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Fig. 1. Query diagram in a distributed SPE. Node1 and Node2 are upstream neighbors of
Node3 and Node4.

1. INTRODUCTION

Monitoring applications, such as network intrusion detection, computer-system
monitoring, financial services, sensor-based environment monitoring (e.g., high-
way monitoring, pipeline health monitoring), or military applications (e.g., platoon
tracking), require continuous processing of information from geographically dis-
tributed data sources: e.g., sensors, network monitors, computer system monitors,
ticker feeds. These applications require results to be produced at low latency even
in the face of high and variable input data rates or system failures.

Stream processing engines (SPEs) [Abadi et al. 2005][StreamBase] (also known
as stream databases [Cranor et al. 2003], data stream managers [Abadi et al. 2003;
Motwani et al. 2003], continuous query processors [Chandrasekaran et al. 2003],
complex event processing engines [Coral8], or event stream processors [Aleri]) are
a class of software systems that handle the data processing requirements of mon-
itoring applications. In these systems, the application-logic takes the form of a
dataflow composed of a relatively small set of operators (e.g., filters, aggregates,
and correlations). To avoid blocking in face of unbounded data inputs, these op-
erators typically perform their computations on windows of data that move with
time. For example, an aggregate operator may produce the average room tem-
perature every minute. Many SPEs allow operators to be spread across multiple
processing nodes [Abadi et al. 2005; Cherniack et al. 2003; Shah et al. 2004]. In
such distributed deployments, each SPE node produces result streams that are
either sent to applications or to other nodes for additional processing. Figure 1
illustrates a distributed SPE performing a computation spread across four nodes.
When a stream goes from one node to another, the nodes are called upstream and
downstream neighbors.

When a processing node fails or becomes disconnected, a distributed SPE may
block or it may produce erroneous results. The likelihood of a failure increases
with the number of processing nodes in the system. Ideally, the distributed SPE
should mask any internal failures from users, ensuring that they receive correct
results (i.e., maintaining consistency) and that they receive these results quickly
(i.e., maintaining low processing latency, a form of availability). In this paper, we
ACM Transactions on Database Systems, Vol. XX, No. XX, XX 20XX.
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investigate techniques to achieve such fault-tolerant distributed stream processing.

The traditional approach to masking failures is through replication [Gray et al.
1996], running multiple copies of each operator on distinct processing nodes. With
replication, if a processing node fails or becomes disconnected the system can con-
tinue operating correctly by using a replica of the failed node [Hwang et al. 2005;
Shah et al. 2004]. Replication cannot mask all system failures, though. If a net-
work partition prevents a node from communicating with all replicas of one of
its upstream neighbors, the node must either continue processing the remaining
data to maintain availability or block to maintain consistency. Previous techniques
for fault-tolerant stream processing either do not address network failures [Hwang
et al. 2005] or strictly favor consistency over availability when system partitions
occur [Shah et al. 2004]. In contrast, we propose a fault-tolerance scheme, called
Delay, Process, and Correct (DPC) that not only handles both node and network
failures but also accommodates applications with different desired trade-offs be-
tween availability and consistency in face of network partitions.

The key idea of DPC is to let each application define its desired trade-off between
availability and consistency by specifying the maximum incremental processing la-
tency it can tolerate. DPC maintains this application-specific processing latency
at all times, independent of failure durations. DPC achieves this goal by favoring
availability over consistency when long partitions occur: i.e., each SPE node guar-
antees that it will process all available inputs within a predefined time period even
if other inputs are unavailable. The best-effort data produced in this manner is
called tentative. During failures, we measure the level of inconsistency of a replica
by counting the number of tentative result tuples it produces. The goal of DPC
is to minimize inconsistency by minimizing the number of tentative tuples, while
maintaining the required latency threshold. Such functionality is important for
many applications. For example, in a distributed network monitoring system, if
some monitoring nodes become unreachable, continuing to process data from the
remaining nodes can help detect at least a subset of all anomalous conditions. In
this application, it is acceptable to delay processing data for a few seconds but not
much longer than this, if doing so will produce fewer false positive and false nega-
tive alerts. As another example, consider a sensor-based environment monitoring
application (e.g., pipeline health monitoring or building air-quality monitoring). In
this application, if a subset of sensors fails or becomes disconnected, the system
may need to produce alerts tentatively as the alerts are based only on partial in-
formation. Technicians may then be dispatched to make final diagnostics. In this
domain, applications may be able to wait for tens of seconds or even a couple of
minutes if doing so will produce more accurate results. In general, DPC gives ap-
plications the choice: an application that needs to see results quickly, even if these
results are not accurate, can specify a low latency threshold. An application that
cannot handle inconsistency can set an infinite threshold.

At the same time, DPC ensures eventual consistency: even though failures oc-
cur, as long as they also heal, clients eventually receive the complete and correct
output stream (i.e., all tentative tuples are corrected). In the network monitor-
ing scenario, this means that the administrator eventually sees the complete list of
problems that occurred during the partition. Such functionality is also important:
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the network administrator eventually needs to know the exact list of all potential
security breaches and infected machines because they may require further action
such as cleaning and patching the machines. Similarly, in the sensor-based environ-
ment monitoring application, once failures heal the system can update the status
of previously produced alerts to either real alerts or false alarms. If the system can
do so soon after the failure heals, technicians dispatched to fix raised problems can
be quickly re-assigned as needed. Hence, in DPC, all applications eventually see
correct results, independent of their specific availability and consistency constraints.

In this paper, we present and evaluate DPC.1 In Section 2, we first outline nec-
essary assumptions and discuss the goals that a fault-tolerance mechanism for a
distributed SPE should achieve. We present the basic DPC scheme in Sections 3
and 4. DPC is designed, implemented, and evaluated in Borealis [Abadi et al. 2005],
but the basic underlying techniques and principles are more generally applicable.

In Section 5, we present experimental results showing that DPC can ensure even-
tual consistency while continuously maintaining availability. For example, DPC
successfully maintains processing latency within a required 3-second bound even
during a 60-second failure and subsequent recovery, during which earlier results are
corrected while new data continues to be processed.

In Section 6, we investigate techniques to reduce inconsistency by leveraging
the application-defined tolerance to bounded increases in processing latency. We
show that delaying tuples as much as possible always reduces inconsistency for a
single SPE node. For a chain of nodes, we demonstrate that, contrary to intuition,
delaying improves consistency only for short-duration failures. Furthermore, we
show that, in order to minimize inconsistency, the system should not simply divide
the incremental latency across nodes. Instead, when a node first detects a failure, it
should always block for the maximum tolerable incremental latency (minus queuing
delays), independently of its location in the distributed system. With this approach,
we show an example where the incremental processing latency is 8 seconds, but even
a system of four processing nodes in sequence can mask failures up to 6.5 seconds
in duration.

We investigate the overhead of DPC in Section 7. In Section 8, we discuss how
failures can be isolated from each other such that, independently of the assignment
of operators to processing nodes, only those operators affected by a failure expe-
rience any delays and undergo any recovery. We also discuss the details of buffer
management and long-duration failures: for a large class of queries, DPC can con-
tinue to maintain availability even after buffers fill-up, yet still guarantee that the
system will converge back to a consistent state and that a predefined window of most
recent results will be corrected after the failure heals. Finally, we review related
work in Section 9 before concluding in Section 10.

1This paper is an extended version of [Balazinska et al. 2005]. In this paper, we present a more
detailed version of the approach, a deeper study of availability and consistency trade-offs in dis-
tributed deployments, and techniques for allocating delays to processing nodes. We omit the
comparative study of state reconciliation techniques with either undo/redo or checkpoint/redo, as
we demonstrated in [Balazinska et al. 2005] that the latter technique outperforms the former.
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2. MODEL, ASSUMPTIONS, AND GOALS

In this section, we describe our distributed stream processing model, failure as-
sumptions, and design goals.

2.1 Query Model

In Borealis [Abadi et al. 2005], a query takes the form of a loop-free, directed graph
of operators. Each operator processes data arriving on its input streams and pro-
duces data on its output stream. These graphs are called query diagrams. Figure 1
illustrates a query diagram distributed across four nodes. Borealis operators come
from Aurora [Abadi et al. 2003]. In this paper, we only consider the following
fundamental operators [Abadi et al. 2003].
(1) Filter: tests each input tuple against a predicate.
(2) Map: transforms each input tuple into a single output tuple.
(3) Aggregate: computes aggregate functions over windows of data that slide with

time (possibly grouping the data first).
(4) Join: joins tuples on streams when these tuples fall within some time window

of each other.
(5) Union: merges tuples from two or more input streams into a single output

stream.
In particular, we ignore Read and Write operators [Balakrishnan et al. 2004],

which store data in persistent storage, as these operators are not fundamental to
stream processing.

In general, we restrict DPC to deterministic operators. We consider an operator
to be deterministic if its results do not depend on the times at which its inputs arrive
(e.g., the operator does not use timeouts nor randomization); of course, the results
will usually depend on the input data order, including the inter-arrival order of tu-
ples on the different input streams. Based on this definition, all the above Borealis
operators (Filter, Map, Aggregate, Join, and Union) are deterministic (aggregate
requires setting its independent-window-alignment parameter to ensure the win-
dow boundaries are independent of the exact value of the first processed tuple). We
further discuss the implications of deterministic operators in Section 4.2.

To avoid blocking in the face of infinite input streams, operators perform their
computations over windows of tuples. For example, an aggregate operator may
compute the average temperature every hour. An operator may join temperature
readings with light readings when the two are taken at the same location and within
five seconds of each other. Some operators, such as Join, still block when some of
their input streams are missing. In contrast, a Union is an example of a non-blocking
operator because it can perform meaningful processing even when some of its input
streams are missing. In Figure 1, the failure of a data source does not prevent the
system from processing the remaining streams. Failure of Node1 or Node2 does not
block Node3 but blocks Node4.

DPC achieves fault-tolerance through replication; each operator in the query
diagram is instantiated on at least two distinct processing nodes. All replicas
process input streams and produce output streams enabling a downstream node
to get its input streams from any replica of each upstream neighbor. Figure 2
illustrates a replicated version of the query diagram from Figure 1. The figure
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Fig. 2. Distributed and replicated query diagram. The diagram shows one possible data
flow.

shows one possible data flow. At any point in time, outputs produced by some
nodes may be unused.

2.2 Assumptions and Failure Model

We assume that data sources have loosely synchronized clocks and can timestamp
the tuples they push into the system. When two or more streams are joined,
unioned, or otherwise combined by an operator, DPC delays tuples until times-
tamps match on all streams. The clocks at data sources must therefore be suffi-
ciently synchronized to ensure these buffering delays are smaller than the maxi-
mum incremental processing latency, X, specified by the application. We make the
same assumption about the timestamps that operators assign to their output tu-
ples. In Borealis, these timestamps are computed from the input-tuple timestamps.
Application-defined attributes serving in window specifications have analogous re-
quirements; Borealis applications already use such attributes.

We further assume that each processing node has sufficient resources (CPU, mem-
ory, and network bandwidth) to keep up with tuple input rates ensuring that queues
do not form in the absence of failures. We assume that the network latency between
any pair of nodes is small compared with the maximum incremental processing la-
tency, X.

We consider dynamic changes to the diagram or its deployment (i.e., the assign-
ment of operators to processing nodes) outside of the scope of this paper. We thus
assume that the query diagram, its deployment, and the set of replicas for each
processing node are static.

