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Increasingly many scientific and engineering domains rely on video data, which is information

dense and relatively easy to collect. At the same time, recent advances in computer vision and

machine learning have opened the door to automating analysis of this data. As a result, there

has been a resurgence of research and innovation in powerful libraries and data management

systems to support users in storing, processing, and querying videos. Current video database

management systems (VDBMSs) are optimized to efficiently apply machine learning (ML)

models over videos to extract their semantic content and generate query results. However,

relatively little attention has been directed towards optimizing VDBMS storage managers,

despite the fact that videos are stored in compressed formats due to their large size, and

accessing the raw pixel information adds non-negligible latency to queries due to the required

decoding step. Further, current VDBMSs are limited by assuming that there exist pretrained

models relevant to users’ videos and queries; this is not the case for many domain-specific

datasets, like those collected for wildlife monitoring. Users that lack a relevant pretrained

model are unable to benefit from the data management and query processing capabilities

that VDBMSs provide.

This dissertation studies the two challenges identified above. First, we introduce TASM,

a tile-based storage manager for VDBMSs. TASM accelerates workloads that operate over

spatial subsets of frames by storing videos in such a way that makes it possible to decode only



particular regions of frames. In contrast, current VDBMS storage managers must decode

entire frames, even if only particular regions are requested, which is inefficient. TASM uses

the video codec feature of tiles to divide frames into independently-decodable regions, and it

automatically adjusts the layout of these tiles based on the observed query workload.

Second, we introduce VOCALExplore, which is a system that supports users in exploring

large video datasets and efficiently training domain-specific models that can be used to

automatically extract the semantic content from unlabeled videos. VOCALExplore provides

a high-level API that does not require ML expertise; it automatically navigates decisions

around feature extraction and sample selection that are essential for producing a high-quality

model. Importantly, VOCALExplore does not require an extensive preprocessing phase that

causes the user to wait a significant amount of time before interacting with the system.

Instead, VOCALExplore operates in a pay-as-you-go manner and performs processing in the

background as the user interacts with it.

While there still exist many open problems surrounding VDBMSs, this thesis takes steps

towards making them more efficient and usable by a larger audience.
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Chapter 1

INTRODUCTION

Increasing numbers of scientific and engineering domains rely on video data, which is

information dense and relatively easy to collect. Domain experts collect and analyze video

content for varied applications of interest. For example, naturalists attach mobile cameras to

wildlife to observe and analyze deer activity patterns and dietary preferences [45] or shark

foraging behavior and the responses of prey [69]. Stationary wildlife cameras help scientists

observe and analyze aggressive interactions between bird species at feeders [99]. In many other

domains, as well, video data supports analysis including: traffic analytics, with camera feeds

from busy city intersections providing support for installing crosswalks at locations where

jaywalking is prevalent [15, 62]; retail analytics, where they help to analyze the effectiveness

of displays based on customer traffic [134]; and sports analytics, where they assist in the

analysis of team and player performance [140].

Such video analytics applications are made possible by recent commercial and technological

trends. First, high-quality cameras are now relatively inexpensive and thus more widely

deployed. Further, inexpensive storage in the cloud and on hard drives enables vast video

data repositories. Finally, advances in machine learning (ML) and computer vision (CV)

facilitate the automatic extraction of semantic content from videos; these models operate

over the pixel data to identify objects or activities.

Though information-rich and easy to collect, videos remain difficult to analyze for three

main reasons:
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1. Volume and information density: videos are captured at frame rates ranging

from tens to hundreds of frames per second, and each frame contains thousands to

millions of pixels depending on its resolution. Despite state-of-the-art compression

algorithms, videos easily consume gigabytes of storage, and efficiently storing, retrieving,

and indexing data at such a large scale is challenging.

2. Compressed format: because videos are stored in compressed formats, decoding

them to access their raw pixels adds latency to applications that operate over video

content.

3. Lack of structure: unlike relational data, which takes the form of tables with well-

defined column headers, video data is unstructured. Analysis must be performed over

its pixels to generate insights. Typically ML models are applied to automate this

analysis, but efficiently training and applying these models requires ML expertise that

is not (and should not be) the primary focus of domain experts, and is tedious even for

those with relevant expertise.

The increasing demand for video data analytics applications, combined with the preceding

challenges associated with efficiently using video data, are giving rise to a resurgence of

research and innovation in topics such as powerful libraries [25, 49, 106, 10] and video database

management systems (VDBMSs) [81, 20, 113, 160]. We focus in this dissertation on the

latter.

VDBMSs support users in storing, processing, and querying video data. Figure 1.1 shows

the architecture of a generic database management system, which consists of components for

storing data efficiently, optimizing and executing queries, and a data model and language

facilitating user and application interaction with the data. Relational database management

systems (RDBMSs) such as PostgreSQL [11] implement this stack to support users in efficiently

querying text and numeric data. They store data in row- or column-oriented [13] formats,
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Figure 1.1: Architecture of a generic database management system (DBMS).

provide indexes [37] to accelerate data access, implement cost-based query optimizers [132]

and efficient operators to accelerate query processing [115], and let users interact with data

by specifying queries in the SQL query language.

VDBMSs reimagine this stack for video data. VDBMS storage managers must be able

to operate efficiently over large quantities of compressed pixel data. Their query interface

layer must let users express queries over the semantic concepts contained in videos, while the

query execution layer must translate these semantic concepts into operations over pixels.

Existing VDBMSs [81, 82, 104, 160, 16, 20, 113] focus primarily on making query execution

more efficient (we review related work in detail in Chapter 3). They assume access to a

pretrained “oracle” ML model that accurately detects objects or activities of interest when
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applied to video frames. Recent VDBMSs have developed techniques to more efficiently

answer queries using this oracle model. They use faster, specialized models derived from

the oracle to filter out irrelevant frames [104, 83] or directly answer queries [81, 16], perform

content-based sampling of frames [113, 20], or store copies of the video at reduced resolutions

that are faster to process but maintain model accuracy [67, 159, 86].

However, today’s VDBMSs still fail to adequately support application needs, as exemplified

by the following use-cases.

Example 1.1 (Traffic monitoring). Consider an urban planner who needs to monitor

traffic patterns in their city. They use traffic cameras located at intersections to count the

number of vehicles, bicycles, and pedestrians to determine the busiest times of day. The

planner is further interested in “close calls” between cars and cyclists [15], so they look

specifically for instances with multiple cyclists in a turn lane concurrent with one or more cars.

The planner must filter through the large quantity of traffic videos accumulated from each

intersection over weeks to find these specific occurrences. Pretrained object detection models

can filter out frames with no cars or bicycles; however, applying them over the entirety of the

archived video data is slow and computationally expensive, particularly when query workloads

operate over subregions of frames (e.g., just the pixels representing the intersection as in this

example). Despite queries often requesting spatial subsets of frames, current VDBMSs decode

and process entire frames due to intra-frame dependencies introduced during video encoding.

Example 1.2 (Wildlife monitoring). A naturalist wants to understand the behavior and

activity patterns of deer in the wild. They do so by attaching collars outfitted with cameras

to wild deer [45]. Upon collecting the cameras after several weeks, they need to analyze the

video data to answer their research questions. However, no off-the-shelf pretrained model can

process and extract meaningful data from these videos: it is a unique domain, and the videos

are captured from unusual angles. Therefore, the naturalist must manually label a sample of

the videos and perform analyses over these labeled samples. This process is laborious and

fails to use most of the captured data.
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As highlighted in these examples, extracting insights from video content presents challenges

both in the efficiency of query execution and in supporting domains that lack pretrained

models to extract semantically meaningful information from their videos.

This thesis proposes techniques that address these two key unresolved or unaddressed

challenges in current VDBMSs. First, data loading—which consists of reading raw data

from disk and decoding it in order to answer queries—poses a bottleneck for applying ML

models [86, 112] over videos. This limits query execution performance of VDBMSs because

queries rely on executing one or more ML models over video frames (or parts of video frames).

To execute those models, VDBMSs must first read the data from disk and decode it into raw

pixels. Second, VDBMSs assume access to a model that can act as an oracle, which does not

exist for most specialized domains. Therefore, many users with large video collections but no

domain-specific model cannot access the capabilities of VDBMSs to accelerate their analyses.

The remainder of this Introduction elaborates on these challenges. Section 1.1 introduces

TASM, a storage manager designed to optimize video data storage to accelerate data processing.

Section 1.2 introduces VOCALExplore, a system designed to support users in exploring and

building domain-specific models for their video data. In Section 1.3, we highlight the

contributions of this thesis, and we present the organization of the remaining chapters in

Section 1.4.

1.1 Opportunities to optimize video data storage

The first research question this dissertation poses is how to build efficient data

storage managers for VDBMSs. Video data processing consists of two phases: data

loading and query execution (typically performing inference on video frames), shown in

Figure 1.2. During data loading, video content is read from disk, frames are decoded,

and pixels are preprocessed according to the model’s specification; this typically involves

downsampling the video frames to a lower resolution, cropping them, and normalizing pixel

values. In the inference phase, the preprocessed pixels are passed through an ML model to

generate predictions.
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Figure 1.2: Video processing pipeline. (a) Videos stored in an encoded format on disk. (b)
Decoded frames represented as matrices of pixels. (c) Preprocessing operations applied to
pixels. (d) Processed frames represented as matrices of pixels. (e) Model inference performed
on processed frames to generate predictions.

Considerable resources are available to accelerate inference work. GPUs and other

specialized accelerators are optimized for the computations models perform, and deep learning

frameworks [49, 106] provide high-level constructs to efficiently implement models. However,

fewer resources address optimizing data loading, which often proves a bottleneck for ML

pipelines [86, 112], and especially so for data sources like videos that are stored in a compressed

format. VDBMSs require a powerful storage manager capable of optimizing the steps of

loading data from disk and decoding the pixel information from the compressed format to

enable efficient query execution.

We observe that a storage manager for video data should support queries that extract a

subset of the data in time but also in space (i.e., spatial subregions of frames) For example,

queries searching for frames containing cars can perform object detection only on frame

regions showing the road (Figure 1.3a) since regions showing adjacent buildings or sky are

not relevant. Or, an application that searches for a vehicle with a particular license plate

number only needs to look at pixels corresponding to license plates. Finally, a query that

collects examples of birds visiting a feeder to build a training set for a classification model

can process only the pixels in frames corresponding to birds (shown in Figure 1.3b). These

queries for pixels from a subset of the frame are called subframe selection queries.
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(a) Subframe selection for cars in an image from
the BDD dataset [163].

(b) Subframe selection for birds in a frame from
the Netflix dataset [97].

Figure 1.3: Pixels required for a subframe selection queries. Only the non-frosted pixels will
be used by the query, but storage managers currently decode the entire frame.

By default, the video encoding process creates spatial dependencies between different

regions in a frame. Therefore, even if a query will process only a specific subregion, the entire

frame still must be decoded. Further, VDBMSs store videos as a single encoded file or as a

sequence of encoded files, split on time. This storage format provides temporal random access

but no spatial random access: storage managers can jump to points in time that queries

request, but they cannot selectively decode spatial subsets requested by queries. Today’s

VDBMSs thus fail to investigate storage optimizations that process only subregions of a

frame.

To address this challenge, we design, implement, and evaluate TASM (Chapter 4), a

storage manager for VDBMSs that physically optimizes the layout of videos on disk and

provides spatial random access to video frames. It is designed to accelerate subframe selection

queries, i.e., queries that operate over pixels from select regions within frames. TASM was

introduced in ICDE’21 [41].

TASM’s key contribution is splitting video frames into independently queryable tiles,

thereby adding spatial random access to frames. It optimizes the tile layout (i.e., random

access points) based on query workload and frame content. Notably, because the query
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(a) Initial untiled video. (b) Tile layout around cars. (c) Tile layout around cars and
bicycles.

Figure 1.4: Example evolution of tile layouts in TASM. (a) Initially, TASM has no information
about video content and does not tile the video. Once it learns the location of some objects
and sees queries for these objects, it adjusts the tile layout. (b) If TASM first encounters
queries only for cars, it tiles around the cars. (c) If it then additionally encounters queries for
bicycles, it adjusts the tile layout to accommodate both cars and bicycles. TASM does this
for each group of frames.

workload and video contents are initially unknown, TASM dynamically evolves the layout for

each group of frames over time as it observes queries and learns where objects are located

in frames. Figure 1.4 shows the evolving tile layouts that TASM may traverse if it first

encounters queries only for cars and then queries for bicycles, as well.

TASM can accelerate object detection queries in existing VDBMSs, particularly those that

execute a fast model over a video to profile or filter frames [81], in what we call a full scan

phase, before applying an expensive, high-quality object detection model to a select subset

of frames. It cheaply profiles videos when they are initially ingested and designs an initial

tile layout around regions of interest (ROIs). Initial tiling reduces preprocessing required for

object detection queries because the VDBMS can perform its full scan phase over select tiles

that contain ROIs rather than over entire frames.

We evaluate TASM on a variety of videos and workloads. We find that the tile layouts

picked by TASM speed up subframe selection queries by an average of 51% and up to

94% while maintaining video quality. Further, (1) TASM’s dynamic tile layout algorithm



9

automatically selects layouts that improve performance after only a small number of queries,

and (2) TASM’s ROI-based tiling accelerates the throughput of the full scan phase of object

detection queries by up to 2× while maintaining high query accuracy.

TASM’s code is available at https://github.com/uwdb/TASM.

1.2 Early video data exploration

Current VDBMSs are designed to support users in executing queries when users know what

they are looking for and have a model that can detect the objects and events they are interested

in. For example, users can apply an object detection model like Faster R-CNN [125] to find

cars or bicycles in frames, or an activity classification model like MViT [50] to detect video

segments where someone is riding a bike. However, despite being a critically important part

of the data management lifecycle, early data exploration over video datasets has received

scant research attention, particularly when no oracle model exists. During early exploration,

users familiarize themselves with their dataset to learn the types of events they captured and

what these events look like in the videos. As part of today’s exploration process, users must

manually search for a diverse set of examples of activities of interest to train a domain-specific

model.

Manually searching through a large video dataset is tedious; it requires careful scrubbing

through long videos or navigating thousands of individual files for collections of short videos.

Further, users who collect large video datasets typically have domain expertise to understand

the content captured by the videos but may lack the ML expertise to effectively train a

domain-specific model. Even for users who have ML expertise, training a model over videos is

non-trivial. Thus, users may be comfortable annotating the videos they collect but not using

these annotations to train a model and then applying the model to automatically annotate

the remaining unlabeled portion of their dataset.

Though the ML field has contributed many discrete techniques and tools to build high-

quality models, combining them into an efficient end-to-end system is nontrivial. Specifically,

a complete solution must support: (1) sample selection (i.e., which examples the user should

https://github.com/uwdb/TASM
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label to maximize model performance if they have a limited budget), (2) feature representation

extraction (i.e., generating feature vectors from video frames that models can use), and (3)

model training and inference. Implementing and efficiently coordinating these components is

difficult due to the volume and storage format of videos; further, decoding and preprocessing

videos to extract feature representations is a bottleneck that makes it impractical to fully

index large datasets during preprocessing.

Additionally, no guidance is available about which combination of techniques would

be optimal for an arbitrary dataset. The best acquisition function (i.e., sample selection

method) depends on the dataset, and random sampling often performs at least as well as

more sophisticated techniques [87]. Similarly, the most effective feature representations are

dataset-dependent (as we show in Chapter 5). Without systematic support to navigate these

decisions, users have no way to know which techniques to implement for a specific task.

The second research question this dissertation poses is how to address the

challenge of supporting early data exploration, especially when no off-the-shelf

oracle model exists. To this end, we introduce VOCALExplore, designed as an interactive

system to support users in exploring their video data and building domain-specific models to use

in downstream analysis tasks. VOCALExplore is a component of the larger VOCAL (Video

Organization and Interactive Compositional AnaLytics) project [42]. Users of VOCALExplore

iteratively view video segments, either ones they select or those automatically selected by the

system, and apply labels to them. VOCALExplore uses these labels to train domain-specific

models by integrating a variety of ML techniques to support end-to-end video data exploration

and model building—from video sampling to feature extraction to training models on video

data. It requires no ML knowledge or hyperparameter tuning from the user. Importantly, it

also does not demand expensive data preparation or preprocessing; instead, it is designed

as a “pay-as-you-go” system where users can immediately begin interacting with their data,

and the system improves model quality as the user spends more time labeling their data.

VOCALExplore will appear at VLDB’24 [43].
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Figure 1.5: Active learning manager (ALM) overview. As shown on the left with the blue
arrows, the ALM uses the dataset’s characteristics to pick a sampling method. It uses this
sampling method to select video clips for the user to label. As shown on the right with the
green arrows, the ALM uses these labels to train a domain-specific model on top of features
extracted from the video clips. The ALM automatically picks a feature extractor whose
features perform well on the given domain.

VOCALExplore uses an Active Learning Manager (ALM) to produce high-quality models.

The ALM first samples video segments for the user to label, as shown in Figure 1.5. Many

candidate acquisition functions have been proposed by the ML community, but the best

choice depends on the dataset, and random sampling often performs at least as well as more

expensive functions [87]. It dynamically selects an appropriate acquisition function based on

observed skew in the collected labels.

The ALM next selects an appropriate feature representation for the video segments to

train models and perform inference. Though it is an accepted technique to extract feature

embeddings from models pretrained on other tasks [24, 59, 51], no guidance exists on how to

select the best pretrained model to use as a feature extractor. We show that the quality of the
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model trained over collected labels largely depends on choosing a suitable feature extractor.

The ALM dynamically selects the best feature extractor for each dataset using an algorithm

based on rising bandits [96].

VOCALExplore uses a Task Scheduler (TS) to reduce the latency associated with producing

high-quality models. The TS executes low-priority tasks in the background to avoid blocking

responses to API calls. It dynamically schedules model training tasks based on observed

user labeling and model training latencies to produce up-to-date models that are ready for

inference upon the next user interaction.

We evaluate VOCALExplore on both a domain-specific deer dataset [45] and on a standard

activity classification video dataset [139]. We show that the system produces models that

match the quality of the best combination of acquisition function and feature extractor with

(1) zero preprocessing latency, and (2) a user-visible latency of less than one second per

labeling iteration.

VOCALExplore’s code is available at https://github.com/uwdb/VOCALExplore.

1.3 Summary of thesis contributions

This thesis introduces techniques to address the two limitations highlighted previously: (1)

limited storage-level optimizations despite data access being a bottleneck for query execution,

and (2) lack of support for early data exploration and domain-specific model development.

Specifically, our core contribution is two systems that feature new techniques for solving

each challenge. The first system, TASM, is a low-level storage manager for video data

that provides new opportunities for spatial random access to video frames. The second

system, VOCALExplore, is a high-level system that supports users in exploring their data and

building domain-specific models useful for further analysis. In sum, this thesis contributes

novel approaches to video storage and exploration that make VDBMSs more efficient to run

and more useful for video datasets from diverse domains.

https://github.com/uwdb/VOCALExplore
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1.4 Thesis Organization

Chapter 2 presents background information relevant to the work presented in this dissertation,

and we discuss related work in Chapter 3. Chapter 4 introduces TASM, and Chapter 5

introduces VOCALExplore. We describe in Chapter 6 the system design, interface, and

extensions to VOCALExplore. Finally, we provide concluding remarks in Chapter 7.
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Chapter 2

BACKGROUND INFORMATION

This chapter highlights concepts and terminology referenced by later chapters.

2.1 Video encoding and storage

This section, which reviews how videos are encoded and introduces the concept of using

tiles to encode videos, is not intended to be comprehensive, but rather to provide sufficient

background for subsequent chapters. For a more detailed discussion, we refer the reader to

[142, 111].

Due to their large size, videos are stored as encoded files. Video codecs—such as H264 [1],

HEVC [3], and AV1 [44]—specify encoding and decoding algorithms for (de)compressing

videos. Though their specific algorithms differ, their high-level approach is the same, as we

now describe.

Groups of pictures. A video consists of a sequence of frames, where each frame is a 2D

array of pixels. Frames in the sequence are partitioned into groups of pictures (GOPs). Each

GOP is encoded independently from other GOPs and is typically one second in duration, but

it can be configured to other values. The first GOP frame, called a keyframe, is encoded with

no dependencies on other frames. Remaining frames in a GOP are encoded as deltas from

surrounding frames.

Because video decoding can begin at any keyframe, keyframes let GOPs act as temporal

random access points into the video. To retrieve a specific frame, the decoder begins at the

closest keyframe preceding the frame being retrieved, as shown in Figure 2.1. Keyframes

require large amounts of storage because they use a less efficient form of compression than
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Figure 2.1: Keyframes vs. delta frames in an encoded video, simplified for ease of presentation.
Starred frames 1 and 5 are keyframes and act as temporal random access points. Remaining
frames are delta encoded. To access the frame with the dog (frame 7), frames 5, 6, and 7
must be decoded.

delta frames, so the number of keyframes impacts a video’s overall storage size. Videos stored

with long GOPs have a smaller storage footprint than those stored with short GOPs, but

they also have fewer random access opportunities.

Tiles. Compressed videos do not generally support the decoding of spatial subregions of a

frame. The encoding process creates spatial dependencies within a frame, and decoders must

resolve these dependencies by decoding the entire frame, even if only a small region is needed.

However, modern codecs provide a feature called tiles that enables splitting of frames into

independently decodable regions. Figure 2.2 illustrates this concept.

Like frames, tiles are also 2D arrays of pixels. However, a tile contains only the pixels

for a rectangular portion of the frame; the full frame is recovered by combining tiles. Tiles

introduce spatial random access points for decoding, though temporal random access is still

provided by keyframes. To decode a region within a frame, only the tiles that contain the

requested region are processed. This flexibility involves tradeoffs in quality: tiling can produce

artifacts at tile boundaries [141], reducing the visual quality of the video. As such, careful

selection of tile layouts is critical for high-quality query results. Tiles are applied to all frames

in a GOP, so decoding a tile in a delta frame requires decoding that tile in all frames starting

from the preceding keyframe, as shown in Figure 2.2.
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Figure 2.2: Keyframes vs. delta frames in a tiled video. All frames in this GOP are encoded
with the same 2×2 tile layout, marked by the dashed lines. The first frame is a keyframe,
and the remaining frames are delta-encoded. To decode the tile with the dog, the lower-right
tile must be decoded in all preceding frames, starting from the keyframe, as illustrated with
the shaded tiles.

A tile layout defines how a sequence of frames is divided into tiles. A layout

L=(nr, nc, {h1, . . . , hnr}, {w1, . . . , wnc}) is defined by the number of rows and columns, nr

and nc, the height of each row, and the width of each column; Figure 2.3 shows a sample tile

layout. These parameters define the (x, y) offset, width, and height of the nr·nc tiles. An

untiled video is a special case of a tile layout where a single tile encompasses the entire frame:

ω = (1, 1, {frame_height}, {frame_width}).

Valid layouts [3] require tiles to be partitioned along a regular grid, meaning that rows

and columns must extend through the entire frame, as shown in Figure 2.4. Different tile

layouts can be used throughout the video; a sequence of tiles (SOT) refers to a sequence

of frames with the same tile layout. Changes to the tile layout must take place at GOP

boundaries, so every new layout must start at a keyframe. Therefore, changing the tile layout

incurs high storage overhead for the same reason that it does for starting a new GOP. The

cost of executing a query over video encoded with tiles is proportional to the number of pixels

and tiles that are decoded.



17

Figure 2.3: An example tile layout L = (3, 2, {h1, h2, h3}, {w1, w2}) with 3 rows and 2 columns.

Stitching. Tiles can be stored separately, but they must be combined to recover the original

video. Tiles can be combined without an intermediate decode step using a process called

homomorphic stitching [65], which interleaves encoded data from each tile and adds header

information so the decoder knows how to arrange the tiles.

2.2 Object and activity recognition in videos

We now provide background information on how feature embeddings are extracted from

videos and used to train object and activity detection models. As in Section 2.1, our intent is

to provide background for subsequent chapters, not a comprehensive treatment of the topic.

