Designing Systems for
Push-Button Verification

Luke Nelson, Helgi Sigurbjarnarson, Xi Wang

Joint work with James Bornholt, Dylan Johnson,
Arvind Krishnamurthy, Emina Torlak, Kaiyuan Zhang

UNIVERSITY of WASHINGTON
PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Formal verification of systems

* Eliminate entire classes of bugs
* Write a spec & prove impl meets the spec

14 . ~¢scq IONClad apps

. COMPCERT

 Verification projects at UW: Bagpipe [OOPSLA’16],
Neutrons [CAV’16], Verdi [PLDI’15], ...

(o

CERTIKOS

N

Challenge 1/3: non-trivial efforts

* Time-consuming: often person-years
* Require high-level of expertise

* Example: the sel4 kernel
e 10 KLOC code,
e 480 KLOC proof
* 11 person-years

Challenge 2/3: spec

 What is a correct system
* Low-level correctness is well-understood: no overflow
* Some fields have been using formal specs: TLA+
* Difficult in general

* Examples
* The file system must ensure crash safety
* The OS kernel must enforce process isolation

Challenge 3/3: integration w/ dev

* Learning curve

* Improve upon testing (e.g., Driver Verifier)
* Moving target

* Incremental deployment

Push-button verification

e System design for minimizing proof efforts
* Verifiability as a first-class concern

* Leverage advances in automated SMT solving
* But need to use solvers wisely
* Limitations on expressiveness

From static analysis to verification

“There has been a seismic shift in terms of the
average programmer ‘getting it.” When you say
you have a static bug-finding tool, the response
is no longer ‘Huh?’ or ‘Lint? Yuck.” This shift
seems due to static bug finders being in wider
use, giving rise to nice networking effects.”

A Few Billion Lines of Code Later: Using Static Analysis to Find
Bugs in the Real World — Coverity, CACM 2010

Outlines

* Yggdrasil: writing verified FSes [OSDI’16]
* Hyperkernel: a verified OS kernel [SOSP’17]
* Lessons learned & future work

Yggdrasil [OSDI'16]
* File systems are essential for data integrity

* But are difficult to get right
* Complex on-disk data structures Directory
* Must ensure crash safety | |

Directory Directory
I l
I I I
Directory Directory Directory
* Bugs are hard to reproduce P e e O
—_ file —_ file —: file —1 file
. file — | file o ifile -] file

— fil - fil — fil —

FS challenges

* Too many states
* Disks are large; many execution paths
* Non-determinism: crash, reordering writes

* Techniques
e Testing: eXplode [OSDI '06], EXE [CCS '06]
* Interactive proving: FSCQ [SOSP’15], Cogent [ASPLOS’16]

e How to automate FS verification

Yggdrasil: writing verified FSes

* Key ideas
e A definition of FS correctness amenable to SMT solving
* Layering to scale verification
e Separating layout from correctness

* Main result: Yxv6 file system
e Similar to ext3 and xv6
 Verified functional correctness
 Verified crash safety

Yggdrasil overview

consistency
invariants

[compiler)
C code for
file system + fsck

[vecter |
N l

[optimizer) [visualizer)
4

Example spec

class TxnDisk(BaseSpec):
def begin_tx(self):
self. txn = []

def write tx(self, bid, data):
self. cache = self. cache.update(bid, data)
self. txn.append((bid, data))

def commit tx(self):
with self. mach.transaction():

for bid, data in self. txn:
self. disk = self. disk.update(bid, data)

Strawman: doesn’t capture crash

* Model FS as a state machine with a set of
operations { create, rename, etc. }

SpeC H

impl

10

= !

- 2

Crash refinement

spec

impl

Crash refinement definition

e Model FS as a state machine

 Augment each op with an explicit crash schedule:
op(disk, inp, sched) = disk

* For each FS op, prove:
V disk, inp, sched,, .. Jsched,...
OPg,e(disk, inp, sched, .) =
OP;impildisk, inp, sched;)

* 73 is good at solving this form

Stack of layered abstractions

e Each layer has a spec regular files, symbolic
_links, and directories > Crash ref \
rasn refinemen
Yxv6 files
* Each layer builds upona -
IOWGr layer Spec nodes >Crash refinement
Yxv6 inodes
S T e
e Limit verification to a _ transactional disk > e refinoment
single layer at a time write-ahead logging
o ? __________________________
disk