Finally, we assume that data sources and clients implement DPC. This can be
achieved by having clients and data sources use a fault-tolerant library or by having
them communicate with the system through proxies (or nearby processing nodes)
ACM Transactions on Database Systems, Vol. XX, No. XX, XX 20XX.
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that implement the required functionality. We also assume that data sources, or
proxies acting on their behalf, log input tuples persistently (e.g., in a transactional
queue [Bernstein et al. 1990]) before transmitting them to all replicas that process
the corresponding streams. A persistent log ensures that all replicas eventually see
the same input tuples, in spite of proxy or data source failures. The fail-stop failure
of a data source, however, causes the permanent loss of input tuples that would
have otherwise been produced by the data source.

As we present DPC, we begin by assuming that all tuples ever produced by a data
source or a processing node are buffered. We revisit this assumption in Section 8.1,
where we discuss buffer management and long-duration failures. Except for data
sources, we assume that buffers are lost when a processing node fails.

With the assumption that tuples are logged forever and that data sources per-
sistently log the data they produce, DPC can cope with the crash failure of all
processing nodes. During such a failure, clients may not receive any data. After
failed nodes recover, they can reprocess all tuples logged upstream ensuring even-
tual consistency. If buffers are truncated, DPC handles the simultaneous crash
failure of at most R − 1 of the R replicas of each node. At any time, at least one
replica of each node must hold the current consistent state. This state comprises
the set of input tuples no longer buffered upstream and the set of output tuples
not yet received by all replicas of all downstream neighbors. DPC also handles net-
work failures that cause message losses and delays, preventing any subset of nodes
from communicating with one another, possibly partitioning the system. DPC can
handle multiple failures overlapping in time.

For simplicity, we assume that replicas communicate using a reliable, in-order
protocol like TCP. With this assumption, because tuples are never re-ordered on
a stream, a downstream node can indicate with a single tuple identifier the exact
data it has received so far.

DPC achieves fault-tolerance by replicating all operators on multiple processing
nodes. Such replication, of course, imposes a significant overhead. With our ap-
proach, the bulk of the overhead grows linearly with the number of replicas: for the
same input load, a fault-tolerant system with N replicas per processing node re-
quires N times the amount of hardware. Conversely, given N machines, a replicated
system can process approximately 1/Nth of the load of a non-replicated system
that would spread its load across all N machines. Because DPC is designed to
operate on high-end servers deployed on the Internet, we believe such overhead is
acceptable for a low level of replication (e.g., two or three replicas per processing
node).

In the setting of servers deployed on the Internet, we also expect failures to occur
with low frequency. DPC supports multiple concurrent failures, but it is designed
for a low failure frequency, where processing nodes typically have time to recover
between consecutive failures.

2.3 Design Goals

In this section, we discuss the goals that a fault-tolerance mechanism for a dis-
tributed stream processing system should achieve, and present the resulting desired
properties of DPC.

ACM Transactions on Database Systems, Vol. XX, No. XX, XX 20XX.
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2.3.1 Availability Goal. Because many stream processing applications are
geared toward monitoring tasks, when a failure occurs upstream from a non-
blocking operator and causes some (but not all) of its input streams to be un-
available, it is often useful to continue processing the inputs that remain available.
For example, in the network monitoring application, even if only a subset of mon-
itors are available, processing their data might suffice to identify some potential
attackers or other network anomalies. In this application, low latency processing is
critical to mitigate attacks. However, some events might go undetected because a
subset of the information is missing and some aggregate results may be incorrect.
Furthermore, the state of replicas diverges as they process different inputs.

The traditional definition of availability requires only that the system eventually
produces a response for each request [Gilbert and Lynch 2002]. Availability may
also measure the fraction of time that the system is operational and servicing re-
quests [Gray and Reuters 1993]. In an SPE, however, because client applications
passively wait to receive output results, we define availability in terms of processing
latency, where a low processing latency indicates a high level of availability.

To simplify our problem, we measure availability in terms of incremental pro-
cessing latency. When an application submits a query to the system, DPC allows
the application to specify a desired availability, X, as a maximum incremental pro-
cessing latency that the application can tolerate on its output streams (the same
threshold applies to all output streams within the query). For example, in a query
diagram that takes 200 milliseconds to transform a set of input tuples into an out-
put result, a client can request “no more than 100 milliseconds of added delay”,
and DPC should ensure that output results are produced within 300 milliseconds.

With the above definition, to determine if the system meets a given availability
requirement, we only need to measure the extra buffering and delaying imposed on
top of normal processing. We define Delaynew as the maximum incremental process-
ing latency for any output tuple and express the availability goal as Delaynew < X.
With this definition, we express the main goal of DPC as:

Property 1. DPC ensures that as long as some path of non-blocking operators
is available between one or more data sources and a client application, the client
receives results within the desired availability requirement: the system ensures that
Delaynew < X.

As we discuss later, DPC divides X between processing nodes. To ensure Prop-
erty 1, a node that experiences a failure on an input stream must switch to another
replica of its upstream neighbor, if such a replica exists, within D time-units of
arrival of the oldest unprocessed input tuples. If no replica exists, the node must
process all tuples that are still available, within D time-units of their arrival, where
D is the maximum incremental processing latency assigned to the node.

Even though we only measure incremental latencies, we can show how Delaynew
relates to normal processing latency. We define proc(u) as the normal processing
latency of an output tuple, u, in the absence of failure. proc(u) is the difference
between the time when the SPE produces u and the time when the oldest input
tuple that contributed to the value of u entered the SPE. Given proc(u) and the
actual processing latency of a tuple, delay(u), Delaynew = max

u∈NewOutput
(delay(u) −
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Fig. 3. Availability guarantee.

proc(u)), where NewOutput is the set of output tuples produced by the query
diagram. Figure 3 illustrates the availability guarantee of DPC.

2.3.2 Consistency Goal. Even when they favor availability, many stream pro-
cessing applications need to receive the correct results eventually. For example,
in the network monitoring application, the administrator eventually needs to see
the complete set of intrusions or failures because these intrusions and failures may
require additional actions such as cleaning and patching a compromised host. Our
second goal is thus for DPC to provide eventual consistency.

In traditional optimistic replication schemes, eventual consistency requires that
all replicas of an object eventually process all update operations in an equivalent
order (i.e., the prefix of operations in the final order must grow monotonically over
time at all replicas [Saito and Shapiro 2005]). Replicas can, however, temporarily
process updates in different orders to provide high availability.

In an SPE, the state of processing nodes is transient and the output stream
continuous. We thus translate eventual consistency as requiring that all replicas
of the same query diagram fragment eventually process the same input tuples in
the same order, and that order should be one that could have been possible at a
processing node without failure.

Eventual consistency is a property of a replicated object. With the traditional
notion of eventual consistency, responses to operations performed on the object do
not have to be corrected after operations are reprocessed in their final order [Fekete
et al. 1996]. In an SPE, because the output of processing nodes serves as input
to their downstream neighbors, we extend the notion of eventual consistency to
include output streams. We require that each replica eventually processes the same
input tuples in the same order and produces the same output tuples in the same
order.

In summary, the second goal of DPC is:

Property 2. Assuming sufficiently large buffers, ensure eventual consistency.

We define eventual consistency as follows:

Definition 1. A replicated SPE maintains eventual consistency if all replicas
of the same query diagram fragment eventually process the same input tuples in the
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same order and produce the same output tuples in the same order, and that order
could have been produced by a single processing node without failure.

Throughout the paper, we assume that nodes have enough space to buffer all tu-
ples that accumulate during failures. We discuss buffer management in Section 8.1.

2.3.3 Measuring Inconsistency. In traditional optimistic replication schemes,
once the final processing order of some operations is known, the operations are said
to be stable [Fekete et al. 1996]. We use the same definition for tuples. An input
tuple is stable once its final processing order is known. When a replica processes
stable input tuples, it produces stable output tuples because these output tuples
have final values and appear in final order. Eventual consistency ensures that clients
eventually receive stable versions of all results.

All intermediate results that are produced in order to provide availability, and are
not stable, are called tentative. At any point in time, as a measure of inconsistency,
we use Ntentative, the number of tentative tuples produced on all output streams of
a query diagram. Ntentative may also be thought of as a (crude) substitute for the
degree of divergence between replicas of the same query diagram when the set of
input streams is not the same at the replicas. More specifically, we use the following
definition:

Definition 2. The inconsistency of a stream s, Ntentative(s), is the number
of tentative tuples produced on s since the last stable tuple. The inconsistency,
Ntentative, of a query diagram is the sum of Ntentative(s) for all output streams, s.

Note that Delaynew only measures the availability of result tuples that carry new
information. NewOutput does not include any stable results that correct previously
tentative ones.

2.3.4 Minimizing Inconsistency Goal. The main goal of DPC is thus to ensure
that the system meets, if possible, a pre-defined availability level while ensuring
eventual consistency. To maintain availability, the system may produce tentative
tuples. To ensure eventual consistency, tentative tuples are later corrected with
stable ones. Because it is expensive to correct earlier results in an SPE, we seek
to minimize the number of tentative tuples. In the absence of failures, we would
like replicas to remain mutually consistent ensuring that all results are stable. If
a failure occurs, we would like the system to mask the failure without introducing
inconsistency if possible. Finally, if a failure cannot be masked, we would like the
system to minimize the number of tentative results. We summarize these require-
ments with the following two properties that we would like DPC to provide:

Property 3. DPC favors stable results over tentative results when both are
available.

Property 4. Among possible ways to achieve Properties 1 and 2, we seek meth-
ods that minimize Ntentative.

3. EXTENDED SPE SOFTWARE ARCHITECTURE

Achieving the fault-tolerance goals described in the previous section requires
changes to the software architecture of an SPE. In this section, we present an
ACM Transactions on Database Systems, Vol. XX, No. XX, XX 20XX.
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Fig. 4. SPE software architecture extensions to support DPC. Arrows indicate commu-
nication between components.

overview of the high-level changes required by DPC. We discuss these changes fur-
ther as we present the details of the approach in the following section.

As illustrated in Figure 4(a), an SPE typically comprises at least three different
logical components: a component to setup and modify the locally running query
diagram, a component to continuously execute the local query diagram, and a
component, which we call Data Path, to manage the data entering and exiting the
node.

As illustrated in Figure 4(b), to enable fault-tolerance, we propose the following
set of changes to these components:

(1) Inter-node communication: Fault-tolerance requires communication be-
tween upstream and downstream nodes and node replicas. We introduce a
new component, the Consistency Manager to carry-out these runtime commu-
nications and modify connections between nodes as failures occur and heal.

(2) Intra-node state monitoring: In DPC, a processing node can be in different
consistency states that it must communicate to other nodes. It must also
reconcile its state after failures heal. Because of its global role, the Consistency
Manager performs these functions: it determines the current consistency state
of the local node, it advertises that state to other nodes, and it decides when
to reconcile the state of the node after a failure heals.

(3) Stream stabilization: In response to failures, nodes switch upstream neigh-
bors. To ensure that such switches do not disrupt stream processing, we extend
the Data Path with extra input stream monitoring and output stream buffering
and replaying capabilities. These capabilities enable the Data Path to control
the data entering a node from upstream and ensure new downstream neighbors
continue receiving data from the correct point in the stream.

