Probabilistic Predicates

- **Key Ideas**
 - Complex query predicates: Large space of possible predicates, costly to train/store per predicate, indiv. PPs do not generalize
 - Challenge 1: Build PPs for arbitrary input?
 - Dimensionality, Sparsity, Linear separability?
 - Any classifier that fits $f(x) < \theta$ can work for PP
 - Pre-process: dim. reduction (PCA, feature hashing.) (Opt.)
 - Model Selection
 - Challenge 2: Use PPs for complex predicates w/o per-query training (i.e., small overhead)
 - 5 cols \times 10 values $\Rightarrow \geq 10^5$ predicates

Problem

- Images \rightarrow `YOLOv2` \rightarrow σ \rightarrow Result

Predicate pushdown? X

- No harm on query accuracy, but less speedup

Predicate pushdown? X

- False Negative

Predicate pushdown? X

- True Negative

PP Discards $f(x) \leq \theta$

- Accuracy/reduction tradeoff: choose threshold (θ)

Images \rightarrow `YOLOv2` \rightarrow σ \rightarrow Result

- Accuracy = 3/3, Reduction = 5/10

Images \rightarrow `YOLOv2` \rightarrow σ \rightarrow Result

- Accuracy = 2/3, Reduction = 7/10

Technical problems addressed

- Train PPs for diverse inputs - SVMs, KDE, shallow NNs - model selection.
- Avoid per-query training - train PP for simple preds., use QO to build PP comb.
- Sizable gains on images, video and text datasets

Interactive Demo