We refer the reader to [59, 144, 129, 171] for further details.

2.2.1 Video models

To extract semantic information from videos, a common approach today uses a deep learning

(DL) model. Different types of models exist. An image model takes as input an image or

video frame and produces predictions for objects or activities in that frame. A video model

does the same for a sequence of frames (i.e., a video clip), as shown in Figure 2.5a.
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(a) Valid layout. (b) Invalid layout.

Figure 2.4: Valid vs. invalid tile layouts. (a) This is a valid layout because tile boundaries
(marked by dashed lines) extend through the entire frame. (b) This is not valid because the
vertical boundary does not extend through the entire frame.

End-to-end models operate over raw pixels, typically after downsampling, cropping, and

normalizing the pixel values in frames. Modern DL model architectures are constructed as a

sequence of stages (commonly convolutional or transformer-based) that implement nonlinear

transformations over the inputs. Final predictions are generally produced using a fully

connected layer.

End-to-end training of DL models requires large numbers of labeled examples, typically

on the order of millions [46]. Generating sufficient data to train models from scratch for

new domains is therefore infeasible, so a common technique in computer vision involves

transfer learning [24, 59]. Transfer learning starts with a model that was pretrained on a

large dataset that is readily available and known to produce reliable results [51]. For example,

ImageNet [46] is a common pretraining dataset for object classification, and Kinetics400 [90]

is frequently used to pretrain activity classification models. Applying transfer learning means

there is no need to start training using a model initialized with random weights; instead,

transfer learning fine-tunes model weights using examples from the target domain and normal

backpropagation computations. Depending on the application, all layers, or just a subset of

them, can be tuned, and the weights of remaining layers are frozen.
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(a) End-to-end model pipeline.

(b) Using a pretrained model as a feature extractor. The domain-specific ML model can
have any architecture.

Figure 2.5: Model inference and feature extraction for video inputs. Image models operate
over individual frames, while video models operate over frame sequences.

Another use-case for transfer learning leverages pretrained models as feature extractors

and then trains a model from scratch on top of these features, as shown in Figure 2.5b. A

feature extractor takes as input one or more video frames and produces as output a feature

vector, also called an embedding, which is a d-dimensional vector in Rd, where the dimension

d may vary across feature extractors. This workflow assumes that features from a pretrained

model capture general knowledge that will be useful in a new domain. A common technique

extracts feature representations from the final fully connected layer of a pretrained model,

though any layer can be used to generate embeddings. Features extracted from the pretrained

model can be materialized to avoid repeatedly performing expensive decode and transform

operations over the encoded videos.



20

2.2.2 Other feature representations

Though Chapter 5 considers using only pretrained models as feature extractors, alternative

feature representations are possible.

Basic features. Frameworks such as OpenCV [25] support extraction of basic features from

raw pixels, such as optical flow or SIFT descriptors [102]. Historically, basic features have

been manually designed and tuned for specific use-cases, such as action recognition [147]

or duplicate video detection [136]. Though they are often simple to compute compared to

performing inference over DL models, extracting basic features on CPUs is not necessarily

more efficient than extracting pretrained embeddings on GPUs due to advancements in

accelerators and optimizations in DL frameworks.

Self-supervised features. Self-supervised training produces embeddings specific to a given

dataset by training a DL model over unlabeled videos [129]. It uses objectives that rely on the

similarity or dissimilarity of inputs that can be known even without labels (e.g., embeddings

from different clips of the same video should be similar [52]). This approach is expensive

since it requires training a large model and repeatedly extracting updated embeddings from

videos. However, self-supervised features are the most domain-specific because the embedding

is learned from the unlabeled dataset itself.

2.3 Summary

This chapter introduced background information and terminology on video encoding and

decoding, specifically using tiles (Section 2.1), and on the use of ML models to automatically

extract semantic information from videos (Section 2.2). The rest of this dissertation builds on

these ideas for the design of a tile-based storage manager (Chapter 4) and a system that uses

pretrained image and video models to help users quickly build domain-specific ML models

for their video datasets (Chapter 5).
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Chapter 3

RELATED WORK

Video data management is a broad area with important work tackling each of the

components of such a system from data models and query languages to query execution,

query optimization, and storage management. In this section, we give a summary of the

relevant literature. We start with a brief overview of earlier, seminal work (Section 3.1). We

then dive into recent work on query optimization, query execution, and storage management

(Section 3.2). We end by presenting complementary work to TASM (Section 3.3) and

VOCALExplore (Section 3.4).

3.1 Early work on VDBMSs

Video data management has long been an area of interest in the data management community.

The seminal systems described in this section did not have access to the machine learning

and computer vision capabilities developed in the past few years, and therefore they were

limited to analyzing videos based on attributes derived from the pixels (e.g., motion and

color) or descriptions manually specified by users.

VideoQ [30] is an online search engine that supports object-based indexing and spatiotem-

poral queries. It introduces the idea of formulating a query over video using an animated

sketch, where each object in the sketch is associated with motion and temporal duration.

VideoQ indexes videos using features derived from color, texture, motion, and shapes in the

video frames.
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OVID [118] is an object-oriented VDBMS designed around the data model of a video-

object, which is a sequence of frames described with a number of key-value attributes. OVID

introduces operations for deriving new video-objects from existing ones. Its query language,

VideoSQL, operates over the key-value attributes of the video objects.

BilVideo [48] supports spatio-temporal queries. It stores facts about trajectories and

spatiotemporal relationships between video objects in a knowledge-base. It also stores pixel-

based metadata such as color, shape, and texture in a feature database. Users can visually

specify queries by sketching the desired locations of objects or the trajectory of one or more

objects.

VideoAnywhere [137] provides a framework for supporting video search over many different

sources of videos, such as the web, TV, and DVDs. Providing semantic interoperability is an

important component of VideoAnywhere, which is achieved by mapping XML tags used by the

video sources to a unified ontology that the user can query over. DelaunayMM [39] similarly

supports searching over possibly many sources of multimedia and associated metadata,

however its focus is on presenting an integrated view of the information to the user. It does

so via a virtual document, where each element on the page is associated with one or more

queries to an underlying data source.

3.2 Recent work on VDBMSs

In this section we present recent work on VDBMSs. In contrast to the systems described in

the previous section, the VDBMSs described here benefit from the capabilities of machine

learning (ML) models to automatically extract high-quality semantic information from videos.

As such, these new systems do not have to approximate semantic content using features like

histograms derived from pixel values; instead, they directly extract and operate over the

outputs of ML models. This paradigm shift creates new challenges of efficiently applying one

or more models over large quantities of videos.

This section describes recent work in query optimization (Section 3.2.1), query execution

(Section 3.2.2), data storage (Section 3.2.3), and other topics of interest (Section 3.2.4).
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3.2.1 Query optimization

Query execution in current VDBMSs frequently requires executing and operating over the

output of one or more ML models. Despite advances in accelerators and ML frameworks,

applying models with many parameters to a large quantity of video frames can cause

significant latency during query execution. To address this problem, the database community

has investigated many techniques to reduce this latency. In this subsection we describe

three such query optimization techniques: (1) using faster specialized models; (2) navigating

between multiple models that have varying throughput and accuracy; and (3) task-specific

optimizations.

Specialized models. We first discuss systems that use specialized models to accelerate

queries. The key observation that motivates incorporating specialized models into query

execution is that while a large, general-purpose model can perform well on many tasks, the

tasks for individual queries are often much narrower. For example, an object detection model

like Faster R-CNN [125] can localize and identify tens to hundreds of object classes, whereas

a query asking for video clips with cars only needs to solve a binary problem of detecting

whether or not each frame contains a car. A much smaller, and therefore faster, model can be

used to perform the simpler task. In this section, we refer to the high-quality, general model

as the “oracle” model.

NoScope [82] uses specialized models to accelerate queries that find frames containing

particular objects. It trains the specialized model using outputs from the oracle model, and

it uses the specialized model to find frames that are highly (un)likely to contain the target

object. It only applies the expensive oracle model on frames where the specialized model is

uncertain. Similarly, Probabilistic Predicates [104] (PP) uses specialized models to filter out

irrelevant frames when executing queries that search for frames satisfying some conditions.

PP’s query optimizer supports queries with complex predicates by deciding how to apply and

combine multiple models to efficiently filter query inputs while maintaining query accuracy.
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BlazeIt [81] and ABae [84] use specialized models to accelerate aggregation queries while

providing statistical guarantees on the correctness of the results. BlazeIt trains a specialized

model that outputs the number of objects in each frame. It uses this specialized model

directly to answer the query if its accuracy is high enough. Otherwise, it uses this model as a

control variate to reduce the number of frames that must be sampled and processed with the

oracle model. ABae instead uses the output of a specialized model to group video frames. It

performs stratified sampling over these groups and applies the oracle model to the sampled

frames to compute an approximate aggregate.

Tahoma [16] trains a cascaded model instead of a collection of specialized models. The

complexity of each level in the cascaded model increases. Tahoma reduces query latency by

stopping the inference process early when the desired accuracy is met.

Multiple models. Second, we discuss systems that utilize a collection of models to optimize

queries. Typically the various models have different cost/quality tradeoffs, which enables

more opportunities for query optimization.

FiGO [28] supports queries to find frames containing target objects. It splits videos into

variable-sized segments and picks a model to apply to each segment. FiGO only uses slower

but more accurate models on challenging segments, which are identified as such by looking at

label agreement across models.

EVA [160] uses a semantics-based reuse algorithm to perform model selection. For each

logical task (e.g., object detection), it has many candidate models. It considers both model

accuracies and the results materialized by previous queries when selecting a model to use. It

further optimizes queries by reordering model-based predicates based on their execution cost.

Rather than assume knowledge about the semantic relationships between models as in

EVA, VIVA [126] instead optimizes queries using relational hints, which are specified by

the user to give the optimizer more information about the relationships between black-box

models. For example, replacement hints specify that one model may replace another model,
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and filtering hints specify that a fast model can act as a filter for an expensive model. VIVA

introduces a hint-aware query optimizer that selects the optimal sequence of models to execute

a query while meeting accuracy constraints.

Task-specific query optimization. Finally, we discuss systems that implement optimiza-

tions specific to tasks such as object tracking and action localization.

Miris [20] and OTIF [21] accelerate object tracking queries. Miris computes trajectories

by resolving object detections across frames, but it minimizes the number of calls to the

object detector by varying the framerate that is used for sampling. It initially uses a low

framerate and then only samples more frames from video segments where it is uncertain

about a trajectory. Rather than compute trajectories one-by-one, OTIF instead designs an

efficient technique to preprocess an entire video and extract all tracks. It then performs

trajectory queries on top of the extracted track information.

Zeus [35] accelerates action localization queries using reinforcement learning (RL) to

dynamically adjust the resolution and framerate used when applying an action classification

model. It only uses more expensive and accurate high-resolution frames and fine-grained

sampling for segments that are expected to contain the target action. Zeus additionally uses

the RL agent to dynamically adjust the duration of each video segment.

3.2.2 Query execution

Executing queries over large video datasets is resource-intensive due to the large volume

of frames that must be processed, especially for datasets collected over long durations of

time. Systems such as Scanner [121], SVE [75], and Optasia [103] efficiently execute queries

over large quantities of videos by parallelizing processing. They represent query plans as

dataflow graphs and distribute the plan execution over clusters of machines. Scanner is a

general-purpose execution engine that is capable of distributing operations over heterogenous

hardware. Optasia is specifically designed for surveillance-type analysis on top of videos, and
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it operates over the SCOPE [29] engine. Finally, SVE parallelizes processing both across

groups of frames, and also across tracks within a group of frames (i.e., it processes audio and

video tracks in parallel).

3.2.3 Data storage

Storage managers in VDBMSs organize videos as encoded files due to their large size. From a

storage footprint standpoint, it is resource-prohibitive to directly store videos as raw pixels or

individual frames. However, videos must be decoded to a pixel representation before applying

ML models.

Multiple formats. The key idea of storing multiple versions of a video segment is to enable

throughput/accuracy tradeoffs within queries. It is faster to decode a low-resolution video,

however, the accuracy of models run on top of degraded video may suffer. VStore [159]

profiles downstream operators to generate accuracy curves for various encoding settings. It

then encodes videos in multiple formats. Given a query, it picks the physical representation

with the fastest preprocessing speed that still meets the query’s accuracy specification.

Smokescreen [67] stores degraded videos after profiling tradeoffs between accuracy and

user-defined objectives (e.g., maximum resolution) for various destructive interventions on

videos (e.g., decreasing resolution or sampling rate). It does not require access to the full-

resolution video. Instead, it computes error bounds from query results produced by operating

over degraded videos.

VSS [64] caches multiple versions of a video segment based on the query workload (e.g., raw

pixels if a previous query requested RGB values). It combines and transforms these cached

versions to quickly produce video in formats requested by a new query. It also automatically

identifies and eliminates redundancies introduced by cameras with overlapping fields of view

by jointly compressing the overlapping region.
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While Smol [86] is a runtime engine rather than a storage manager, it explicitly considers

the input format of videos as a parameter when training models. It optimizes preprocessing

speed by using low-resolution frames that are fast to decode and by utilizing partial decoding

whenever the codec supports it. Its optimizer also reorders preprocessing operators and

distributes them across CPUs and GPUs to maximize preprocessing throughput.

Vignette [108] minimizes the storage size of videos while maintaining perceived quality

by splitting frames into tiles and optimizing the encoding parameters for each tile based on

its content. Tiles that contain content that is not salient, i.e., viewers do not focus their

perceptual attention on that region, are encoded with low resolution. Vignette only considers

uniform tile layouts (i.e., each tile has the same size).

Indexing. VDBMSs implement indexing over feature representations of videos to accelerate

queries for similar frames as well as selection and aggregation queries. Video-zilla [74] clusters

feature vectors to identify representative frames or scenes. TASTI [85] also clusters feature

vectors and only applies expensive operations, such as object detection, on frames represented

by the centroids. It propagates the results to frames in the corresponding clusters. ADAM-

pro [58] builds indexes using Locality-Sensitive Hashing [78], Spectral Hashing [153], and

Vector Approximation-Files [152] to support efficient nearest neighbor searches over feature

representations. Another line of research focuses on building indexes over precomputed object

detections and trajectories to efficiently execute spatio-temporal queries [32, 34, 33]

3.2.4 Miscellaneous

This section introduces related work that does not neatly fit into the previously-discussed

categories.

Data drift. VDBMSs rely on deep learning models to extract information from videos.

However, the accuracy of these models may drop when lighting conditions change, or, in

the case of a non-stationary camera, when moving into a novel environment. ODIN [143]

automatically detects and copes with data drift. ODIN detects drift using an adversarial

autoencoder to learn the distribution of seen frames. It then compares the distribution of
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current data to previously-seen frames. To handle data drift, ODIN clusters frames, and

each cluster has an associated specialized model that performs well on those data frames. If

newly-seen frames form a new cluster and do not yet have a trained specialized model, ODIN

uses an ensemble of models from nearby clusters.

Panorama [170] targets the problem of expanding query vocabularies beyond the labels a

model is originally trained to detect without an expensive re-training step. Panorama starts

with an oracle model and uses its outputs to train PanoramaNet, which is a model architecture

that generates embeddings for frames. Panorama supports queries for new vocabulary entities

by performing nearest neighbor search over the embeddings. Two embeddings are said to

represent the same object if their difference is below some threshold. Panorama supports

verification (i.e., are two objects the same) and recognition queries.

Benchmarking. Unlike relational DBMSs, there are few standardized benchmarks for

comparing the runtime performance and accuracy of VDBMSs. Visual Road [66] is a recently

proposed benchmark that is designed to measure the runtime performance of common

video manipulation tasks, such as cropping, resizing, and applying models. Evaluating the

correctness of queries over videos is expensive due to the cost of applying high-quality oracle

models on each frame. Visual Road works around this problem by using synthetic videos

generated from a video game engine where the ground truth (i.e., objects contained in each

frame) is known.

Multimedia retrieval. The multimedia community conducts annual competitions to

measure the efficiency of exploratory video retrieval tools [60, 100]. These competitions focus

on searching for known items in a video or retrieving relevant video segments for an ad-hoc

query from a collection of videos. For example, with known item search, the task is to take

a video segment, visual sketch, or keywords as inputs and return similar video segments as

output. Vitrivr [128] supports this task by performing nearest neighbor search over various

types of features extracted from video frames, however users must specify how to weight
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the different features. It includes a storage engine optimized for queries over both features

and metadata [55], a search engine to efficiently evaluate queries [127], and a web-based user

interface [72].

More recently, systems like Vitrivr-Explore [70] and SOM-Hunter [94] incorporate user

relevance feedback that classifies video segment outputs as relevant or not. This feedback is

used to train self-organizing maps [91] to more effectively find segments similar to the ones

that the user marked as relevant.

3.3 Related work on video data storage

This section explores systems and techniques related to TASM, which will be discussed in more

detail in Chapter 4. Recall from Section 1.1 that TASM is a storage manager for VDBMSs

that optimizes video storage and retrieval for query workloads that process subregions of

frames. For example, if queries request just the portion of frames showing cars or pedestrians,

TASM reduces the number of unrelated pixels that must be decoded and processed. TASM

does so by splitting frames into independently-decodable tiles, and by selecting the layout of

these tiles based on the observed query workload.

Incremental indexing. TASM’s incremental tiling approach is inspired by database

cracking [77, 61], which incrementally reorganizes the data processed by each query, and

online indexing [27], which creates and modifies indices as queries are processed. Regret

has also been used to design an economic model for self-tuning indices in a shared cloud

database [40]. TASM extends these relational storage techniques to provide efficient access to

video data.

Spatial indexing in videos. Other application domains have observed the usefulness of

retrieving spatial subsets of videos. The MPEG DASH SRD standard [116] is motivated by

a similar observation that video streaming clients occasionally request a spatial subset of

videos. While it specifies a model to support streaming spatial subsets, it does not specify

how to efficiently partition videos into tiles.
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Video storage systems. As described in Section 3.2.3, there has been significant research

around designing storage managers for VDBMSs. Storage managers thus far have primarily

investigated how to accelerate query processing by storing multiple representations of a video

to enable accuracy/throughput tradeoffs, rather than by reducing the amount of extraneous

pixels that are decoded and processed in the course of executing queries.

VStore [159] encodes videos with multiple encoding settings after profiling downstream

operators. When processing a query, it picks the version with the fastest processing speed

that meets the query’s accuracy specification. It improves query performance by reducing

the quality of the video to make it faster to process, whereas TASM maintains video quality

and improves performance by processing fewer pixels. Additionally, VStore must profile

all downstream operators to determine the encoding parameters, while TASM can work

incrementally as queries are processed.

Smol [86] trains models over reduced-fidelity frames, which are faster to decode, to

accelerate training and inference. It jointly optimizes video resolution and model architecture

to achieve a desirable accuracy/throughput tradeoff. However, like VStore, Smol only considers

optimizations that reduce the quality of videos. Additionally, while Smol supports partial

decoding to efficiently retrieve regions of interest, it does so only for images. In contrast,

TASM re-encodes videos with tiles to enable partial decoding even if the original input video

did not support it.

Vignette [108] is a storage manager optimized for perceptual compression, meaning that

it reduces the quality of stored videos to minimize storage size, but does so in a way that

minimizes the perceived quality loss. Like TASM, Vignette encodes videos with tiles. However,

Vignette optimizes the tile layout based on saliency, which indicates the regions where users

focus their attention, whereas TASM optimizes the tile layout based on the pixels retrieved

by an observed query workload. Further, while TASM considers flexible tile layouts based

on the locations of objects, Vignette only considers a fixed set of uniform tile layouts (e.g.,

5×10) where all tiles have the same dimensions.
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General query processing systems. If we consider more general VDBMSs, TASM could

be incorporated into the systems described in Section 3.2.1 that optimize the process of

extracting semantic content from videos during query processing. For example, BlazeIt [81]

and NoScope [82] apply specialized neural networks that run faster than general models. They

could use TASM to retrieve regions of interest from frames as input to these specialized models,

rather than retrieving entire frames. TASM could also be applied to systems that filter frames

before applying expensive models, such as probabilistic predicates [104] and ExSample [113]

which use statistical techniques; MIRIS [20] which uses sampling; and SVQ [156] and IC and

OD filters [93] that use deep learning filters. The bottleneck for these inexpensive filtering

steps is generally decoding and preprocessing frames [86]. As we discuss in Section 4.2.4,

TASM can tile around regions of interest and only decode these tiles as input to the filter to

reduce the preprocessing overhead.

VDBMSs that focus on efficient end-to-end query execution could incorporate TASM

as their storage manager to further accelerate performance because TASM’s optimizations

are complementary to their existing optimizations. These are systems such as LightDB [65],

Optasia [103], and Scanner [121] which accelerate queries through parallelization and dedu-

plication of work, and VideoEdge [76] which distributes processing over clusters. Finally,

Panorama [170] and Rekall [53] expand the set of queries that can be executed over videos,

which is orthogonal to video storage.

3.4 Related work on video data exploration

This section explores systems and techniques related to VOCALExplore, which will be

discussed in more detail in Chapter 5. Recall from Section 1.2 that VOCALExplore is an

interactive system that supports users in exploring their video datasets and building domain-

specific models over their videos. It is designed for datasets where no off-the-shelf pretrained

model exists to automatically extract semantic content from the videos. Users can browse

their videos either via a manual search, or by using VOCALExplore to automatically select
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videos that are expected to improve the domain-specific model when labeled. VOCALExplore

incorporates new labels to train updated models, as well as to pick a feature extractor that

works well for the given dataset.

Video querying systems. As discussed in Section 3.2.1, there are many recent examples

of video querying systems that support executing pretrained models as UDFs over videos

such as EVA [160], VIVA [126], and others [81, 33, 104, 28, 16]. However, in contrast with

VOCALExplore, these systems assume access to a pretrained model. Rather than guiding

the user through an exploration and labeling process, they focus on efficient execution of

queries over the outputs of pretrained models.

Like VOCALExplore, Panorama [170] does not assume a fixed vocabulary of classes.

However, rather than train a model capable of predicting new classes, it supports queries over

novel labels using embedding similarity. While VOCALExplore also uses embeddings as input

to its domain-specific models, Panorama requires an oracle model to train its embedding

network. VOCALExplore avoids the need for an oracle model by extracting embeddings from

models pretrained on other video datasets. Finally, Panorama focuses on recognition and

verification queries rather than exploration and domain-specific model building.

ExSample [113] facilitates exploration through videos by prioritizing which frames to

process with a pretrained model. ExSample assumes that the pretrained model used to answer

queries is expensive, so it minimizes latency by adaptively sampling frames to apply the model

to. While VOCALExplore also samples video segments, its task is to find video segments that

should be labeled to train a high-quality domain-specific model. Once VOCALExplore trains

a domain-specific model, ExSample could be used to find events of interest by selectively

applying the model over unlabeled video segments.

Cloud vendor offerings. Amazon Rekognition [6], Google Cloud Video AI [9], and Azure

Video Indexer [7] automatically index videos with common objects, scenes, or activities. They

also enable training new models for custom labels, but in contrast with VOCALExplore they

do not provide support to find examples to label. Rather, they expect users to come with

labeled examples of the objects or activities they want to train on.
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Data exploration. Current video browsing systems such as Cineast [127] and Vitrivr-

Explore [71] are optimized for known-item search (e.g., based on an example clip or sketch)

rather than exploration. Further, their query processing engines require the user to specify

which features to use and how to weight them, whereas VOCALExplore automatically picks

appropriate features for each dataset.

Lancet [168] combines active learning and semi-supervised learning (via label propagation),

and it is designed for complex data that is represented by embeddings. While VOCALExplore

uses pretrained models to extract embeddings for unlabeled data, Lancet jointly learns an

embedding model and classifier. This requires tuning for each dataset to achieve good results

and is expensive because embeddings must be updated when the model is retrained.