(4) Query diagram extensions. The query diagram requires three changes.
First, it must be made deterministic such that multiple replicas of the same
query diagram fragment remain consistent in the absence of failures (note that
even when composed of only deterministic operators, a query diagram may not
be deterministic itself). We enable this feature by augmenting the local query
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diagram with a new operator: SUnion. SUnion operators are inserted in front
of all operators with more than one input streams. They ensure that replicas
of these operators process tuples in the same order. In Borealis, only two
operators have more than one input stream: Union and Join. SUnion replaces
the Union operator and is also placed in front of all Join operators. The Join
operator is also slightly modified to always process input tuples in the order
prepared by the preceding SUnion. We call the modified Join operator SJoin.
To ensure consistency, SUnion operators delay tuples on different streams until
their timestamps match. To avoid delaying tuples unnecessarily when data
rates are low, we introduce the notion of boundary tuples, which act both as
punctuation tuples and heartbeats.
SUnion operators ensure replicas remain consistent in the absence of failures
and, when failures occur, they also control the trade-offs between availability
and consistency by delaying processing tuples as appropriate. For this reason,
we also insert SUnion operators on all input streams to the processing node.
This enables SUnions to delay any tentative input tuples as appropriate.
Second, the query diagram must support the notion of stable, tentative, and
boundary tuples. To achieve this goal, all operators, including SUnion, are
modified to correctly label their output tuples as either stable or tentative
based on the type of the input tuples they process. They are also modified
to correctly process boundary tuples. In our implementation, in addition to
implementing SUnion, we modified the following Borealis operators: Filter,
Map, Aggregate, and SJoin.
Third, to ensure eventual consistency, DPC requires the ability to rollback a
query diagram to an earlier state and reprocess all input data from there. To
enable this functionality, all operators are extended with the ability to save
and recover their state from a checkpoint. We also introduce a new operator,
SOutput, that drops all duplicate tuples produced during this reprocessing and
signals the end of reconciliation to the Consistency Manager.

4. BASIC APPROACH

In this section, we present the basic DPC approach and algorithms. In DPC, each
replica manages its own availability and consistency by implementing the state
machine shown in Figure 5 that has three states: STABLE, UPSTREAM FAILURE
(UP FAILURE), and STABILIZATION.

As long as all upstream neighbors of a node are producing stable tuples, the
node is in the STABLE state (in Section 4.2, we discuss how DPC handles sporadic
tuple production by upstream neighbors). In this state, the node processes tuples
as they arrive and passes stable results to downstream neighbors. To maintain
consistency between replicas that may receive inputs in different orders, we define
a data-serializing operator, SUnion. Section 4.2 discusses the STABLE state and
the SUnion operator.

If one input stream becomes unavailable or starts carrying tentative tuples, a
node goes into the UP FAILURE state. In that state, the node tries to find another
stable source for the input stream. In no stable source is available, to maintain
low processing latency, the node may have to continue processing the inputs that
ACM Transactions on Database Systems, Vol. XX, No. XX, XX 20XX.
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Fig. 5. The DPC state machine.

remain available. The node may, however, delay processing these tuples if doing so
improves consistency. Section 4.3 discusses the UP FAILURE state.

A failure heals when a previously unavailable upstream neighbor starts producing
stable tuples again or when a node finds another replica of the upstream neighbor
that can provide the stable version of the stream. Once a node receives the stable
versions of all previously missing or tentative input tuples, it transitions into the
STABILIZATION state. In this state, if the node processed any tentative tuples
during UP FAILURE it must now reconcile its state and stabilize its outputs. We
present the STABILIZATION state in Section 4.4.

During STABILIZATION, new input tuples are likely to continue to arrive. To
maintain the required low processing latency, the node must ensure these new
tuples are processed within the required time-bound in spite of the ongoing state
reconciliation. Our approach enables a node to reconcile its state and correct its
outputs, while ensuring that new tuples continue to be processed as we discuss in
Section 4.4.

Once stabilization completes, the node transitions to the STABLE state if there
are no other current failures, or back to the UP FAILURE state otherwise.

4.1 Data Model

With DPC, nodes and applications must distinguish between stable and tentative
results. Stable tuples produced after stabilization may override previous tentative
ones, requiring a node to correctly process these amendments. Traditionally, a
stream is an append-only sequence of tuples of the form: (t, a1, . . . , am), where t
is a timestamp value and a1, . . . , am are attribute values [Abadi et al. 2003]. To
accommodate our new tuple semantics, we extend the Borealis data model [Abadi
et al. 2005] as follows. In Borealis, tuples take the following form (we ignore header
fields that DPC does not use):

(tuple type, tuple id, tuple stime, a1, . . . , am)

(1) tuple type indicates the type of the tuple.
ACM Transactions on Database Systems, Vol. XX, No. XX, XX 20XX.



14 · Magdalena Balazinska et al.

S1 S2 T3 T4 T5 ...U2 S4S3

Corrections and new tuples

Undo tuples T3 through T5

time

Stable tuples Tentative tuples

Fig. 6. Example of using tentative and undo tuples. U2 indicates that all tuples
following tuple with tuple id 2 (S2 in this case) should be undone.

(2) tuple id uniquely identifies the tuple in the stream.
(3) tuple stime is a new tuple timestamp.2

Traditionally, all tuples are immutable stable insertions. We introduce two new
types of tuples: TENTATIVE and UNDO. A tentative tuple is one that results from
processing a subset of inputs and may subsequently be amended with a stable version.
For example, a Union operator that loses an input stream can process tuples from
the remaining live streams. In that case, the Union should label its output tuples
as tentative. All operators downstream from the Union that process these tentative
tuples should label their output tuples as tentative as well. Unlike a Union, a Join
operator with a missing input stream will block and will not produce any tuples
during a failure. However, a Join operator that processes tentative tuples also
produces tentative tuples.

An undo tuple indicates that a suffix of tuples on a stream should be deleted and
the associated state of any operators rolled back. As illustrated in Figure 6, the
undo tuple indicates the suffix with the tuple id of the last tuple not to be undone.
Stable tuples that follow an undo replace the undone tentative tuples. Applications
that do not tolerate inconsistency may thus simply wait to receive stable tuples.
Table I summarizes the new tuple types. As shown in the table, we use a few
additional tuple types in our approach but they do not fundamentally change the
data model. In particular, SUnion and SOutput operators use separate control
output streams to communicate their state to the Consistency Manager. The latter
uses this information to determine the overall state of the node and take actions:
the Consistency Manager updates and advertises the correct overall state to other
nodes; when all previously failed SUnions have received some corrected tuples on
their input streams, the Consistency Manager can trigger state reconciliation.

4.2 STABLE State

To minimize inconsistency and facilitate failure handling, DPC ensures that all
replicas remain mutually consistent in the absence of failures: that they process the
same input in the same order, go through the same internal computational states,
and produce the same output in the same order. In this section, we first present
how DPC ensures mutual replica consistency. In the STABLE state, nodes must
also detect failures of their input streams in order to transition to the UP FAILURE
state. We discuss failure detection second.

2In Borealis, tuples also have a separate timestamp field used for quality of service purposes.
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Tuple type Description

Data streams

INSERTION Regular stable tuple.
TENTATIVE Tuple that results from processing a subset of inputs and may

later be corrected.
BOUNDARY All following tuples will have a timestamp equal or greater to

the one indicated.
UNDO Suffix of tuples should be rolled back.
REC DONE Tuple that indicates the end of reconciliation.

Control streams Signals from SUnion or SOutput to the Consistency Manager

UP FAILURE Entering inconsistent state (SUnion).
REC REQUEST Input was corrected, can reconcile state (SUnion).
REC DONE Same as above (SOutput).

Table I. New tuple types.

4.2.1 Serializing Input Tuples. As we mentioned above, we consider only deter-
ministic operators. If all operators are deterministic, we only need to ensure that
replicas of the same operator process data in the same order to maintain consis-
tency; otherwise, the replicas will diverge even without failures. Since we assume
that nodes communicate using a reliable in-order protocol like TCP, tuples never
get re-ordered within a stream. To ensure consistency, however, we still need a way
to order tuples deterministically across multiple input streams that feed the same
operator (e.g., Union and Join). Indeed, two replicas of an operator with two input
streams A and B may receive tuples in a different interleaved order: one replica,
located closer to the source of A, may receive tuples on stream A before tuples on
stream B. The other replica, closer to the source of B, may receive tuples on that
stream first.

Because tuples on streams are not necessarily sorted on any attribute and they
may arrive at significantly different rates, we propose to compute a total order by
inserting additional boundary tuples into streams. Boundary tuples have tuple type
= BOUNDARY and serve the role of both punctuation tuples [Tucker and Maier
2003] and heartbeats [Srivastava and Widom 2004]. The punctuation property of
boundary tuples requires that no tuples with tuple stime smaller than the bound-
ary’s tuple stime appear after the boundary on the stream. Hence, an operator with
i input streams can deterministically order all tuples that satisfy:

tuple stime < min
∀i

(bi), (1)

where bi is the tuple stime value of the latest boundary tuple received on stream
i. Note that tuples in a stream appearing between two boundaries can be out-of-
order with respect to their timestamps. Figure 7 illustrates the approach for three
streams. In the example, at time t0, min(bi) = 20, and all tuples with tuple stime
values strictly below 20 can be deterministically ordered. Similarly at time t1,
tuples below 25 can be ordered. At t2, only tuples below 27 can be ordered, since
the last boundary tuple on stream S2 had value 27. Finally, at t3 all tuples up to
30 can be ordered.

Rather than modifying operators to sort tuples before processing them, we in-
troduce SUnion, a simple data-serializing operator that takes multiple streams as
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Fig. 7. Example showing bucket stability at different points in time. The SUnion has
three input streams. The bucket size is 5 time units.

inputs and orders all tuples deterministically into a single sequence. To ensure
replica consistency, an SUnion is placed in front of each operator that takes multi-
ple streams as input, and the latter operator processes tuples in the order defined
by the SUnion. Using a separate operator enables the sorting logic to be contained
within a single operator. More important, as it buffers tuples before sorting them,
SUnion can also manage trade-offs between availability and consistency by decid-
ing when tuples should be processed when failures occur. We discuss this second
function of SUnion in later sections.

To manage availability-consistency trade-offs at a granularity coarser than in-
dividual tuples (thus greatly simplifying the implementation of SUnion), SUnion
performs all its processing on buckets of input tuples. Each bucket covers a fixed
and disjoint interval of tuple stime values. SUnion uses tuple stime values to place
tuples in the appropriate bucket. SUnion then uses boundary tuples to determine
when a bucket is stable (no more tuples will ever arrive for that bucket), at which
time it is safe to order tuples in this bucket and output them. SUnion’s sort func-
tion typically orders tuples by increasing tuple stime values but other functions are
possible. Assuming buckets of size 5 time-units, Figure 7 illustrates what buckets
are stable at times t0 through t3 based on the boundary tuples received up to that
point.

SUnion operators may appear at any location in a query diagram. All opera-
tors in the query diagram must thus set tuple time values on their output tuples
deterministically as these values will affect tuple order at downstream SUnions. Op-
erators must also produce periodic boundary tuples with monotonically increasing
tuple time values.

SUnion is similar to the Input Manager in STREAM [Srivastava and Widom
2004], whose goal is to sort tuples by increasing timestamp order. In contrast,
the goal of SUnion is to ensure that all replicas process tuples in the same order.
SUnions thus need to appear in front of every operator with more than one input
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and not just on the inputs to the system. More important, the Input Manager is not
fault-tolerant. It assumes that delays are bounded and it uses that assumption to
compute heartbeats if applications do not provide them. In contrast, as we discuss
next, the SUnion operator handles failures by implementing the parameterizable
availability/consistency trade-off and later participating in failure recovery.

