IOHAIDAs =~ t— output(s,a) = output(s, a)

- u dom a,s u
Weak step consistency ISHAINDAs St A s 2t - step(s, a) & step(t, a)

15

Nickel workflow

Counterexample

Design
Interface

Verity interface
against policy

Counterexample

Interface J

noninterference

Implement l VIS

iInterface

Implementation

against interface

Implementation J
noninterference and

functional correctness

16

Programmer Inputs

Information flow policy

Interface specification

Observational equivalence

17

Information flow policy

n processes that are not allowed to communicate

18

Information flow policy

n processes that are not allowed to communicate

class State:
current
Nr_procs
proc_status

PidT()
SizeT()
Map(PidT, StatusT)

def can_flow_to(domainl, domain2):
Flow only permitted 1f same domain
return domainl == domain2

def dom(action, state):
Domain of each action 1s current process
Yeturn state.current

& ..

&

19

Interface specification

o |def sys_spawn(old):
Eﬁﬁﬁﬁﬁﬁl——child_pid = old.nr_procs + 1

pre = child_pid <= NR_PROCS
neW — Old.COpy()
state new.nr_procs += 1

new.proc_statusl[child pid] = RUNNABLE

Observational equivalence

current

NY_PIrocCs NY_ProcCsS

proc_status[4]

current

proc_status[4]

21

Observational equivalence

class State:
current = PidT()
Nr_procs SizeT()
proc_status = Map(PidT, StatusT)

def obs_eqgv(domain, statel, state2?):
return And/(
statel.current == state2.current,
statel.nr_procs == state2.nr_procs,
statel.proc_status[domain.pid] ==
state2.proc_status[domain.pid]

)

pidy

&> |~ &5
Y

D

proc_status[4] proc_status[4]

22

Systems verified using Nickel

Component NiStar NiKOS ARINC 653
Information flow policy 26 14 33
Interface specification /14 82 240

Observational equivalence 127 56 80
Implementation 3,155 343 -
User-space implementation 9,348 389 —
Common kernel infrastructure 4,829 (shared by NiStar/NiKOS) —

23

Spawn example

&

L

25

tainting example

send(B, 12)

Process A Process B

L evel: tainted Level: untainted

Process C

Level: untainted

Process D

Level: tainted

26

tainting example

send(B, 12)

Process A Process B

L evel: tainted Level: tainted

Process C

Level: untainted

Process D

Level: tainted

27

tainting example

if Value == Process A wait(500)
send(B, 0) , if Level != tainted:
Value: secret_bit send(C, 1)
I
Value: O
wait(1000)

if Value == Process C

secret 1s ©
else: Value: O

secret 1s 1

Level: untainted

Level: untainted

28

tainting example

if Value ==
send(B, 0)

walt (1000)
1if Value ==

secret 1s O
else:

secret is 1

Process A

wait(500)
1f Level != tainted:
AiUe: send(C, 1)

Level; tainted

Process B

Value: O

Process C

Level: untainted

Level: untainted

send(C, 1)

29

tainting example

if Value ==
send(B, 9)

walt (1000)
1if Value ==

secret is ©
else:

secret 1s 1

Process A

Level; tainted

send(B, 9)

Process C

Level: untainted

wait(500)
1f Level != tainted
send(C, 1)

Process B

Value: O

L evel; tainted

30

Pususunon1 i
VERIFICATION

https://nickel.unsat.systems

31

https://nickel.unsat.systems