VQL [155] enables video exploration using the outputs of pretrained models, however it

assumes the model is from the same domain as the target exploration, whereas VOCALExplore

assumes no such model exists. Forager [8] enables efficient exploration and domain-specific

model training over images or individual video frames rather than video clips. Further, it does

not automatically pick a high-quality feature extractor for an arbitrary dataset. AIDE [47] is

an active learning-based system for interactive data exploration over relational data rather

than videos. It finds a SQL query over the data’s attributes that returns the subset of data

that is of interest to the user. While VOCALExplore trains a domain-specific model using

the labels provided by the user, AIDE trains binary classifiers that mark data points as

“interesting” or not.

Zero-shot ML and unsupervised learning. Image-language models capable of zero-shot

inference over images and text have recently proliferated, such as CLIP [123]. However, as we

show in Section 5.4, embeddings from video models outperform CLIP on datasets where the

labels cannot be determined by looking at a single frame, such as deer activity classification.

Thus far there has been limited work to develop video-language models. VideoCLIP [158] is

capable of zero-shot inference over videos, however it performs poorly on the datasets we
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evaluate VOCALExplore on (described in Table 5.2), achieving a macro F1 score of 0.04 for

Deer and 0.33 for K20. Given the low zero-shot accuracy of current video-language models,

it is necessary to implement domain-specific models.

VOCALExplore could be extended to incorporate unsupervised learning to leverage the

entire dataset, however current techniques for videos [52] require training a large model and

repeatedly extracting updated feature representations from videos, which is too slow for our

goal of an interactive system.

AutoML. VOCALExplore shares similarities with AutoML systems [68] as it supports train-

ing models by automatically selecting a feature extractor and sampling data. VOCALExplore,

however, does not attempt to maximize model quality via techniques that traditionally fall

under the umbrella of AutoML such as feature engineering [150, 89, 162], data augmenta-

tion [169], hyperparameter optimization [80], or model selection [92]. Instead, it rapidly

produces an initial model with minimal user-perceived latency. While VOCALExplore selects

between possible feature extractors, this problem is different from that of traditional feature

engineering. The input to VOCALExplore is pixel data and multiple candidate feature ex-

tractors that produce feature vectors, and the output is the feature extractor whose generated

features lead to the best model for the given domain. In contrast, feature engineering takes

as input features applicable to the domain and produces as output transformed features that

improve model quality.
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Chapter 4

TASM: A TILE-BASED STORAGE MANAGER FOR VIDEO
ANALYTICS

In this chapter we address the research question of how to build efficient storage managers

for video database management systems (VDBMSs), particularly when query workloads

request spatial subregions of frames. We study this question through the design, implemen-

tation, and evaluation of TASM, which is a storage manager for VDBMSs that optimizes

the physical layout of videos to enable spatial random access into frames. TASM adjusts the

layout of videos based on the observed query workload to reduce query execution latency

caused by decoding video frames to pixels. The work presented in this chapter appeared in

ICDE’21 [41].

The proliferation of inexpensive high-quality cameras coupled with recent advances in

machine learning and computer vision have enabled new applications on video data such as

automatic traffic analysis [103, 167], retail store planning [81], and drone analytics [149, 148].

This has led to a class of database systems specializing in video data management that

facilitate query processing over videos [170, 82, 121, 73, 159, 81].

A query over a video comprises two steps. First, read the video file from disk and decode it.

Second, process frames to identify and return pixels of interest or compute an aggregate. Most

systems, so far, have focused on accelerating and optimizing the second step [73, 159, 81, 20],

often assuming that the video is already decoded and stored in memory [81, 82, 104], which

is not feasible in practice.

The lack of efficient storage managers in existing video data management systems sig-

nificantly impacts queries. First, subframe selection queries (e.g., “Show me video snippets

cropped to show previously identified hummingbirds feeding on honeysuckles” ) are common
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and their execution bottleneck is at the storage layer since these queries are selections, reading

and returning pixels without additional operations. Second, object detection queries, which

extract new semantic information from a video (e.g., “Find all sightings of hummingbirds in

this new video”) require the execution of expensive deep learning models. To avoid applying

such models to as many frames as possible, query plans typically include an initial full scan

phase that applies a cheap predicate [104] or a specialized model [82] to the entire video to

filter uninteresting frames. The overhead of reading and decoding the video file is known to

significantly hurt the performance of this phase [86].

In this chapter, we introduce TASM, a storage manager that greatly improves the

performance of subframe selection queries and the full scan phase of object detection queries

by providing spatial random access within videos. TASM exploits the observation that objects

in videos frequently lie in subregions of video frames. For example, a traffic camera may be

oriented such that it partially captures the sky, so vehicles only appear in the lower portion

of a frame. Analysis applications such as running license plate recognition [103] or extracting

image patches for vehicle type recognition [103] only need to operate on the parts of the

frame containing vehicles. Privacy applications such as blurring license plates and faces [151]

or performing region of interest-based encryption [14] similarly only need to modify the parts

of the frame that contain sensitive objects.

Using its spatial random access capability, TASM enables reading from disk and decoding

only the parts of the frame that are interesting to queries. Providing such a capability is

difficult because the video encoding process introduces spatial and temporal dependencies

within and between frames. To address this problem, TASM subdivides video frames into

smaller pieces called tiles that can be processed independently. As shown in Figure 4.1, each

tile contains a rectangular subregion of the frame that can be decoded independently because

there are no spatial dependencies between tiles. In contrast, current state of the art incurs

the cost of decoding entire frames. TASM optimizes how a video is divided into tiles and

stored on disk to reduce the amount of work spent decoding and preprocessing parts of the
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(a) (b) (c)

Figure 4.1: Video partitioned into tiles. (a) shows the first j frames partitioned with a
uniform 1×2 layout. (b) shows frames partitioned with a non-uniform 2×2 layout. (c) shows
a directory hierarchy. Video stored at video/frames_1-j/tile0.mp4 contains the left half of
frames [1, j].

video not involved in a query. Through its use of tiles, TASM implements a new type of

optimization that we call semantic predicate pushdown where predicates are pushed below

the decoding step and only tiles of interest are read from disk, decoded, and processed.

Building TASM raises three challenges. The first challenge is fundamental, but important:

Given a video file with known semantic content (i.e., known object locations within video

frames) and a known query workload, TASM must decide on the optimal tile layout, choosing

from among layouts with uniform or non-uniform tiles and either fine-grained or coarse-grained

tiles. TASM must also decide whether different tile layouts should be used in different parts

of a video. To do this effectively, TASM must accurately estimate the cost of executing a

query with a given tile layout. TASM therefore drives its selection using a cost function

that balances the benefits of processing fewer pixels against the overhead of processing

more tiles for a given tile layout, video content, and query workload. In this chapter, we

experimentally demonstrate that non-uniform, fine-grained tiles outperform the other options.

Additionally, we find that optimizing the layout for short sections of the video (i.e., every

1 second) maximizes query performance with no storage overhead. Given a video file, TASM

thus splits it into 1 second fragments and selects the optimal fine-grained tile layout for each

fragment.
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The second challenge is that the semantic content and the query workload for a video

are typically discovered over time as users execute object detection and subframe selection

queries. TASM therefore lacks the information it needs to design optimal tile layouts. To

address this challenge, TASM incrementally updates a video’s tile layout as queries to detect

and retrieve objects are executed. TASM uses different tile layouts in different parts of

the video, and independently evolves the tile layout in each section. To do this, TASM

builds on techniques from database cracking [77, 61] and online indexing [27]. To decide

when to re-tile portions of the video and which layout to use, TASM maintains a limited

set of alternative layouts based on past queries. It then uses its cost function to accumulate

estimated performance improvements offered by these tile layouts as it observes queries.

Once the estimated improvement, also called regret [40], of a new layout offsets the cost of

reorganization, TASM re-tiles that portion of the video. By observing multiple queries before

making tiling decisions, TASM designs layouts optimized for multiple query types. For the

ornithology example, TASM could tile around hummingbirds and flowers that are likely to

attract them.

The third challenge lies in the initial phase that identifies objects of interest in a new video.

This phase is both expensive and requires at least one full scan over the video, generally

using a cheap model to filter frames or compute statistics. The models used in the full scan

phase are limited by video decoding and preprocessing throughput [86]. To address this final

challenge, TASM uses semantic predicate pushdown where the semantic predicate is not

a specific object type, but rather a general region of interest (ROI). TASM bootstraps an

initial tile layout using an inexpensive predicate that identifies ROIs within frames. This

predicate can use background segmentation to find foreground objects, motion vectors to

identify areas with large amounts of motion, or even a specialized neural network designed

to identify specific object types. When an object detection query is executed, TASM only

decodes the tiles that contain ROIs, hence filtering regions of the frame before the decode

step. TASM thus alleviates the bottleneck for the full scan phase of object detection queries
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by reducing the amount of data that must be decoded and preprocessed. TASM can be

directly incorporated into existing techniques and systems that accelerate the extraction of

semantic information from videos (e.g., [81, 20]).

In summary, the contributions of this chapter are as follows:

• We develop TASM, a new type of storage manager for video data that splits video

frames into independently queryable tiles. TASM optimizes the tile layout of a video file

based on its contents and the query workload. By doing so, TASM accelerates queries

that retrieve objects in videos while keeping storage overheads low and maintaining

good video quality.

• We develop new algorithms for TASM to dynamically evolve the video layout as

information about the video content and query workload becomes available over time.

• We extend TASM to cheaply profile videos and design an initial layout around ROIs

when a video is initially ingested. This initial tiling reduces the preprocessing work

required for object detection queries.

We evaluate TASM on a variety of videos and workloads and find that the layouts picked

by TASM speed up subframe selection queries by an average of 51% and up to 94% while

maintaining good quality, and that TASM automatically tunes layouts after just a small

number of queries to improve performance even when the workload is unknown. We also find

that TASM improves the throughput of the full scan phase of object detection by up to 2×

while maintaining high accuracy.

4.1 Tile-based storage manager design

In this section, we present the design of TASM, our tile-based storage manager. TASM is

designed to be the lowest layer in a VDBMS. Unlike existing storage managers that serve

requests for sequences of frames, TASM efficiently retrieves regions within frames to answer

queries for specific objects.
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Figure 4.2: Overview of how TASM integrates with a VDBMS.

Table 4.1: TASM API.

Method Parameters Result
Scan video, L : labels, T : times Pixel[]
AddMetadata video, frame, label, —

x1, y1, x2, y2

Figure 4.2 shows an overview of how TASM integrates with the rest of a VDBMS. TASM

incrementally populates a semantic index to store the bounding boxes associated with object

detections. While queries for statistics about the semantic content can use the semantic index

to avoid re-running expensive analysis over the frame contents, TASM uses this index to

generate tile layouts, split videos into tiles, store such physically tuned videos as files, and

answer content-based queries more efficiently by retrieving only relevant tiles from disk.

4.1.1 TASM API

TASM exposes the access methods shown in Table 4.1 The core method Scan (video, L, T ) per-

forms subframe selection by retrieving the pixels that satisfy a CNF predicate on the labels, L,

and an optional predicate on the time dimension, T . For example, L=(label=‘car’)∨(label=‘bicycle’)

retrieves pixels for both cars and bicycles.
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TASM also exposes an API to incorporate metadata generated during query processing

into the semantic index (discussed in the following section). The method

AddMetadata (video, frame, label, x1, y1, x2, y2) adds the bounding box (x1, y1, x2, y2) on

frame to the semantic index and associates it with the specified label.

4.1.2 Semantic index

TASM maintains metadata about the contents of videos in a semantic index. The semantic

information consists of labels associated with bounding boxes. Labels denote object types

and properties such as color. Bounding boxes locate an object within a frame. When the

query processor invokes TASM’s Scan method, TASM must efficiently retrieve bounding

box information associated with the specified parameters. The semantic index is therefore

implemented as a B-tree clustered on (video, label, time). The leaves contain information

about the bounding boxes and pointers to the encoded video tile(s) each box intersects based

on the associated tile layout.

The semantic index is populated through the AddMetadata method as object detection

queries execute. As we discuss in Section 4.2, TASM creates an initial layout around high-level

regions of interest within frames to speed up object detection queries. As those queries execute

and add more objects to the semantic index, TASM incrementally updates the tile layout to

maximize the performance of the observed query workload.

4.1.3 Tile-based data storage

Having captured the metadata about objects and other interesting areas in a video using

the semantic index, the next step is to leverage it to guide how the video data is encoded

with tiles. Two tiling approaches are possible: uniform-sized tiles, or non-uniform tiles whose

dimensions are set based on the locations of objects in the video. Both techniques can improve

query performance, but tile layouts that are designed around the objects in frames can reduce

the number of non-object pixels that have to be decoded. Figure 4.3 shows these different

tiling strategies on an example frame.
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(a) Uniform 2x4 layout (b) Layout around cars & people

(c) Tile layout around cars (d) Tile layout around people

Figure 4.3: Various ways to tile a frame. (a) is a uniform layout, while (b)-(d) are non-uniform
layouts. Depending on which objects are targeted, different layouts will be more efficient.

Uniform layouts

The uniform layout approach divides frames into tiles with equal dimensions. This approach

does not leverage the semantic index, but if objects in the video are small relative to the

total frame size, they will likely lie in a subset of the tiles. However, an object can intersect

multiple tiles, as shown in Figure 4.3a where part of the person lies in two tiles. While TASM

decodes fewer pixels than the entire frame, it still must process many pixels that are not

requested by the query. Further, the visual quality of the video is reduced because in general

a large number of uniform tiles are required to improve query performance, as shown in

Figure 4.6b.

Non-uniform layouts

TASM creates non-uniform layouts with tile dimensions such that objects targeted by queries

lie within a single tile. There are a number of ways a given tile layout can benefit multiple

types of queries. If a large portion of the frame does not contain objects of interest, the

layout can be designed such that this region does not have to be processed. If objects of
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(a) Fine-grained tiles (b) Coarse-grained tiles

Figure 4.4: Non-uniform tile layout around cars using (a) fine-grained tiles, or (b) coarse-
grained tiles.

interest appear near each other, a single tile around this region benefits queries for any of

these objects. If objects are not nearby but do appear in clusters, creating a tile around each

cluster can also accelerate queries for these objects.

Figure 4.4 shows examples of non-uniform layouts around cars. For a set of bounding

boxes B, TASM picks tile boundaries guided by a desired tile granularity. For coarse-grained

tiles (Figure 4.4b), it places all B within a single, large tile. For fine-grained tiles (Figure 4.4a),

it attempts to isolate non-intersecting b ∈ B into smaller tiles while respecting minimum tile

dimensions specified by the codec and ensuring that no tile boundary intersects any b ∈ B.

TASM does not limit the number of tiles in a layout. To modulate quality, this could be

made a user-specified setting; we leave this as future work. TASM processes fewer pixels

from a video stored with fine-grained tiles because the tiles do not contain the parts of the

frame between objects, but it processes more individual tiles because multiple tiles in each

frame may contain objects. TASM estimates the overall effectiveness of a layout using a cost

function that combines these two metrics, as described in Section 4.2.1.

In addition to deciding the tile granularity, TASM also chooses which objects to design

the tile layout around, and therefore which bounding boxes to include in B. The best choice

depends on the queries. For example, if queries target people, a layout around just people, as

in Figure 4.3d, is more efficient than a layout around both cars and people (Figure 4.3b). We

explain how TASM makes this choice in Section 4.2.
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(a) Long layout duration (b) Short layout duration

Figure 4.5: (a) shows how more pixels must be decoded on each individual frame when a tile
layout extends for many frames compared to (b) where fewer frames have the same layout.
The boxes show the location of the car on later frames, and the dashed lines show the tile
boundaries. The striped region indicates the tile that would be decoded for a query targeting
cars.

Temporally-changing layouts

Different tile layouts, uniform and non-uniform, can be used throughout a video; the layout

can change as often as every GOP. TASM uses different layouts throughout a video to adapt

to objects as they move.

The size of these temporal sections is determined by the layout duration, which refers to

the number of frames within a sequence of tiles (SOT). Layout duration is separate from

GOP length; while layout duration cannot be shorter than a GOP, it can extend over multiple

GOPs. The layout duration affects the sizes of tiles in non-uniform layouts, as shown in

Figure 4.5. In general, longer tile layout durations have lower storage costs but lead to larger

tiles because TASM must consider more object bounding boxes as objects move and new

objects appear. Therefore, TASM must decode more data on each frame. We evaluate this

tradeoff in Figure 4.9.
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Not tiling

Layouts that require TASM to decode a similar number of pixels as when the video is not

tiled can actually slow queries down due to the implementation complexities that arise from

working with multiple tiles. Therefore, TASM may opt to not tile GOPs when the gain in

performance does not exceed a threshold value.

Data storage and retrieval

TASM stores each tile as a separate video file, as shown in Figure 4.1. If different layouts are

used throughout the video, each tile video contains only the frames with that layout. If only

a segment of a video is ever queried, TASM reads and tiles just the frames in that segment.

This storage structure facilitates the ingestion of new videos because each video’s data is

stored separately. Additionally, because each GOP is also stored separately, to modify an

existing video, updated GOPs can replace original ones, or new GOPs can be appended.

TASM retrieves just the tiles containing the objects targeted by queries. When complete

frames are requested, TASM applies homomorphic stitching (see Section 2.1). This stitching

process can also be used to efficiently convert the tiles into a codec-compliant video that

other applications can interact with.

4.2 Tiling strategies

TASM automatically tunes the tile layout of a video to improve query performance. The

objects in a video and workloads, or the set of queries presented to a VDBMS, may be known

or unknown. When TASM has full knowledge of both the objects targeted by queries and the

locations of these objects in video frames, TASM designs tile layouts before queries are processed,

as described in Section 4.2.2. In practice, the objects targeted by queries and their locations

are initially unknown. TASM uses techniques from online indexing to incrementally design
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layouts based on prior queries and the objects detected so far, as described in Section 4.2.3.

Finally, TASM also creates an efficient, initial tiling before any queries are executed as we

present in Section 4.2.4.

4.2.1 Notation and cost function

We first introduce notation that will be used throughout this section. A query workload

Q = (q1, ..., qn) is a list of queries, where each query requests pixels belonging to specified

object classes, possibly with temporal constraints. The set Oqi represents the objects requested

by an individual query qi, while OQ = ∪qi∈QOqi is the set of all objects targeted by Q.

A video v = s0⊕· · ·⊕ sn is a series of concatenated, non-overlapping, non-empty sequence

of tiles (SOTs; see Section 2.1), si. A video layout specification L=si 7→ L maps each

SOT to a tile layout, L, which specifies how frames are partitioned into tiles, as described

in Section 2.1. If a SOT is not tiled, then si 7→ω, where ω refers to a 1×1 tile layout.

partition(s,O) refers to tiling the SOT using a non-uniform layout around the bounding

boxes associated with objects in the set O using the techniques from Section 4.1.3. For

example, partition(s, {car, person}) refers to creating a layout around cars and people, as

in Figure 4.3b.

TASM implements a “what-if” interface [31] to estimate the cost of executing queries

with alternative layouts using a cost function. The estimated cost of executing query q

over SOT s encoded with layout L is C(s, q, L)=β · P (s, q, L) + γ · T (s, q, L). The cost C is

proportional to the number of pixels P , and the number of tiles T that are decoded, both of

which depend on the query and layout. To validate this cost function and estimate β and γ

to use in experiments, we fit a linear model to the decode times for over 1,400 video, query,

and non-uniform layout combinations used in the microbenchmarks in Section 4.3.2. The

resulting model achieves R2=0.996. The exact values of β and γ will depend on the system;

TASM can re-estimate them by generating a number of layouts from a small sample of videos

and measuring execution time.
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Finally, the cost of executing q over video v encoded with layout specification L is the

sum of its SOT costs (i.e., C(v, q,L )=
∑

si∈v C(si, q,L (si))) and the cost of executing an

entire query workload is the sum over all individual queries, C(v,Q,L )=
∑

qi∈QC(v, qi,L ).

The difference in estimated query time for query q over SOT s between layouts L and L′ is

∆(q, L, L′, s)=C(s, q, L)−C(s, q, L′), or simply ∆(q, L, L′) when s is obvious from the context.

The cost of (re-)encoding SOT s with layout L is R(s, L).

Using this cost function, the maximum expected improvement for an individual query

is inversely proportional to the object density, which determines the number of pixels (P )

and tiles (T ). Tiling therefore leads to negligible improvement—or even regressions—when

objects are dense and occupy a large fraction of a frame. In those cases, TASM does not tile a

video at all as we discuss in Section 4.2.2. In contrast, tiling yields large improvements when

objects are sparse. Figure 4.10 shows the linear relationship. It shows how, for a given video

and query, non-uniform tiling reduces the number of pixels that must be decoded, which

directly increases performance. TASM’s regret-based approach described in Section 4.2.3

converges to such good layouts over time as queries are executed. Figure 4.8 also shows how

object densities affect performance.

4.2.2 Known queries and known objects

We first present TASM’s fundamental video layout optimization assuming a known workload,

meaning that TASM knows which objects will be queried, and the semantic index contains

their locations. These assumptions are unlikely to hold in practice, and we relax them in the

next section.

Given a workload and a complete semantic index, TASM decides on SOT boundaries

then picks a tile layout for each SOT to minimize execution costs over the entire workload.

More formally, the goal is to partition a video into SOTs, v = s0 ⊕ · · · ⊕ sn and find

L ∗ = argminLC(v,Q,L ).
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The experiment in Figure 4.9 motivates us to create small SOTs because they perform

best. We therefore partition the video such that each GOP corresponds to a SOT in the tiled

video. This produces a tiled video with a similar storage cost as the untiled video because it

has the same number of keyframes.

It would be too expensive for TASM to consider every possible layout, uniform and non-

uniform, for a given SOT. However, tile layouts that isolate the queried objects should improve

performance the most. Additionally, we empirically demonstrate that non-uniform layouts

outperform uniform layouts (see Figure 4.6a), and that fine-grained layouts outperform coarse-

grained layouts (see Figure 4.8). Therefore, for each si, TASM only considers a fine-grained,

non-uniform layout around the objects targeted by queries in that SOT, Osi ⊆ OQ.

TASM’s optimization process proceeds in two steps. First, for each si and associated

layout, L=partition(si, Osi), TASM estimates if re-tiling the SOT with L will improve

query performance at all. As described in Section 4.1.3, TASM does not tile si when

P (si, Q, L)>α·P (si, Q, ω), where α specifies how much a tile layout must reduce the amount

of decoding work compared to an untiled video (i.e., L=ω). In our experiments we find α=0.8

to be a good threshold. As shown in Figure 4.10, this value of α prevents TASM from picking

tile layouts that would slow down query processing, but does not cause it to ignore layouts

that would have significantly sped up queries. Second, from among all such layouts, TASM

selects the layout with the smallest estimated cost for the workload.

4.2.3 Unknown queries and unknown objects

In practice, objects targeted by queries and their locations are initially unknown. Physically

tuning the tile layout is then similar to the online index selection problem in relational

databases [27]. In both, the system reorganizes physical data or builds indices with the goal

of accelerating unknown future queries. However, while a nonclustered index can benefit

queries over relational data because there are many natural random access points, video data
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Algorithm 1 Pseudocode for incrementally adjusting layouts

1: OQ′ ← ∅, Lalt ← ∅, ∀sj ∈ v : δj ← 0, Lj
0 ← ω

2: for all qi ∈ Q do
3: OQ′ ← OQ′ ∪Oqi

4: L′
alt = P(OQ′)

5: for all Lk ∈ L′
alt − Lalt do

6: for m = 0, . . . , i− 1 do
7: ∀sj ∈ v : δjk ← δjk +∆(qm, L

j
m, Lk)

8: Lalt ← L′
alt

9: for all Lk ∈ Lalt do
10: ∀sj ∈ v : δjk ← δjk +∆(qi, L

j
i , Lk)

11: for all sj ∈ v do
12: k∗ ← arg maxkδ

j
k

13: if δjk∗ > η ·R(sj, Lk∗) then
14: Retile sj with Lk∗ . δj ← 0

requires physical reorganization to introduce useful random access opportunities. As TASM

observes queries and learns the locations of objects, it makes incremental changes to the

video’s layout specification to introduce these random access points.