4.2.2 Impact of tuple stime Values Selection. A natural choice for tuple stime
is to use the local time at data sources. By synchronizing data source clocks,
tuples will get processed approximately in the order in which they are produced.
The Network Time Protocol (NTP) [The NTP Project] is standard today. It is
implemented on most computers and essentially all servers, synchronizing clocks
to within 10 milliseconds. Wall-clock time is not the only possible choice, though.
In Borealis, any integer attribute can define the windows that delimit operator
computations. When this is the case, operators also assume that input tuples are
sorted on that attribute [Abadi et al. 2003]. Using the same attribute for tuple stime
as for windows helps enforce the ordering requirement.

SUnion delays tuples because it buffers and sorts them. This delay depends on
three properties of boundary tuples. First, the interval between boundary tuples
with increasing tuple stime values and the bucket size determine the basic buffering
delay. Second, the basic delay further increases with disorder. The increase is
bounded above by the maximum delay between a tuple with a tuple stime, t, and a
boundary tuple with a tuple stime > t. Third, a bucket is stable only when boundary
tuples with sufficiently high tuple stime values appear on all streams input to the
same SUnion. The maximum differences in tuple stime values across these streams
bounds the added delay. Because the query diagram typically assumes that tuples
are ordered on the attribute selected for tuple stime, we can expect serialization
delays to be small in practice. In particular, these delays should be significantly
smaller than the maximum added processing delay, X.

In summary, the combination of SUnion operators and boundary tuples enables
replicas of the same processing node to process tuples in the same order and remain
mutually consistent. SUnions may increase processing latency because they buffer
tuples before sorting and processing them, but this extra delay is small.

4.2.3 Detecting Failures. The heartbeat property of boundary tuples enables an
SUnion to distinguish between the lack of data on a stream and a failure: when
a failure occurs, an SUnion stops receiving boundary tuples on one or more input
streams. SUnion may also start to receive tentative tuples.

Because we do not want to propagate tentative tuples through the query diagram
as soon as they arrive but rather delay them based on the current availability
requirement, and because SUnions serve to implement this delay, we place SUnion
operators on each input stream to a processing node, even when the stream is the
only input to an operator.

In addition to relying on boundary tuples to detect failures, the Consistency
Manager monitors upstream neighbors and their replicas by periodically request-
ing a heartbeat response from each replica of each upstream neighbor. With this
approach, if an upstream neighbor fails, the Consistency Manager knows the states
of all replicas of that neighbor and can switch to using another replica. Heart-
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Fig. 8. A node in STABLE state stabilizes the input streams of new downstream
neighbors as per the information they provide in their subscriptions. Subscription
information is shown on the right of each downstream node (Node 2, Node 2′, and Node 2′′).
Actions taken by upstream Node 1 are shown on the arrows. U denotes an undo tuple and the
identifier indicates the last tuple not to be undone. S denotes a stable tuple and T denotes a
tentative tuple.

beat responses not only indicate if a replica is reachable, but also include the states
(STABLE, UP FAILURE, FAILURE, or STABILIZATION) of its output streams. These
states can correspond to the overall consistency state of the node or they can be
computed separately for each stream as we discuss in Section 8.2. The Consistency
Manager computes these states.

4.3 UPSTREAM FAILURE State

Each node must handle failures of its upstream neighbors in a manner that meets
the application-required availability and ensures eventual consistency.

Because the Consistency Manager continuously monitors input streams, as soon
as an upstream neighbor is no longer in the STABLE state (i.e., it is either unreach-
able or experiencing a failure), the node can switch to another STABLE replica of
that neighbor. By performing such a switch, the node can maintain both availabil-
ity and consistency in spite of the failure. To enable the new upstream neighbor to
continue sending data from the correct point in the stream, when a node switches
replicas of an upstream neighbor, it indicates the last stable tuple it received and
whether it received tentative tuples after stable ones. This information is provided
by the Data Path to the Consistency Manager, which sends it to the new upstream
neighbor in a subscribe message. The new upstream neighbor can then replay pre-
viously missing tuples or even correct previously tentative tuples. Data Paths at
upstream neighbors must, of course, buffer their output tuples to perform such
replays and corrections. We discuss buffer management in Section 8.1. Figure 8
illustrates the approach. In this Figure, Node 2 has only received stable tuples
before losing its upstream neighbor. It thus indicates the identifier of the last sta-
ble tuple it received and Node 1 continues sending data from that point in time.
Node 2’ and Node 2” both already received tentative tuples after their last stable
one. For this reason, Node 1 sends corrections for the previously tentative tuples.
The undo tuple identifies the last tuple that should not be undone. It marks the
beginning of the sequence of corrections.

If the Consistency Manager is unable to find a STABLE replica to replace an up-
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Condition Action
State(Curr(s), s) R = Replicas(s)− Curr(s)
STABLE — Do nothing
! STABLE ∃r ∈ R , State(r, s) = STABLE Unsubscribe from Curr(s)

Curr(s)← r
Subscribe to Curr(s)

UP FAILURE @r ∈ R , State(r, s) = STABLE Do nothing
∈ {FAILURE,
STABILIZATION}

@r ∈ R , State(r, s) = STABLE and
∃r′ ∈ R , State(r′, s) = UP FAILURE

Unsubscribe from Curr(s)
Curr(s)← r′

Subscribe to Curr(s)
∈ {FAILURE,
STABILIZATION}

@r ∈ R , State(r, s) = STABLE and
@r′ ∈ R , State(r′, s) = UP FAILURE

Do nothing

Table II. Condition-action rules for switching replicas of an upstream neighbor in
order to maintain availability. When the condition on the left holds, the node takes the
actions shown on the right. Replicas(s) is the set of all replicas producing stream s. Curr(s) is the
current upstream neighbor for s. The state, State(Curr(s),s), of the stream s produced by Curr(s)
and the states of the same stream produced by each replica in Replicas(s) define the conditions
that can trigger an upstream neighbor switch. These switches in turn cause the state of Curr(s)
to change. Input stream states also change as failures occur or heal.

stream neighbor, it should at least try to connect to a replica in the UP FAILURE
state because processing tuples from such a replica helps the node maintain avail-
ability. If the Consistency Manager cannot find a replica in either STABLE or
UP FAILURE states, the node cannot maintain the availability of the missing stream.
Connecting to a replica in the STABILIZATION state allows the node to at least
start correcting data on the failed stream. Table II presents the condition-action
rules that nodes use to switch upstream replicas. Based on these rules, a node
simply prefers upstream neighbors in STABLE state over those in UP FAILURE,
which it prefers over all others. The result of these switches is that any replica can
forward data streams to any downstream replica or client and the outputs of some
replicas may be unused. We refine the switching algorithm further after presenting
the STABILIZATION state in Section 4.4.

In all cases, the node must process those input tuples that are available within the
required time-bound. If a node proceeds with a missing input stream or processes
tentative data, its state starts to diverge.

4.4 STABILIZATION State

A node determines that a failure healed when it is able to communicate with a
stable upstream neighbor and receives corrections to previously-tentative tuples
(or a replay of previously missing inputs). To ensure eventual consistency, the
node must then reconcile its state and stabilize its outputs. This means that the
node replaces previously tentative result tuples with stable ones, thus allowing
downstream neighbors to reconcile their states in turn. To avoid correcting tentative
tuples with other tentative ones, a node reconciles its state only after correcting at
least some window of tuples on all its input streams. We present state reconciliation
and output stabilization techniques in this section. We also present a technique that
enables each node to maintain availability (meet the Delaynew < X requirement)
while reconciling its state.

4.4.1 State Reconciliation. Because no replica may have the correct state after
a failure and because the state of a node depends on the exact sequence of tuples it
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processed, we propose that a node reconcile its state by reverting it to a pre-failure
state and reprocessing all input tuples since then. Different techniques are possible.
We find that a technique based on checkpoint and redo performs well in most sce-
narios, outperforming an alternate technique based on undo and redo [Balazinska
2006]. With checkpoint and redo, a node checkpoints the state of its query diagram
when it transitions into the UP FAILURE state but before processing any tenta-
tive tuples. To perform a checkpoint, a node suspends all processing and iterates
through operators and intermediate queues making a copy of their states. During
the failure, SUnion operators placed on input streams buffer the input tuples they
receive. To reconcile its state, the node then re-initializes operator and queue states
from the checkpoint and reprocesses tuples buffered by input SUnions. To enable
this approach, operators must be modified to include a method to take a snapshot
of their state or reinitialize their state from a snapshot.

4.4.2 Stabilizing Output Streams. A node stabilizes each output stream by delet-
ing a suffix of the stream (normally all tentative tuples) with a single undo tuple
and forwarding corrections in the form of stable tuples. When it receives an undo
tuple, an SUnion at a downstream node stabilizes the corresponding input stream
by replacing, in its buffer, undone tuples with their stable counterparts. Once all
input streams are corrected, SUnions trigger a state reconciliation.

To generate the undo tuple, we introduce a new operator, SOutput, that is placed
on each output stream that crosses a node boundary. At runtime, SOutput acts as
a pass-through filter that also remembers the last stable tuple it produced. During
state reconciliation, SOutput drops duplicate stable tuples and produces the undo
tuple when it finally sees the first new stable tuple or another tentative tuple.

Stabilization completes when one of two situations occurs. The node re-processes
all previously tentative input tuples and catches up with normal execution (i.e., it
clears its queues) or another failure occurs and the node goes back into UP FAILURE.
In both cases, SUnion operators on input streams generate REC DONE tuples,
which propagate to the output streams. SOutput operators forward the REC DONE
tuples downstream and send a copy to the Consistency Manager. To avoid duplicate
REC DONE tuples, each SUnion operator placed in the middle of the diagram waits
for a REC DONE on all its inputs before forwarding a single such tuple downstream.

The above algorithms for state reconciliation and output stream stabilization en-
able a node to ensure eventual consistency: the node’s state becomes once again con-
sistent and downstream neighbors receive the complete and correct output streams.
The problem, however, is that stabilization takes time and while reconciling its state
and correcting its output, the node is not processing new input tuples. A long sta-
bilization may cause the system to break the availability requirement. We discuss
how to address this problem next.

4.4.3 Processing New Tuples During Reconciliation. Because the reconciliation
itself may take longer than X time-units, a node cannot suspend new tuples while
reconciling its state. It must produce both corrected stable tuples and new tentative
tuples. We propose to achieve this by using two replicas of a query diagram: one
replica remains in UP FAILURE state and continues processing new input tuples
while the other replica performs the reconciliation. A node could run both versions
ACM Transactions on Database Systems, Vol. XX, No. XX, XX 20XX.
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Fig. 9. Inter-replica communication protocol to stagger replica stabilizations.

locally but because we already use replication, we propose that replicas use each
other as the two versions, when possible. By doing so, we never create new replicas
in the system. Hence, to ensure availability, before reconciling its state, a node
must find another replica and request that it postpone its own reconciliation. Only
if the replica accepts, does the node enter the STABILIZATION state.

