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ABSTRACT
Radio Frequency IDentification (RFID) deployments are
becoming increasingly popular in both industrial and
consumer-oriented settings. To effectively exploit and op-
erate such deployments, important challenges must be ad-
dressed, from managing RFID data streams to handling lim-
itations in reader accuracy and coverage. Furthermore, de-
ployments that support pervasive computing raise additional
issues related to user acceptance and system utility. To bet-
ter understand these challenges, we conducted a four-week
study of a building-scale EPC Class-1 Generation-2 RFID
deployment, the “RFID Ecosystem”, with 47 readers (160
antennas) installed throughout an 8,000 square meter build-
ing. During the study, 67 participants having over 300 tags
accessed the collected RFID data through applications in-
cluding an object finder and a friend tracker and several tools
for managing personal data. We found that our RFID de-
ployment produces a very manageable amount of data over-
all, but with orders of magnitude difference among various
participants and objects. We also find that the tag detec-
tion rates tend to be low with high variance across the type
of tag, participant and object. Users need expert guidance
to effectively mount their tags and are encouraged by com-
pelling applications to wear tags more frequently. Finally,
probabilistic modeling and inference techniques promise to
enable more complex applications by smoothing over gaps
and errors in the data, but must be applied with care as
they add significant computational and storage overhead.

Categories and Subject Descriptors
H.2 [Information Systems]: Information Interfaces and
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Figure 1: RFID reader antennas read RFID tags carried

by people and objects in an RFID deployment.

1. INTRODUCTION
Radio Frequency Identification (RFID) technology has be-

come increasingly popular in the last several years with
applications appearing both in industrial [8, 46] and user-
oriented settings [35, 40].

In an RFID deployment, an environment is instrumented
with RFID readers while users and objects carry RFID tags
as illustrated in Figure 1. Readers are equipped with anten-
nas so that when a tag passes in the vicinity of an antenna,
the reader detects the presence of the tag and generates
a triple of the form: (TAG ID, LOCATION, TIME), which
records the location and time when the tag was sighted.
Applications use these location traces to offer various ser-
vices from simple product tracking [8, 46] to sophisticated
activity recognition and workflow analysis [35, 40].

There are different types of RFID technology. In partic-
ular, some systems use active (i.e., battery-powered) tags,
while others use passive tags. Passive RFID, and particu-
larly the EPC Class-1 Generation-2 standard, promises to
enable large tracking applications at much better cost and
convenience. This is not only because passive tags cost tens
of cents while active tags cost tens of dollars, but because
passive tags do not require periodic change of battery.

Although passive RFID technology is successfully used in
constrained industrial settings, many questions remain as
to the practicality and usefulness of the technology for per-
vasive computing applications. Though many applications
have been proposed for passive RFID [12, 20, 4, 5, 30, 32, 38]
to our knowledge, very few studies have been conducted on
the behavior and performance of EPC Class-1 Generation-
2 UHF RFID in a realistic, long-term pervasive computing
setting. Most previous studies were limited to controlled lab-
oratory environments [7, 19, 37]. As such, the community
is left with a number of questions that laboratory studies
cannot answer, such as how well do results from the labora-
tory map to an everyday-life setting? How much data does



a community of users in a pervasive RFID system generate
and what does the data look like? How well the tags can be
read when mounted on everyday objects by users? By ex-
perts? Are users eager to adopt this new technology? How
do they manage their private location data? How do usage
trends evolve over time? Are there any trends or correla-
tions in the data that might inform system and application
design? What techniques could be used to cope with uncer-
tainty in the data resulting from sensor failure or limitations
in sensor coverage? Are these techniques effective?

To begin answering the above questions, we conducted a
four-week study of a building-wide RFID deployment with
47 readers (160 antennas), 67 participants, and 324 tags.
During the study, participants had access to a variety of ap-
plications including a friend finder, an object and tag man-
ager, a data browser and a Facebook application. We also
complemented the study with microbenchmark experiments
conducted in a laboratory and in a building-wide deploy-
ment. In this paper, we present results in connection with
four key aspects of an RFID deployment:

(1) System and application utilization: We measure sys-
tem utilization in terms of the amount and character of data
generated in addition to patterns of application use. We also
identify trends in these quantities over time. As part of these
measurements, we record how often users interact with their
RFID data or delete sensitive data. Overall, we find that an
RFID infrastructure produces small data volumes (approxi-
mately 0.8 MB of data per participant over 4 weeks on aver-
age) and that this data can nicely be compressed (e.g.20KB
per person on average). We find more than an order of mag-
nitude difference in the amount of RFID data generated by
different users and objects and that at least four factors
are responsible for this trend: differences in user mobility,
differences in how people carry their tags, differences in ma-
teriality of tagged objects and differences in the degree to
which people use the applications (heavy application users
tend to produce the most RFID data). Interestingly, we also
found that few people deleted any data and no one withdrew
from the study.

(2) System performance: We measure the load distribu-
tion across readers and over time. As in previous mobility
studies (e.g., [3]), we find that some locations are hot spots.
In the case of an RFID deployment, however, such trends can
amount to an order of magnitude difference in the quantity
of data produced at different locations. More importantly,
we estimate the reliability of the system: i.e., how often
readers detect different types of tags in their vicinity when
tags are managed and used by non-experts. We find that the
detection rates are relatively low overall and highly variable.
We find significant differences in detection rate among types
of tags, types of objects, and individuals. Some individuals
and objects are detected upward of 80% of the time. The
median detection rates, however, are below 40%.

(3) Inferring higher-level information from RFID data:
Building all but the simplest applications directly on raw
RFID data is difficult because tags often go undetected and
readers cannot cover all areas of interest. To address this
challenge, recent work proposes to build and use proba-
bilistic model-based views [10, 9, 39, 50]. We investigate
the challenges involved in the practical application of such
a technique in a large scale RFID deployment. We use
standard methods to build probabilistic views over the col-
lected RFID data which transform the raw RFID data into a

smooth distribution of the tags’ possible location over time.
We find that this technique is promising with room-level lo-
cation recalls up to 60% in spite of the significant inaccuracy
and uncertainty in the underlying RFID streams. Additional
care and tuning, however, are needed to achieve higher recall
rates. Finally, these techniques impose significant overhead:
the amount of data increases by a significant factor (a fac-
tor of 13.5 in our experiments). This overhead, however, can
be dramatically reduced by ignoring the lowest-probability
data. Applying such techniques at scale in an RFID-based
pervsive computing environment is thus challenging.

(4) Miscellaneous Challenges: During the study and in
preparation for the study, we encountered a variety of chal-
lenges. For example, deployment of antennas in a busy,
shared public space; management and maintenance of a sys-
tem with hundreds of distributed components; and ensuring
user privacy when experimenting with a technology that of-
ten considered to be insecure and invasive in nature. We
report on the lessons that we learned.

In summary, pervasive, passive RFID deployments enable
interesting applications that users are willing to adopt. Ex-
ploiting RFID infrastructures in pervasive computing en-
vironments, however, raises significant technical challenges
primarily due to the low detection rates of tags, especially
when these tags are managed directly by users.

