
Designing	Systems	for	
Push-Button	Verification

Luke	Nelson
Joint	work	with	James	Bornholt,	Dylan	Johnson,

Helgi Sigurbjarnarson,	Emina Torlak,	Xi	Wang,	Kaiyuan Zhang



OSes	are	everywhere



OSes	(&	bugs)	are	everywhere



Goals

• Develop	“bug-free”	systems	software
• Correctness,	performance,	and	programmability



Formal	verification	of	systems

• Eliminate	entire	classes	of	bugs
• Write	a	spec	&	prove	impl meets	the	spec

• Verification	projects	at	UW:	Bagpipe	[OOPSLA’16],	
Neutrons	[CAV’16],	Verdi	[PLDI’15],	…

COMPCERT



Challenges	1/3:	non-trivial	efforts

• Time-consuming:	often	person-years	
• Require	high-level	of	expertise
• Example:	the	seL4	kernel
• 10 KLOC	code,	
• 480 KLOC	proof
• 11 person-years



Challenges	2/3:	spec

• What	is a	correct	system
• Low-level	correctness	is	well-understood:	no	overflow
• Some	fields	have	been	using	formal	specs:	TLA+
• Difficult	in	general

• Examples
• The	file	system	must	ensure	crash	safety
• The	OS	kernel	must	enforce	process	isolation



Challenges	3/3:	integration	

• Integrating	verification	with	daily	development
• Learning	curve
• Write	good	specs
• Improve	upon	testing	(e.g.,	Driver	Verifier)
• Catch	up	with	new	features:	no	code	base	is	static
• Incremental	deployment:	co-exist	with	legacy	code



Push-button	verification

• System	design	for	
minimizing	proof	efforts
• Verifiability	as	a	first-class	
concern
• Leverage	advances	in	
automated	SMT	solving



Outline	

• Yggdrasil	[OSDI	‘16]:	File	system
• Hyperkernel [SOSP	’17]:	OS	kernel
• Ongoing	Work
• Conclusion



Approach

• Model	as	event-driven	systems
• A	set	of	“atomic”	handlers
• Each	handler	is	bounded
• Add	layers	to	scale	up	verification

• Proof	automation	using	SMT	solvers
• Use	effectively	decidable	theories	only	(if	possible)
• Smart	encodings	of	systems	properties
• Need	research	on	SMT	“symbolic”	profiling



Yggdrasil	[OSDI	‘16]

• Yxv6:	journaling	file	system	similar	to	ext3
• Guarantees:	functional	correctness	&	crash	safety
• Verified:	1.6	hours	w/	24	cores	- no	manual	proofs

spec impl consistency inv.
Yxv6 250 1,500 5

infrastructure -- 1,500 --

FUSE stub -- 250 --



Hyperkernel [SOSP	‘17]
• Unix-like	teaching	operating	system	based	on	xv6
• Functional	correctness
• High-level	properties,	ex:	Process	isolation
• 15	minutes	to	verify	on	an	8-core	Intel	i7	CPU

Component Lines Languages
Kernel	implementation 7,419 C,	assembly
Representation	invariant 197 C
State-machine	specification 804 Python
Declarative	specification 263 Python
User-space	implementation 10,025 C,	assembly
Verifier 2,878 C++,	python



Ongoing	work
• Generalize	to	more	systems
• Push	the	boundary	to	more	complex	systems
• Example:	Hypervisors

• Deployability
• How	to	use	push-button	verified	systems	in	practice



Conclusion

• Push-button	verification
• Examples:	file	systems,	OS	kernels
• Reusable	design	patterns	and	toolchains

• Verifiability	as	a	first-class	design	concern

• How	to	integrate	with	daily	development