To enable a pair of replicas to decide which one should reconcile its state while
the other one remains available, Consistency Managers run the following simple
inter-replica communication protocol. Before entering STABILIZATION, the Con-
sistency Manager sends a message to one of its randomly selected replicas. The
message requests authorization to enter the STABILIZATION state. If the partner
grants the authorization, it promises that it will not enter STABILIZATION itself.
Upon receiving authorization to reconcile, the Consistency Manager triggers state
reconciliation. However, if the replica rejects the authorization, the node cannot en-
ter the STABILIZATION state. Instead, the Consistency Manager waits for a short
time-period and tries to request authorization again, possibly communicating with
a different replica. A Consistency Manager always accepts reconciliation requests
from its replicas except if it is already in the STABILIZATION state or it needs to
reconcile its own state and its identifier is lower than that of the requesting node.
The latter condition is a simple tie breaker when multiple nodes need to reconcile
their states at the same time. Figure 9 illustrates the communication taking place
between two replicas that both need to reconcile their states.

It is up to each downstream node to detect when any one of its upstream neigh-
bors goes into the STABILIZATION state. Upon entering the STABILIZATION state,
the upstream neighbor stops producing recent tuples in order to produce correc-
tions. The downstream node remains connected to that replica to correct its input
stream in the background. At the same time, the node connects to another replica
that is still in UP FAILURE state (if possible) to continue processing new tentative
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data and maintain availability. The downstream node stays connected to both up-
stream replicas until it receives a REC DONE tuple on the corrected stream. At
this point, the stable stream is up-to-date and the node can enter the STABILIZA-
TION state in turn. SUnion considers that tentative tuples between an UNDO and
a REC DONE correspond to the old failure while tentative tuples that appear after
the REC DONE correspond to a new failure. The Data Path monitors input streams
and ensures this property holds.

4.5 Failed Node Recovery

In the above sections, we described how the system recovers from a failure that
causes one or more of a node’s input streams to stop receiving data. In addition,
of course, nodes may crash arbitrarily. To recover from a crash, a node starts
from an empty state. Before it can consider itself in the STABLE state, the node
must rebuild a consistent internal state and must catch-up with processing its
input streams. Until it is STABLE, it must not reply to any requests, including
heartbeats. Fortunately, rebuilding the state of a crashed node has been considered
before in the literature and those solutions [Hwang et al. 2005; Shah et al. 2004]
apply to our setting [Balazinska 2006].

5. DPC PROPERTIES

In this section, we evaluate the performance of DPC by conducting several exper-
iments with our prototype implementation. Our first goal is to show that DPC
provides eventual consistency even when multiple failures overlap in time. Our
second goal is to show that, with at least two replicas of a processing node, DPC
maintains the required availability at all times.

In the following section (Section 6), we study the design decisions that must be
made when deploying DPC. We show that these decisions influence the trade-offs
between availability and consistency.

All single-node experiments were performed on a 3 GHz Pentium IV with 2 GB of
memory running Linux (Fedora Core 2). Multi-node experiments were performed
by running each pair of node replicas on a different machine. All machines were
1.8 GHz Pentium IVs or faster with more than 1 GB of memory.

5.1 Eventual Consistency Guarantees

We first show examples of how DPC ensures eventual consistency in the face of
simultaneous failures and failures during recovery. We show that in both scenarios
client applications eventually receive the stable version of all result tuples and that
no stable tuples are duplicated.

We run a single processing node (no replica, no upstream and downstream neigh-
bors) and we control its inputs directly. Our goal is to examine the output produced
by the node and show that it eventually produces the complete and correct output
stream. The node runs the query diagram shown in Figure 10, which produces
on the output stream tuples with sequentially increasing identifiers. The query
diagram, composed solely of SUnion operators that deterministically merge their
inputs and possibly delay them (see Section 4.2), is intentionally simple to help
us investigate the properties of DPC. We first cause a failure on input stream 1
(“Failure 1”). We then cause a failure on input stream 3 (“Failure 2”). We plot the
ACM Transactions on Database Systems, Vol. XX, No. XX, XX 20XX.
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Fig. 10. Query diagram used in simultaneous failures experiments.
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Fig. 11. Example outputs with simultaneous failures.

sequence numbers received by the client application over time as the two failures
occur and heal. Figure 11(a) shows the output when the two failures overlap in
time. Figure 11(b) shows the output when Failure 2 occurs exactly at the moment
when Failure 1 heals and the node starts reconciling its state.

In the case of simultaneous failures (Figure 11(a)), as Failure 1 occurs, the out-
put first stops because the node suspends all processing. All tuples following the
pause are tentative tuples. Nothing special happens when the second failure occurs
because the output is already tentative. Nothing happens either when the first
failure heals because the second failure is still occurring. It is only when all failures
heal, that the node enters the STABILIZATION state and sends the stable version of
previously tentative data. As the node finishes producing corrections and catches
up with normal execution, it produces a REC DONE tuple that we show on the
figure as a tuple with identifier zero (tuple that appears on the x-axis). As the ex-
periment shows, in our implementation, we chose the simpler approach of waiting
for all failures to heal before reconciling the state. This approach works well when
failures are infrequent. In the case of a large number of input streams and frequent
failures, we could change the implementation to reconcile the state as soon as the
first failure heals and the node can reprocess some window of stable input tuples
on all input streams.

In the example with a failure during recovery (Figure 11(b)), as the first failure
heals, the node enters STABILIZATION and starts producing corrections to previ-
ously tentative results. Before the node has time to catch-up with normal execution
and produce a REC DONE the second failure occurs and the node suspends pro-
cessing once again. The node then produces a REC DONE to indicate the end of
the sequence of corrections before going back to processing tentative tuples once
again. After the second failure heals, the node corrects only those tentative tuples
produced during the second failure. The corrections are followed by a REC DONE.
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Hence all tentative tuples get corrected and no stable tuple is duplicated.
In the above experiments, the node temporarily lost one or two of its input

streams, and there were no other replicas that it could reconnect to. When another
replica exists for an upstream neighbor, the node will try to switch to that replica.
When a node switches to a different replica of an upstream neighbor, there is a
short gap in the data it receives. In our prototype implementation, we measured
that it takes a node approximately 40 milliseconds to switch between upstream
neighbors once the node detects a failure. Failure detection time depends on the
frequency with which the downstream node sends keep-alive requests to its up-
stream neighbors. With a keep-alive period of 100 milliseconds, for example, it
thus takes at most 140 milliseconds between the moment a failure (network failure
or node failure) occurs and the moment a downstream node receives data from a
different replica of its upstream neighbor. For many application domains, we expect
this value to be much smaller than the minimum incremental processing latency
that the application can tolerate. If an application cannot tolerate even such a
short delay, the effect of switching upstream neighbors is the same as the effect of
Failure 1 shown in Figure 11(a), but without the subsequent Failure 2: i.e., the
downstream node first suspends; then produces tentative tuples; once reconnected
to the new upstream neighbor, the downstream node goes back and corrects the
tentative tuples it produced during the switch.

5.2 Availability Guarantees

In the above experiments, the maximum incremental latency, D, was set to 2 sec-
onds.3 As Figure 11 shows, the maximum gap between new tuples remains below
that bound at any time. However, the node manages to maintain the required avail-
ability only thanks to a sufficiently short reconciliation time. For longer-duration
failures, reconciliation could easily take longer than the maximum latency bound.
In general, DPC relies on replication to enable a distributed SPE to maintain a low
processing latency by ensuring at least one replica always processes the most recent
input data within the required bound.

To demonstrate this property, we use the following experimental setup. We use
two Borealis nodes with the same query diagram composed of three input streams,
an SUnion that merges these streams into one, an SJoin with a 100-tuple state
size, and an SOutput. Figure 12 illustrates our experimental setup (we use the
same setup in the following section where we discuss availability and consistency
trade-offs).

Our measure of availability is Delaynew, the maximum added processing latency
for any new output tuple (see Section 2). However, because we have only one output
stream in the experiment, we measure directly the maximum processing latency
Procnew = Delaynew + proc(t). We create a failure by temporarily disconnecting
one of the input streams without stopping the data source. After the failure heals,
the data source replays all missing tuples while continuing to produce new tuples.
Table III shows Procnew measured at the client for failures with different durations.
Because the experiment is deterministic, each result is an average of only three

3In our implementation, because operators do not control when the scheduler invokes them,
SUnion operators delay by 0.9D instead of D, as a precaution.
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Fig. 12. Experimental setup for experiments investigating the consistency and avail-
ability trade-offs for a single node.

Failure duration (seconds) 2 4 6 8 10 12 14 16 30 45 60

Procnew (seconds) 2.2 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8

Table III. Procnew for different failure durations and for a single-node deployment with
one replica. Independently of failure duration, Procnew remains constant and below the required
threshold of 3 seconds.

experiments. All three values measured were within a few percent of the reported
average.

As the table shows, independent of failure duration, the client always receives
new data within the required 3-second bound.4 Indeed, with this basic version of
DPC, called Process & Process, each node processes input tuples as they arrive
without trying to delay them to reduce inconsistency. More specifically, when the
failure first occurs, both replicas suspend for the maximum incremental processing
bound, then return to processing tentative tuples as they arrive. After the failure
heals, DPC ensures that only one replica at a time reconciles its state while the
remaining replica continues processing the most recent input data. Only once the
first replica reconciles its state and catches up with current execution does the other
replica reconcile its state in turn. The client application has thus access to the most
recent data at all times.

6. AVAILABILITY AND CONSISTENCY TRADE-OFFS

In addition to ensuring eventual consistency while maintaining availability, another
goal of DPC is to try to minimize inconsistency measured with Ntentative, the num-
ber of tentative tuples received by the client application.

In this section, we study the design decisions that achieve different desired trade-
offs between availability and consistency. First, we study what SUnions can do with
newly arriving tuples during UP FAILURE and STABILIZATION. Indeed, SUnions
can choose to either process tuples directly as they arrive (which ensures availability
at the expense of consistency), suspend processing new tuples (which ensures con-
sistency at the expense of availability), or they can try to delay new tuples in both
states to maximize consistency while meeting the given availability bound. We per-
form this study first for a single replicated processing node (Section 6.1) and then

4As we discuss in the next section, we increased the maximum processing latency from 2 seconds
to 3 seconds for this configuration to better emphasize availability-consistency trade-offs in the
single-node case.
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for a sequence of replicated processing nodes (Section 6.2). We find that processing
or delaying tuples are the only valid alternatives for long-duration failures. We also
find that delaying tuples continuously is much less helpful than expected as soon
as a deployment includes more than one processing node in sequence. Given our
findings from Sections 6.1 and 6.2, we study, in Section 6.3, how best to divide the
maximum incremental processing latency specified by an application between the
many SUnions in a query diagram. We show that assigning the entire delay, mi-
nus a small safety factor for queuing delays, to each SUnion yields the best overall
trade-off between availability and consistency.

Another important design decision for DPC lies in the choice of boundary interval
and SUnion bucket size. In general, these intervals must be significantly smaller
than the maximum incremental processing latency. We study the impact of their
exact values when we discuss the overhead of the approach in Section 7.

Finally, a system operator must also decide where to place replicas of processing
nodes and how many replicas to use. DPC requires at least two replicas for each pro-
cessing node (including the original node). Additional replicas improve availability
at the expense of greater overall resource utilization. Replicas must, of course, be
spread over the network to ensure their failures and disconnections exhibit as little
correlation as possible and that replicas are placed close to clients. Properly placing
replicas of servers on the Internet is a well-known problem (e.g., [Radoslavov et al.
2001; Tang et al. 2007]) and we do not investigate it in this paper.