The rest of this paper is organized as follows. In Section 2,
we first present the RFID hardware, deployment, and per-
formance benchmarks. We describe the RFID Ecosystem
applications in Section 3. We describe our study and present
its results in Sections 4 and 5 respectively. We discuss addi-
tional challenges that we encountered in Section 6, present
related work in Section 7, before concluding in Section 8.

2. THE RFID ECOSYSTEM
Our work is centrally focused on experimentation with a

building-wide RFID deployment called the RFID Ecosys-
tem. The goal of this deployment is to simulate the condi-
tions of an RFID-saturated future environment at scale for
long periods of time, and in a carefully controlled setting.
We discuss the details of the RFID Ecosystem in this sec-
tion. In particular, we describe the RFID equipment used as
well as the deployment layout, parameters, software, and al-
ternatives we decided against. We also present results from
laboratory experiments and microbenchmarks designed to
characterize the behavior of our system in terms of data
generated and success rates when operating under various
conditions.

2.1 RFID Readers and Tags
As explained in the introduction, the two fundamental

components of any RFID deployment are the RFID read-
ers, which are installed throughout an environment, and the
RFID tags, which may be attached to people or objects. In
the RFID Ecosystem, we use equipment that implements
the popular EPC Class-1 Generation-2 (EPC Gen 2) stan-
dard [2]. EPC Gen 2 RFID operates in the 860MHz-960MHz
frequency range using the passive-backscatter, interrogator-
talks-first approach and has an operating range that is typ-
ically measured in meters.

We use Speedway readers from Impinj [22]. These readers
are equipped with Ethernet and run Linux with proprietary
firmware that exposes tag inventory results to user-authored
code. To each reader, we attach between 1 and 4 Cushcraft



Figure 2: The three tag types used in our study: the

FleXwing, the Excalibur, and the RFIDentics card.

S9028PC antennas. The S9028PC measures 25.4cm x 25.4
cm x 3.8cm, has a gain of 9 dBic, is circularly polarized
(left or right), has a VSWR of 1.5:1 and a beamwidth of 60◦

by specification. We set the readers in dense reader mode
(Miller-4 tag coding) [2]. This mode is designed to reduce
RF interference from other nearby readers in our deploy-
ment and has been shown to provide a longer read range
than other modes [7]. Finally, we set the reader transmit
power to the maximum allowed 30 dBm so as to allow for
maximum operating range. In combination with the Speed-
way reader we use three types of tags (see Figure 2): the
RFIDentics FleXwing [41] tag, the KSW Microtec Excal-
ibur tag [26] and an RFIDentics tag embedded in a PVC
magstripe card [41]. All three tags use the Impinj Monza
chip and store a manufacturer-set 96-bit Electronic Product
Code (EPC). In this paper, we refer to the EPC as the tag
identifier or tag ID since we tag personal objects and people
rather than products.

To characterize the relative performance of our three types
of tags, we conducted a laboratory experiment in which we
measured the read-rate for each tag at various positions and
orientations relative to a reader antenna. As Hodges et
al. [19] point out, read-rate is a simple and popular way
to assess an RFID system’s operating range that takes into
account all factors affecting range in an environment. We
formally define read-rate as:

Definition 2.1. Read-rate: The rate at which a reader
can successfully read a tag.

We began the experiment by placing a single reader and
antenna against one wall of a 6m x 8.5m room containing
tables, desktops and wooden shelves (with metal braces) at
its sides. We then moved each type of tag through a series
of 245 points inside a half-sphere with a 5m radius in front
of the reader antenna. At each point the tag was oriented
parallel to and then perpendicular to the face of the reader
antenna. We measured read-rate over a 10 second period for
each position. A horizontal (φ = 90◦) slice of the half-sphere
is shown for each tag type in Figure 3; darker shade indicates
higher read rate. Figures 3(a),(b) and (c) show the results
for parallel tag orientation. Notice first that in general, the
read rates are highest in the major detection field [17], an
arc directly in front of the antenna, and decrease as the tag
moves out of this arc, through the antenna’s minor detec-
tion field, to the periphery of the full operating range. The
Excalibur the has the best read-rate throughout the full op-
erating range while the FleXwing and PVC card offer good
rates over a slightly smaller range. While the Excalibur
and FleXwing tags were quite robust to change in orienta-
tion, the PVC card shows significant performance degrada-
tion when oriented perpendicular to the reader antenna (see
Figure 3(d)). These results suggest that the Excalibur tag

(a) Excalibur (parallel) (b) FleXwing (parallel)

(c) PVC card (parallel) (d) PVC card (perpendicular)

Figure 3: The read rates for the three types of tags at

points inside a horizontal slice of a half-sphere centered

in front of the reader antenna.

should offer the best performance in the variety of situations,
followed by the FleXwing and then the PVC card. More rig-
orous laboratory studies on passive UHF RFID performance
can be found in related work [7, 19, 37]. The goal of this
experiment was simply to understand the basic performance
properties of the tags used in our study.

2.2 Building-Scale RFID Deployment
We deployed 47 readers and 160 reader antennas through-

out the 7 floors of our 8,000 square meter Computer Science
and Engineering building with antennas located as shown in
Figure 4. Two adaptations of standard industry configura-
tions [15] were used to install antennas: hallway portal (HP)
and gateway choke point (CP). In the HP configuration, an
antenna is mounted above a hallway pointing downward to
read tags passing through that section of hallway. The CP
configuration points antennas with opposite polarization in-
ward (towards each other) from both sides of an entrance to
a particular part of the building (e.g., atrium, laboratory).
HPs afford a cheaper installation with wider coverage us-
ing less hardware while CPs are designed to provide higher
read-rates at important transition points. Full deployment
details are summarized in Table 1. These deployment pa-
rameters were shaped not only by inevitable budgetary and
regulatory considerations, but by the aesthetic and ethical
concerns of our community as well. As such, we also had to
hide CP installations inside custom-built cherry wood boxes
and avoid deploying antennas in offices altogether so as to
prevent RF interference with telephones and other personal
equipment. The latter constraint, which limits reader topol-
ogy, is shared by important domains like hospitals, where
minimizing interference from RFID equipment is a crucial
requirement [45]. We present one approach to coping with
the problem of limited reader topology in Section 5.4.

All readers in our deployment run custom software (700
lines of C code) that processes new RFID data before
streaming it over wired or wireless Ethernet it to a central
server. This software continuously polls the firmware for
new tag reads and packs any data into one tag read event
(TRE) per tag per antenna per second, a tuple with the
schema: (tag ID, antenna ID, start time, number of reads). For
example, if within a second a tag A is read 32 times by an-



Figure 4: Layout of a representative floor.

Count Mounting Config Elevation
132 Under cable tray HP 2.4 m
5 Under lounge ceiling HP 3 m
5 Above stairwell HP 3 m
10 Beside building entry CP 45 cm
2 Beside conference rooms CP 45 cm
6 Under lab cable trays HP 3 m

Table 1: RFID antenna deployment parameters.

tenna 1 starting δ1 milliseconds after time t and 20 times by
antenna 2 δ2 milliseconds after time t, then our software will
generate and send two TREs to the server: (A, 1, t+δ1,32)

and (A, 2, t+δ2, 20). Each reader also runs ntp to synchro-
nize its clock with the rest of the system.