O specification
O implementation

Separate refinement of l[ayout

e Start with multiple disks
& inefficient layout

* Gradually refine to
optimized layout

e Separate reasoning of
correctness from layout

log
disk

file data
disk

log
partition

orphan inodes |,

disk

file data
partition

orphan inodes
partition

block bitmap |,

disk

packed block |
bitmap disk |

block bitmap
partition

inode bitmap |,

disk

packed inode |
bitmap disk |

inode bitmap
parition

inode metadata |,

disk

packed inodes |,

disk

inodes
partition

direct block |
pointers disk |

disk

Implementation w/ Python & Z3

* Two Yxvb6 variants
* Yxv6+sync: similar to xv6, FSCQ and ext4+sync
* Yxvb6+group_commit: an optimized Yxv6+sync

e verified: 1.6 hours w/ 24 cores - no manual proofs!

Yxv6 1,500

infrastructure -- 1,500 --

FUSE stub == 250 ==

Run-time performance

e 3—-150x faster than extd+sync
* Within 10x of ext4+default

1000 ¢
i s fsc
| s extd+sync
100 = yxvb+sync _
= C—— yxv6+group_commit
i = extd+default T
3
g 10 L .
2
g
= |
g I
g 0.1 L
=
m - -
0.01 } _‘ _‘ -
0.001 _

Make Bash ~ Make yxv6 Mailbench Largefile Smallfile

Summary of Yggdrasil

e Push-button verification is feasible for FS
* No manual proofs on implementation
e New FS correctness definition: crash refinement

* FS design for verification
* Model FS as a state machine
* Verify each operation using crash refinement
* Verify each layer independently

Hyperkernel [SOSP'17]

* The OS Kernel is a critical component
* |solation is essential for application security
e Kernel bugs can compromise the entire system

* Manual verification is costly

* Goal: OS design for automated SMT verification

Design challenges

* Kernel APl must be amenable to SMT reasoning

* Kernel pointers are difficult to reason about
* kernel runs under virtual memory
* kernel also manipulates the mapping
* the mapping is often non-injective

e Cis known to be difficult to model

|[deas: design to scale verification

* Finite interface: no loops/interrupts in kernel
e Use SMT-friendly data structures (e.g., bitmaps)
* Use validation whenever possible

* [dentity mapping in kernel
* Separate address spaces in kernel and user
* “Abuse” virtual machine instructions

* Verification using LLVM IR instead of C
* SMT encodings for reference counting, etc.

Model OS as a state machine

) ()

{ process J e { process J

(! [y use

user-kernel interface

l T kernel

{ trap handler J

e Assume a uniprocessor system
e Assume initialization and glue code correct

Main theorems

declarative
specification
4 ’ | * N
/ ’ ! * N
i i s 1 N
state-machine
specification
i f | | |
1 1 1
| | |
implementation

Workflow

declarative |
specification |

I

1

I

1

I
state-machine : , proof or

. . . verifier

specification , test case

1

syscall/m.terru.pt handler | LLVM C LLVM IR
& invariant ! front-end

kernel initialization : LLVM kernel
& glue code : compiler image

C & assembly

Demo

 Workflow
* Virtual memory management

Summary of Hyperkernel

* Feasible to verify a simple Unix-like OS kernel
* Make interface finite, “exokernel”-y
* Leverage advances in HW and formal methods

e Starting point for verifying applications+0S

Lessons learned

* Event-driven systems

* A set of “atomic” handlers
* Encode finite handlers in SMT
* Add layers (if needed) to scale up verification

e Co-design systems w/ SMT
* Use effectively decidable theories whenever possible
e Restricted use of quantifiers

Conclusion

* Push-button verification
* Examples: file system, OS kernel
* Reusable design patterns and toolchains

* Verifiability as a first-class system design concern

Linear address:

*) 40 bits aligned to a 4-KByte boundary

63 40|39 32|31 16 8|7
L N I
sign extended
T
9
PML4 table page-directory-
pointer table
page directory
. page table
PML4 | : g
entry PDP o -
e 64 bitPD @]
- BRI 684 bit PT @
. . entry
40* . .
—@ CR3

4K memory page

Deployability

* Run a hypervisor as a guest on a verified shim.

* Enforce memory is protected from other guests and
from hypervisor.

* Rely on hypervisor for device and policy
implementation.

Hypervisor Guest Guest

Verified Shim

Key design ideas

* Explicit resource allocation and reclamation

* Require user space to make decisions about resources,
eliminating need for allocators or garbage collectors in
kernel

* Finitize system call interface

* Should complete in constant time, independent of
parameters, eliminating need to reason about loops or
long-running system calls