6.1 Single Node and Replica

In DPC, the application-defined maximum incremental processing latency, X, is
divided among SUnions. Each SUnion is assigned some, possibly distinct, maximum
delay bound, D. An SUnion can reduce inconsistency by delaying tuples more or
less within this bound, D. We investigate such different variants of DPC in this
section. For clarity of exposition, each processing node runs a query diagram with
a single SUnion.

During UP FAILURE, a node can suspend processing new input tuples until the
maximum delay D expires. For failures that lasts longer than the threshold D, a
node can either continuously delay tuples up-to D (we call this variant “Delay”) or
process them without delay (“Process”). During STABILIZATION, a node can ei-
ther suspend new tuples (“Suspend”), or have a second version of the SPE continue
processing them with or without delay (“Delay” or “Process”). Because delaying
tuples during UP FAILURE affects the results of suspending or delaying tuples dur-
ing STABILIZATION, we examine all six possible combinations: (1) delaying or (2)
processing new tuples during UP FAILURE then (a) suspending, (b) delaying, or (c)
processing new tuples during STABILIZATION. Our goal is to determine the failure
durations when each combination of techniques produces the fewest tentative tuples
without violating the low processing latency requirement. As we point out, some
combinations are not viable as they break the low processing-latency requirement
for sufficiently long-duration failures.

To better emphasize the differences between approaches, we increase the number
of tentative tuples produced in the experiments by increasing the aggregate input
rate to 4500 tuples/second and by increasing D to 3 seconds. The dynamics of fail-
ure and recovery remain the same, but the overall latency and number of tentative
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(a) Procnew, short-duration failures. (b) Ntentative, short-duration failures.
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(c) Procnew, long-duration failures. (d) Ntentative, long-duration failures.

Fig. 13. Availability and consistency resulting from delaying, processing, or suspend-
ing new tuples during UP FAILURE and STABILIZATION. X-axis starts at 2 seconds. All
techniques completely mask failures that last 2 seconds or less. Delay & Delay meets the avail-
ability requirement for all failure durations, while producing the fewest tentative results.

tuples increase when D and the input data rate increase.
Since there is a single processing node, the incremental processing latency per

node, D, is equal to X, the total incremental latency tolerable by the application.
Furthermore, in this experiment, Delaynew < X when Procnew < 3 seconds because
the normal processing latency is below 300 milliseconds and, in our implementation,
nodes always delay for 0.9D instead of D (as mentioned above),

Figure 13 shows Procnew and Ntentative for each of the six variants that we con-
sider and for different failure durations. We only show results for failures up to
1 minute. Longer failures continue the same trends. Because suspending is optimal
for short-duration failures, all approaches suspend for time-period D, and produce
no tentative tuples for failures below this threshold. Each result is the average of
three experiments. Once again, all three values measured were within a few percent
of the reported average. For Delay & Delay , the variation was a little higher. This
variation is not intrinsic to the approach. It is due to the Borealis scheduler, which
does not smoothly handle load spikes.

As indicated in the previous section, processing new tuples without delay during
UP FAILURE and STABILIZATION (Process & Process) ensures that the maximum
delay remains below D independent of failure duration. Indeed, with this combina-
tion, at least one node always processes new tuples directly as they arrive (except
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for an initial delay of less than D when the failure first occurs). This baseline com-
bination, however, produces the most tentative tuples as it produces them for the
duration of the whole failure and reconciliation. The SPE can reduce the number
of tentative tuples without hurting Procnew, by continuously delaying new tuples
during STABILIZATION (Process & Delay), during UP FAILURE (Delay & Process),
or in both states (Delay & Delay). As expected, this last combination produces the
fewest tentative tuples.

We now examine what happens if a node chooses to suspend rather than simply
delay processing new tuples at some point during the failure and recovery process.
First, as we mentioned above, suspending processing new tuples during failures is
viable only for failures shorter than D. For longer-duration failures, however, it
is possible to process tuples as they arrive during failures in order to have time
to suspend processing new tuples during reconciliation (Process & Suspend). This
approach is viable only when reconciliation is shorter than D. Otherwise, while
the node is reconciling, Delaynew exceeds D. In our experiment, this happens
for a failure duration around 8 seconds. With Process & Suspend, we can thus
save a number of Ntentative tuples proportional to the reconciliation time times the
tuple rate. The reconciliation time must always be equal to or less than D for
the approach to be viable. In contrast, by delaying (Delay & Delay) instead of
suspending (Process & Suspend), the savings is equal to exactly D times the tuple
rate. Delay & Delay is thus always equivalent or better than Process & Suspend.
The latter combination is thus uninteresting.

Finally, delaying tuples in UP FAILURE then suspending them during STABI-
LIZATION (Delay & Suspend) is not viable because delaying during failures brings
the system on the verge of breaking the availability requirement. Suspending during
reconciliation then adds a delay proportional to the reconciliation time.

In summary, to meet the availability requirement for long-duration failures, nodes
must process new tuples not only during UP FAILURE but also during STABILIZA-
TION. Nodes can produce fewer tentative tuples, however, by always running on
the verge of breaking that requirement (Delay & Delay).

6.2 Distributed Setting

We now examine the performance of the above techniques in a distributed setting.
Because it is never advantageous to suspend processing tuples during reconciliation
and because suspending breaks the availability requirement for long-duration fail-
ures, we only compare two techniques: continuously delaying new tentative tuples
(Delay & Delay) and processing tentative tuples almost as they arrive (Process &
Process). We expected that delaying tuples as much as possible would result in a
longer processing latency but would lead to fewer tentative tuples on the output
stream. We show that in contrary to our expectations, delaying tentative tuples
does not improve consistency, except for short-duration failures.

Figure 14 shows the experimental setup: a chain of up to four processing nodes,
each replicated. As in the previous section, the first SUnion merges the inputs
from three streams. Subsequent SUnions process a single input stream. Each pair
of processing nodes runs on a different physical machine. The data sources, first
pair of processing nodes, client proxy, and client all run on the same machine.

To cause a failure, we temporarily prevent one of the input streams from pro-
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Fig. 14. Setup for experiments with a distributed SPE.
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Fig. 15. Procnew for a sequence of processing nodes. Each node runs a single SUnion with
D = 2 seconds. Results are independent of failure durations. Each result is the average of 10
experiments (standard deviations, σ, are within 3% of means). Both techniques meet the required
availability of 2 seconds per-node. Process & Process provides a significantly better availability.

ducing boundary tuples. We choose this technique rather than disconnecting the
stream to ensure that the output rate at the end of the chain is the same with and
without the failure. Keeping the output rate the same makes it easier to under-
stand the dynamics of the approach in this setting. The aggregate input rate is
500 tuples/second. We cause failures of different durations between 5 seconds and
60 seconds.

Figure 15 shows the measured availability of the output stream during
UP FAILURE and STABILIZATION as we increase the depth of the chain. We show
results only for a 30-second failure because the end-to-end processing latency is
independent of failure duration, except for very short-duration failures. In this
experiment, we assign a maximum delay, D = 2 seconds, to each SUnion. The end-
to-end processing latency requirement thus increases linearly with the depth of the
chain. It is 2n seconds for a chain of n nodes. Both Delay & Delay and Process &
Process provide the required availability, but the availability is significantly better
with Process & Process.

For Delay & Delay, each node in the chain delays its input tuples by D before
processing them. The processing latency thus increases by a fixed amount for every
consecutive processing node. For Process & Process, we would expect the maximum
processing latency to be the same. As a failure occurs and propagates through the
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Fig. 16. Ntentative during short-duration failures and reconciliations. Each node runs one
SUnion with D = 2 seconds. Each result is the average of 10 experiments (standard deviations,
σ, are within 4% of means except for the 5-second failure with Delay & Delay, where σ is about
16% of the mean for deep chains). In the presence of short failures, delaying improves consistency
only by a fixed amount approximately proportional to the total delay through the chain.

chain, each node that sees the failure first delays tuples by D, before processing
subsequent tuples almost as they arrive. The first bucket without a boundary
tuple should thus be delayed by each node in sequence. Instead, for Process &
Process, the end-to-end processing latency is closer to the delay imposed by a
single processing node. Indeed, as the failure occurs, all nodes suspend processing
at the same time because when the first node suspends processing it also suspends
producing boundary tuples; all nodes stop receiving boundary tuples at the same
time. Thus, after the initial 2-second delay, tuples stream through the rest of
the chain with only a small extra delay per node. This observation is important
because it affects the assignment of delays to SUnions, as we see later in this section.
In summary, Process & Process achieves significantly better availability (latency),
although both techniques meet our requirement.5

5The processing latency increases by a small amount per-node even with Process & Process
because, in the current implementation, SUnions do not produce tentative boundaries. Without
boundaries, an SUnion does not know how soon a bucket of tentative tuples can be processed. We
currently require SUnions to wait for a minimum of 300 milliseconds before processing a tentative
bucket. Using tentative boundaries would enable even faster processing of tentative data and
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Fig. 17. Dynamics of state reconciliation through a chain of nodes. When a failure heals,
at least one replica from each set enters the STABILIZATION state. Every node thus receives
simultaneously potentially delayed tentative tuples and stable tuples, which slowly catch-up with
current execution.

We now compare the number of tentative tuples produced on the output stream
to examine how much delaying helps improve consistency (i.e., reduces Ntentative).

Figure 16 shows Ntentative measured on the output stream for each technique and
failures up to 30 seconds in duration. In these examples, failures are relatively short,
reconciliation is relatively fast, and delaying tentative tuples reduces inconsistency.
For a given failure duration, the consistency gain is approximately proportional to
the total delay through the chain of nodes: i.e., the gain increases with the depth
of the chain. However, this delay is independent of failure duration, which means
that the relative gains actually decrease with failure duration (i.e., as reconciliation
gets longer). At 30 seconds, the gains start to become insignificant.

To discuss the results in detail, we must examine the dynamics of state rec-
onciliation through a chain of nodes. In the implementation, a node enters the
STABILIZATION state as soon as one previously tentative bucket becomes stable.
As a failure heals, the first node starts reconciling its state and starts producing
corrections to previously tentative tuples. Almost immediately, the downstream
neighbors receive enough corrections for at least one bucket to become stable, and
one of the downstream neighbors enters the STABILIZATION state. Hence, in a
chain of nodes, as soon as a failure heals, at least one replica of each node starts
to reconcile its state. These replicas form a chain of nodes in the STABILIZA-
TION state. The other replicas form a parallel chain of nodes that remain in the
UP FAILURE state, as illustrated in Figure 17. This approach has two important
effects.

First, the total reconciliation time increases only slightly with the depth of the
chain because all nodes reconcile roughly at the same time. For Process & Process,
the number of tentative tuples is proportional to the failure duration plus the
stabilization time. For 30-second and 15-second failures, we clearly see the number
of tentative tuples increase slightly with the depth of the chain.6

latency would remain approximately constant with the depth of the chain (increasing only as
much as the actual processing latency).
6A few tentative tuples are typically dropped when a node switches upstream neighbors. For
5-second failures, the number of tentative tuples decreases with the depth of the chain even for
Process & Process because these drops are not yet offset by increasing reconciliation times.
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Fig. 18. Ntentative during a long-duration failure and reconciliation. Each node runs a single
SUnion with D = 2 seconds. Each result is the average of 10 experiments (standard deviations,
σ, are within 3% of means). For long-duration failures, delaying does not improve consistency.