The central server stores all TRE data in a SQL Server
database [44] that also contains metadata on the deploy-
ment including the latitude and longitude of each antenna
and a symbolic antenna name (e.g., “front entrance”, “4th
floor stairwell”). Custom Java code (56 classes) orchestrates
data transmission between the readers and the database
using JDBC and Apache’s MINA library for efficient, se-
cure networking. All applications run on top of the RFID
Ecosystem are implemented using the Cascadia system li-
braries [50]. However, with the exception of the probabilistic
data in Section 5.4, all of the data reported and analyzed in
this paper come directly from the RFID Ecosystem and are
not processed by Cascadia. Finally, a set of administrative
and diagnostic web applications are hosted with Apache and
Tomcat on a separate web server.

2.2.1 Deployment Benchmarks
Unlike the idealistic single antenna laboratory case, RFID

performance in a large deployment is more complex and de-
pends on a variety of other factors like velocity and changing
orientation of tags, ambient RF interference and interference
from materials composing tagged objects or people. To bet-
ter understand performance in our deployment amidst these
effects, we extracted some baseline measures using three mi-
crobenchmarks. In the first microbenchmark (HP), a re-
searcher walked through a sequence of 145 HPs carrying
15 tags attached to various objects. In the second (CP),
the same researcher walked through just 2 CPs carrying the
same tagged objects. A third microbenchmark (MT) investi-
gates the multi-tagging technique proposed by Ravindranath
et al. [38], in which multiple tags are attached to an object
at different orientations in an effort to increase the probabil-
ity that the object is detected. In the MT microbenchmark,

Object Material Tag HP CP MT
3-ring binder paper EX 0.16 0.8 0.6

DVD metal FW 0.09 0.2 0.12
Hardcover paper EX 0.18 0.7 0.5
Magazine paper EX 0.54 0.6 –

Mobile phone metal FW 0.04 0.25 0.1
Paperback paper EX 0.39 0.55 0.7
Power cable metal FW 0.27 0.4 0.3
Water bottle plastic FW 0.61 0.8 –

Backpack cloth EX 0.58 0.9 –
Badge plastic EX 0.77 1.0 –
Belt cloth PVC 0.02 0.15 0.02
Hat cloth EX 0.82 1.0 –

Jacket cloth EX 0.28 0.3 0.8
Shirt cloth EX 0.07 0.4 0.1
Wallet cloth FW 0.05 0.0 0.06

Table 2: Tagged objects (the first 8 were carried inside

the backpack), type of tag used (EX is Excalibur, FW is

FleXwing, PVC is PVC card) and average detection rate

for each microbenchmark.

one additional tag was added to each object having poor re-
sults in the HP microbenchmark, after which the researcher
walked through the same sequence of 145 HPs. For each mi-
crobenchmark, we calculate detection-rate, which we define
as follows:

Definition 2.2. Detection-rate: The probability that a
tagged object passing in the vicinity of an HP or CP is de-
tected at least once.

We compute the detection-rate for each object as the frac-
tion of HPs (or CPs) passed which detected at least one of
the object’s tags. The first three columns of Table 2 describe
the tagged objects as well as the type of tag used.

2.2.2 Results
Across 4 trials of the HP microbenchmark, 10 trials of CP

and 4 trials of MT, we collected 155 minutes of trace data.
Table 2 shows the average detection-rate across all trials and
benchmarks. The results are consistent with the laboratory
experiment in showing that type of tag affects performance,
with Excaliburs providing an average detection rate that is
.28 greater than FleXwings and .47 greater than PVC cards
across all objects and trials. The already well-known ten-
dency [15, 49] for a tag’s readability to depend strongly on
the materiality of the object it is attached to shows up here
as well, with metal objects being more frequently missed
than paper, cloth or plastic objects.

The way in which objects were carried and tags oriented
also had a noticeable impact. Tags on objects kept close
to the body (e.g., wallet, shirt, belt) are not read as well.
Moreover, for all microbenchmarks there was variation in
measured detection rate across trials, especially for objects
inside the backpack which had detection rates with standard
deviation greater than .1. This was likely due to shifts in
the relative position of objects inside the backpack during
and between trials (indeed, the backpack was unpacked and
repacked between the second and third HP trial and between
microbenchmarks). The results of the MT microbenchmark
show that detection rate roughly doubled for objects not
severely limited by the materiality problem or the way in
which the object was carried. Dramatic increases in detec-
tion rate for MT were most likely due to a change in object
orientation inside the backpack (e.g., for the 3-ring binder)
or an additional tag being added in a much more readable



orientation (e.g., in the jacket’s breast pocket as well as the
side pocket). These results show promise for the multi-tag
technique. However, we do not study the multi-tag tech-
nique further in this work as it complicates the study of
end-user tag management as discussed in Section 4.2.

It is also clear from Table 2 that antenna configuration
played a major role in determining whether or not a tag
was detected, with CP providing an average detection rate
across all tags and trials that is .21 better than the aver-
age HP rate. This is probably due to the fact that com-
munication between Speedway readers and tags is forward-
link-limited [21], meaning that detection depends on a tag’s
ability to harvest adequate power from the reader signal. In
our case, the additional antennas in the CP configuration
increase the probability that a tag is in an antenna’s ma-
jor detection field, making it more likely that the tag can
harvest enough power to respond. Nevertheless, we chose to
keep an HP-heavy deployment layout because the CP config-
uration was prohibitively intrusive and expensive to deploy
widely throughout the building.

3. APPLICATIONS AND TOOLS
As an incentive for building occupants to use our sys-

tem, we created a set of simple applications and tools for
pervasive computing. All applications and tools featured se-
cure web-based interfaces and were implemented using the
Google Web Toolkit [16]. As such, interfaces were imple-
mented in JavaScript with AJAX calls to retrieve dynamic
content from an Apache Tomcat Servlet that used the Cas-
cadia system [49] for queries on people, objects and events.
We present a brief overview of the applications and tools
below and discuss them in detail elsewhere [51].

Location-Aware Applications. Three applications
provide location-aware services that facilitate an awareness
of the location of one’s friends and one’s personal objects.
Two of the applications, Rfidder and a Facebook applica-
tion, report near-real-time information on the location of
a user’s friends. Rfidder, shown in Figure 5(a), provides a
stream of location updates for one’s friends in the form of a
microblog with entered-room and exited-room events. The
Facebook plugin displays a user’s friend list along with the
most recently recorded location for each friend. A third ap-
plication, the Tag Manager (see Figure 5(b)), allows users
to view and edit metadata concerning their tagged objects
and also displays the last recorded location for each object.

Tools for Managing Privacy and Personal Data. A
set of tools facilitates application deployment and end-user
management of personal privacy. The first tool is a Data
Browser (see Figure 5(c)) which displays a table containing
a dump of RFID data collected about the user. The Data
Browser can be used to survey what data has been collected
as well as to delete any data at the granularity of a TRE, an
hour, or a day. An Access Control Interface allows users to
create and manage context aware access control rules (e.g.,
users in group “friends” can see my location during business
hours when I am in the lounge) that are used to protect
privacy in the Rfidder and Facebook applications. A third
tool called the Place Manager assists users in the definition
and labeling of meaningful places [18] within the building.
This Place Definition tool presents a Google Map mash-up
with an overlay of the building floorplan including antenna
locations. Users can define new places by selecting a set of
antennas corresponding to the place of interest. Thus, a user

(a) (b)

(c) (d)

Figure 5: (a) Rfidder receives a stream of friend-location

events. (b) Data Browser for review and optional dele-

tion of a user’s data. (c) Tag Manager for end-user man-

agement of tags and data; integrates with (d) The RFID

Kiosk: PC and RFID reader with one antenna installed

above the plastic drawer to the right of the display.

could define a place called “My Office”as the set of antennas
on either side of his office.

