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Formal verification of systems

* Eliminate entire classes of bugs
* Write a spec & prove impl meets the spec
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 Verification projects at UW: Bagpipe [OOPSLA’16],
Neutrons [CAV’16], Verdi [PLDI’15], ...
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Challenge 1/3: non-trivial efforts

* Time-consuming: often person-years
* Require high-level of expertise

* Example: the sel4 kernel
e 10 KLOC code,
e 480 KLOC proof
* 11 person-years



Challenge 2/3: spec

 What is a correct system
* Low-level correctness is well-understood: no overflow
* Some fields have been using formal specs: TLA+
* Difficult in general

* Examples
* The file system must ensure crash safety
* The OS kernel must enforce process isolation



Challenge 3/3: integration w/ dev

* Learning curve

* Improve upon testing (e.g., Driver Verifier)
* Moving target

* Incremental deployment



Push-button verification

e System design for minimizing proof efforts
* Verifiability as a first-class concern

* Leverage advances in automated SMT solving
* But need to use solvers wisely
* Limitations on expressiveness




From static analysis to verification

“There has been a seismic shift in terms of the
average programmer ‘getting it.” When you say
you have a static bug-finding tool, the response
is no longer ‘Huh?’ or ‘Lint? Yuck.” This shift
seems due to static bug finders being in wider
use, giving rise to nice networking effects.”

A Few Billion Lines of Code Later: Using Static Analysis to Find
Bugs in the Real World — Coverity, CACM 2010



Outlines

* Yggdrasil: writing verified FSes [OSDI’16]
* Hyperkernel: a verified OS kernel [SOSP’17]
* Lessons learned & future work



Yggdrasil [OSDI'16]
* File systems are essential for data integrity

* But are difficult to get right
* Complex on-disk data structures Directory
* Must ensure crash safety | |
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FS challenges

* Too many states
* Disks are large; many execution paths
* Non-determinism: crash, reordering writes

* Techniques
e Testing: eXplode [OSDI '06], EXE [CCS '06]
* Interactive proving: FSCQ [SOSP’15], Cogent [ASPLOS’16]

e How to automate FS verification



Yggdrasil: writing verified FSes

* Key ideas
e A definition of FS correctness amenable to SMT solving
* Layering to scale verification
e Separating layout from correctness

* Main result: Yxv6 file system
e Similar to ext3 and xv6
 Verified functional correctness
 Verified crash safety




Yggdrasil overview
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Example spec

class TxnDisk(BaseSpec):
def begin_tx(self):
self. txn = []

def write tx(self, bid, data):
self. cache = self. cache.update(bid, data)
self. txn.append((bid, data))

def commit tx(self):
with self. mach.transaction():

for bid, data in self. txn:
self. disk = self. disk.update(bid, data)



Strawman: doesn’t capture crash

* Model FS as a state machine with a set of
operations { create, rename, etc. }
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Crash refinement

spec

impl




Crash refinement definition

e Model FS as a state machine

 Augment each op with an explicit crash schedule:
op(disk, inp, sched) = disk

* For each FS op, prove:
V disk, inp, sched,, .. Jsched,...
OPg,e(disk, inp, sched, . ) =
OP;impildisk, inp, sched; )

* 73 is good at solving this form



Stack of layered abstractions

e Each layer has a spec regular files, symbolic
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Separate refinement of l[ayout

e Start with multiple disks
& inefficient layout

* Gradually refine to
optimized layout

e Separate reasoning of
correctness from layout
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Implementation w/ Python & Z3

* Two Yxvb6 variants
* Yxv6+sync: similar to xv6, FSCQ and ext4+sync
* Yxvb6+group_commit: an optimized Yxv6+sync

e verified: 1.6 hours w/ 24 cores - no manual proofs!

Yxv6 1,500

infrastructure -- 1,500 --

FUSE stub == 250 ==



Run-time performance

e 3—-150x faster than extd+sync
* Within 10x of ext4+default
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Summary of Yggdrasil

e Push-button verification is feasible for FS
* No manual proofs on implementation
e New FS correctness definition: crash refinement

* FS design for verification
* Model FS as a state machine
* Verify each operation using crash refinement
* Verify each layer independently



Hyperkernel [SOSP'17]

* The OS Kernel is a critical component
* |solation is essential for application security
e Kernel bugs can compromise the entire system

* Manual verification is costly

* Goal: OS design for automated SMT verification



Design challenges

* Kernel APl must be amenable to SMT reasoning

* Kernel pointers are difficult to reason about
* kernel runs under virtual memory
* kernel also manipulates the mapping
* the mapping is often non-injective

e Cis known to be difficult to model



|[deas: design to scale verification

* Finite interface: no loops/interrupts in kernel
e Use SMT-friendly data structures (e.g., bitmaps)
* Use validation whenever possible

* [dentity mapping in kernel
* Separate address spaces in kernel and user
* “Abuse” virtual machine instructions

* Verification using LLVM IR instead of C
* SMT encodings for reference counting, etc.



Model OS as a state machine
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e Assume a uniprocessor system
e Assume initialization and glue code correct



Main theorems
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Workflow
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Demo

 Workflow
* Virtual memory management



Summary of Hyperkernel

* Feasible to verify a simple Unix-like OS kernel
* Make interface finite, “exokernel”-y
* Leverage advances in HW and formal methods

e Starting point for verifying applications+0S



Lessons learned

* Event-driven systems

* A set of “atomic” handlers
* Encode finite handlers in SMT
* Add layers (if needed) to scale up verification

e Co-design systems w/ SMT
* Use effectively decidable theories whenever possible
e Restricted use of quantifiers



Conclusion

* Push-button verification
* Examples: file system, OS kernel
* Reusable design patterns and toolchains

* Verifiability as a first-class system design concern
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Deployability

* Run a hypervisor as a guest on a verified shim.

* Enforce memory is protected from other guests and
from hypervisor.

* Rely on hypervisor for device and policy
implementation.

Hypervisor Guest Guest

Verified Shim




Key design ideas

* Explicit resource allocation and reclamation

* Require user space to make decisions about resources,
eliminating need for allocators or garbage collectors in
kernel

* Finitize system call interface

* Should complete in constant time, independent of
parameters, eliminating need to reason about loops or
long-running system calls