Second, because a whole sequence of nodes reconciles at the same time, the last
replica in the chain that remains in UP FAILURE state receives both delayed ten-
tative tuples from its upstream neighbor in UP FAILURE state and most recent
corrected stable tuples from the upstream neighbor in the STABILIZATION state.
The last node in the chain processes these most recent stable tuples as tentative be-
cause it is still in the UP FAILURE state. For short-duration failures, reconciliation
is sufficiently fast that the last node in UP FAILURE state does not have time to get
to these most recent tuples before the end of STABILIZATION at its replica. The
last node in the chain only processes the delayed tentative tuples. Therefore, for
Delay & Delay and short-duration failures, the number of tentative tuples decreases
with the depth of the chain. It decreases proportionally to the total delay imposed
on tentative tuples.

The result is different for long-duration failures, though. Figure 18 shows
Ntentative on the output stream when the failure lasts 60 seconds. The figure shows
that the benefits of delaying almost disappear. Delay & Delay can still produce a
little fewer tentative tuples than Process & Process but the gain is negligible and
independent of the depth of the chain. The gain is equal to only the delay, D, im-
posed by the last node in the chain. Therefore, for long-duration failures, delaying
sacrifices availability without benefits to consistency.

In summary, in a distributed SPE, the best strategy for processing tentative
tuples during failure and reconciliation is to first suspend all processing hoping
that failures are short. If failures persist past the delay, D, the new best strategy is
to continuously delay new input tuples as much as possible. As the failure persists
and an increasingly large number of tuples will have to be re-processed during state
reconciliation, delaying is no longer beneficial, and nodes might as well improve
availability by processing tuples without any delay. This technique could easily be
automated, but as we show later an even better strategy exists.

6.3 Assigning Delays to SUnions

In the previous sections, we assumed that each SUnion was assigned a fixed delay,
D. We now examine how to divide an end-to-end maximum added processing
latency, X, among the many SUnions in a query diagram.
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Fig. 19. Procnew for a sequence of four processing nodes and different failure durations.
Each result is the average of 10 experiments (standard deviations, σ, are within 3% of means).
It is possible to assign the full incremental delay to each SUnion in a chain and still meet the
availability requirement.

We first study a chain configuration and examine two different delay assignment
techniques: uniformly dividing the available delay among the SUnions in the chain
or assigning each SUnion the total incremental delay. For a total incremental delay
of 8 seconds, and a chain of four processing nodes, the first technique assigns a
delay of 2 seconds to each node. This is the technique we have been using until
now. In contrast, with the second technique, we assign the complete 8-second delay
to each SUnion. In the experiments, we actually use 6.5 seconds instead of 8 seconds
because queues start to form when the initial delay is long. The 6.5 second value
was selected to approximately take this queuing delay into account.

Figure 19 shows the maximum processing latency for a chain of 4 nodes and the
two different delay assignment techniques. Figure 20(a) shows Ntentative for the
same configurations. The left and middle bars repeat the results from the previous
section: each SUnion has D = 2 seconds and either delays tentative tuples or
processes them without delay. The graphs on the right show the results when each
SUnion has D = 6.5 seconds and processes tuples without delay.

Interestingly, assigning the total delay to each SUnion meets the required avail-
ability independently of the depth of the chain. Indeed, when a failure occurs, all
SUnions downstream from the failure suspend at the same time. After the initial
delay, however, nodes must process tuples as they arrive to meet the availability
requirement (alternatively, they could revert to delaying by only 2 seconds). At first
glance, though, assigning the total delay to each SUnion appears to have the worse
availability of Delay & Delay and the worse number of tentative tuples of Process
& Process. Figure 20(b) shows a close-up on the results for only the 5-second and
10-second failures. For the 5-second failure, when D = 6.5 seconds, the system
does not produce even one tentative tuple. Assigning the maximum incremental
processing latency to each SUnion thus enables a system to cope with the longest
possible failures without introducing inconsistency and still meeting the required
availability. Additionally, the high maximum processing latency when assigning
the whole delay to each SUnion affects only the tuples that enter the system as the
failure first occurs. After the initial delay, nodes process subsequent tuples without
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(a) Various failure durations. (b) Short-duration failures only.

Fig. 20. Ntentative for different delay assignments to SUnions. Process & Process with
D = 6.5 seconds is the only technique that can mask the 5-second failure while performing as well
as the other approaches for longer failures. Each result is the average of 10 experiments (standard
deviations, σ, are within 11% of means).

any delay. The availability thus goes back to the low processing latency of Process
& Process.

In a more complex graph configuration, the same result holds. When an SUnion
first detects a failure, all downstream SUnions suspend processing tuples at the same
time. The initial delay can thus be equal to X. After the initial delay, however,
SUnions can either process tuples without further delay, or they can continuously
delay new tuples for a shorter incremental time, D. We have shown that additive
delays are not useful for long-duration failures. In a graph configuration, they are
also difficult to optimize. Figure 21 illustrates the problem. Every time two streams
meet at an operator, their respective accumulated delays depend on the location of
upstream failures and the number of SUnions they traversed. There is therefore no
single optimal incremental delay that SUnions can impose individually, even when
delays are assigned separately to each input stream at each SUnion. As shown on
the figure, it is possible to produce an assignment guaranteeing that the SPE meets
a required availability, but some failure configurations can cause some tentative
tuples to be systematically dropped by an SUnion. Pre-defined additive delays are
thus undesirable. To circumvent this problem, the SPE could encode accumulated
delays inside tuples and SUnions could dynamically adjust the incremental delays
they impose based on the total accumulated delays so far. This type of assignment
would lead to a new set of possible delay assignment optimizations, but we do not
examine such delay assignments in this paper.

In this section, we investigated trade-offs between availability and consistency for
a single SPE and for simple distributed deployments. We showed that in order to
minimize inconsistency while meeting a desired availability level, when first detect-
ing a failure, each SUnion should suspend processing tuples for as long as the total
incremental latency specified by the application. After this initial delay, SUnions
should process tuples as they arrive because independent incremental delays do not
improve consistency after long-duration failures and, for complex query diagrams,
may cause a greater number of tuples to be dropped because of mismatches in
accumulated delays on different streams.
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Fig. 21. Assigning incremental delays to SUnions in a query diagram. The assignment is
difficult because accumulated delays depend on the diagram structure and on the failure location.

7. DPC OVERHEAD

The main overhead of DPC lies in buffering tuples during failures in order to replay
them during state reconciliation. This overhead is a memory overhead; it does not
affect runtime performance, and we discuss it in the next section. There are, how-
ever, additional sources of overhead that affect runtime performance. We discuss
these overheads in this section.

Tuple serialization is the main cause of runtime overhead. If the sort function
requires an SUnion to wait until a bucket is stable before processing tuples in that
bucket, the processing delay of each SUnion increases linearly with the boundary
interval and the bucket size. To evaluate the overhead of these delays, we use
the experimental setup shown in Figure 22. The data source generates one input
tuple approximately every 10 milliseconds. We run the experiment for 5 minutes,
producing a total of approximately 25,000 tuples in each run. For all these tuples,
we measure the minimum, maximum, and average per-tuple processing latency. We
run this experiment for varying bucket sizes and boundary intervals. We vary each
parameter independently to show how each parameter affects the processing latency.
Figure 23 shows examples of streams for two specific parameter configurations. In
the actual experiments, the data source paused for 10 milliseconds between tuples.
As a result, tuples were produced a little slower than shown in the figure. Tables IV
and V show the results from these experiments. In both tables, the column with zero
delay shows the result when we replace the SUnion and SOutput combination with a
standard Union operator and we remove all boundary tuples from the stream. The
latency values shown in Table IV are slightly lower than those in Table V because,
for boundary intervals of 10 milliseconds, we simply send a boundary tuple directly
with each data tuple. As expected, the maximum and average processing latency
increase proportionally to both the boundary interval and the bucket size. Both
parameters must thus be set to small values to avoid unnecessarily delaying tuples.

In addition to processing latency, tuple serialization also introduces memory over-
head since SUnions buffer tuples before sorting them. This memory overhead in-
creases proportionally to the number of SUnion operators, their bucket sizes, and
the rate of tuples that arrive on each input stream to an SUnion. Because we typ-
ically chose the tuple stime to correspond to the expected order of tuples on input
streams, we could significantly reduce both memory and latency overheads by al-
lowing SUnions to output tuples as soon as they receive input tuples with higher
tuple stime values on all their input streams. This optimization, however, requires
that all operators process and produce tuples in increasing tuple stime order.
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Fig. 22. Experimental setup used in fault-tolerance overhead experiments.
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Fig. 23. Illustration of data streams for two sample experimental configurations.

Other overheads imposed by DPC do not affect performance in a measurable way.
These overhead include operators checking tuple types and processing boundary
tuples. The former is negligible while the latter requires, in the worst case, a scan
of all tuples in the operator’s state, and, in the best case, requires simply that the
operator propagates the boundary tuple. The operators that we modified need not
scan their state to process boundary tuples, ensuring that the overhead of these
boundary tuples is negligible. As a third source of overhead, each SOutput must
also save the last stable tuple that it sees in every burst of tuples that it processes.

Finally, DPC relies on replication. It increases resource utilization proportionally
to the number of replicas. These replicas, however, can actually improve runtime
performance by forming a content distribution network, where clients and nodes
connect to nearby upstream neighbors rather than a single, possibly remote, loca-
tion.

8. DISCUSSION

In this section, we discuss additional details of DPC: we discuss buffer management
and we outline a technique for handling failures at a finer granularity.

8.1 Buffer Management

For DPC to work, the data path must buffer output tuples and SUnions must buffer
input tuples as follows:

Output Buffers: A node must buffer the output tuples it produces until all
replicas of all downstream neighbors receive these tuples. Indeed, at any point
in time, any replica of a downstream neighbor can connect to any replica of an
upstream neighbor and request all input tuples it has not yet received. Output
buffers are thus needed during failures, but they are also needed in the absence
of failures because nodes do not process and transmit data at the same time. We
assume that nodes have spare processing and bandwidth capacity (see Section 2.2).
Therefore, nodes can keep up with input rates without falling behind. Nevertheless,
some nodes may run somewhat ahead of others nodes. The nodes that are ahead
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Bucket size (ms) 0 10 50 100 150 200 300 500

Minimum latency 0 12 12 12 13 13 13 14
Maximum latency 5 26 64 113 165 213 313 514
Average latency 0 13.3 31.1 56.6 81.5 106.5 156.6 258.0
Standard deviation of latency 0 1.9 14.5 28.7 43.1 57.5 86.2 144.3

Table IV. Latency overhead of serialization. Varying bucket size for a fixed boundary interval
of 10 milliseconds. The column with 0 milliseconds bucket size shows the results when using a
standard Union instead of SUnion and SOutput and when not producing boundary tuples at all.

Boundary interval (ms) 0 10 50 100 150 200 300 500

Minimum latency 0 12 14 15 17 19 20 25
Maximum latency 5 26 70 121 170 219 317 520
Average latency 0 13.3 37.3 62.1 87.0 111.6 166.2 269.4
Standard deviation of latency 0 1.9 16.6 30.4 43.7 56.9 87.3 141.9

Table V. Latency overhead of serialization. Varying boundary interval for a fixed bucket
size of 10 milliseconds. The column with 0 milliseconds boundary interval shows the results when
using a standard Union instead of SUnion and SOutput and when not producing boundary tuples
at all.

must buffer their output tuples until the other nodes produce the same output
tuples and forward them downstream.