All applications and tools are accessible via links from a
central RFID Ecosystem Homepage that also displays a dy-
namically generated plot showing how much data has been
collected about the user over the past week. In order to
better understand how users interact with RFID data, we
logged all operations made through a tool or application
which resulted in a database transaction (e.g., add friend,
query friend’s location, delete range of data).

4. FIELD STUDY SETUP
While laboratory and microbenchmark studies provide

valuable insight into the performance of RFID equipment,
they do not answer important questions regarding commu-
nity use of a large-scale passive RFID system over a long
period of time. For example, the character of the data gen-
erated and consumed by a community remains unknown as
does the feasibility of end-user tag and data management
and the performance of tags in a long-term everyday set-
ting. To begin to answer such questions, we conducted a
four week field study from November 2 to November 28,
2008. In the study, participants carried tags on themselves
and on their objects. The participants also had access to
the applications and tools described in Section 3 and peri-
odically answered short surveys, but otherwise went about
their everyday lives. Table 3 summarizes the high-level pa-
rameters of our study. We present the study methodology
in detail throughout the remainder of this section.



Entity Measure
Participants 67
Object types 19
Total tags 324

Duration (weeks) 4

Table 3: Parameters of our four-week user study.

4.1 Recruiting Participants
We recruited study participants from the community of

faculty, staff, undergraduate and graduate students that oc-
cupy our building. During a 2-week recruiting period, we
enrolled 67 participants (30 graduate students, 33 under-
graduates, 2 faculty, 2 staff; 46 male, 21 female) who carried
a total of 324 tags on 19 different types of objects. At the
time of consent, all participants were educated on RFID,
pervasive computing and the purpose of the study. Prospec-
tive participants were also presented with a demonstration
of the applications and tools they would have access to if
they chose to participate. As an additional incentive to en-
roll in our study, we offered participants $30 for up to four
months of participation with a chance to earn up to $20 more
for completing a series of short, web-based surveys (see Sec-
tion 4.3). All participants were informed that they could
withdraw from the study at any time and that they could
also delete any subset of their data at any time using the
Data Browser tool.

4.2 Tag Management
Upon consenting, participants were asked to carry one

RFID tag as a “personal badge” and as many additional
tags as they liked for use with personal objects. In order
to determine whether end-users could effectively mount and
manage their own tags, we employed a two-phase strategy
for tag management. In the first phase, participants chose,
mounted and managed their own tags directly; in the second
phase we assisted participants in remounting their tags in an
optimal fashion. We describe each phase in detail below.

On entrance to the study, participants chose tags, cre-
ated a digital link between each tag and the object to be
tagged, and then attached the tags to the objects. To facili-
tate this process, we built an RFID Kiosk in our laboratory.
The Kiosk (see Figure 5(d)) was built into a computer desk
and includes a supply of RFID tags, a PC with an RFID
reader and a single antenna configured for short-range read-
ing. Participants accessed the Tag Manager tool through
the PC, which allowed them to create metadata for a par-
ticular object as well as to poll the Kiosk’s reader for a tag
to associate with that metadata. We did not encourage that
multiple tags be associated with a single object because this
would complicate the process of optimizing a tag’s mount-
ing on a given object. Later on, participants could access
the Tag Manager from any web browser if they decided to
edit their object metadata; however, creation or alteration of
tag-object associations was only possible at the RFID Kiosk.

Participants were given guidelines as to how RFID tags
should be attached to objects and to themselves for the best
performance (e.g., “a tag will be read infrequently or not
at all if it is too near to your body or to a metallic ob-
ject”). Throughout the first 3 weeks of study, participants
were urged to follow the guidelines and reminded by email
that they could directly see how well their tags were being
read by checking the dynamic plot on the RFID Ecosys-
tem Homepage or by reviewing the collected data with the
Data Browser. In the last week of the study, we invited

Figure 6: A web-based survey uses a Google map

mashup to collect participants’ current location, a list

of carried tags, and the sequence of antennas recently

passed.

participants with less frequently detected tags back to our
laboratory and helped them find a more optimal mounting
technique. The results of this remounting experiment are
covered in Section 5.3.3.

In addition to user-centered management of tags, we also
wanted to investigate the durability of each type of tag. To
this end, we distributed laminated and non-laminated ver-
sions of the Excalibur and FleXwing tags and made note of
all incidents in which participants reported a tag as broken.

4.3 Collecting Ground Truth
To evaluate the our system’s ability to track people and

objects, we needed some form of ground truth on the lo-
cations of tags at various times throughout the study. We
collected two forms of ground truth information: survey re-
sults and card-key logs. Every weekday during work hours, a
custom-built survey system prompted participants via email
at random times to visit a survey web application at the
soonest possible time. The web-based surveys asked where
a participant currently was, what tagged objects he had with
him and which antennas he passed on the way to his current
location (if any); surveys were designed to take less than
20 seconds to complete. The timestamped survey responses
allowed us to compute a sample-based representation of: 1)
when and how often a participant was in the building or
in a particular room, 2) when and how often a participant
carried a particular RFID tag, and 3) approximately when
a participant passed a particular antenna. We also adminis-
tered a slightly longer exit survey to participants at the end
of the study which asked a variety of questions on partic-
ipants’ experience including tag wearing, application usage
and privacy. In addition to surveys responses, we collected
card-key logs for 4 members of our research group. This al-
lowed us to pinpoint group meeting times for meetings that
occurred in card-key access controlled rooms. We could then
try to detect these meetings using a probabilistic view of the
collected RFID data (see Section 5.4).

4.4 Cleaning RFID Data
It is well known that streams of passive RFID data are

noisey and inconsistent [23, 31], with many false negatives
as a result of RF interference, limited read range, tag ori-
entation and other intermittent environmental phenomena.
As such, we apply some basic data cleaning and compression
algorithms to the collected data before analysis. In partic-
ular, we use the adaptive window-based cleaning algorithm
from Jeffery et al. [23] to smooth over statistically insignif-
icant gaps in the RFID data, obtaining a smoothed stream



Figure 7: Quartiles for the distribution of the number of

survey prompts (Surveys Sent) and responses (Surveys

Submitted) by hour of the day over all workdays.

of TREs for each antenna. We then compress the smoothed
data into STAYs. A STAY is a tuple that represents the
length of time a tag stays at a particular antenna and has
the following schema:

(tag ID, antenna ID, start time, end time, number of reads)

Smoothed TREs that occur consecutively are grouped into
a single STAY record: i.e., a tag must leave the read-range
of an antenna for at least 1 second in order for a new STAY
record to be generated. We found that this threshold works
well in our environment but it is configurable.

5. FIELD STUDY RESULTS
In this section, we present the results of our study in terms

of survey responses, infrastructure and applications utiliza-
tion, system performance, and inference regarding detailed
participant location and higher-level user events.