TASM optimizes the layout of each SOT independently because each SOT’s contribution

to query time and the cost to re-encode it are independent of other SOTs. TASM optimizes

the layout of an SOT based on the queries that have targeted it so far. TASM may even tile it

multiple times with different layouts as the semantic index gains more complete information

and TASM observes queries that target additional objects.

As TASM re-encodes portions of the video, the SOT sj transitions through a series of

layouts: L=[Lj
0, · · · , Lj

n]. TASM’s goal is to pick a sequence of layouts that minimizes the

total execution cost over the workload by finding L∗=argminL

∑
qi∈Q(C(sj, qi, L

j
i )+R(sj, L

j
i )).

The first term measures the cost of executing the query with the current layout, and the

second term measures the cost of transitioning the SOT to that layout. If the layout does not

change (i.e., Lj
i−1=Lj

i ), then R(sj, L
j
i )=0. However, future queries are unknown, so TASM

must pick Lj
i+1 without knowing qi+1. Therefore, TASM uses heuristics to pick a sequence of

layouts, L̂, that approximates L∗. While there are no guarantees on how close L̂ is to L∗,
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we show in Section 4.3.3 that empirically these layouts perform well. One such heuristic is

guided by the observation that many applications query for similar objects over time. TASM

therefore creates layouts optimized for objects it has seen so far. More formally, let OQ′

be the set of objects from Q′=(q0, · · · , qi) ⊆ Q. TASM only considers non-uniform layouts

around objects in OQ′ for Li+1.

Now consider a future query qj that targets a new class of object: Oqj ̸⊆OQ′ . While Li+1 will

not be optimized for Oqj , TASM attempts to create layouts that will not hurt the performance

of queries for new types of objects. It does this by creating fine-grained tile layouts because,

as shown in Figure 4.8, fine-grained tiles lead to better query performance than coarse-grained

tiles when queries target new types of objects (partition(s,O′), O′∩Oqj=∅). Objects that

are not considered when designing the tile layout may intersect multiple tiles, and it is more

efficient for TASM to decode all intersecting tiles when the tiles are small, as in fine-grained

layouts, than when the tiles are large, as in coarse-grained layouts.

At a high level, TASM tracks alternative layouts based on the objects targeted by past

queries and identifies potentially good layouts from this set by estimating their performance on

observed queries. TASM’s incremental tiling algorithm builds on related regret-minimization

techniques [40, 27]. Regret captures the potential utility of alternative indices or layouts

over the observed query history when future queries are unknown. As each query executes,

TASM accumulates regret δjk for each SOT sj and alternative layout Lk, which measures the

total estimated performance improvement compared to the current tile layout over the query

history.

Algorithm 1 shows the pseudocode of our core algorithm for incremental tile layout

optimization using regret minimization. Initially, TASM has not seen queries for any objects,

so it does not have any alternative layouts to consider, and each SOT is untiled (line 1). After

each query, TASM updates the set of seen objects and alternative layouts (lines 3-4). Each

potential layout is a subset of the seen objects that have location information in the semantic

index. TASM then accumulates regret for each potential layout by computing ∆ and adding

it to δ. ∆ measures the estimated performance improvement of executing the query with
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an alternative layout rather than the current layout, using the cost function described in

Section 4.2.1: ∆(q, L, L′) = C(s, q, L)− C(s, q, L′). Layouts with high ∆ values would likely

reduce query costs, while layouts with low or negative values could hurt query performance.

TASM accumulates these per-query ∆’s into regret to estimate which layouts would benefit

the entire query workload.

TASM first retroactively accumulates regret for new layouts based on the previous queries

(lines 5-7), and then accumulates regret for the current query (lines 9-10). Finally, TASM

weighs the performance improvements against the estimated cost of transitioning a SOT to a

new layout. In lines 11-14, TASM only re-tiles sj once its regret exceeds some proportion of

its estimated retiling cost: δjk > η ·R(sj, Lk).

As an example, consider a city planning application looking through traffic videos for

instances where both cars and pedestrians were in the crosswalk at the same time. Initially

the traffic video is untiled, so for each si, L (si)=ω. Suppose the first query requests cars

in s0. TASM updates Lalt={{car}} to consider layouts around cars. TASM accumulates

regret for s0 as δ0car=∆(q0, ω,partition(s0, {car})), and it is positive because tiling around

cars would accelerate the query. Suppose the next query is for people in s0. TASM updates

Lalt={{car}, {person}, {car, person}} to consider layouts around cars and people. The

regret for partition(s0, {car}) on q1 will likely be negative because layouts around anything

other than the query object tend to perform poorly (see Figure 4.8b), so δ0car decreases.

TASM retroactively accumulates regret for the new layouts. The accumulated regret for

partition(s0, {person}) will be similar to δ0car because it would accelerate q1 and hurt q0.

partition(s0, {car, person}) has positive regret for both q0 and q1, so after both queries it

has the largest accumulated regret.

The threshold η (see line 13) determines how quickly TASM re-tiles the video after

observing queries for different objects. Using η = 0 risks wasting resources to re-tile SOTs.

The work to re-tile could be wasted if a SOT is never queried again because no queries will

experience improved performance from the tiled layout. The work to re-tile can also be

wasted if queries target different objects because TASM will re-tile after each query with
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layouts optimized for just that query. Values of η > 0 enable TASM to observe multiple

queries before picking layouts, so the layouts can be optimized for multiple types of objects.

Observing multiple queries before committing to re-tiling also enables TASM to avoid creating

layouts optimized for objects that are infrequently queried because layouts around more

representative objects will accumulate more regret. However, if the value of η is too large,

it reduces the number of queries whose performance benefits from the tiled layout. Using a

value of η = 1 is similar to the logic used in the online indexing algorithm in [27], and we

find it generally works well in this scenario, as shown in Figure 4.11. If the types of objects

queries target changes, this incremental algorithm will take some amount of time to adjust to

the new query distribution, depending on the value of η.

4.2.4 ROI tiling

Initially, nothing is known about a video. As we discussed in ??, in many systems, the

first object detection query performs a full scan and applies a simple predicate to filter

away uninteresting frames or compute statistics. Because of the speed of these initial filters,

decoding and preprocessing is the bottleneck for this phase [86]. To accelerate this full scan

phase, TASM also uses predicate pushdown. Instead of creating tiles around objects, however,

TASM creates tiles around more general regions of interest (ROIs), where objects are expected

to be located. ROIs are defined by bounding boxes, so TASM uses the same tiling strategies

described in previous sections. TASM accepts a user-defined predicate that detects ROIs

and inserts the associated bounding boxes into TASM’s semantic index. Examples include

applying background subtraction to identify foreground objects, running specialized models

trained to identify a specific object type [104, 82], extracting motion vectors to isolate areas

with moving objects, or any other inexpensive computation. More expensive predicates may

also be used by applying them every n frames, as in [20].
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Table 4.2: Datasets used to evaluate TASM

Video dataset Duration (sec.) Res. Per-frame Frequently
object coverage (%) occurring objects

Visual Road [66]† 540–900 2K, 4K 0.06–10 car, person
Netflix public [97] 6 2K 0.32–49 person, car, bird
Netflix OS [131]* 720 2K, 4K 25–45 person, car, sheep
XIPH [4] 4–20 2K, 4K 2–59 car, person, boat
MOT16 [110] 15–30 2K 3–36 car, person
El Fuente [88] 480 (full) 4K 1–47 person, car,

15–45 (scenes) boat, bicycle
† Synthetic videos * Both real and synthetic videos

Generating ROIs and creating tiles around these regions are operations that a compute-

enabled camera can perform directly as it first encodes the video. Cameras are now capable

of running these lightweight predicates as video is captured [2]. For example, specialized

background subtractor modules can run at over 20 FPS on low-end hardware [165]. This

optimization is designed to be implemented on the edge.

Through its semantic predicate pushdown optimization, TASM improves the performance

of object detection queries by only decoding tiles that contain ROIs. As we show in Sec-

tion 4.3.5, an initial ROI layout in combination with semantic predicate pushdown can

significantly accelerate the full scan phase of object detection queries while maintaining

accuracy.

4.3 Evaluation

We implemented a prototype of TASM in C++ integrated with LightDB [65]. TASM encodes

and decodes videos using NVENCODE/NVDECODE [117] with the HEVC codec. We

perform experiments on a single node running Ubuntu 16.04 with an Intel i7-6800K processor

and an Nvidia P5000 GPU. Our prototype does not parallelize encoding or decoding multiple

tiles at once. We use FFmpeg [23] to measure video quality.
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We evaluate TASM on both real and synthetic videos with a variety of resolutions and

contents as shown in Table 4.2. Visual Road videos simulate traffic cameras. They include

stationary videos as well as videos taken from a roof-mounted camera (the latter created using

a modified Visual Road generator [66]) The Netflix datasets primarily show scenes of people.

The XIPH dataset captures scenes ranging from a football game to a kayaker. The MOT16

dataset contains busy city scenes with many people and cars. The El Fuente video contains

a variety of scenes (city squares, crowds dancing, car traffic). In addition to evaluating the

full El Fuente video, we also manually decompose it into individual scenes using the scene

boundaries specified in [88] and evaluate each independently. We do not evaluate on videos

with resolution below 2K because we found that decoding low-resolution video did not exhibit

significant overhead. All experiments populate the semantic index with object detections

from YOLOv3 [124], except for the MOT16 videos where we use the detections from the

dataset [110]. We store the semantic index using SQLite [5], and TASM maps bounding boxes

to tiles at query time.

The queries used in the microbenchmarks evaluated in Section 4.3.1 and 4.3.2 are subframe

selection queries of the form “SELECT o FROM v”, which cause TASM to decode all pixels

belonging to object class o in video v. The queries used in the workloads in Section 4.3.3

additionally include a temporal predicate (i.e., “SELECT o FROM v WHERE start < t < end”). 1

Reported query times include both the index look-up time and the time to read from disk and

decode the tiles.

Unless otherwise specified, queries target the most frequently occurring objects in each

video. When videos primarily show a single type of object (e.g., some Netflix public dataset

videos show only people), queries target just that object. When videos feature multiple types

of objects with similar frequency (e.g., the Visual Road videos show similar numbers of cars

and people), we evaluate on queries that target each object type. Queries over the MOT16

videos retrieve cars and people because the bounding boxes that come with the dataset

1While we use SQL to explain the experiments because of its familiarity to most readers, other language
bindings on TASM’s API are possible; the language itself is not the focus of this paper.
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(a) (b)

Figure 4.6: (a) shows the improvement in query time achieved by tiling the video using the
fastest uniform and non-uniform layout for each video and query object. (b) shows the quality
of these layouts compared to the untiled video.

are unlabeled, so we store them in the semantic index with a generic label of “object”. For

all graphs, the bars show the median value across videos, while the error bars denote the

interquartile range (IQR) across videos. The performance differs across videos because they

have different object densities, which affects TASM’s efficacy as described in Section 4.3.2.

However, the runtime for a single query on any video has low variance. The standard deviation

for multiple executions of the same query is < 1% of that query’s mean execution time.

4.3.1 Tiling effect on decode cost and quality

We first evaluate whether tiling can provide meaningful improvements in query time without

degrading the visual quality of videos. We find that non-uniform layouts yield better query

performance and higher video quality than uniform layouts. Figure 4.6 only shows results

for videos and queries that benefit from tiling, using the layouts that empirically led to the

greatest performance improvement. We discuss how TASM determines whether to tile a video

in Section 4.3.2 and how it selects the optimal tile layout in Section 4.3.2 and Section 4.3.3.
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Figure 4.7: This figure shows improvement in query time achieved with various uniform
layouts compared to the untiled video.

Figure 4.6a shows the improvement in query time achieved by operating over a tiled video

compared to a video that is not tiled. For a given video and query object, a non-uniform

layout provides an average of 10% improvement and up to a 35% improvement over the best

uniform layout.

Figure 4.6b shows that tiling maintains good visual quality when the tiles are stitched to

recover the full frame. We measure quality using peak signal-to-noise ratio (PSNR), where

values above 30 dB are acceptable [101], and videos with values ≥ 40 dB are perceived to

have good quality [146, 97]. PSNR was computed over the entire tiled video stitched using

homomorphic stitching [65] and compared against the untiled video. For comparison, the

median PSNR after re-encoding the videos without tiles is 46 dB. Non-uniform layouts achieve

an average PSNR of 40 DB, while uniform layouts have an average of 36 dB. PSNR is likely

lower for the uniform layouts because the layouts with the largest performance improvement

have many tiles (the median number of tiles is 25), and therefore a large number of tile

boundaries where quality is degraded.
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4.3.2 Microbenchmarks

Uniform tiles

We dig deeper into the results of Figure 4.6 and show in Figure 4.7 the performance improve-

ments when varying the number of uniform tiles on the same set of videos. We increase

the number of uniform tiles first by increasing the number of rows and columns together,

and then by only increasing the number of columns once the height of each tile reached the

minimum height allowed by the decoder. Figure 4.7 shows that creating more uniform tiles

initially improves query time because tiles contain fewer non-object pixels. However, as the

number of tiles grows, the per-tile decode overhead begins to slow queries down. Additionally,

variation in performance across videos and queries increases with the number of tiles, as indicated

by the widening IQR bars, demonstrating that the same uniform layout does not work equally

well on all videos and queries.

Non-uniform tiles

The performance of non-uniform layouts depends on the objects queries target and the objects

considered when designing the tile layout. Figure 4.8 shows results from different settings.

We classify layouts as same, different, all, or superset. “Same” describes a tile layout around

the query object. “Different” describes a layout around an object different from the query

object (e.g., tiling around people but querying for cars). “All” describes tiling around all

objects detected in the video. Finally, “superset” evaluates tiling around the target object

and only 1-2 other, frequently occurring objects (e.g., tiling around cars and people, as in

Figure 4.3b). We further classify videos as sparse, where the average area occupied by all

objects in a frame is <20%, or dense, where it is ≥20%. Figure 4.8 shows the results. The

“different” and “superset” categories only use Visual Road videos and El Fuente scenes that

feature multiple object classes; the other videos have a single primary object type.
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(a) Same (b) Different (c) All (d) Superset

Figure 4.8: The effect of tile granularity on query time compared to untiled videos. All videos
used a one second tile layout duration. Objects occupy <20% of each frame on average in
“sparse”, and ≥20% in “dense” videos.

Figure 4.8 shows that tiling generally improves performance in sparse videos more than

dense videos, and tile granularity has the largest impact when objects are dense. Figure 4.8a

shows that when the tile layout is constructed around the query object, both coarse- and

fine-grained tiles significantly improve query performance. Figure 4.8b shows that tiling

around an object type different from the query object hurts performance when objects are

dense. This happens when one object is more dense than the others. Querying for the dense

object using a layout around the sparse object requires TASM to decode most of the tiles

because the dense object occupies much of each frame. Querying for a sparse object using a

layout around the dense object also requires most of the frame to be decoded because tiles

around dense objects tend to be large. TASM avoids creating these ineffective layouts around

dense objects using the decision rule from Section 4.2.2, which we evaluate in Section 4.3.2.

Improvement in sparse videos is reduced, but still positive; although the query object may

intersect multiple tiles, TASM still performs less work if the tiles are small.
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Figure 4.9: This plot shows the effect of SOT duration on query time and storage cost. Tiled
videos were encoded with fine-grained tiles and a GOP length equal to the SOT duration.

Figure 4.8c shows that tiling around all objects is effective only when objects are sparse.

When objects are dense, median improvement is 1% worse for coarse-grained tiles. Figure 4.8d

shows that the “superset” strategy performs similarly to “all”; considering only two or three

types of objects rather than all objects when designing layouts achieves small performance

gains.

These results show that tiling around anything other than the query object slows queries

down compared to tiling around the query object. However, fine-grained tiles can still lead

to moderate performance improvements in these cases because they are smaller, so fewer

non-object pixels must be decoded.

Sequence of tiles (SOT) duration. Here we evaluate the impact of SOT duration

(the number of frames with the same layout) on the performance of non-uniform tile layouts.

SOT duration affects the sizes of both tiles and the video. Layout changes must happen at

GOP boundaries, so short SOTs require short GOPs and lead to larger storage sizes (see

Section 2.1).
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Figure 4.10: Ratio of the number of pixels decoded with a non-uniform layout to the number
decoded without tiles vs. performance improvement. Each point represents a video, query
object, and non-uniform layout. Points below the horizontal line at 0% represent cases where
queries ran more slowly on the tiled video. Points to the right of the vertical line at 0.8
represent videos that would not be tiled when the threshold for tiling requires the ratio to be
< 0.8.

Figure 4.9 shows the effect of SOT duration on query performance and storage size. The

tiled videos are encoded with a GOP length equal to the SOT duration. We compare query

performance and storage size to an untiled video encoded with one-second GOPs (the default

GOP duration in most video encoders). Shorter SOT durations lead to larger improvements in

query performance because the tiles are smaller and contain fewer non-object pixels. However,

shorter SOTs lead to larger storage costs because there are more keyframes. Note that we

see a small improvement in the size of the tiled video with one-second SOTs compared to

the original video (also encoded with one-second GOPs); this is due to video encoders being

inherently lossy and having the ability to exploit additional compression opportunities during

recompression. These results demonstrate that setting SOT duration to GOP length is

optimal since it leads to the best performance without storage overhead.
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Not tiling

There are videos where tiling is an ineffective strategy to improve query performance. To

identify cases where tiling should not be used, we evaluate the effectiveness of a decision rule

based on the number of pixels decoded with a given layout. Figure 4.10 plots the improvement

in query time against the ratio of pixels decoded with a non-uniform layout compared to

the untiled video (i.e., P (v, q, L)/P (v, q, ω)) for various videos and query objects. The figure

includes a sampling of diverse layouts, both optimal and suboptimal. The “same” category

includes the greatest variety of layouts measured, including suboptimal layouts. While many

points overlap, the key observation is that queries for sparse objects primarily lie in the

top-left quadrant. This aligns with the expected improvements based on the cost function

described in Section 4.2.1. Using a threshold of not tiling when P (v, q, L)/P (v, q, ω)>0.8

captures nearly all tile layouts that slow queries down (i.e., the improvement is negative). A

small number of videos achieve minor performance improvements (<20%) above this threshold

(the upper-right quadrant).

4.3.3 Incremental tiling

We next evaluate strategies for incremental tiling over various subframe selection workloads,

which we construct to represent possible query patterns over videos. The baseline strategies

are not tiling the video (“Not tiled”) and tiling around all detected objects before queries

are processed (“All objects”). We compare against two incremental strategies. “Incremental,

more” re-tiles each GOP with a non-uniform, fine-grained layout around all object classes

that have been queried so far. For example, if a GOP were queried for cars and then people,

TASM would first tile around cars and then re-tile around cars and people. Finally, we

evaluate the regret-based approach from Section 4.2.3 (“Incremental, regret”). In this strategy,

TASM tracks alternative layouts based on the objects queried so far, and re-tiles GOPs once

the regret for a layout exceeds the estimated re-encoding cost if the layout is not expected to

hurt performance.
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TASM estimates the layout will hurt performance if, for any query,

P (si, qi, L)≥α·P (si, qi, ω), where α=0.8 (see Section 4.2.2). TASM estimates the re-

gret using the cost function described in Section 4.2.1. Similarly, the re-encoding cost is

estimated using a linear model based on the number of pixels being encoded. It was fit based

on the time to encode videos with the various layouts used in the microbenchmarks.

As we are focused on the operations at the storage level, we measure the cumulative time

to read video from disk and decode it to answer each query, and re-tile it with new layouts

as needed. The time to initially tile the video around all objects is included with the first

query for the “all objects” strategy. We normalize each query’s cost to the time to execute

that query on the untiled video, so each query with the “not tiled” strategy has a cost of 1.

The lines in Figure 4.11 show the median over all videos the workload was evaluated on. We

evaluate the first four workloads on Visual Road videos, which have sparse objects, and the

last two on videos and scenes with dense objects.

As Figure 4.11 shows, the regret-based approach consistently performs best across all

evaluated methods, except for Workload 1. TASM’s regret-based approach was designed

for more dynamic workloads than Workload 1 where the same query is evaluated across the

entire video. For this type of workload, running object detection and tiling up front is a

reasonable strategy because all of the results will be used.

We now drill down in the results of each workload. Queries in Workload 1 target a

single object class across the entire video. The workload consists of 100 one-minute queries

for cars uniformly distributed over each Visual Road video. As shown in Figure 4.11a and

discussed above, pre-tiling around all objects performs well when queries target the entire

video. Incrementally tiling without regret also performs well because all queries target the

same object, so SOTs are re-tiled to a layout that speeds up future queries. The regret-based

approach performs poorly over a small number of queries because TASM must observe multiple

queries over the same SOT before enough regret accumulates to re-tile. This requires many total

queries to be executed when they are uniformly distributed over the entire video.
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Figure 4.11: Cumulative decode and re-tiling time for various workloads. Values are normalized
to the time to execute each query over the untiled videos.
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We next evaluate Workload 2, which examines the performance when queries are restricted

to a subset of the video. Workload 2 consists of 100 one-minute queries over the first 25%

of each Visual Road video. Each query has a 50% chance of being for cars or people. As

shown in Figure 4.11b, both incremental strategies perform similarly well. Both outperform

pre-tiling the entire video around all objects, which is wasteful when only a small portion of

the video is ever queried.

Workload 3 measures the performance when queries are biased towards one section of a

video and particular object types. It consists of 100 queries over the Visual Road videos,

where each query has a 47.5% chance of being for cars or people, and a 5% chance of being for

traffic lights. We exclude one 4K video that did not contain a traffic light. The start frame of

each query is picked following a Zipfian distribution, so queries are more likely to target the

beginning of the video. As shown in Figure 4.11c, the regret-based approach performs better

than incrementally tiling around more objects because it spends less time re-tiling sections of

the video with tile layouts designed around the rarely-queried object.

Workload 4 measures performance when queries target different objects over time. It

consists of 200 one-minute queries following a Zipfian distribution over the Visual Road

videos. The middle third of the queries target people, and the rest target cars. As shown

in Figure 4.11d, the incremental, regret-based approach performs well and does not exhibit

large jumps in decode and re-tiling time when the query object changes.

Workload 5 measures performance when tiling is not effective. It is evaluated on select

videos from the Xiph, Netflix public dataset, and scenes from the El Fuente video that contain

diverse scenes with many types of objects (e.g., markets with people, cars, and food). The

queries are uniformly distributed, and each randomly targets one of the video’s primary

objects within one-second. As shown in Figure 4.11e, only the regret-based approach keeps

costs similar to not tiling. “All objects” performs poorly because objects are dense in these

scenes. “Incremental, more” performs poorly because it spends time re-tiling with layouts

that perform similarly to the untiled video.
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Figure 4.12: Speedup achieved with TASM over the Visual Road object detection workload.
The lines show the median speedup over six orderings of the queries.

Finally, Workload 6 measures performance when tiling around the query object is beneficial,

but tiling around all objects is not. It is evaluated on select videos from the Netflix public

dataset and scenes from the full El Fuente video that fit this criteria. The queries are

uniformly distributed, and each targets the same object class over one second. As shown in

Figure 4.11f, both incremental strategies eventually achieve layouts that perform better than

not tiling. “All objects” performs poorly because objects in these videos are dense.

4.3.4 Macrobenchmark

Beyond the decoding benchmarks, we also evaluate TASM’s performance on an end-to-end

workload from the Visual Road benchmark [66], specifically Q7. Each query in the workload

specifies a temporal range and a set of object classes. The following tasks are executed per-

query: (i) detect objects if not previously done on the specified temporal range, (ii) draw boxes

around the specified object classes, and (iii) encode the modified frames. The original Visual

Road query involves masking the background pixels, but we omit that step to demonstrate

TASM’s benefits when users want to view full frames. We compare the performance of

executing this query on untiled frames to TASM with incremental, regret-based tiling. We
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Figure 4.13: Specialized model preprocessing throughput

detect objects by running YOLOv3 [124] every three frames. TASM adds bounding boxes by

decoding only the tiles that contain the requested objects, drawing the boxes, then re-encoding

these tiles. TASM outputs the full frame by homomorphically stitching the modified tiles

that contain the object with the original tiles that do not contain the object.