Input Buffers: In the absence of failures, no data is buffered on input streams.
When failures occur, nodes need to buffer the stable input tuples they receive in
order to reprocess them later during STABILIZATION: i.e., SUnions placed on input
streams need to buffer tuples they receive after the pre-failure checkpoint because
reconciliation involves restarting from the last checkpoint and reprocessing all input
tuples received since then.

Overall, in the absence of failures, DPC requires only a small bounded amount of
buffer space: nothing is buffered on the inputs and output buffers can be truncated
in response to periodic acknowledgments from downstream neighbors. However, if
downstream nodes crash or become disconnected they may no longer send acknowl-
edgments, forcing all buffers to grow with the duration of the failure.

Limiting buffer sizes may prevent nodes from reconciling their states and correct-
ing all previously tentative results after a sufficiently long failure. Tuples in buffers
could be written to disk so even without additional mechanisms, DPC could tolerate
relatively long-duration failures. We want, however, to limit the size of all buffers
to keep buffers in memory speeding-up their replay and bounding the time it takes
nodes to recover from failures. We propose two different techniques depending on
the type of operators in the query diagram.

Deterministic Operators: The state of a deterministic operator can, in the
worst case, depend on all tuples that the operator ever processed. With such oper-
ators, any tuple loss during a failure may prevent nodes from becoming consistent
again. Such a situation is called system delusion [Gray et al. 1996]: replicas are
inconsistent and there is no obvious way to repair the system. To avoid system
delusion, we propose to maintain availability only as long as there remains space
in buffers. Once a node’s buffers fill up, the node blocks. Blocking creates back
pressure all the way up to the data sources, which start dropping tuples without
pushing them into the system. This technique maintains availability only as long as
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buffer sizes permit but it ensures eventual consistency. It avoids system delusion.
Convergent-Capable Operators: Convergent-capable operators [Hwang et al.

2005; Balazinska 2006] have the nice property that any input tuple affects their state
only for a bounded amount of time. Convergent capable operators include but are
not limited to all stateless operators (e.g., Filter and Map) and value-based sliding
window Joins and Aggregates. When a query diagram consists only of these types
of operators, we can compute, for any location in the query diagram, a maximum
buffer size, S, that guarantees enough tuples are being buffered to rebuild the latest
consistent state and correct the most recent tentative tuples. With this approach, the
system can support failures of arbitrarily long duration with bounded-size buffers.
Users can indicate the window of most-recent tuples that need to be corrected after
a failure heals (e.g., the last hour or the last day) and the system can compute the
necessary buffer sizes to ensure this property, while maintaining availability at all
times.

Convergent-capable query diagrams are thus more suitable for applications that
need to maintain availability during failures of arbitrarily long duration, yet also
need to reach a consistent state after failure heals. For other deterministic oper-
ators, buffer sizes determine the duration of failures that the system can support
while maintaining availability.

8.2 Reducing Failure Granularity

Until now, we assumed that a node advertises a single overall consistency state to
its downstream neighbors and that the whole local query diagram restarts from
a checkpoint during STABILIZATION. Frequently, however, a failure affects only a
subset of the operators running at a node. Ideally, we would like to limit the impact
of failures and recovery to these operators only. We propose to do so by computing
and advertising the state of each output stream separately and by recovering the
state of operators individually.

To advertise the individual states of its output stream, a node must compute
these states. One approach is for each SOutput operator to determine the state of
its output stream by observing if tuples are stable or tentative. A better approach
is for the Consistency Manager to compute that state from the set of failures on
input streams and the structure of the query diagram. This state can be computed
even before tentative tuples propagate to the output. In both cases, the state
of output streams unaffected by a failure remains advertised as STABLE, and the
corresponding downstream neighbors do not need to switch to another replica.

Second, to limit the impact of failure recovery, a node can reconcile its state by
restarting only those operators that processed tentative data during the failure. In
previous work [Balazinska et al. 2005; Balazinska 2006], we noted that restarting
an operator from a checkpoint is faster and simpler than undoing and redoing its
state. We thus propose to use this approach but avoid node-wide checkpoints and
recovery. Instead, we propose that each operator checkpoints its state individually
right before processing its first tentative tuple. During STABILIZATION, SUnions
on previously failed inputs can push an undo tuple into the query diagram before
replaying the stable tuples. When an operator receives an undo tuple, it recovers
its state from its checkpoint and reprocesses all stable tuples that follow the undo.
With this approach, only operators that see a failure checkpoint their state and the
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only SUnions that need to buffer tuples are those with both tentative and stable
inputs, and they only need to buffer tuples on the stable inputs (the only tuples
they are in charge of replaying). Additionally, only those operators that previously
experienced a failure participate in the state reconciliation thus effectively limiting
the impact of failures.

9. RELATED WORK

Until now, work on high availability in stream processing systems has focused on
fail-stop failures of processing nodes [Hwang et al. 2005; Shah et al. 2004]. These
techniques either do not address network failures [Hwang et al. 2005] or strictly fa-
vor consistency by requiring at least one fully connected copy of the query network
to exist to continue processing [Shah et al. 2004]. Some techniques use punctua-
tion [Tucker and Maier 2003], heartbeats [Srivastava and Widom 2004], or statically
defined slack [Abadi et al. 2003] to tolerate bounded disorder and delays. These
approaches, however, block or drop tuples when disorder or delay exceed expected
bounds. Another approach, developed for publish-subscribe systems tolerates fail-
ures by restricting all processing to “incremental monotonic transforms” [Strom
2004]. DPC has no such restriction.

Traditional query processing also addresses trade-offs between result speed
and consistency, materializing query outputs one row or even one cell at the
time [Naughton et al. 2001; Raman and Hellerstein 2002]. In contrast to these
schemes, our approach supports possibly infinite data streams and ensures that
once failures heal all replicas produce the same final output streams in the same
order.

Fault-tolerance through replication is widely studied and it is well known that
it is not possible to provide both consistency and availability in the presence of
network partitions [Brewer 2001]. Eager replication favors consistency by having a
majority of replicas perform every update as part of a single transaction [Garcia-
Molina and Barbara 1985; Gifford 1979] but it forces minority partitions to block.
With lazy replication all replicas process possibly conflicting updates even when
disconnected and must later reconcile their state. They typically do so by applying
system- or user-defined reconciliation rules [Kawell et al. 1988; Urbano 2003], such
as preserving only the most recent version of a record [Gray et al. 1996]. It is unclear
how one could define such rules for an SPE and reach a consistent state. Other
replication approaches use tentative transactions during partitions and reprocess
transactions possibly in a different order during reconciliation [Gray et al. 1996;
Terry et al. 1995]. With these approaches, all replicas eventually have the same state
and that state corresponds to a single-node serializable execution. Our approach
applies the ideas of tentative data to stream processing.

Some schemes offer users fine-grained control over the trade-off between precision
(or consistency) of query results and performance (i.e., resource utilization) [Olston
2003; Olston et al. 2003]. In contrast, we explore consistency/availability trade-offs
in the face of failures and ensure eventual consistency.

Workflow management systems (WFMS) [Alonso et al. 1995; Alonso and Mohan
1997; Hsu 1995] share similarities with stream processing engines. Existing WFMSs,
however, typically commit the results of each execution step (or messages these
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steps exchange) in a central highly-available storage server [Kamath et al. 1996]
or in persistent queues [Alonso et al. 1995; Alonso et al. 1997]. Because the data
transferred between execution steps can be large, some WFMSs use a separate data
manager [Alonso et al. 1997]. The data manager is a distributed and replicated
DBMS and has thus the same properties as the eager or lazy replication schemes
discussed above. Some WFMS also support disconnection by locking activities prior
to disconnection [Alonso et al. 1995].

Approaches that reconcile state after a failure using combinations of checkpoints,
undo, and redo are well known [Elnozahy et al. 2002; Gray et al. 1996; Gray and
Reuters 1993; Lomet and Tuttle 2003; Terry et al. 1995]. We adapt and use these
techniques in the context of fault-tolerance and state reconciliation in an SPE.

Real-time systems must guarantee that tasks complete by specific deadlines [Kao
and Garcia-Molina 1995; Lam et al. 2000]. This requirement can be seen as anal-
ogous to our maximum incremental processing latency requirement. The goal of
real-time systems, however, is to provide fault-tolerance with minimal overhead
and impact on the processing predictability and performance. Real-time systems
typically rely on custom code [Melliar-Smith and Moser 2004] and slack in their
schedules [Mossé; et al. 2003] to achieve this goal. Additionally, real-time systems
are often embedded systems and do not address the problem of network partitions.
In contrast, our goal is to process best-effort data during network partitions and
maximally exploit the application tolerance for latency increase in order to reduce
inconsistency during these types of failures.

10. CONCLUSION

In this paper, we presented DPC, a replication-based approach to fault-tolerant
stream processing that handles node failures, network failures, and network parti-
tions. DPC uses a new data model that distinguishes between stable tuples and
tentative tuples, which result from processing partial inputs and may later be cor-
rected. DPC favors availability over consistency, but guarantees eventual consis-
tency. Additionally, while ensuring that each node processes new tuples within a
pre-defined delay, D, our approach reduces the number of tentative tuples when
possible. To ensure consistency at runtime, we introduce a data-serializing opera-
tor called SUnion. To regain consistency after failures heal, nodes reconcile their
states using checkpoint and redo.

We implemented DPC in Borealis and showed several experimental results. For
short-duration failures, SPE nodes can avoid inconsistency by blocking and looking
for a stable upstream neighbor. For long-duration failures, nodes need to process
new inputs both during failure and stabilization to ensure the required availability.

Many stream processing applications prefer approximate results to long delays
but eventually need to see the correct output streams. It is important that failure-
handling schemes meet this requirement. We view this work as an important step
in this direction.
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and Zdonik, S. 2003. Scalable distributed stream processing. In Proc. of the First Biennial
Conference on Innovative Data Systems Research (CIDR).

Coral8. http://coral8.com/.

Cranor, C., Johnson, T., Shkapenyuk, V., and Spatscheck, O. 2003. Gigascope: A stream
database for network applications. In Proc. of the 2003 ACM SIGMOD International Confer-
ence on Management of Data.

Elnozahy, E. N. M., Alvisi, L., Wang, Y.-M., and Johnson, D. B. 2002. A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Survey 34, 3, 375–408.

Fekete, A., Gupta, D., Luchangco, V., Lynch, N., and Shvartsman, A. 1996. Eventually-
serializable data services. In Proc. of the Fifteenth ACM Symposium on Principles of Dis-
tributed Computing (PODC 1996).

ACM Transactions on Database Systems, Vol. XX, No. XX, XX 20XX.



42 · Magdalena Balazinska et al.

Garcia-Molina, H. and Barbara, D. 1985. How to assign votes in a distributed system. Journal
of the ACM 32, 4 (Oct.), 841 – 860.

Gifford, D. K. 1979. Weighted voting for replicated data. In Proc. of the 7th ACM Symposium
on Operating Systems Principles (SOSP).

Gilbert, S. and Lynch, N. 2002. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant Web services. ACM SIGACT News 33, 2.

Gray, J., Helland, P., O’Neil, P., and Shasha, D. 1996. The dangers of replication and a
solution. In Proc. of the 1996 ACM SIGMOD International Conference on Management of
Data.

Gray, J. and Reuters, A. 1993. Transaction processing: concepts and techniques. Morgan
Kaufmann.

Hsu, M. 1995. Special issue on workflow systems. IEEE Data Engineering Bulletin 18, 1 (Mar.).
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