5.1 Survey Responses
Over the course of the study, we administered 2226 sur-

veys and recorded 1358 responses. Though survey prompts
were emailed during business hours, responses were submit-
ted at all hours of the day. Figure 7 shows the distributions.
On average, survey responses took 18 seconds to complete,
this does not include the time taken to log in with username
and password. Throughout the course of the study there
were 7 incidents in which a participant self-reported an er-
ror in a survey response. In all cases these errors consisted
in reporting that a particular tag was with the participant
when in fact it was not. The effect of such errors on our
results is that the reported detection-rate for that tag will
be artificially lowered (see Section 5.3).

5.2 System and Application Utilization
The first key question that our study strives to answer

is that of system utilization: How much data does a com-
munity of users generate and what does the data look like?
What are the system utilization trends over time? Are users
eager to adopt this new technology and are privacy concerns
a significant barrier to adoption? We answer these questions
in this section.

5.2.1 Data Rates
Table 4 summarizes the total and hourly data rates gen-

erated throughout the field study. Overall, the RFID in-
frastructure generates a small amount of data and that data

Raw Compressed

total data 1.5M TREs (52.95 MB) 38K STAYs (1.3 MB)

average rate 2295 TREs/hour 57 STAYs/hour

max rate 8408 TREs/hour 601 STAYs/hour

min rate 0 TREs/hour 0 STAYs/hour

Table 4: Total RFID data generated during the study

and average, minimum, and maximum hourly data rates.

can be nicely compressed. On average, the system produced
only 0.8MB of TRE data and a little over 20KB of STAY
data per participant during the entire month. These data
rates are much less than those generated by other sensor
deployments (e.g., audio sensors may sample at 16000Hz,
acceleration sensors at 550Hz [6]). As such, RFID data may
be potentially easier to manage. However, as we discuss
in Section 5.4, post-processing the raw RFID data to infer
more detailed location information causes a significant data
blow up (easily one order of magnitude).

Figure 8 shows the overall system utilization in more de-
tail. Figure 8(a) shows the quartiles for number of STAYs
per hour across all working days and all days off (e.g., week-
ends and holidays). Figure 8(b) shows the number of distinct
personal badges read per hour. As expected, the data gener-
ated by an RFID infrastructure approximately matches the
level of activity in the building. The figures show clear di-
urnal patterns with activity occurring later in the afternoon
on days off. The number of distinct tags and the total data
produced during a day also parallel each other.

Figure 9 shows the system utilization trends by day
throughout the study in terms of total number of STAYs
and total number of distinct tags read. These data rates
also closely match the normal building utilization. The first
day corresponds to November 2nd. We can see the patterns
for the four weeks of the study with dips on weekends and on
the November 11th, 27th, and 28th holidays. It is notable
that the total number of STAYs again closely mirrors the
total number of distinct tags read, suggesting that each tag
read may contribute equally to the total number of STAYs
generated. However, as we see in Section 5.2.2, many tags
are seldom read at all throughout the course of the study,
so we can conclude that the smaller number of tags which
are read each day are responsible for the majority of data
generated.

Overall, the activity trends measured by our RFID infras-
tructure are consistent with earlier mobility studies using
WiFi [3, 25].

5.2.2 Data on People and Objects
To further characterize the data generated by a commu-

nity of users we looked at the data for individual participants
and for various object types. Among the 67 participants,
each carried 1 personal badge tag and an average of 3 addi-
tional tags. The most tags carried by any participant was 21,
while several participants carried only their personal badge.

Figure 10(a) shows a cumulative distribution function
(CDF) of the number of STAYs generated by each personal
badge, by each object, and by each participant (e.g., the sum
of STAYs for that participant’s tags). The plot shows that
badges were read more frequently than objects, but that
the most frequently read objects were detected as often as
the most frequently read badges. The plot for participants’
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Figure 8: Quartiles for STAYs per hour over (a) all

working days and all days off. The quartiles for (b) num-

ber of distinct badges read per hour over all days.

Figure 9: For each day of the study: total STAYs

recorded and number of distinct tags read.

shows that the majority (65%) of participants produced less
than 1,000 STAYs, while 10% of participants produced up-
wards of 3,000 STAYs. This means that the most active
participants were detected moving through the building ap-
proximately 3 times as much as the median participant and
30 times as much as the least active participants. The plots
for badges and objects show the same trend, although a little
less pronounced. There are several reasons for these differ-
ences in level of activity between different people and their
objects which we discuss below.

Figure 10(b) shows a CDF of the average and max length
of STAYs generated by badges and objects. As one would
expect, we see that participants tend to have slightly shorter
average STAY times than their objects. This is because par-
ticipants often leave objects behind in a location while they
move. We also see that the top 10% of both objects and
badges in terms of maximum STAY lengths have approxi-
mately the same maximum STAY length of 2.5 to 3 days
(about the length of a long weekend). Deeper analysis of

(a) (b)

(c) (d)

Figure 10: CDFs showing (a) STAYs generated by

badges, objects and participants, and (b) Average and

max STAY lengths for badges and objects. PDFs show-

ing the number of STAYs generated by (a) different types

of people and (b) different types of objects. Note the x-

axis has a log scale for plots (a) and (b).

the data in connection with location survey data showed
that these STAYs were all cases where a participant left one
or more tags out on his or her desk in range of an antenna
for several days at a time. Such events also created the most
raw TRE data overall but are easily compressed into STAYs.

The probability density functions (PDFs) in Figure 10(c)
and (d) show how the type of participant or object affects
the amount of data generated. Faculty, staff, and graduate
students tend to fall in one of two categories: they either
produce significant amounts of data (more than 400 STAYs)
or they produce almost no data (less than 100 STAYs). In
contrast, undergraduate students tend to produce either al-
most no data or a small amount of data (200 to 400 STAYs).
These groups tend to separate into large or small data pro-
ducers because many participants simply wore their badges
less often. In the exit survey, participants cited several rea-
sons for this: 41 said they forgot to carry their tag on a
weekly basis, 8 said they felt socially awkward carrying a
tag, and 8 said they stopped wearing their tag because it
didn’t work well enough. Another reason for the split in
data producers is that some participants just spent less time
in the building. However, as we show below, there is a defi-
nite correlation between those who produced the most data
and those who most actively used the applications. It is also
likely that graduate students, faculty and staff produce more
data than undergraduates because they occupy the upper
floors of the building where there are many more antennas.

For objects, we see again a clear split between large and
small data producers in all categories. These differences
can partly be explained by how often participants move the
objects. However, a second factor also affects the data gen-
erated by objects: the type of material. As the PDF shows,
most portable electronic devices are metallic and so they are
read quite infrequently even though we expect that partic-
ipants carry them often. Meanwhile, non-metallic objects
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Figure 11: The impact of user mobility on total data

collected. (a) The percent of “in building” survey re-

sponses by a participant generating a particular number

of STAYs. (b) The number distinct antennas visited by

a participant generating a particular number of STAYs.

Note the log scale on the x-axes.

like clothing, books and papers are read most often. Thus,
even with a variety of mounting strategies used across par-
ticipants, the object material plays a very strong role in a
tag’s readability.