We execute 100 one-minute queries over the Visual Road videos, using a Zipfian distribution

over time-ranges. Each query is randomly for cars or people. Figure 4.12 shows the median

speedup achieved with TASM compared to the untiled video over six orderings of the queries.

TASM reduces the total workload runtime by 12-39% across the videos. Object detection

contributes significantly to the total runtime and LightDB does not use a pre-filtering step

to accelerate this operation. If we examine one instance of the workload where the last 20

queries no longer need to perform object detection and execute after TASM has found good

layouts, the median improvement for these queries ranges from 23% to 66% across the videos.

While these queries request the full frame, TASM accelerates them by processing just the

relevant regions of the frame, which allows it to decode and encode less data.
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Table 4.3: Tiled model accuracy

Day 1 Day 2 Day 3
Full 0.79 0.51 0.56
ROI 0.84 0.61 0.51

Coarse 0.76 0.60 0.54

4.3.5 Object detection acceleration

We now evaluate TASM’s ability to accelerate the full scan phase of object detection queries,

as described in Chapter 4. One system that uses specialized models during the full scan phase

is BlazeIt [81]. For example, it uses a specialized counting model to compute aggregates.

We evaluate TASM’s ability to accelerate this phase using BlazeIt’s counting model as

a representative fast model. This model runs at over 1K frames per second (fps), while

preprocessing the frames runs below 300 fps. TASM reduces the preprocessing bottleneck

and achieves up to a 2× speedup while maintaining the model’s accuracy.

The preprocessing phase includes reading video from disk, decoding and resizing frames,

normalizing pixel values, and transforming the pixel format. BlazeIt implements this using

Python, OpenCV [25], and Numpy [63] (“Python” in Figure 4.13). We reimplemented this

using C++, NVDECODE [117], and Intel IPP [79] to fairly compare against TASM (“C++”).

We evaluate on three days of BlazeIt’s grand-canal video dataset.

We compare against using semantic predicate pushdown with ROI layouts generated by

TASM. We first use MOG2-based background segmentation implemented in OpenCV [25]

to detect foreground ROIs on the first frame of each GOP. This is a throughput that recent

mobile devices are known to operate above [165], and therefore it would be possible for this

step to be offloaded to a compute-enabled camera as discussed in Section 4.2.4. We use TASM

to create fine-grained tiles (“Fine tiles”) and coarse-grained tiles (“Coarse tiles”) around the

foreground regions. We also compare against a tile layout created around a manually-specified

ROI capturing the canal in the lower-left portion of each frame (“ROI”).
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Figure 4.13 shows the preprocessing throughput when operating on entire frames compared

to just the tiles that contain ROIs. Operating on tiles improves throughput by up to 2×

and therefore reduces the bottleneck for performing inference with the specialized model.

We next verify that using tiles rather than full frames does not negatively impact the model’s

accuracy. We use the same model architecture for tiled inputs. However, rather than training

and inferring using full frames, we use a single tile from each frame that contains all ROIs. For

each strategy we train BlazeIt’s counting model on the first 150K frames or tiles from the first

day of video. We evaluate this model on 150K frames or tiles from each day (using a different

set of frames for the first day). As shown in table 4.3, models trained and evaluated on tiles

show similar accuracy to full frame training within each day.

4.4 Summary

In this chapter we presented TASM, a tile-based storage manager for VDBMSs. TASM

encodes videos using tiles to support efficient spatial random access into video frames. By

enabling spatial random access, TASM reduces the decoding and preprocessing bottleneck

for query workloads that operate over spatial subsets of frames, such as queries performing

object detection only over the regions of the frame showing a crosswalk. TASM automatically

optimizes and adjusts the tile layout for groups of frames over time as it observes the query

workload and learns where in frames objects are located.

We evaluated TASM on videos from a variety of domains with varying resolutions and

object density within frames. Our experiments showed that the tile layouts picked by TASM

speed up subframe selection queries by an average of 51% and up to 94% while maintaining

video quality. TASM also accelerates the full scan phase of object detection queries by up to

2× by tiling around cheaply-computed regions of interest.
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Chapter 5

VOCALEXPLORE: PAY-AS-YOU-GO VIDEO DATA
EXPLORATION AND MODEL BUILDING

Current VDBMSs and storage managers such as TASM (discussed in the previous chapter),

presume access to an ML model that can identify objects and activities within video clips.

These “oracle” models are integral to query processing over videos, as discussed in more detail

in Section 3.2. However, many video datasets come from domains without such a pretrained

model, and therefore these users cannot benefit from the capabilities of VDBMSs to query

the contents of their videos.

This chapter thus investigates the research question of how to address the challenge of

supporting early data exploration and domain-specific model building for video datasets that

do not have an off-the-shelf oracle model, as described in Section 1.2. The work presented in

this chapter will appear at VLDB’24 [43].

Increasingly many scientific domains rely on video data, which is information dense and

relatively easy to collect. Examples include wildlife monitoring [45, 69], traffic analytics [15, 62],

and many others [121, 56, 134, 140, 105]. Powerful libraries [25, 49, 106, 10] and data

management systems [81, 16, 20, 113] exist to support users in storing, processing, and

querying this video data. A key problem, however, is that those systems assume the user

is already familiar with their data and, typically, already has one or more machine learning

(ML) models to extract the desired information from the data. In speaking with scientists at

the University of Washington, we find that this is frequently not the case. Instead, scientists

collect data en masse, but then struggle to explore it, understand it, build ML models for it,

and finally use it to answer their scientific questions.
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Consider, for example, a scientist who wishes to understand the behavior and activity

patterns of animals in the wild using cameras attached to animal collars (we describe this

example in greater detail in Section 5.1.1). These cameras may easily produce terabytes

of data. Because scientists mainly want to identify activities (as opposed to species, a

well-understood problem [22]), there exists no off-the-shelf, pretrained model that can be

used to process and extract meaningful data from this dataset. To develop a domain-specific

model, scientists first need to familiarize themselves with their data and develop a vocabulary

of activities within.

Existing tools do not adequately aid users in performing early data exploration—especially

users who are not experts in ML—despite this being a critically-important component of

end-to-end data management. Existing video browsing systems [72, 127] focus on known-item

search, which presumes the user already knows what they are looking for and do not support

building a domain-specific model. Lancet [168] proposes to support users in building domain-

specific models over unstructured data by combining active learning with embedding training.

However, their technique requires knowledge of ML tuning to achieve good performance on

an arbitrary dataset, and it requires repeated, expensive processing over the entire dataset as

the the embedding model is updated.

In this chapter, we present the design, implementation, and evaluation of VOCALExplore,

a system that fills this gap and supports users with early video data exploration, labeling, and

model building. It is a part of our larger VOCAL system [42]. In our example, the user only

needs to point VOCALExplore at their data and they can immediately begin exploration.

Immediate interactivity is a key goal of VOCALExplore. The user only invests more effort as

they see results, which is important for new domains when the user may be uncertain about

the labels they wish to use and whether a good model is even possible for their data and desired

labels. A key contribution of VOCALExplore is to support such initial exploration with a

“pay-as-you-go” design, which avoids expensive preprocessing phases. Instead, VOCALExplore

processes data incrementally as the user explores it and provides increasingly accurate results

as users put more effort towards exploration and labeling. VOCALExplore enables an iterative
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workflow: At each step, the user either specifies which video segments they want to view or

lets the system select video segments. As they watch videos, they can choose to annotate

them with new or existing labels. When VOCALExplore chooses video segments for the user

to view and label, it samples them in a way that yields good model quality, while avoiding

extra costs when not necessary. VOCALExplore also decides which feature representation to

use for the given data. Finally, VOCALExplore does the above while hiding all significant

sources of user-visible latency, providing fast response times to data exploration requests.

There are several challenges in designing a system like VOCALExplore. First, VOCALEx-

plore brings together techniques from across the ML community that are required to support

end-to-end video data exploration and model building—from video sampling to feature

extraction to building models on video data. VOCALExplore combines these into a system

wrapped behind a data exploration interface, which does not require any ML knowledge or

tuning from the user, nor any expensive preprocessing steps.

Second, we design VOCALExplore as a pay-as-you-go system: i.e., it receives user

input incrementally and it must produce results incrementally as well, all without long

preprocessing phases to maintain the low-latency data exploration promise. At each iteration,

VOCALExplore must decide what set of video segments the user should label next and

how to train the best model on top of these labels. The user specifies a labeling budget

equivalent to how many videos the user is willing to label. While the ML community has

proposed many active learning acquisition functions [135], there is evidence that no one

technique is the best, and they often perform no better than random sampling as shown

in [87] as well as in our evaluation (Figure 5.3). Further, active learning-based acquisition

functions are more expensive than random sampling because they require preprocessing the

dataset. To address this challenge, our system dynamically selects either random sampling

or an active learning-based acquisition function based on observed class imbalance in the

dataset. VOCALExplore always starts with random sampling because it is expected to

perform well over uniform datasets, and it requires no preprocessing. It then switches to a

more expensive active learning-based acquisition function if it observes sufficient skew in the
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labels. When it switches to active learning, VOCALExplore incrementally processes videos

to build a candidate set over which the active learning algorithm can execute, again avoiding

an expensive preprocessing step.

While it is common today to train video models using pretrained models as feature

extractors, there is a lack of research exploring how to choose the best one for a new dataset.

Therefore, before we begin to train a domain-specific model using the user provided labels,

we are faced with the technical challenge of deciding which pretrained feature extractor to

use. We show that the accuracy of domain-specific models depends on the chosen feature

extractor. To address this challenge, VOCALExplore starts with a set of candidate pretrained

models to be used as feature extractors. It frames feature selection as a rising bandit [96]

problem to dynamically converge on the best features for a given dataset during early labeling

iterations—again avoiding a separate feature selection phase—and instead integrating feature

selection into the data exploration process. Note that we use the term “feature selection” to

denote picking a feature extractor, rather than selecting a subset of a feature vector.

The third challenge is supporting the functionality described above with low user-visible

latency to make data exploration interactive. VOCALExplore relies on many tasks that

have non-trivial latency (e.g., training a model and extracting feature embeddings from

encoded videos), and naive strategies to minimize latency risk hurting model performance

(e.g., eliminating model training latency by making predictions using a model trained many

iterations ago). VOCALExplore addresses this challenge by using idle time to perform tasks

while the user is occupied labeling videos. While the idea of leveraging background processing

is not new, the key contribution of this chapter lies in identifying which tasks to execute

in the background and when to launch them in order to achieve a model quality that is as

similar as possible to a serial execution of all tasks, all while maximally reducing user-visible

latency.

In summary, VOCALExplore makes the following contributions:
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• We design a video data exploration and labeling system that brings together state-of-

the-art ML methods and wraps them with a simple data exploration interface that does

not require any ML knowledge from users (Section 5.1).

• We develop an Active Learning Manager (ALM) that produces high-quality models by

dynamically selecting the appropriate acquisition function and best feature extractor

for each dataset (Section 5.2).

• We develop a Task Scheduler to ensure VOCALExplore produces high-quality models

without significant user-visible latency (Section 5.3).

We evaluate VOCALExplore on standard and domain-specific datasets (Table 5.2). Our

experiments show that VOCALExplore can achieve model performance that matches the best

combination of acquisition function and feature with no preprocessing, and a user-visible

latency of less than one second per labeling iteration. VOCALExplore does this while

automatically deciding what features to use and how to sample video segments to be labeled.

5.1 System Overview

In this section, we present the API of VOCALExplore, user workflow, and overall system

architecture.

5.1.1 Motivating example

We first motivate VOCALExplore by describing the use case of the ecologists we partnered

with who study the behavior of deer in the wild [45]. The scientists seek to understand how

much time the deer spend on different activities (e.g., eating or traveling). To study these

questions, the ecologists attached GoPro-style cameras to collars on the deer. These cameras

collected video data for two weeks before the collars automatically fell off the deer.
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Once the ecologists collected the cameras, they had access to a large quantity of video

data (1.4 TB across 800k video files) that, were it labeled, would enable them to analyze

their research questions. An ideal solution for these scientists would be to automatically label

the videos using a machine learning model. However, no pretrained model exists for this

domain-specific task. Therefore, the ecologists manually labeled a sample of the videos by

temporally sampling video clips from the morning, midday, and evening, and performed their

analysis on top of these labeled samples [45].

This manual labeling process is tedious, and analyzing the labeled samples is limiting,

especially when the fraction of labeled data is small. As an alternative, the scientists could

have manually trained a domain-specific model. This is, however, challenging for the reasons

already enumerated, and because the scientists are not experts in ML. Next, we describe how

VOCALExplore supports scientists to easily train a model over their videos.

5.1.2 API and user workflow

Workflow. Here we describe the high-level workflow users follow when using VOCALExplore.

Users load their video data by specifying a set of video paths. Users can immediately start

exploring and labeling their data because VOCALExplore performs no preprocessing. During

this exploration, VOCALExplore samples video segments for the user to label. Initially, it

randomly returns videos for the user to explore. Once the user has provided some initial

labels (in the prototype, ≥5 labels), VOCALExplore additionally returns the predicted labels

for each produced video segment. At any time, the user can view any subset of the video data

together with VOCALExplore’s predictions for those videos. The user can provide corrected

labels for any errors they notice.

API. The API of VOCALExplore is shown in Table 5.1. Watch enables a user to view

a video stream within a specified time window. VOCALExplore returns a sequence of

consecutive video segments labeled with the activities that the system detects. Initially, labels

are null. Explore enables system-directed exploration to efficiently build a high-quality

domain-specific model. VOCALExplore returns videos (along with their predictions) that
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Table 5.1: VOCALExplore API.

Method Parameters Description
Watch (vid, start, end) Returns a stream of video segments from

vid between start and end with predicted
labels

Explore (B, t, label=None) Returns B video segments each of dura-
tion t with predicted labels

AddLabel (vid, start, end, label) Saves the label as metadata
AddVideo (path) Saves the video as a candidate for labels

and predictions and returns its vid

when labeled will most improve model performance. Explore optionally takes a specific

label that causes VOCALExplore to return videos that will most improve its predictions

for the specified class. When a user views video segments they can add labels using the

AddLabel method.

5.1.3 System architecture

To enable the above workflow, VOCALExplore must support the following functionalities:

sample selection (i.e., produce video segments needing labels when the user calls Explore);

model training and inference (i.e., train a model using the labels provided by the user up

until that point and produce labels for unlabeled videos); and feature extraction (i.e., what

inputs are used for model training and inference). Figure 5.1 shows the overall architecture of

VOCALExplore that supports these functionalities. The Active Learning Manager performs

sample selection, the Model Manager performs model training and inference, and the Feature

Manager performs feature extraction. Additionally, VOCALExplore includes a Storage

Manager to manage metadata and intermediate results, and a Task Scheduler to coordinate

the activities of these components.

The Active Learning Manager (ALM; Section 5.2) and the Task Scheduler (Section 5.3) are

the novel components and the core contribution of this paper. We defer a detailed discussion

on their associated challenges to the following sections; this section focuses on the overall
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Figure 5.1: VOCALExplore architecture. The Task Scheduler coordinates the activities of
the various managers.

architecture and outlines how the various components interact together. Figure 5.1 illustrates

the primary methods implemented by VOCALExplore. Many system calls optionally operate

over a set of videos, represented by vids. For example, the Model Manager trains models

over features and labels from multiple videos.

Storage Manager (SM). The SM stores and retrieves all persisted data, which includes

video metadata (e.g., path, duration, start time), labels, features, and models. The SM uses

off-the-shelf components.

Feature Manager (FM). The FM returns feature representations of video segments.

These feature vectors are used by the ALM to decide which video segments the user should

label as well as by the Model Manager to perform training and inference. Features are

represented by d-dimensional vectors in Rd, and each vector is associated with some time

period (start, end) within a video.

Model Manager (MM). The MM trains models using the user-specified labels and

performs inference on these models to return predictions. Given a video (vid), and time-

interval [t1, t2], the MM outputs a probability distribution across possible labels for that video
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segment. Our prototype MM maintains one model per feature extractor. The MM trains a

new model whenever requested to do so by the ALM and is non-blocking: while a new model

is training, the MM serves requests for labels using the previously trained model.

Active Learning Manager (ALM). For each call to Explore, the ALM picks B video

segments, each of duration t, that the user should label next. For each call to Watch and

Explore, the ALM invokes the MM to provide predictions for the video segments being

returned. We further describe the ALM in Section 5.2.

Task Scheduler (TS). The TS coordinates the activities of the various managers to

ensure low-latency responses to user-initiated API calls while maintaining high prediction

quality. We describe the associated challenges and how the TS addresses them in Section 5.3.

5.2 Active Learning Manager

The Active Learning Manager (ALM) is a central component of our system responsible for

selecting the video segments that the user should label. Recall that our system focuses on

tasks where a user wishes to label a small number of video segments to build a model that

can serve to label the rest of the video. The ALM must address several challenges. Most

importantly, our system’s goal is to provide pay-as-you-go results: i.e., for each new batch

of user labels, the ALM strives to maximize model quality given the labels collected so far.

The ALM cannot rely on a long preprocessing phase to accumulate a large number of labels

or optimally select features for a new domain. Instead, the ALM generalizes the problem of

active learning to not just choosing which video segments to label (and what method to use

to perform that selection), but also simultaneously choosing which features to use for a new

domain.

The first subproblem of selecting segments to label is an active learning problem. There

are many proposed acquisition functions in the active learning literature (e.g., [135]). Our

goal is not to design a new active learning algorithm, but to determine when the extra cost

is worthwhile in a data exploration system. Because random sampling can achieve the best

model quality in some settings [87] and is less expensive, the first challenge the ALM addresses
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is distinguishing between when random sampling is sufficient and when an active learning

acquisition function should be used for a given dataset. The key idea behind our approach is

for the ALM to start with Random, observe the label distribution, and dynamically switch

to other acquisition functions if the evidence suggests that active learning will outperform

Random. Section 5.2.1 describes how the ALM chooses between these functions.

The second subproblem is feature selection. Video models use pretrained features as a

starting point for new tasks. However, choosing the appropriate pretrained model from which

to extract features is an open research question. We propose to dynamically select features

to use for a given dataset. The key idea of our approach is to use a rising bandit method

to comparatively evaluate feature quality during active learning as we describe further in

Section 5.2.2. In contrast with feature engineering approaches [150, 89, 162], our problem is

to produce a useful feature representation for the unstructured video data in the user’s new

domain rather than manipulating features to improve model performance.

Finally, the ALM solves both subproblems simultaneously. At each step, it makes the best

decision for each independently. However, the samples selected by the acquisition function

affect model performance (and therefore feature selection), and features affect the performance

of active learning sampling. The ALM handles this interference by using decision methods

that are tolerant to noise.

5.2.1 Acquisition function selection

We first discuss how the ALM solves the problem of acquisition function selection, where the

acquisition function determines which video segments are selected to be labeled at any given

iteration.

Problem. The ALM is given a set of video segments, v∈V . The video segments depict

various activities a∈A, and these activities may be skewed, meaning that some appear more

frequently than others. It is possible for a single video segment to contain multiple activities,

or no activities. We are also given a labeling budget, B, which designates the number of video

segments a user is willing to label. This budget is incremental and is not fixed. For example,
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a user may initially set B=20 and then give VOCALExplore another B=10 if they are willing

to label more. The ALM uses the labels to train a model M that predicts the activities

appearing in each video segment. The prototype trains linear models using cross-entropy loss,

which is often used for classification problems [107].

The ALM balances the two goals of maximizing model quality, (G1), and producing

pay-as-you-go results, (G2). For G1, we consider the average model quality across all classes

the user has applied to video segments. Because VOCALExplore also allows users to specify

classes of interest, the ALM strives to improve model performance on these specific classes,

when requested. The prototype maximizes the macro F1 score of the model, though other

metrics could be used. For G2, the ALM strives for interactivity and low latency in response

to API calls by avoiding expensive preprocessing steps that block user interactions.

Baselines

We consider the use of individual acquisition functions as baselines. The relative performance

of any acquisition function depends on the dataset, but the cost of each function is partially

determined by the inputs the function requires (the other component of cost is the processing

done on top of the inputs).

The most naive strategy is Random, which randomly selects the B video segments. This

is cheap because its inputs are video metadata (e.g., duration) rather than features extracted

from the video frames. However, if the activities in the dataset are highly skewed, then

random sampling will not find many examples from activities that rarely occur, which hurts

G1 because the model will perform poorly on these rare classes. Additionally, as we observe

experimentally, random sampling over skewed data causes the user to label large amounts of

the same activity type and very few rare activities. We posit that having the user label more

diverse activity types is more in line with supporting users in early data exploration.

More sophisticated baselines use active learning techniques that take as inputs features,

and possibly model outputs. These strategies require an expensive, one-time preprocessing

step to extract features from all of the video segments V . Uncertainty-based techniques
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additionally require performing inference over all v∈V . This preprocessing hurts G2 because

it results in a large amount of initial latency, even if the user only makes a small number

of API calls, and the feature extraction and inference tasks over all of the videos result in

high latency for API calls. However, active learning acquisition functions can improve model

performance over naive random sampling [133], especially for skewed datasets where random

sampling will have low label diversity.

Our approach (VE-sample)

The ALM resolves these tradeoffs by casting acquisition function selection as a binary decision

between Random or an active learning-based acquisition function. It dynamically switches

to a more expensive active learning function only when it is expected to improve model

performance and label diversity. The ALM strategy, which we call VE-sample, initially

uses random sampling to select the B video segments to be labeled because it is fast and

requires no preprocessing (G2), and it performs well for uniform datasets (G1). VE-sample

dynamically switches to active learning if it observes skew in the labels it collects. This results

in better label diversity for the user and, more importantly, improves model performance on

rare classes (G1).

Recall that Explore may be called with or without a user-supplied label (see Table 5.1).

For Explore calls without a specific label, when our prototype switches to active learning it

uses cluster-margin sampling [36] which combines uncertainty and diversity sampling. Briefly,

the algorithm works as follows: it performs a one-time clustering of all examples to be reused

at each iteration. Given a desired batch size of B examples, cluster-margin sampling first

uses uncertainty sampling to select the kB examples where the model is least confident,

where k is a hyperparameter. The algorithm then selects B diverse examples from these most

uncertain ones by iterating round-robin over their clusters; it selects one example randomly

from each cluster until it has a result set of size B. Our prototype also implements the greedy

coresets algorithm [133] (Coreset), which is a density-based acquisition function that has
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been shown to work well in a batch-labeling setting and is designed to find diverse examples.

By default the ALM uses Cluster-Margin sampling for active learning because in our

experiments it always performs at least as well as Coreset.

For Explore calls with a specific label, VE-sample uses uncertainty sampling [95]. We

follow the uncertainty sampling procedure described in [114] because the authors showed

it performs well on rare classes. VE-sample uses a domain-specific model trained on all

labels provided so far and finds video segments corresponding to features where the model is

either highly confident or highly uncertain that a given feature vector should be assigned the

specified label. Let na be the number of video segments labeled with activity a, and no be

the number of video segments labeled with any activity other than a. Following [114], we

pick the video segments with the most confident predictions when the number of positive

labels for activity a is less than the number of negative labels (na<no). Otherwise, the ALM

picks the video segments with the most uncertain predictions when na≥no. The intuition

behind this approach is to first train a model capable of identifying easy positives, and then

to refine the model’s performance near the decision boundary by picking hard positives and

hard negatives.

To decide whether the labels are sufficiently skewed to switch to active learning, VE-

sample uses the k-sample Anderson-Darling test [130] which is a statistical test for comparing

discrete distributions. VE-sample compares the label distribution observed so far to a

baseline uniform distribution and switches to active learning when p≤0.001. We use this

small p-value because the label distribution is initially noisy when there are a small number

of labels. We want to switch away from random sampling only when we are highly confident

that the distribution is in fact skewed.