In summary, there are at least four factors that can affect
the amount of RFID data produced by a person or object:
mobility, application utilization, how and when the tags are
carried, and the material the tag is attached to. These re-
sults confirm our microbenchmarks in Sections 2.1 and 2.2.1
as well as the results of the next section. We now study
how mobility and application usage correlate with system
utilization.

5.2.3 Person and Object Mobility
Figure 11 shows scatterplots that depict the number of

STAYS generated by each participant against either (a) the
percent of survey responses in which that participant indi-
ciated he or she was in the building or (b) the number of
distinct antennas visited by that participant. As expected,
there is a clear correlation (with coefficient .38) between
the approximate amount of time a participant spends in the
building and the number of STAYs he generates. We also
find that participants who occupy a larger portion of the
building, as indicated by a larger distinct number of anten-
nas visited, are likely to generate more STAYs (we computed
a correlation coefficient of .71). We also examined the re-
lationship between STAYs generated and average length of
STAYs to find that there is neither a strong positive nor
strong negative correlation (the coefficient is .16). The lat-
ter result is somewhat surprising and seems to indicate that
independent of how much time some tags spend sitting in
trackable areas, they are not actually more or less mobile.

5.2.4 Application Usage
Figure 12(a) shows application usage measured in opera-

tions (as described in Section 3). The plot shows that appli-
cation usage decreased over time. This may be explained in
part by the fact that students and faculty had an increased
workload near the end of the academic quarter during the
second half of the study. In addition, the exit survey re-
vealed that 18 participants who stopped using applications
felt that it was too much effort to sign-in to a web page, while
15 others didn’t have enough friends participating to keep
Rfidder interesting. Although most participants explained
that Rfidder and object tracking through the Tag Manager

(a)

(b) (c)

Figure 12: Application utilization: (a) over the course

of the study, (b) as a CDF over all participants, broken

down by application, and (c) per participant against data

generated by that participant. Note the x-axis has a log-

scale for (b) and (c).

were appealing only as novelties (only 13 found these ap-
plications useful for coordinating activities), these were still
the most popular applications as shown in Figure 12(b). An-
other trend which emerged is that the amount of data gen-
erated by a participant is correlated with that participant’s
level of engagement with the applications. Figure 12(c) plots
application usage in operations against amount of data gen-
erated by that participant. The most active application
users definitely generate the most data, although the overall
correlation coefficient is only .37 for these two variables.

It is interesting to note that participants deleted very lit-
tle of their data. Out of 67 participants, only 3 made any
deletions. Moreover, the 4 deletions that were made corre-
spond to only single STAYs (as opposed to an entire hour,
day or trip through the building). Participants explained
these operations as “a test to check that the system worked”
in the exit survey. In addition, only 7 participants said they
removed their tags for privacy reasons at least once through-
out the study. This seems to indicate that for the first month
of this study in a controlled, familiar setting, participants
had little concern over the potential for a privacy breach. It
may also be that participants did not understand the poten-
tial for privacy breach - even though the risks were carefully
explained during the consent process. A more in-depth anal-
ysis of participants’ reactions to the applications and tools
is published elsewhere [51].

5.3 System Performance
In addition to basic system utilization, we are also inter-

ested in studying the performance of an RFID infrastruc-
ture: What is the load distribution across different readers?
How well are tags on various types of objects detected in
practice? Are tags mounted by users detected as well as
those mounted by experts? Are tags durable enough to last
for long periods of time in an average user’s possession? We
address these questions in this section.
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Figure 13: (a) Map of RFID deployment highlighting

antennas where the most STAYs occur. (b) Plot of aggre-

gate length of all STAYs against total number STAYs for

each antenna. The CDF over all antennas of (c) STAYs

registered and (d) the aggregate length of all STAYs.

Note the x-axis has a log-scale for plots (b), (c), and (d).

5.3.1 Load Distribution
Figure 13(a) shows a map of the 3rd floor of the Allen

Center that highlights regions where the most STAYs oc-
cur. Consistent with previous location-tracking studies [3],
certain locations and thus antennas are“hot spots” that gen-
erate significantly more data than others; the two hot spots
in the map are outside the student store and outside a lab
where several of the study participants spend time.

Looking more closely, we see trends in Figures 13(c) and
(d), the CDFs over all antennas of total STAYs occurring
and total aggregate length of all STAYs. Both curves exhibit
clear logarithmic trends. The first CDF shows that there are
approximately two orders of magnitude difference between
the number of STAY records at the least and most visited
antennas. The second shows that there is an incredible four
orders of magnitude difference between aggregate length of
STAYs. These plots illustrate two different types of hot
spot: one is a location that mobile tags pass frequently, and
another is a location where tags dwell for very long periods
of time. The data in Figure 13(b) is correlated with coef-
ficient .29 and shows that while a single antenna can have
both of these characteristics, many also have a much longer
aggregate STAY length relative to the number of STAYs.

5.3.2 Detection Rate
We use the timestamped survey responses to compute ap-

proximate read probabilities for tags used in the study. Re-
call that the 1398 survey responses each include the partici-
pant’s current location, antennas passed on the way to that
location (if any) and the list of tags carried while passing
those antennas.

An important challenge when processing the survey data
is that participants were sometimes working for a long time
at their desk when they got the survey. In those cases, the
survey responses correspond to data collected much earlier

Figure 14: Quartiles for detection rate of (a) different

types of tags (b) different types of objects (c) different

types of people.

than the survey timestamp. At other times, participants
passed a series of antennas without being detected in which
case there is no data corresponding to the survey response.
For this reason we chose the following approach to compute
the detection rates from the survey data which underesti-
mates the detection rates.

We compute approximate detection rates by counting an-
tenna“hits”and“misses” for each tag. To do so we take each
survey response and search backwards from the timestamp
to find the first STAY for each carried tag. If a tag’s first
STAY did not begin within 1 hour of the timestamp then
we add N misses for that tag where N is the number of an-
tennas passed. We basically assume that if no data is found
within this time window, the participant was not detected
at all during the reported trip. If a tag’s first STAY did
occur within 1 hour of the timestamp then for each antenna
reported in the survey, we search for a STAY occurring at
that antenna at most 15 minutes prior to the last STAY
record. We add one hit for each such STAY found and one
miss when no such STAY is found. The 15 minute window
serves to limit the search for hits to the most recent trip by
the participant. It is possible, though not common in our
deployment, that a participant passes multiple times under
the same antenna within such a short period of time. We
compute an approximate detection rate as hits divided by
the number of hits and misses. It should be noted that not
all survey data is usable because some responses indicated
that participants were not currently in the computer sci-
ence building or that no tags were currently carried. We
also threw out survey data for tags that had a total num-
ber of antenna hits and misses less then 10 across all survey
responses. Overall, we use 956 surveys to compute detec-
tion rates. We present this approximate detection rate data
below.

Figure 14 shows the detection rate aggregated across tag
types, object types, and class of participants. As expected
given our micro-benchmarks (see Section 2.1), the Excalibur
tags achieve the best performance among the three types of
tags. These tags are also have the largest antenna of the
three models. The figure shows significant difference be-
tween types of objects. Clothing articles achieve the best
performance while security related objects including keys,
wallets and purses have the worst performance. Metallic ob-
jects do not appear on the graph as there were not enough
hits in survey data for these objects. The differences be-
tween objects are due to a combination of object material
and tag mounting. We further explore the effect of tag
mounting next. Finally, badges exhibit much larger vari-
ance than tags attached to objects indicating that different
people carry their badges very differently and these choices
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Figure 15: Plots showing the (a) total STAYs collected

and (b) detection rate for each remounted tag before and

after remounting.