Other statistical tests are possible. For example, we could also say that a dataset is skewed

if the imbalance ratio [119] (i.e., the ratio between the frequency of the majority and minority

classes) is large. If there are k classes, and the multinomial distribution has parameters

p ∈ ∆k = {p ∈ Rk
+ :

∑k
i=1 pi = 1}, we can say a distribution p is skewed if mini pi <

1
mk

for

some multiplicative threshold m. m is a lower bound on the imbalance ratio because the
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majority class must have frequency ≥ 1/k. For this frequency-based approach we set the

p-value to be equal to an upper bound on the probability of incorrectly classifying a dataset

as skewed. Details of how this bound is derived are described in Appendix A. The benefit of

using the frequency test is that its p-value will not grow smaller solely based on an increasing

number of data points if the dataset is not perfectly balanced. Whereas the Anderson-Darling

test will return a small p-value for slight class imbalances (e.g., 51% class A and 49% class B)

given sufficient labels, the frequency test with high probability will not detect this as skewed

even in the limit of infinite labels. We show in Section 5.4.2 that this frequency-based test

matches the F1 scores achieved when we use the Anderson-Darling test.

Interestingly, we empirically find that the VE-sample approach has the additional effect

of producing a more diverse set of video segments for the user to label, compared with using

random sampling alone. A diverse labeled set benefits model performance, but it also makes

the labeling task more interesting for the user. Given na, a ∈ A, the number of labels for each

activity type, we measure label diversity as Smax=
maxa∈A na∑

a∈A na
, which represents the fraction of

labels that come from the most-seen activity. A lower Smax indicates a higher diversity of

labels. Other measures are possible.

Finally, the ALM addresses G2 by incrementally processing videos. The ALM extracts

features from labeled videos to train models, and from sampled videos to make predictions,

so the amount of processing is proportional to the amount of user interaction. For Random,

this requires only processing the videos that contain the B video segments returned from

Explore. However, when VE-sample switches to active learning, the active learning

algorithm requires a set of candidate features. The ALM balances active learning quality and

visible latency through a hyperparameter, X. When VE-sample is using active learning and

the user requests B video segments from Explore, VE-sample ensures this set contains

features from X additional videos. We evaluate the impact of the choice of X on both latency

and model quality in Section 5.4. As described in Section 5.3, the Task Scheduler hides the

latency of this incremental processing so it does not affect interactivity.



83

5.2.2 Feature extractor selection

As discussed previously, VOCALExplore uses pretrained image and video models as feature

extractors because they have a favorable cost/quality tradeoff (model inference is highly

optimized on GPUs), and training a linear model on pretrained features is an accepted

technique for training domain-specific models [51]. The MM trains one model per candidate

feature; the model predicts which activities appear in each video segment.

Problem

We observe that the performance of feature extractors varies depending on the dataset and

task. As we shall see in Figure 5.4, some feature extractors perform much better than others

on a given dataset, and the best feature varies across datasets.

The ALM is responsible for finding a feature extractor that leads to high-quality models

when trained over the user-provided labels. By default, VOCALExplore uses a pool of video

and image pretrained models as candidate feature extractors. The prototype is designed to

support video classification tasks and therefore uses pretrained classification models. However,

a different set of candidate models would likely be needed for other labeling tasks, such

as segmentation. To extract features for a particular video, the FM performs inference

on sampled clips or frames (for video or image models, respectively) to extract feature

vectors. Each feature vector is associated with a feature ID, video ID, and some time span

corresponding to the input frame(s): (fid, vid, start, end, vector).

The ALM must pick a feature to use at each step when it returns predictions for video

clips because the feature determines which model is used to make predictions. The ALM must

also pick a feature to use if VE-sample uses active learning (see Section 5.2.1). Picking a

feature that performs poorly leads to incorrect predictions, and, in the case of active learning,

suboptimal clip sampling. Therefore, the ALM dynamically selects the features to use based

on the empirical performance on each dataset.
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Naive strategies

A first naive strategy is to concatenate all of the possible features into a single, long feature

vector. This has the benefit of not having to explicitly pick one feature, and, given enough

labels, models will identify the vector elements with the most signal. However, this requires a

large amount of compute resources to extract all features from all videos (as shown by the

latency of the VE-lazy (PP) strategy in Figure 5.7). The amount of compute needed to

extract features grows linearly with the number of extractors and the number of videos. If

there are V videos and F candidate extractors, the amount of compute is O(V ·F ). Further,

we do not observe an improvement in performance over the best single feature, as shown in

Figure 5.4.

A second naive strategy would be at each step to use the feature that is performing best.

At each step, the ALM could extract all possible features from all labeled video clips, and

then train a different model for each feature. It would pick the feature that has the best

model performance, measured using k-fold validation or over a held out validation set. This

second naive strategy has the same problem as the previous one of requiring all possible

features to be extracted from videos. It also is inefficient to train and evaluate models for all

possible features at every step.

Bandit strategies

While the ALM initially must explore all possible feature extractors as in the second naive

strategy, we want to quickly converge on one of the best ones. Once a feature is picked, all

compute resources can be dedicated to extracting just that feature from the remaining video

segments, and models are only trained using that feature. The problem then becomes how to

converge on one of the best features. On the surface, this appears to be a problem that can be

solved by Multi-Armed Bandit (MAB) approaches: each feature extractor is an arm, model

performance is the reward, and we want to exploit the feature extractors that lead to the

best model performance. However, MAB techniques assume stationary reward distributions
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(i.e., the reward for pulling an arm is independent of the number of times that arm is pulled).

This is not true for our use case because model performance is expected to improve as the

amount of training data increases. If a feature performs poorly in early rounds, we do not

want to eliminate it solely based on early performance values because it is possible that it

will improve once there are more labels.

Our setting is that of Rising Bandits [96]. Rising Bandits do not assume that the rewards

for each arm are stationary; rather, they are assumed to be increasing in a concave manner

as the arm is pulled. Under these assumptions, the expected performance of each arm after

some number of examples can be bounded, and arms can be eliminated when the upper

bound on their expected reward is lower than the lower bound for some other arm.

The original Rising Bandit algorithm [96] that the ALM adapts works as follows: The

algorithm proceeds in a series of rounds. At each step, it computes the current model quality

for each candidate feature. Then, it computes lower (lf) and upper (uf) bounds for the

expected performance after T timesteps. The lower bound is taken to be the current value

because we assume the quality increases over time. The upper bound (uf = lf +ωf × (T − t))

is taken to be the lower bound plus some delta computed as slope (ωf) multiplied by the

number of remaining timesteps (T − t), which is a linearization at the current time t step

evaluated at T . Because of the concavity assumption, the linearization is an upper bound on

the true reward. Finally, features are eliminated when their upper bounds are below the lower

bound of any other feature. Note that the algorithm from [96] was proposed in a different

setting from ours and thus the guarantees do not directly transfer. In particular, the “reward”

in our setting is the performance of the chosen arm with T points, while the “reward” in [96]

is the performance of the chosen arm with however many points were allocated to that arm.

VOCALExplore adaptations to Rising Bandits

The ALM must resolve three challenges before applying the Rising Bandit framework. First,

measured model performance is noisy. While it is expected to increase on average over time,

individual time steps may have a decrease in performance if the added labels temporarily
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make it more challenging for the model to distinguish classes. Second, measured model

performance is not guaranteed to increase in a concave manner because the training set grows

over time and because the ALM may switch to active learning from random sampling. Finally,

the user does not initially have a labeled validation set, but the ALM still must reliably

estimate model performance.

To resolve the first challenge of noisy performance data, the ALM performs smoothing on

top of the measured values. The goal is to capture the trends in performance but avoid any

temporary spikes or dips. The prototype uses exponential weighted moving average (EWMA)

smoothing, but other techniques are possible. The prototype also waits 10 iterations before

beginning feature selection because model performance is particularly noisy in early iterations

when there are a small number of labels.

To resolve the second challenge of non-concave performance increases, the ALM uses

the proposed solution from the Rising Bandits algorithm [96]. Recall that the algorithm

computes the upper bound using the slope to estimate the value after some number of steps

into the future. Rather than computing the upper bound using a slope over the current and

immediately previous timesteps t and t−1, the ALM computes a smooth growth rate over a

larger window of size C: t and t−C.

To resolve the final challenge of the lack of a validation set, the ALM estimates the

performance of features using cross-validation. The ALM creates three train/test splits over

the labels it has collected so far and averages the performance across these splits. While

training and evaluating multiple models is more expensive than evaluating a single model

over a held out validation set, the ALM only does this at the start of exploration when there

are a small number of labels until it picks the best feature (which usually requires fewer than

150 labels in our experiments). Training linear models with a small number of examples is

fast, so the additional overhead is limited. The prototype only evaluates k-fold validation over

classes with at least three labeled instances to ensure each class is present in each training

and test split.
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While the original algorithm in [96] evaluates one arm at each time step, our modified

algorithm evaluates all candidate features at each time step because the new labels provided

by the user can be used to update the model for all features.

Hyperparameter setting

The hyperparameters the ALM uses for feature selection are: C (slope smoothing window), T

(timestep used to compute the upper bound), and w (smoothing span for EWMA; α=2/(w+1)).

As discussed in Section 5.4.3, the sensitivity of C and w is low; a range of values provide

similarly good performance. This agrees with the findings of [96] that the performance of

their algorithm is not sensitive to C. Therefore, the ALM uses a “moderate” amount of

smoothing and sets w=5 and C=5.

T is the time point at which the upper bound is computed. Larger T values lead to higher

upper bound estimates, therefore features are eliminated more slowly. Using a larger T value

is more robust against non-concave performance curves because when the slope is small at

early steps, the upper bound will still be high enough to not eliminate the feature before its

slope later increases. However, larger T values require more compute power because a larger

number of features will be extracted and evaluated for more steps. Therefore, our approach

is to set T to a small value (e.g., T≤50) in resource-constrained settings. This may not lead

to selection of the optimal feature, but our evaluation shows that one of the best features is

still selected with high probability. In settings where resources are not constrained, T can be

set to a larger value (e.g., T=100) because there are sufficient resources to evaluate more

features for additional steps, and therefore allow the ALM more time to attempt find the

single best feature (though, using a larger T doesn’t guarantee finding the best feature).

5.3 Task Scheduler

The Task Scheduler is a priority scheduler that runs in the background and schedules

VOCALExplore’s tasks on the available compute resources. We consider a setting where

there are limited resources, so only a subset of submitted tasks can execute at once. From
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Section 5.2.1, goal G2 states that VOCALExplore should ensure interactivity and low latency

in response to API calls. VOCALExplore is intended to support data exploration, so it needs

to minimize any user-perceived latency because increased latency is known to decrease user

interaction [98]. Naive and lazy scheduling of VOCALExplore’s tasks results in substantial

latency as we discuss in this section (and show in Section 5.4). The goal of the Task Scheduler

is to optimize that latency without compromising the model quality seen by the user whenever

they make API calls.

The Task Scheduler achieves this by making non-critical tasks asynchronous and performing

just-in-time model training (Section 5.3.1), and by eagerly performing feature extraction

while the user is occupied labeling (Section 5.3.2). These optimizations systematically target

the principal sources of user-perceived latency.

Background. VOCALExplore has five types of tasks: feature extraction (Tf), model

training (Tm), model inference (Ti), feature evaluation (Te), and sample selection (Ts).

Each Explore call corresponds to multiple tasks of multiple types: VOCALExplore must

first select a batch of video segments for labeling (this represents one task Ts per sample);

extract features from the sampled segments if not already available (one task Tf per sampled

video segment); perform inference with the latest model (one task Ti per sampled video

segment); collect the labels from the user; train a new model (Tm); and evaluate feature

quality for remaining features (one task Te per feature; see Section 5.2.2). Additionally, if

VOCALExplore needs to sample video segments using active learning instead of random

sampling, it needs to sample more video segments than the user-requested number and extract

features from the extra samples before selecting segments to return to the user for labeling,

requiring a larger number of Tf tasks.

Baseline. Let Tserial be the API latency of a call to Explore with a serial schedule,

k the number of features still under consideration, and B the number of video segments

labeled each iteration. With some abuse of notation, let’s consider each Tx to represent not

just the type of task but also the time to execute one such task. We then have: T random
serial =

B(Ts+Tf+Ti)+Tm+kTe for random sampling and T active
serial = (B+X)Tf+B(Ts+Ti)+Tm+kTe
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when using active learning, where X is the number of extra samples that the ALM uses for

active learning (Section 5.2.1). There are still only B Ts tasks because we only must select B

samples (e.g., in Coreset, we perform B max-distance calculations).

The Task Scheduler does not minimize Tserial directly. Rather, we observe that the user

spends a non-negligible amount of time, Tuser to label each video segment. Given B video

segments, after each call to Explore, the user spends BTuser time labeling. The Task

Scheduler exploits that time to do useful work in preparation for the next call to Explore.

Problem statement. Let Ttotal be the time needed for VOCALExplore to return video

segments to a user in response to a call to Explore plus the time for the user to label the

returned B video segments, so it represents the total time elapsed during a labeling session.

The user returns labels L1, . . . , LB. Given a sequence of calls to Explore, the goal of the

Task Scheduler is to minimize, at each iteration u, the user-perceived latency defined as:

T u
visible = T u

total−BTuser, subject to maintaining good model quality. For the latter, given

Qu
serial the model quality (measured by any metric; we use macro F1 score) seen by the user for

a serial schedule at iteration u, and Qu
optimized the model quality with the optimized schedule

at the same iteration u, the Task Schedule seeks to ensure that Qu
serial −Qu

optimized < ϵ. In

our system, we do not start with a fixed ϵ but rather develop task scheduling approaches

that empirically yield a small ϵ value.

We note that the prototype does not reduce visible latency to 0. Instead, it reduces it

to T u
visible=B(Ts + Ti). However, it could be reduced further with speculative execution (i.e.,

prepare Ts and Ti before the next call to Explore). We chose not to implement this in the

current version of the prototype because Ts and Ti are small.

5.3.1 VE-partial strategy

Our first step towards an optimized strategy, VE-partial, uses the insight that not all tasks

are equally critical for providing a response to API calls. Only selecting video segments, Ts,

extracting features from them if not already available, Tf , and performing model inference,

Ti, are required to return from Explore. VOCALExplore hides model training latency by
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performing inference over the most recent model that has already been trained. Similarly,

feature evaluation tasks do not block Explore; VOCALExplore updates the set of candidate

features in the background as Te tasks complete. The VE-partial strategy makes model

training (Tm) and feature evaluation (Te) asynchronous tasks, which reduces the user-perceived

API latency to T random
V E−partial = B(Ts+Tf +Ti), and T active

V E−partial = (B+X)Tf +B(Ts+Ti). The

quality of predictions is Qu−δ
V E−partial, where δ indicates how stale the model is.

The challenge the Task Scheduler addresses is to ensure that Qu−δ
V E−partial is close to the

quality achieved with the serial schedule. Using a model trained many iterations ago (δ≫0)

will not suffice because its quality is too low. Scheduling a new model training task after each

new label is also not desirable. While this approach ensures that δ≈0, it results in a factor of

B more model training tasks, which causes congestion in the task queue. This approach also

wastes resources because many models will never be used; when Tm < (B − 1)Tuser, multiple

model training tasks will be queued and finish during a single iteration, but the ALM will

make predictions using just the latest one.

The Task Scheduler addresses this challenge using “just-in-time” model training to minimize

δ while still avoiding user-visible latency due to model training. The ALM tracks user labeling

time (Tuser) and model training latency (Tm). The ALM schedules a model training task

after receiving max(0, B − ⌈Tm/Tuser⌉) labels because this ensures the model will be ready

for inference by iteration u+1. When Tm<Tuser, the ALM schedules a training task while

the user labels the last example (i.e., after receiving LB−1), so it makes predictions using a

model trained with all but one label. If model training takes longer than an entire exploration

iteration (B − ⌈Tm/Tuser⌉ < 0), then the ALM schedules a model training task while the user

labels the first sample. This model will not be ready for inference by u+1, but it will be

ready by u+⌈Tm/(BTuser)⌉.

The VE-partial strategy reduces latency by making low-priority tasks asynchronous,

and it maximizes model quality by scheduling “just in time” model training based on observed

latencies.
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5.3.2 VE-full strategy

The VE-partial strategy still has non-negligible latency due to feature extraction. Tf≫Ti be-

cause feature extraction operates over encoded videos, which requires expensive preprocessing,

while inference operates over already-extracted feature vectors.

This leads to the Task Scheduler’s second optimization: eager feature extraction. Strategy

VE-full eagerly schedules feature extraction tasks (Tf−) for unlabeled videos whenever the

task queue is empty. These tasks have the lowest priority, so if any other task is scheduled

while Tf− is still queued, it will execute first. Tf− tasks perform the same work as Tf , just at a

lower priority. Initially, there are no unlabeled video segments from V with features extracted:

S=∅. The ALM randomly samples a set s of unlabeled video segments and schedules feature

extraction tasks for all current candidate features, which results in a total of k·s Tf− tasks.

When these tasks complete, S ← S ∪ s. The prototype sets |s|=10 to amortize the cost of

setting up a feature extraction pipeline across multiple video segments while still completing

the task within a few seconds.

The VE-full strategy has user-visible latency TV E−full = B(Ts + Ti) for both random

sampling and active learning because the ALM uses S for both to eliminate feature extraction

latency Tf .

Quickly converging to a single feature (Section 5.2.2) enables the most efficient growth

of S because the number of Tf− tasks is proportional to the number of candidate features.

Growing S without affecting visible latency is desirable because it enables better active

learning performance (shown in Section 5.4), and enables the user to get predictions over

their dataset with minimal latency once they have a model they are happy with. It still is

in the spirit of “pay-as-you-go” because the extra processing only happens while the user is

interacting with the system. However, extracting features is expensive, and the user may not

want to waste resources (e.g., by paying for a cloud GPU longer than necessary). Therefore,
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VOCALExplore could add guardrails to stop eager feature extraction after some number of

steps, either because the model quality plateaus or based on some heuristic of stopping once

some fraction of the total dataset is processed.

5.4 Evaluation

We perform an evaluation of VOCALExplore. First, we show that compared to baselines,

VOCALExplore achieves a high F1 score with the lowest latency, even while automatically

performing feature and acquisition function selection (Section 5.4.1). Second, we demonstrate

the effectiveness of the ALM’s acquisition function selection process (Section 5.4.2). Then we

demonstrate that the ALM’s feature selection algorithm picks one of the best features within

a small number of steps (Section 5.4.3). Finally, we evaluate the effectiveness of the Task

Scheduler to show that it ensures low latency without hurting the F1 score (Section 5.4.4).

Implementation details. The prototype implementation is built using Python 3.8.10. The

storage manager stores video metadata, labels, and model metadata in DuckDB 0.5.1 [122].

It stores feature vectors in Parquet files, and it uses PyTorch’s [120] checkpoint capabilities to

save models to disk. It uses the filesystem to store and retrieve encoded video files. Encoded

video files are stored on hard drives, while all other data is stored on the local SSD. The

feature manager uses NVIDIA DALI [10] to accelerate video decoding and to preprocess

inputs to pretrained models when a GPU is available, otherwise it uses PyTorchVideo [49].

In the evaluation we perform feature extraction on the GPU, and the model manager trains

and predicts using linear models.

Evaluation setup. We conduct all experiments on a compute cluster. When measuring

runtimes, we request one node with eight Intel Xeon Gold 6230R CPUs @ 2.10GHz, 61GB of

RAM, and one NVIDIA A40 GPU. This setup was chosen to approximate the memory, CPU,

and GPU setup of a “p3.2xlarge” EC2 instance on AWS.

Datasets. We evaluate VOCALExplore on the datasets shown in Table 5.2. First, we

evaluate on the Deer dataset which contains 10-second video clips captured from a camera

attached to a collar on a deer [45]. We use a subset of the full dataset that we manually
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Table 5.2: Datasets used to evaluate VOCALExplore

Dataset # classes Skew Train videos Eval videos
Deer 9 Skewed 896 225
K20 20 Uniform 13326 976

K20 (skew) 20 Skewed 1050 976
Charades 33 Skewed 7985 1863

Bears 2 Uniform 2410 722
BDD 6 Skewed 800 200

labeled, which covers one day for a single deer. These clips show six activities that occasionally

co-occur: bedded, chewing, foraging, grooming, looking around, and traveling. The activities

are highly skewed towards the “bedded” activity. We create 5 train/eval splits by ordering the

video clips temporally and taking every fifth one to be in the test set. Results are averaged

across these splits.

We also evaluate on subsets of Kinetics700 [139], which is a standard video dataset

comprising 700 human action classes. K20 contains 10-second video clips showing activities

from 20 classes taken from the Kinetics700 dataset. We pick classes that do not appear in

Kinetics400 to avoid overestimating performance for features that are extracted from models

pretrained on Kinetics400. K20 is not skewed, however we introduce skew to create K20

(skew). The classes in the skewed dataset follow a Zipfian distribution with s=2. The most

common activity has 650 videos and the least common activity has 3 videos. We create 10

training instances of K20 (skew) by permuting the classes. Results are averaged across

these 10 instances. We use videos from the Kinetics validation set for evaluation, which is

not skewed (even for K20 (skew)).

Charades [138] consists of 30-second videos showing 157 distinct activities. For our

experiments, we simplify the task to identifying which of the 33 verb categories appear in

each video.
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Table 5.3: Features used by VOCALExplore. Throughput is the number of 10-second videos
that can be processed each second while running two extraction tasks on the GPU.

Feature Type Architecture Pretrained Tput.
R3D [145] Video Conv. net Kinetics400 4.03
MViT [50] Video Transformer Kinetics400 2.93
CLIP [123] Image Transformer Internet images 3.64

CLIP (Pooled) [123] Image Transformer Internet images 3.45
Random Video Transformer None 2.96

The Bears dataset consists of 5-second video clips captured from 19 camera traps in

Alaska, primarily at night. The task is to determine whether or not each video clip contains

a bear.

Finally, the BDD dataset [164] consists of 40-second video clips captured from moving

cars. We extracted object detections from 1 fps using a Faster R-CNN model [125], and the

task is to determine which objects (car, truck, person, bus, bicycle, and/or motorcycle) the

1.5 seconds covered by each feature vector contains.

Feature extractors. We initialize VOCALExplore with five candidate feature extractors

shown in Table 5.3. We pick these feature extractors to cover image- and video-based models

with a variety of architectures. For all of the features with input type “video”, we use a

sequence length of 16 (number of frames fed into the model), a stride of 2 (gap between

frames in the sequence), and a step of 32 (gap between sequences). For the CLIP feature,

we sample the middle frame out of every 32 frames so the feature aligns with the middle of

the video feature windows. For the CLIP (Pooled) feature, we apply the CLIP model to

every other frame from a window of 32 frames and perform max-pooling over the frame-level

features. All of the features have 512 dimensions, except for MViT and Random which

have 768 dimensions. We include the Random feature (which uses the same architecture

as MViT but with randomized weights) to show that VOCALExplore handles low-signal

features correctly.
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Figure 5.2: Average F1 and cumulative visible latency (shown with a log-scale) after 100
Explore steps. Coreset-PP includes the preprocessing time to extract each feature, and
each point for Coreset-PP and Random represents a single feature. VE-full provides
nearly the best model quality with the lowest visible latency.

Metrics. We evaluate model performance using macro F1 score because it is a standard

evaluation metric. The F1 score is computed over the held out evaluation set after training

a model on the labels collected so far at each step. We initialize VOCALExplore with the

entire vocabulary that exists in the evaluation set so that it trains models that predict all

evaluation classes, even when some classes don’t have labels yet. We evaluate latency by

measuring the wall clock time taken for VOCALExplore’s API calls to return.

For the experiments below, we simulate a labeling task by creating an oracle “user” that

labels video segments with their ground-truth labels. Labeling proceeds in a sequence of

steps where we add five 1-second labels (which corresponds to Explore(B=5, t=1)).