Broken Lost Returned

EX 2 1 0

EX (laminated) 0 0 0

FW 3 1 0

FW (laminated) 1 0 0

PVC 0 1 2

Table 5: Summarizing results for tag durability.

significantly affect the detection performance. Interestingly,
different groups of participants do not systematically get
better read probabilities than others (the faculty group was
simply smaller than the other ones).

5.3.3 Tag Mounting
To explore the effect of tag mounting by users as opposed

to mounting by experts we let participants mount and man-
age their own tags for the first 3 weeks of the study. In
the last week of the study we requested that participants
carrying tags with very low detection rates come to our lab
to try an alternate tag mounting strategy for a week. Fig-
ure 15 shows the total STAYs collected and detection rate for
each remounted tag before and after it was remounted. The
plots show that although some tags remained consistently
difficult to read, the readability improved for the majority
of remounted tags. This suggests that in an RFID-based
pervasive computing system it is not enough to give basic
tag mounting guidelines. Either experts must assist the tag
mounting process or users must be sufficiently incentivized
(possibly through compelling applications) to find an effec-
tive tag mounting strategy.

Regarding the durability of tags and the ability to endure
use by a variety of participants, we observed a number of
events which are summarized in Table 5. A total of 6 tags
were broken, most of which were unlaminated tags that had
been physically torn or creased. One laminated FleXwing
was broken after being mangled inside a backpack. Three
tags (one of each type) were lost, and 3 PVC cards were
returned or thrown away during the study because the par-
ticipant felt they didn’t work well enough.

5.4 Inferring Information from RFID Data
As the above results show, raw RFID data can contain

significant uncertainty about tag locations: RFID readers
may cover only a subset of the areas of interest (e.g., no of-
fices in our deployment) and detection rates can vary signif-
icantly based on object material and mounting strategy. A
commonly used technique to facilitate application develop-
ment given such uncertain raw data is to build and expose

a probabilistic model in which sensor locations and errors
are abstracted away. The application logic then consists of
queries on top of this probabilistic view [10, 9].

As in previous work on event queries over RFID data [28,
29, 39, 50], we build the probabilistic view using a Hidden
Markov Model (HMM) [36] and apply (Bayesian filtering
and smoothing [14]) using a particle filter based inference
technique [11]. The output of this process is a stream in
which each timestep contains a distribution over possible lo-
cations for a tag: e.g., Alice was in her office with probability
0.2, in her neighbor’s office with probability 0.1, and in the
corridor with probability 0.7.1 We materialize the resulting
probabilistic streams to disk.

We create a probabilistic view for all tags in the study
over the 4 weeks. First, we tried simply to run the particle
filter non-stop over the four weeks. This approach, however,
lead to a significant amount of low-quality data due to long
periods of tag immobility: in the absence of RFID data,
the view is highly uncertain of a tag’s location, producing
unusable results. In a second approach, which we report on
here, we only ran the particle filter over periods of time in
which TREs occurred. We call these periods slots.

We evaluate the quality of the probabilistic view by com-
paring the survey results to the materialized view for the
appropriate tag. We use two comparison techniques T1 and
T2. In T1, for each survey, we look at the tag’s probabilis-
tic view in a time window centered on (i.e., preceding and
following) the survey response time. If the probability that
the tag is in the correct location (according to the survey) is
greater than a threshold, we consider the view to be correct.
In T2, we only consider the last time slot before or contain-
ing the survey response time. T2 assumes that a tag does
not move in between time slots.

For each technique, Figure 16 shows (1) the fraction of
surveys where the view correctly identified a tag’s location,
(2) the fraction of surveys when the view was wrong, and
(3) the fraction of surveys for which no RFID data for the
correct floor was registered within the given window (these
surveys are indicated as “not applicable”). For clarity, Ta-
ble 6 shows the corresponding detection rate values. The
plots for probability threshold 0.1 correspond to instances
where the view is confident that a tag is located in the given
room (probabilites are low in general due to location ambi-
guity in cases where a tag could be in one of three adjacent
rooms or in the corridor; spreading the probability values
across several locations). The plots for threshold of 0 show
instances where the view only localizes the tag to the correct
vicinity (e.g., corridor or floor).

For T1, on average, the probabilistic view places the tag
in the correct vicinity most of the time, but in the correct
room less than half the time. Looking only at the most re-
cent slot before a survey (T2) instead of the time around a
survey (T1) yields worse results simply because fewer slots
are considered. For example, if the system does not no-
tice when a tag enters a room but correctly identifies that
the tag left, T1 will report the correct location but T2 will
not. Overall, continuous, fine-grained tracking in an RFID
deployment is thus difficult. There are times when the sys-
tem fails to capture the correct tag movements even after
smoothing the sensor data.

1The probabilistic view includes correlation information be-
tween consecutive timesteps, but we ignore these correla-
tions in this paper.
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Figure 16: Detection rate results for probabilistic view

methods in terms of (a) Surveys correctly identified, and

(b) quartiles.

Technique Win Threshold Detection rate
T1 15 m p > 0.0 0.62
T1 15 m p > 0.1 0.37
T1 30 m p > 0.0 0.65
T1 30 m p > 0.1 0.43
T2 30 m p > 0.0 0.48
T2 30 m p > 0.1 0.24
T2 240 m p > 0.0 0.45
T2 240 m p > 0.1 0.21

Table 6: Average detection rate.

The overall low detection rates are partly due to the fact
that performance varies considerably among tags depending
on the properties of the tag and tagged object (recall Fig-
ure 14). Figure 16(b) shows the quartiles for detection rate
of different types of tags. For the best 25% of tags, the prob-
abilistic view places the tag in the correct vicinity upwards
of 80% of the time and in the correct room upwards of 60% of
the time. These results are thus encouraging: a probabilis-
tic view can smooth away significant errors and ambiguity.
This approach, however, clearly fails with large error rates,
suggesting that a practical deployment must take further
measures to ensure tags have sufficiently high read rates.

In a second experiment, we studied the utility of the
probabilistic view for inferring simple, higher-level events.
Specifically, we defined a simple meeting event: two people
meet if they appear in the same physical location within at
most five minutes of each other. We then used the card-
key logs for the 4 researchers to pinpoint 10 meetings. Of
these 10, 6 were correctly identified using the probabilistic
views, thereby echoing the results of the room-level location
experiment.

Overall, using probabilistic views over RFID data in large-
scale, continuous tracking scenarios is thus necessary and
promising but it raises important challenges in practice. As
we showed above, probabilistic views help only when the
data is already of sufficiently high quality. For alerting ap-
plications, the process must also be sufficiently fast to keep

Prob. threshold 0 0.05 0.1 0.2 0.3 0.6
Data ratio 13.54 2.51 1.69 1.05 0.74 0.25

Table 7: Probabilistic view data blow-up. The ratio
is computed as the number of records in the mate-
rialized probabilistic view over the number of TREs
when counting only data above a given probability
threshold.

up with the input data (although techniques to achieve this
goal exist [27, 34]). Finally, the per-timestep location dis-
tributions in probabilistic views can cause a data blow-up.
Table 7 shows the data blow-up for the month long view over
all participants. The entire view uses more than 13 times the
space of the raw data! Eliminating data with low probabil-
ity (less than 0.05), however, quickly reduces the overhead
to just a small factor. A study of the impact of such com-
pression techniques on performance is an interesting area of
future work.