5.4.1 End-to-end performance

We first demonstrate that VOCALExplore achieves the best balance between visible latency

and F1, as shown in Figure 5.2 (note that latency is shown with a log-scale). This experiment

executes 100 calls to Explore as described above. We measure the cumulative visible latency

across these calls. Random and Coreset-PP use the serial scheduler. Random performs
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random sampling over the videos, and we include a point for each candidate feature. All

of Random’s latency comes from making predictions over the video clips returned from

Explore because its sampling latency is negligible. Coreset-PP uses Coreset sampling

to select videos, and we include a point for each candidate feature. The cumulative latency

includes the time it takes to extract each feature from all of the videos as a preprocessing

step. VE-lazy performs acquisition function and feature selection as described in Section 5.2,

but without the scheduling optimizations described in Section 5.3. VE-lazy incrementally

extracts features from X additional videos if needed for active learning, as described in

Section 5.3. The graphs show a point for each of X∈[10, 50, 100]. VE-full includes all of

the scheduling optimizations described in Section 5.3. This experiment simulates the user

taking 10 seconds to label each video clip, which is time VE-full uses to perform feature

evaluation, train models, and eagerly extract features from videos. VE-full does not specify

X; when the ALM switches to active learning it uses the features that have been eagerly

extracted.

VE-full’s model performance matches or exceeds VE-lazy with a fraction of the visible

latency, and its performance is close to the performance achieved by the best combination of

acquisition function and feature. VE-full beats the model performance of VE-lazy on K20

(skew) because VE-lazy performs Coreset over a small sample of videos (X∈[10, 50, 100]),

while VE-full extracts features from more videos in the background, and Coreset performs

better over this larger sample. On the uniform K20 dataset, VE-lazy has more latency

than Random because it performs feature evaluation. We discuss why the model quality of

VE-full is lower than the best Random point for K20 in Section 5.4.3. While Coreset-PP

has higher visible latency than Random, the difference is less on Deer and K20 (skew)

than K20 for two main reasons. First, there are fewer total videos, so there is a smaller

difference between the number of videos processed during the 100 Explore steps and the

number of videos processed during preprocessing. Second, there is overhead to creating each

DALI feature extraction pipeline, so preprocessing all videos at once is more efficient because

it can use a single pipeline.
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(a) Deer F1 (b) Deer Smax (c) K20 F1 (d) K20 Smax

(e) K20 (skew) F1 (f) K20 (skew) Smax (g) Bears F1 (h) Bears Smax

(i) BDD F1 (j) BDD Smax (k) Charades F1 (l) Charades Smax

Figure 5.3: VOCALExplore’s data sampling method yields models with the highest F1 scores
and samples from a diverse set of classes (Smax, lower is better) across datasets with different
degrees of skew.

The optimizations from Section 5.3 could be applied to Random and Coreset-PP to

reduce their latency, however that does not solve the problem of how to pick the correct

combination of acquisition function and feature for an arbitrary dataset. As shown in

Figure 5.2, model quality differs significantly across combinations.

5.4.2 Acquisition function selection

We now focus on the effectiveness of the ALM’s acquisition function selection, as discussed

in Section 5.2.1. We compare against baselines of using a fixed function: either always

performing Random, Coreset [133], or Cluster-Margin [36] sampling. VE-sample
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picks between Random and Coreset at each iteration as described in Section 5.2.1, while

VE-sample (CM) picks between Random and Cluster-Margin. Freq. also picks

between Random and Cluster-Margin but uses the frequency-based test described in

Section 5.2.1. For this experiment, we show results only for the best feature (Figure 5.4). We

evaluate with R3D for Deer, MViT for K20 (skew) and Charades, and CLIP (Pooled)

for K20, Bears, and BDD.

We measure performance by both the macro F1 score of the model, as well as a diversity

metric Smax, which computes the fraction of labels that come from the single most-seen

activity (see Section 5.2.1). A smaller Smax indicates that the user sees more diverse examples,

which makes the labeling task more interesting.

First, Figure 5.3 shows that Cluster-Margin (and therefore VE-sample (CM)) always

perform at least as well as Coreset and VE-sample. Therefore, we limit the rest of our

discussion to Random, Cluster-Margin, and VE-sample (CM).

Looking at the uniform datasets of K20 and Bears, we observe that Random produces

models with the same F1 score as Cluster-Margin. Therefore, it is unnecessary to sample

these datasets with the more expensive active learning technique. Looking at the skewed

datasets, we observe that using active learning boosts the F1 score above Random for K20

(skew). We also see improved (i.e., lower) Smax metrics for the skewed datasets when using

Cluster-Margin. Therefore, it is useful to use active learning on skewed data because it is

possible the model performance will be improved, and the user is likely to see a more diverse

set of examples to label. We observe that VE-sample (CM) matches the performance of

the best technique on each dataset by detecting whether the labels are skewed and switching

to active learning if appropriate.

Finally, we observe that using the frequency-based method for determining whether a

dataset is skewed leads to similar results as the Anderson-Darling k-sample test, though it is

slightly more conservative and takes longer to switch to an active learning sampling method.

This can be modified by adjusting m; we don’t show the results to avoid crowding the graphs,

but using m=1.5 leads to curves that more closely match VE-sample (CM).
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(a) Deer (b) K20 (c) K20 (skew)

(d) Bears (e) BDD (f) Charades

Figure 5.4: Macro F1 score when using the VE-sample (CM) sampling method, which
shows that the best feature varies across datasets. “Concat” refers to concatenating all of the
features into a single feature vector.

Table 5.4: Feature selection correctness.

Deer K20 K20 (skew) Bears BDD Charades
T = 20 1.00 1.00 0.98 0.97 0.50 0.87
T = 50 0.99 1.00 1.00 0.95 0.69 0.92

5.4.3 Feature selection

We now evaluate the effectiveness of the ALM’s feature selection algorithm. We measure the

correctness (i.e., how frequently do we pick one of the best features) and the efficiency of the

selection (i.e., how quickly do we pick a feature). We initialize VOCALExplore with the five

candidate feature extractors from Table 5.3.

We first evaluate the correctness of feature selection. To measure the quality of each

feature, in Figure 5.4, we compute the macro F1 score for each feature across 100 labeling

iterations (using VE-sample (CM) to pick video segments). It includes Concat to show
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Figure 5.5: Feature selection progress for K20 showing upper and lower bounds when
C=5, w=5, T=50.

that concatenating all of the potential features does not improve performance over the best

single feature. Based on these results, we use the following rules when determining the

correctness of feature selection. For the Deer dataset, we consider selecting either R3D or

MViT to be a correct decision. For K20 and Bears, we consider any of MViT, CLIP, or

CLIP (Pooled) to be a correct decision. For K20 (skew) and Charades we consider

only MViT to be correct. For BDD we consider CLIP or CLIP (Pooled) to be correct. In

this experiment we use C=5, w=5. We discuss sensitivity to hyperparameter values at the

end of this section.

Table 5.4 shows that the ALM picks a correct feature at least 92% of the time (excluding

BDD) when the time horizon is long enough (T=50). When the algorithm picks incorrectly,

it primarily picks the next-best feature (e.g., one of the CLIP features for Deer or K20

(skew)). The algorithm selects incorrect features for BDD some of the time because all

features perform similarly until later iterations when CLIP and CLIP (Pooled) start to

perform better. Therefore, despite the correctness measure being low, the F1 score achieved

is close to the best as shown in Figure 5.6e. The algorithm struggles with Charades due to
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(a) Deer (b) K20 (c) K20 (skew)

(d) Bears (e) BDD (f) Charades

Figure 5.6: Macro F1 score when performing feature selection compared to the empirically
best- and worst-performing sampling methods and features (excluding the Random feature).
We also compare against VE-sample and VE-sample (CM) sampling methods on the best
feature. VOCALExplore initially has poor F1 performance as it explores suboptimal features
but catches up to the best strategies within 30 steps. The shaded region shows the IQR.

the noise introduced by evaluating with k-fold over the large number of classes; correctness

is ≥95% when evaluating with the full test set as described at the end of this section. The

performance over Charades with k-fold can be improved to 98% correct by using stronger

smoothing (w=7, C=7).

?? shows that the ALM picks a single feature within a small number of iterations.

Convergence is faster when T=20 than T=50 because the upper bounds on the expected

performance have lower values, so features are eliminated more quickly. Even at T=50,

features are selected within about 30 steps. Figure 5.5 shows an example of how the upper

and lower bounds evolve for K20. We use T=50 in the rest of the experiments.
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We also evaluate the model quality as the ALM performs feature selection (VE-select).

Figure 5.6 shows that while VOCALExplore initially has sub-optimal model quality as it

explores features, it catches up to the best-performing strategies within approximately 30

steps. We compare against Best and Worst, which correspond to the empirically best- and

worst-performing combinations of sampling methods and features (excluding the Random

feature) to show the range of expected values. We also compare against VE-sample and

VE-sample (CM) on the best feature (VE-sample-Best and VE-sample (CM)-Best,

respectively). We observe that initially VE-select’s performance is close to the worst-

performing strategy because it has poor-performing features as candidates. These features

result in models with low F1 scores, and they also hurt Coreset sampling because distances

in their feature spaces are not meaningful. The VE-select curve exhibits an “S” shape,

where once it converges to a single feature, performance catches up to the best-performing

strategies. While K20 does not converge to a single feature until 30 steps, the model quality

improves before then because the bad features are eliminated, and all remaining candidates

perform well. K20’s final model quality is slightly lower than the best because it picks MViT

98% of the time, and MViT has the highest quality when there are few labels but not when

there are a larger number of labels (as shown in Figure 5.4b). This illustrates that because

we use a small T value to encourage quick convergence to one feature, the ALM’s feature

selection algorithm is biased towards features that perform well in early iterations.

Finally, we evaluate the sensitivity of the hyperparameters. We perform this analysis

when measuring quality using the evaluation set rather than performing 3-fold validation over

the labeled set in order to evaluate the behavior of feature selection under more ideal settings.

We find that the quality is ≥95% for all datasets except BDD across a reasonable range of

hyperparameter values (w ∈ [3, 5, 7], C ∈ [5, 7], T ∈ [20, 50]). BDD’s selection correctness

ranges from 0.68 to 0.88 for all settings. The evaluation set gives a more reliable estimate of

feature quality, so the correct feature is picked even with less smoothing and a shorter time

horizon.
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5.4.4 Task scheduler

Finally, we evaluate the effectiveness of the optimizations described in Section 5.3 and show

they enable VOCALExplore to match or exceed the model quality of VE-lazy but at a

fraction of the visible latency. Figure 5.7 shows model quality and cumulative visible latency

across 100 Explore steps (note that latency is shown with a log-scale). As in Section 5.4.1,

we assume the user takes 10 seconds to watch and label each video clip. The VE-lazy

variants perform feature and acquisition function selection as described in Section 5.2, but

without the optimizations from Section 5.3. VE-lazy (PP) includes the preprocessing time

to extract all candidate features from all videos, which is necessary because the ALM does

not initially know the best feature. VE-lazy (X) variants perform incremental feature

extraction as needed when the ALM switches to Coreset sampling. X indicates the number

of unlabeled videos that have features extracted to serve as the candidates for Coreset.

Larger X values have higher F1 on K20 (skew), and to a lesser extent on Deer, but the

additional feature extraction tasks increase visible latency. Finally, VE-full, which uses all

of the optimizations described in Section 5.3 matches or exceeds the F1 score achieved by the

lazy variants but at much smaller visible latency (which ends up being ∼1 second per step).

VE-full exceeds the performance of the lazy, incremental variants on K20 (skew) because

it extracts features from more videos in the background than the values of X we evaluated,

so Coreset sampling performs better.

5.4.5 Label quality

In this section we evaluate the impact of noisy labels on VOCALExplore’s performance.

We use the same experimental setup as in Section 5.4.3 and initialize VOCALExplore with

the five candidate feature extractors from Table 5.3. We perform 100 labeling iterations and



104

measure the F1 score as the ALM performs feature selection. As in Figure 5.6, we compare

against the best- and worst- performing combinations of features and sampling methods as

well as VOCALExplore’s performance when there is no label noise.

We use a noisy oracle to label the selected video segments that randomly changes labels

5%, 10% or 20% of the time. As shown in Figure 5.8, the performance with 5% and 10%

noise is close to the performance with no noise. There is a drop in performance with 20%

noise, but the F1 score is still better than the worst-performing feature and sampling method.

This indicates that the techniques the ALM uses to select acquisition functions and features

are robust to reasonable amounts of noise.

5.5 Summary

This chapter presented VOCALExplore, a system that supports exploring and building

domain-specific models over videos. VOCALExplore does so in a pay-as-you-go manner,

so the user does not need to wait for an expensive preprocessing step before interacting

with the system. The system builds an increasingly-accurate model as the user spends more

time interacting with it and labeling more data. VOCALExplore does not presume users

have any ML expertise; it automatically determines how to select samples to be labeled and

picks the best feature extractor for a given dataset. To maintain interactivity, it implements

optimizations to minimize the latency of API calls while maintaining model quality.

We evaluate VOCALExplore on domain-specific wildlife datasets showing deer and bears,

as well as on standard activity classification and self-driving car datasets. We show that

VOCALExplore can achieve model performance that matches the best combination of sampling

function and feature extractor with no preprocessing and a user-visible latency of less than

one second per labeling iteration.
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VOCALExplore fills an important usability gap that currently keeps many users with

video datasets from benefiting from the data management and query processing capabilities of

VDBMSs. Users whose datasets lack an off-the-shelf model to extract semantic information,

which is required by current VDBMSs, can utilize VOCALExplore to efficiently build such a

model.
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(a) Deer

(b) K20

(c) K20 (skew)

Figure 5.7: Model quality and latency for VE-variants. VE-full matches the best model
performance of VE-lazy with less cumulative visible latency (shown with a log-scale).
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(a) Deer (b) K20 (c) K20 (skew)

(d) Bears (e) BDD (f) Charades

Figure 5.8: Macro F1 score when performing feature selection with noisy labels (VE-noisy)
compared with no noise (VE-select (CM)) and the empirically best- and worst-performing
sampling methods and features (excluding the Random feature). We evaluate performance
when randomly changing 5%, 10%, and 20% of labels.
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Chapter 6

VOCALEXPLORE: INTERFACE AND EXTENSIONS

The previous chapter described the components and algorithms underlying VOCALExplore,

which implements an API to enable interactive exploration and domain-specific model building

over videos. This chapter starts by presenting VOCALExplore’s user interface which builds

on top of this API and facilitates labeling videos in addition to searching over labels and

model predictions (Section 6.1). We then describe how VOCALExplore could be extended

to support additional labeling tasks and more fine-grained label control (Section 6.2) and

incorporate multimodal features, e.g., from the audio tracks of videos (Section 6.3).

6.1 VOCALExplore interface

As discussed in Chapter 5, video data is increasingly common in scientific and engineering

domains, and novel video database management systems (VDBMSs) have been developed

to support the needs of modern video applications [160, 113, 81]. Many users, however, are

unable to benefit from these recent advances because current systems assume users already

have a machine learning (ML) model that can be used to extract semantic information from

the videos. Many domains, however, lack such pretrained models.

To briefly summarize the previous chapter, VOCALExplore is a pay-as-you-go system

for video data exploration and domain-specific model building that addresses the above

challenge. VOCALExplore takes as input a collection of videos. It guides users through

efficient data sampling and labeling to produce a high-quality model for a new domain, which

users can then apply to annotate their entire video collection. VOCALExplore builds on

techniques from the ML literature and makes three key contributions: (1) it brings together

state-of-the-art ML methods and exposes them through a data exploration API that does
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not require any ML knowledge from users; (2) it automatically and dynamically adapts to

each new dataset in order to produce high-quality models with small numbers of user labels.

Specifically, it (2a) changes sample acquisition functions (i.e., between random and active

learning) based on data distribution; and (2b) simultaneously dynamically explores and picks

the best feature extractor for a given set of videos. Finally, (3) VOCALExplore includes a

task scheduler that ensures low-latency interactions, while maintaining high model quality.

VOCALExplore provides an API with the basic functions needed to explore and label a

video dataset. However, this alone is not sufficient to support users. Videos are an inherently

visual medium, so a graphical interface is necessary to enable users to navigate and annotate

their datasets. This section introduces VOCALExplore’s user interface, which is built on top

of the API described in Chapter 5, to facilitate user interactions necessary for exploration and

domain-specific model building. The user interface supports manual exploration via Search,

where users can search over video metadata (e.g., date), labels they have applied, or predicted

labels generated by VOCALExplore. The interface also supports system-driven exploration

via Explore, where a user can specify their labeling budget, the duration of videos they

want to see, and optionally a specific class they want to focus labeling on. VOCALExplore

then populates the interface with unlabeled video segments that are expected to most improve

model performance after the user labels them.

With its graphical interface, VOCALExplore supports interactive, pay-as-you-go video

data exploration. It enables users to load raw videos and figure out the labels they want

to apply as they explore their data; the system supports these users in finding, labeling,

and ultimately automatically annotating video segments. It does this in a non-blocking and

interactive manner.

VOCALExplore’s interface enables a user to view videos and associated predictions, and

to add labels. Because labeling videos is a tedious task, it is important to have an interface

that reduces friction for common operations like adding labels and minimizes latency to

enable interactivity. We introduce the components of the interface by walking through an

example use case.
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(a) Main screen (b) Detail views

Figure 6.1: (a) shows the user interface for VOCALExplore, and (b) shows detail views that
are presented after clicking on a○ or b○ in the main screen.

Data ingestion and initial exploration. Users load a new dataset using the “Select new

data” button at the top of the page (Figure 6.1a). We do not show this view in the thesis,

but after the user enters the paths to their videos, they are shown the main screen.

The user can start with manually browsing through a few of their videos using the “Search”

interface a○ and specifying a desired date range. Later, they will also be able to “Search”

based on labels, but there are initially no labels and no predictions. Videos satisfying the

search predicate populate the video grid view c○, and the user can play selected videos in the

video detail view d○. We describe these views in more detail below. This manual exploration
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lets the user learn what their videos look like and verify that they match their expectation.

Once the user has manually skimmed through a small number of videos, they are ready to

begin labeling and training a domain-specific model.

VOCALExplore-driven exploration and labeling. After the user clicks on the “Explore”

button in the sidebar, they are shown a short form b○ where they fill in their labeling budget

(i.e., how many video segments they are willing to label), the duration of video clips they

want to view (i.e., some users may prefer to view a smaller number of long segments while

others may prefer to see a larger number of short segments; the choice may also depend on

the videos and application), and optionally a specific activity type they want to improve

model performance on. Once they click the “Go” button, VOCALExplore populates the video

grid view c○ with video segments it selects on behalf of the user. The user interface limits

the number of videos rendered at once to manage its computational overhead, so the user

may have to page through the returned videos if their labeling budget is large.

When the user selects a video from the grid, the video appears in the video detail view

d○. This view includes a video player for the user to watch the video. It also includes a

prediction view e○ that shows the predicted labels returned by VOCALExplore. This view

is empty until the first round of user labels initializes VOCALExplore’s training set, so it

can start training models. VOCALExplore returns a set of activity → probability pairs,

each associated with a time range. The interface displays these probabilities using a line

graph aligned with the video timeline, with one line per activity. This lets the user jump to

potentially interesting points in the video and verify whether the predictions are correct.

Beneath the prediction view is the labeling view. This view enables users to add or edit

labels. VOCALExplore’s interface builds on the wavesurfer plugin [12]. The user drags to

select a duration along the audio waveform, where the current playback location is shown

by the vertical bar f○. The user can then provide one or more labels for the selected time

range. When the user clicks the “Save Label” button, VOCALExplore stores these labels and

updates the model it uses to make predictions on unlabeled videos.
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The first time the user fetches videos with Explore, no predictions are returned because

VOCALExplore does not yet have any labels to train a model. However, future Explore

iterations populate the prediction view e○. After VOCALExplore trains an updated model,

it proactively schedules inference tasks to generate and cache model predictions over videos.

This makes populating the prediction view a low-latency operation. It also ensures that if the

user executes a manual query over the model predictions, the system is already processing the

inference tasks and updating the cache. Therefore, VOCALExplore can immediately return

partial results over the predictions currently in the cache even if not all prediction tasks have

completed by the time the user executes the search.

Strengths of VOCALExplore’s current interface. As described in this section, VOCAL-

Explore’s interface is designed to support users in activity classification tasks. It provides

elements for users to easily label video segments, view model predictions for videos, and

search over labels, predictions, and other video metadata. However, the interface currently

does not show statistics about model performance that would support users in reasoning

about the model’s strengths and weaknesses across classes. Additionally, neither the labeling

interface nor the underlying system supports more fine-grained labeling tasks that require

applying annotations to subregions of frames. Further, while users may change their mind

about the labels they want to use or would like predictions from a model trained on a subset

of labels, VOCALExplore does not provide affordances for this advanced label control.

6.2 Extensions to VOCALExplore

In this section we describe how VOCALExplore explore could be extended to convey additional

information about model quality in its user interface, and how it could support alternative

labeling tasks and fine-grained label control.
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6.2.1 Model quality visualizations

While the prediction view from Figure 6.1a enables the user to assess model quality on

individual videos by manually inspecting the predictions while watching the video, the user

will also want to view aggregated model quality statistics. VOCALExplore could be extended

to let the user track model training progress via a proposed model progress view (Figure 6.1a

g○) which shows the progression of estimated model quality over time. VOCALExplore must

estimate model quality using k-fold cross-validation because we do not assume the user has a

labeled validation set. By default VOCALExplore could show just the macro performance

averaged across all known labels. Users could view the performance plotted for each label by

clicking the “View detailed progress” button. These two views would give the user insight

into how the model is performing on the classes they care about. Based on these metrics,

the user may begin specifying classes in the Explore form (Figure 6.1b b○) to improve the

model’s accuracy on those classes. Alternatively, the user may be satisfied with the model

performance and begin searching for specific instances of activities of interest based on the

model’s predictions. The user can do so by specifying an activity and probability range in

the “Predictions” field of the search form (Figure 6.1b a○).

6.2.2 Supporting additional labeling tasks

VOCALExplore supports activity classification tasks where the input to the labeling task is a

video segment, and the output is a set of predictions for possible classes that appear in the

segment. However, there are many other labeling tasks that users perform over videos. For

example, in activity localization the input is similarly a video segment, but the output is a set

of predictions for possible activities in addition to their predicted start and end timestamps.

Or, in object segmentation the input is a video frame, and the output is a mask assigning

each pixel to a region (e.g., marking pixels as belonging to a particular object).
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VOCALExplore could be extended to support additional labeling tasks. We describe the

necessary changes in the context of object detection, where the goal is to identify and locate

objects within frames by outputting bounding boxes with associated labels. To support object

detection, VOCALExplore would have to solve two ML tasks: region proposal and region

classification. To obtain region proposals, VOCALExplore would have to decide between using

a pretrained region proposal model vs. training its own with supervised data. Pretrained

region proposal models will not work well if the objects in the video frames exhibit different

“objectness” properties from what the model was trained on (e.g., objects in histopathology

images have different properties than objects in wildlife images). Therefore, VOCALExplore

would need to implement a decision function to detect when the regions proposed by a

pretrained model are not of sufficient quality. In these instances, VOCALExplore would have

to train a domain-specific region proposal model in addition to a domain-specific classification

model.

Once VOCALExplore can identify regions in frames that likely contain objects, then

it becomes a classification task again. However, instead of extracting features from entire

frames, VOCALExplore would have to extract features from just the regions of interest.

While adding additional feature extractors would not be required to support object

detection, it may be beneficial. We expect that the best feature extractors to add would

be models pretrained on object detection. Finally, the task scheduler would not need to be

tuned because it dynamically schedules tasks based on observed latencies. Model training

and user labeling latencies will likely change, but the task scheduler will adapt by scheduling

tasks more- or less-eagerly.