6. ADDITIONAL LESSONS
The process of deploying a large-scale RFID system in a

busy, shared public building was difficult and time consum-
ing. We also learned a great deal about effective deployment
practices and found several very helpful insights and strate-
gies for working with key problems.

6.1 Antenna Deployment Strategy
Deploying antennas in many locations was difficult due to

health and safety concerns and regulations, building man-
agement and facilities issues, and even aesthetic issues. Af-
ter experimenting with many alternatives for hiding the HP
antennas (e.g., placing them above ceiling tiles or inside
plenum-rated enclosures, painting them to match the wall),
we found the best strategy was to“hide the antennas in plain
sight”. The antennas are actually quite non-descript and are
often assumed to be yet another piece of a modern building’s
complex technical infrastructure. Many building occupants
didn’t notice the antennas until we announced their presence
months after they were installed.

6.2 Web-Based Diagnostic Tools
We implemented a set of web-based diagnostic tools to

help in the early stages of system deployment and debug-
ging. These tools included a Google map mashup of read-
ers, antennas, and live tag readings; system monitors that
send SMS updates and alerts to researchers regarding data
collection and system status; and data visualization tools
that automatically plot aggregate data in a web interface.
These tools greatly facilitated our work and expedited both
the deployment and debugging processes.

6.3 Building-in Privacy Assurances
From the beginning, we designed our study to allow users

a large amount of direct control over their own data and
over what information is disclosed about them. We also
took special care to make sure the user’s privacy control
and data management interfaces were understandable and
usable. This effort proved very helpful when we were re-
cruiting users for the field study. Many participants were
apprehensive about the study at the time of consent and
immediately became much more comfortable and interested
on seeing the privacy controls available to them.



7. RELATED WORK
Passive RFID has been used in a variety of pervasive com-

puting experiments over the last decade. An early paper on
the subject by Want et al. [48] spurred a variety of projects
that use RFID to detect interactions with objects [12, 13,
20]. This direction has culminated in a substantial amount
of work on RFID-based human activity recognition [31, 35,
42]. Other work from the pervasive and mobile computing
community has investigated the design and implementation
of fine-grained location systems that use RFID [30, 32, 33].
Our work does not currently include detection of interaction
with objects or precise tag localization. Instead we focus on
systems, techniques and applications that use coarse-grained
(e.g., room-level) localization. A variety of recent work has
also focused on RFID in this capacity [4, 5, 24]. Most similar
to our vision is MSR India’s SixthSense system for RFID-
based Enterprise Intelligence [38]. However, recent work on
SixthSense has focused on automatic inference of object type
and ownership information while we explore more explicit,
user-centered mechanisms for tagging and management of
objects in an RFID system. To our knowledge, we also study
RFID using a much larger scale deployment than any past
pervasive or mobile computing research project.

Other work from the pervasive computing and networking
communities has evaluated the performance of passive UHF
RFID in carefully controlled laboratory studies. Ramakrish-
nan and Deavours [37] present a set of benchmarks for eval-
uating RFID performance in a variety of environmental con-
ditions (including near metal and water). Hodges et al. [19]
present a sophisticated, robotically automated technique for
assessing the operating range of an RFID system. Buettner
and Wetherall [7] measured EPC Gen 2 performance with a
software defined radio and found opportunities for improve-
ment in that standard’s physical and MAC layers. All these
studies contribute a great deal to our understanding of RFID
performance and its influencing factors. However, they are
all constrained to a laboratory setting and thus omit many of
the conditions affecting pervasive RFID deployments such as
ambient RF interference, tag mounting, movement and user
behavior patterns. In a previous study [49] we looked at the
performance of EPC Gen 1 RFID technology in a shorter,
smaller scale pervasive deployment but did not recruit non-
researcher participants nor did we collect as much ground
truth information.

A variety of other projects have studied large-scale
technology deployments like ours. Early projects like
ParcTab [47] and Sentient Computing [1] were quite sim-
ilar in that they offered indoor location aware services to
a community of users who each carried a tracking device.
Our work differs chiefly in that these projects used active,
battery-powered tracking devices and were most appropri-
ate for ubiquitous tracking of people and not objects. More
recent work has measured sensor performance and mobility
in both home and public spaces. Logan et al. [31] evalu-
ated the effectiveness of various sensors in a long-term hu-
man activity recognition study and found that RFID was
among the worst performing sensors. However, in this case
the researchers were using a different type of RFID at short
range to detect interaction with objects which differs from
our goals. Measurement studies on wireless networks have
found similar patterns in daily human mobility as evident in
network utilization [3, 25]. Wireless network data is differ-
ent in character than RFID data though because there are

more data sources (e.g.objects as well as people, and many
more readers than access points) and because each RFID
data source is less reliable than an access point.

Numerous consultancies, corporations and other stake-
holders have produced case studies on the performance of
real-world RFID deployments. Much of this work is focused
on the supply chain and contactless payment domains which
pose problems that are only peripherally related to our work.
However, there has also been increased interest in passive
UHF RFID for tagging and tracking patients, personnel and
equipment in hospitals [43, 40, 45]. Though work on RFID
in hospitals typically emphasizes the requirements for cost
effective deployment and business integration, it also raises
many challenges we share: an indoor environment, tags on
highly mobile people and objects, and increased chance of
RF interference. As such, the hospital domain is an inter-
esting area to watch and one to which some of our results
may transfer.

8. CONCLUSION
In this paper, we presented the results from a four week

study of a building-wide EPC Gen 2 UHF RFID deploy-
ment with tens of participants and hundreds of tags. We
analyzed the system from the perspective of the data gener-
ated and consumed by the community which uses it as well
as the performance and reliability of tags carried on vari-
ous participants, objects and tags. We also experimented
with building and using a probabilistic model-based view to
enhance the utility of large-scale RFID data sets.

We found that our RFID deployment produces a very
manageable amount of data overall, but with orders of mag-
nitude difference among various participants and objects.
Among other factors, the amount of data produced by par-
ticipants was influenced by their application usage. Com-
pelling applications may thus drive the future utility of such
deployments.

We found that the tag detection rates were relatively low
and with a large variance across tags. Many end-users also
needed expert help in properly mounting their tags to ob-
jects. We also found that probabilistic model-based views
seem a reasonable approach to smooth errors and gaps in
the data generated by such deployments. However, we find
that building and exploiting such views is challenging: care
must be put into building these views in order to get good
results and these methods impose significant overhead. A
materialized model-based view can easily increase the data
size by more than a factor of 13 (though compression can be
achieved by throwing away the lowest probability data).

Overall, passive RFID deployments present a promising
sensor infrastructure for a variety of location-oriented appli-
cations, but exploiting such deployments in a large-scale per-
vasive computing environment presents considerable techni-
cal challenges.
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