6.2.3 Supporting fine-grained label control

The current prototype of VOCALExplore trains models over all labels the user has applied to

video segments. However, users may change their mind about the set of labels they want to

use (e.g., they may want to rename some particular label or apply an additional label to video

segments already annotated with a particular class). Users may also want to obtain model
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predictions for just a subset of labels (e.g., they may label videos with both activities and

location but want separate models for each task, or, they may apply a hierarchy of labels to

video segments and desire separate models over the coarse-grained labels vs. the fine-grained

labels).

It would be straightforward to extend VOCALExplore to provide this type of label control.

We will first consider users who want to change or add labels to video segments based on their

current labels. VOCALExplore’s underlying API supports adding, deleting, or modifying

labels, so this simply requires adding affordances in the user interface for users to select

multiple video segments and specify their desired label transformation. Currently the interface

requires users modify labels by clicking on the timeline of a specific video, so it would be

necessary to add a labeling interface separate from the video player.

We will now consider users who want to train models over subsets of labels and who want

to control which model is used to make predictions. This extension requires modifications at

both the API and the interface level. First, VOCALExplore’s model training and prediction

API calls must accept an additional parameter that indicates the set of labels that should

be considered when training a model or picking a model to use for inference. Then, the

user interface must make it possible for the user to specify these label sets when viewing or

searching over predictions.

The extensions to VOCALExplore discussed in this subsection would give flexibility to

users and enable them to build on and refine labels applied during early exploration rather

than requiring them to engage in a tedious re-labeling process whenever the target task

changes.

6.3 Extending VOCALExplore to utilize multimodal features

As described in Chapter 5, VOCALExplore supports video exploration and domain-specific

model building by extracting feature vectors from video segments, and then using these

features as input to models for training and making predictions. VOCALExplore performs

this transformation from pixels in one or more frames to a feature vector using pretrained
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image and video models, as described in Section 2.2. The system does not use these pretrained

models to predict the activities and objects that appear in the videos because it assumes

that the dataset being analyzed comes from a different domain than what the models were

trained on. Instead, VOCALExplore uses these models as feature extractors by retrieving an

embedding from one of the model’s intermediate layers.

While VOCALExplore currently only considers pretrained image and video models (Ta-

ble 5.3) that extract features from the pixel data, videos are often accompanied by audio

tracks that encode additional information about the video content. The audio data may be

complementary to the video data; for example, if the video shows heavy traffic, the audio

track may encode honking horns. In other settings, the audio data may actually be more

informative than the video data. This may happen when the camera lens is obstructed or

lighting conditions are poor, so the video does not capture the intended content. Finally, the

audio data may be uncorrelated with the video data and not add any information useful for

identifying what is happening in the video. For example, audio tracks from videos in the

Deer dataset (Table 5.2) all consist of quiet rustling that is not useful for distinguishing

activities. Similarly, many videos in the K20 dataset are set to an unrelated song that is

ill-suited for determining the video content.

This section discusses how VOCALExplore could incorporate multimodal features, like

those from audio tracks, to augment the domain-specific models it builds. We first describe

the process of extracting feature representations from audio tracks (Section 6.3.1), and then

we discuss the changes required for VOCALExplore to utilize these multimodal features

(Section 6.3.2). We conclude by presenting initial experimental results (Section 6.3.3) and

discussing future directions of investigation motivated by the initial results (Section 6.3.4).
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(a) Using a pretrained model as a feature extractor for frames. The domain-specific ML
model can have any architecture.

(b) Using a pretrained audio model as a feature extractor for audio tracks.

Figure 6.2: Model inference and feature extraction for audio inputs. (a) shows the pipeline for
video frames, and is duplicated here from Figure 2.5b for convenience. (b) shows the pipeline
for audio tracks extracted from videos. The differences are highlighted in blue: first, the
input to the pretrained model is the audio signal rather than frames. Second, the pretrained
model is specialized for audio rather than visual tasks and expects audio as input.

6.3.1 Background on generating audio features

The process of extracting features from the audio track of videos is very similar to how

VOCALExplore extracts features from frames. Figure 6.2a shows the feature extraction

process for visual features; it is copied here from Section 2.2 for convenience. To summarize

Section 2.2, features are extracted from frames after decoding the video track to pixels. These

pixels are preprocessed and passed as input to a pretrained image or video model.
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Figure 6.2b shows the process to extract audio features. Rather than decode the video

track from a video file, VOCALExplore decodes the audio track to produce a waveform that

represents the audio signal over time. The waveform is resampled to the frequency expected

by the pretrained model and then passed as input to this model. Rather than use an image

or video model, VOCALExplore must use a pretrained audio model, such as Wav2vec 2.0 [19].

However, the output of audio models has the same format as the output of image and video

models; both audio and visual features are represented by d-dimensional feature vectors,

where the dimension d may vary across models.

6.3.2 Incorporating audio features into VOCALExplore

Once VOCALExplore extracts feature vectors from the audio tracks they can be used for model

training and inference, just as the system currently uses feature vectors from the video tracks.

However, there may be benefits to VOCALExplore considering the source of the features (i.e.,

audio vs. video). In this subsection, we discuss the design implications for how VOCALExplore

can incorporate audio features into its feature selection and model training. While this section

describes the minimal changes required for VOCALExplore to utilize multimodal features,

a full treatment of this topic should evaluate against techniques previously proposed to

optimally choose between and fuse features from multimodal channels [18, 154].

Feature selection. Recall from Chapter 5 that VOCALExplore’s Active Learning Manager

(ALM) is responsible for picking a feature extractor that produces high-quality models on the

given dataset. The ALM picks a feature extractor from a set of candidates, which currently

consists of image and video models (Table 5.3). The simplest way for the ALM to incorporate

audio feature extractors would be to add them as additional candidates alongside the existing

image and video options. The ALM would select a single feature extractor (as it does now)

to train domain-specific models, so the audio features would only be used if they outperform

the visual features.
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To formalize this, if we let V be the set of all video feature extractors, and A be the set of all

audio feature extractors, the naive approach is for the ALM to pick argmaxf∈V ∪A M(f), where

M(f) is the model quality achieved using feature extractor f . As described in Section 5.2.2

the ALM cannot directly evaluate M(f). Instead, the ALM would use its rising bandit

algorithm over candidates V ∪ A to select one of the best feature extractors based on the

empirical performance of each candidate over time.

While in most datasets it is unlikely that the audio features on their own encode more

information than the visual features, they may encode information that enhances the visual

features. This insight leads to the multimodal strategy where the ALM may select a combina-

tion of feature extractors from both the visual and audio domains for training downstream

models. Specifically, whereas in the naive strategy the candidate feature extractors are V ∪A,

in the multimodal strategy the candidates are V ∪A∪ {V ×A}, where {V ×A} indicates all

combinations of one visual feature with one audio feature.

The multimodal strategy significantly increases the number of candidates due to the

multiplicative factor of |V | · |A|. While the early experiments in this section of the thesis

evaluate the performance of different feature combinations, it would be interesting future

work to consider how to efficiently prune the larger candidate set to reduce the cost of feature

evaluation. We discuss two possible pruning approaches here.

One naive strategy to handle the additional combinations would be to prune candidates

from the combined features whenever either component is pruned as an individual feature,

i.e., prune (vi, aj) from the candidates whenever vi is pruned from V or aj is pruned from

A. However, if it takes many iterations to eliminate individual features, the ALM would

be performing expensive feature evaluation over the large number of feature combinations

for all of these iterations. This leaves the ALM with fewer resources to put towards other

important tasks, such as feature extraction and performing inference to generate predictions,

as described in Section 5.3.



120

(a) Early fusion (concatenation) (b) Late fusion

Figure 6.3: Early vs. late fusion of multimodal inputs showing how features from video,
audio, and possibly other modalities could be combined.

A second naive strategy would be to only consider a single combination of features

consisting of the audio and visual features that perform best individually, i.e., (v∗, a∗) ∈

{V ×A}, where v∗ = argmaxv∈V M(v), and a∗ = argmaxa∈A M(a). The ALM would perform

feature selection over V ∪A, and only when it converges to v∗ and a∗ would it compare model

performance between v∗, a∗, and (v∗, a∗). This approach significantly reduces the number of

feature evaluation tasks because only one pair of combined features is considered, rather than

|V |·|A| pairs. However, both proposed approaches would fail to select candidates where feature

extractors perform better as part of a combination than they do individually, i.e., they would

miss candidates (v′, a′) where M(v′) < M(v∗) and M(a′) < M(a∗), but M(v′, a′) > M(v∗, a∗).

It is unclear without further analysis and experimentation whether features actually display

this behavior where feature extractors that are suboptimal individually become optimal when

combined with a feature extractor from a different input mode.

Model training. Recall from Chapter 5 that VOCALExplore trains linear models using

the user’s labels to predict activities occurring in the unlabeled videos. If VOCALExplore’s

ALM were to select multimodal combinations of feature extractors, the Model Manager would

need to train multimodal models that integrate the information from each feature source.
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Multimodal models generally utilize one of two approaches to integrate features [17, 54]: early

fusion or late fusion. We now describe these techniques along with their implications for how

the Model Manager would have to be updated.

In early fusion, features are combined before training a model. The simplest form of

early fusion is concatenation, which stacks the feature vectors from different modalities

(Figure 6.3a). However, more complicated approaches may train an embedding model that

takes as input feature vectors from the different modalities and outputs a single feature vector.

Early fusion enables models to exploit correlations between different input modalities because

all features are provided as input to model training. However, early fusion struggles to handle

missing modalities (e.g., some videos may lack audio tracks). Further, the concatenation

strategy increases feature dimensionality, which may hurt model performance.

The Model Manager would require minimal updates to utilize early fusion; it would simply

concatenate the features from all selected feature extractors before training and inference.

The actual training and inference logic would not have to be updated.

Late fusion (Figure 6.3b) first trains a model per-modality. A meta-model then combines

the decisions or probabilities output from each modality-specific model to generate a final

decision. Compared to early fusion, late fusion can more easily adapt to missing features and

does not increase the dimensionality of model inputs. However, the models it trains cannot

utilize correlations between features from different input modalities.

To utilize late fusion, the Model Manager could train modality-specific models as it

does now, i.e., by training linear models over the feature vectors produced by each feature

extractor. Note that the output of these linear models is the same regardless of the input: it

is a c-dimensional vector that represents the model’s confidence that each of the c possible

classes appears in the input. The Model Manager would then need to combine the outputs of

these modality-specific models. The simplest approach to aggregate the predictions would be

to apply pooling over the model outputs. For example, max-pooling would select the most

confident prediction for each class across all modality-specific models. This approach would

work well if each class can be identified by a single modality, even if different modalities
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perform best for different classes. However, combining predictions via pooling ignores possibly

useful correlations across outputs. Therefore, it would also be possible for the ModelManager

to train an additional meta-model over all modality-specific outputs to learn these correlations.

This meta-model can have any architecture, so the simplest implementation would have the

Model Manager train yet another linear model for this purpose

6.3.3 Early multimodal results

To evaluate the usefulness of incorporating multimodal features into VOCALExplore, we

updated the system to support audio feature extraction and to implement early fusion via

feature concatenation. We now present initial results showing the performance of these

multimodal models produced by VOCALExplore. We evaluate on three datasets: Deer and

K20 from Section 5.4 (Table 5.2), as well as a new dataset: K400-Audio. K400-Audio

consists of a subset of videos from the Kinetics400 dataset [90]; it only contains videos from

the classes matching the pattern “playing {instrument}”. These classes were chosen because

the audio in the video clips generally matches the class label, as verified by manually viewing

a random sample of the videos. K400-Audio consists of 10948 training videos and 1049 test

videos across 21 classes. The training dataset is skewed with the most frequent class appearing

in 849 videos and the least frequent class appearing in 218 videos. The full Kinetics400

training dataset contains additional videos for these instrument classes, however, for these

experiments we ignore videos lacking an audio track. The validation set is balanced and

contains 49-50 videos per class.

We extract audio features using pretrained Wav2vec 2.0 [19] and OpenL3 [38] models. We

use torchaudio [161] and the OpenL3 python package to perform audio feature extraction. The

Wav2vec 2.0 model consists of 12 intermediate layers, and we extract the feature representation

from the last of these layers which has 768 dimensions. We extract 512-dimensional embeddings

from the OpenL3 model trained on “music” content.
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Table 6.1: Macro F1 score after training a model on all videos. The table shows the model
performance after training only on audio features (wav2ec or OpenL3), only on visual
features (R3D for Deer, MViT for K20, and CLIP (Pooled) for K400-Audio), and on a
concatenation of the audio and visual features.

Dataset wav2ec OpenL3 Visual Multimodal Multimodal
(wav2ec) (OpenL3)

K400-Audio 0.382 0.577 0.778 0.800 0.817
K20 0.223 0.290 0.795 0.803 0.806
Deer 0.245 0.245 0.799 0.788 0.802

These experiments are intended to explore the usefulness of incorporating audio features

into VOCALExplore. They do not attempt to evaluate or address any of the implementation

questions highlighted in the previous subsection. In our simplified setup, we evaluate each

dataset on the wav2ec and OpenL3 audio features, on the best visual features from Table 5.3,

and on the concatenation of each of wav2ec and OpenL3 with the best visual feature. For

Deer, the best visual feature extractor is R3D; for K20 it is MViT; and for K400-Audio

we use CLIP (Pooled) since MViT and R3D were pretrained on Kinetics400 (which is a

superset of K400-Audio). The concatenated features represent the simplest form of early

fusion (Figure 6.3a), and are represented in the graphs as “Multimodal (wav2ec)” and

“Multimodal (OpenL3)”.

Maximum feature extractor performance. We first evaluate the performance of the

different feature combinations when training models on the entire training set to understand

the maximum expected performance. Table 6.1 shows the macro F1 score for the feature

combinations described above. First, looking at the K400-Audio dataset, we observe the

model performance of both wav2ec and OpenL3 is well below that of the best visual feature,

CLIP (Pooled). Features extracted from OpenL3 generate better models than those

from wav2ec for K400-Audio; this is expected because OpenL3 was trained over musical

content, which closely matches K400-Audio’s domain, while wav2ec was trained over read

speech. Despite OpenL3 achieving reasonable performance on its own for K400-Audio,
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(a) K400-Audio (b) K20 (c) Deer

Figure 6.4: Multimodal model performance across Explore steps using B = 5 and t = 1.
The line shows the median macro F1 score, and the shaded region shows the interquartile
range.

concatenating it with CLIP (Pooled) only modestly improves performance over CLIP

(Pooled) on its own. Further, Multimodal (OpenL3) performs only slightly better than

Multimodal (wav2ec) despite OpenL3 performing significantly better than wav2ec

individually. This indicates that the audio features are not providing additional information

to the model beyond what the visual features convey. It is possible that implementing more

sophisticated methods of early fusion would improve multimodal performance.

Now looking at K20 and Deer, we observe that neither wav2ec nor OpenL3 produces

high-quality models on its own. We see the same behavior as in K400-Audio where models

trained on the concatenated multimodal features perform similarly to models trained solely

on the best visual feature. This indicates that, given sufficient training data, the models that

VOCALExplore trains learn to focus on the informative subset of features.

Iterative feature extractor performance. We now evaluate the quality of models trained

using each feature set over a sequence of labeling iterations. We simulate a sequence of 50

Explore steps with B = 5 and t = 1, which represents 5 1-second video segments being
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labeled at each iteration. We use the VE-sample (CM) method from Section 5.4.2 to

determine which video clips to select at each iteration. After each step, we train a model

over all labels collected so far and evaluate it on a held out validation set. In this experiment

we include the random visual features (Random from Table 5.3) as a baseline for the

worst-performing visual feature.

Figure 6.4 shows the results. Looking at K400-Audio (Figure 6.4a), we observe that

wav2ec and OpenL3 perform similarly in the few-label regime despite OpenL3 performing

significantly better when trained over the entire training set (Table 6.1). We also see that it

takes around 30 labeling iterations before the audio features begin to outperform Random.

Together, these findings suggest that the audio features are less informative than the visual

features and therefore require a larger labeled training set to produce a high-quality model.

Figure 6.4a also shows the multimodal features performing similarly to CLIP (Pooled) on

its own, which matches the behavior seen when training over the entire training set.

For both K20 (Figure 6.4b) and Deer (Figure 6.4c), the audio features on their own

perform poorly. In K20 the audio features perform similarly to Random, while in Deer the

audio features perform worse than Random. We observe these results for Deer because

although the Random features are extracted from a model initialized with randomized

weights (Table 5.3), the model will produce distinctive feature vectors for frames that look

different. In contrast, all of the audio tracks in the Deer dataset are similar, so the wav2ec

and OpenL3 feature vectors are also similar and therefore not useful for discriminating

classes.

We observe that concatenating the audio and visual features does not improve performance

beyond the best visual feature on its own, but it also does not hurt performance as long

as there are sufficient labels. For K20, there is a performance gap between MViT and the

multimodal features at early iterations. We likely observe this performance drop at early

steps for K20 but not for Deer or K400-Audio because the audio in K20 does differ across

videos, however it generally does not correlate with the video contents. Additional training

data is thus required for the model to learn which of the features to focus on.
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6.3.4 Discussion of multimodal results

The experimental results in the previous section do not indicate that incorporating audio

features into VOCALExplore will be immediately beneficial. On two of the datasets (K20

and Deer), adding audio features did not improve model performance over using the best

visual feature on its own. Even on K400-Audio, a dataset designed to have informative

audio tracks, adding audio features improved performance only minimally over the best visual

feature, and it required training over the entire labeled dataset to see this improvement.

The main challenges to improving performance via incorporating multimodal features

appear to be twofold. First, many datasets do not have informative audio tracks. This makes

it impossible to improve model performance, even given a high-quality pretrained audio model

to use as a feature extractor. In these datasets, adding audio features at best cannot improve

the model, and at worst will harm model performance by increasing the dimensionality of

the features. Second, features from easily accessible pretrained audio models [161, 38] do not

produce high-quality models for audio from different domains. For example, wav2ec was

pretrained over a speech dataset, and the experimental results show that these features do

not transfer well to other domains like identifying musical instruments. This is in contrast to

the image and video models used by VOCALExplore that are pretrained on YouTube videos

or internet images, and whose features transfer successfully, even to videos as unique as those

from the Deer dataset.

It is possible that more sophisticated methods of multimodal fusion beyond feature

concatenation could further improve model performance. However, the low accuracy of

wav2ec and OpenL3 on their own limits expected improvements because it indicates that

there is limited signal in the audio features.

While audio features did not improve performance on the datasets we evaluated on, it

is possible that other sources of multimodal features could be helpful. For example, the

Deer dataset is accompanied by accelerometer data that captures information about the

deer’s movement. It is reasonable to hypothesize that this accelerometer data should be
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helpful in identifying the deer’s activities (e.g., when the deer is bedded, there should be no

movement, but when the deer is traveling, there should be maximum movement). However,

one bottleneck to utilizing these features in VOCALExplore is the lack of pretrained models

over accelerometer data. Currently VOCALExplore’s Feature Manager is implemented to

extract features from intermediate layers of pretrained models. If such a model does not

exist for an input modality, VOCALExplore would need to define a custom feature extractor,

which is difficult to do without domain knowledge [57, 26].
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Chapter 7

CONCLUSIONS & FUTURE DIRECTIONS

Video data is increasingly easy to capture and store at large scales, leading users from a wide

variety of domains to utilize videos for diverse applications. However, current video database

management systems (VDBMSs) focus on supporting a subset of common applications that

can be implemented by extracting semantic information with off-the-shelf pretrained models.

Further, while current VDBMSs recognize that applying these pretrained models to videos is a

significant source of query latency, they focus on a limited set of query optimization techniques

that fail to exploit common spatial patterns in query workloads. The latter problem leads to

inefficient VDBMS storage managers that perform unnecessary preprocessing which increases

query latency, while the former problem leaves a large population of potential VDBMS users

unserved; these users are unable to benefit from the data management and query processing

capabilities provided by current VDBMSs due to the lack of a pretrained model relevant to

their videos.

In this thesis we presented two systems to address these challenges. First, in Chapter 4

we introduced TASM, a storage manager for VDBMSs that accelerates queries that process

spatial subregions of frames. TASM uses the video codec feature of tiles to split frames into

independently-decodable regions. This enables TASM to selectively decode and preprocess

only those tiles that contain the regions requested by queries, whereas current video storage

managers must decode and preprocess entire frames due to spatial dependencies introduced

during the video encoding process. TASM is designed to incrementally adapt the tile layout

for groups of frames independently as it learns where in frames objects are located and

what regions are requested by queries in the workload. Our evaluation of TASM shows
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that it can accelerate queries for subregions of frames by an average of 51% and up to

94% while maintaining video quality. TASM appeared in ICDE’21 [41] and is available at

https://github.com/uwdb/TASM.

Second, in Chapter 5 we introduced VOCALExplore, which is an interactive, pay-as-

you-go system to assist users in early video exploration and domain-specific model building.

VOCALExplore provides an API with functions to support both manual and system-driven

data exploration, and it does not require machine learning expertise. VOCALExplore assists

users in building high-quality domain-specific models by choosing how to sample the videos

that should be labeled. Further, VOCALExplore automatically selects a feature extractor

that performs well on each dataset. Finally, the system implements optimizations to ensure

interactive response times to API calls, despite not requiring an expensive preprocessing

phase. Our evaluation showed that VOCALExplore is able to automatically match the

model performance of the optimal sample selection strategy and feature extractor, all with

a user-visible of less than 1 second per API call. VOCALExplore was first proposed in

CIDR’22 [42] and will appear at VLDB’24 [43]. Its code is available at https://github.com/

uwdb/VOCALExplore.

We then presented VOCALExplore’s interface in Chapter 6. This interface builds on

VOCALExplore’s API and reduces friction for common operations like labeling video segments,

viewing predictions, and searching over predictions and labels. The interface is an essential

component of VOCALExplore that makes it possible for domain experts to interact with the

system without having to worry about the underlying API calls. We also discussed possible

extensions to VOCALExplore to support additional labeling tasks and give the user more

control over label management (Section 6.2) as well as how to incorporate multimodal features

(Section 6.3).

https://github.com/uwdb/TASM
https://github.com/uwdb/VOCALExplore
https://github.com/uwdb/VOCALExplore
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TASM and VOCALExplore take steps towards addressing limitations in current VDBMSs

that limit their efficiency and usability. However, additional work is required to realize

VDBMSs that can support users through the entire lifecycle of a dataset, from ingestion and

exploration to complex query processing, all with low query latency and without expensive

preprocessing phases to ensure users can quickly generate the insights they care about.

One important open question is how to connect systems such as VOCALExplore that

support users in video data ingestion and exploration with systems that support complex query

processing over videos [35, 109, 166]. Complex query processing systems enable queries that

specify relationships between objects and across time, however they rely on machine learning

models to extract semantic information from videos. It remains to be seen whether the

domain-specific models produced by VOCALExplore can be used directly by complex query

processing systems, or if additional support is needed to bridge the gap. VOCALExplore’s

models are not optimized for recognizing rare classes or fine-grained categories, so it is possible

that refinement steps will be required to produce the semantic insights necessary to execute

complex queries.

Another important direction for future research is incorporating multimodal features

into VDBMSs to reduce the latency and/or increase the accuracy of query processing. As

evaluated in Section 6.3, naive approaches to incorporate audio features into domain-specific

models do not improve performance over using just visual features. However, it is important

that VDBMSs be able to utilize all sources of information that accompany videos beyond

just the pixel data, be that audio, metadata (e.g., datetime or location), or accelerometer

data. VDBMSs must be able to identify when this auxiliary information is useful and then

be able to successfully incorporate it into query processing. There is a rich body of prior

work investigating multimodal fusion and model training [17, 54, 157], however the video

database community has yet to incorporate and build on this work.
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Final remarks: This thesis introduces systems and approaches that improve the storage

and analysis of videos. We show that by adapting data management principles to video

database management systems we are able to increase the efficiency and usability of VDBMSs.

This is an important area of study given the ever increasing number of users with large

amounts of video data to analyze.
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Appendix A

FREQUENCY-BASED HYPOTHESIS TEST

This section presents the formula that we use to compute the p-value for the frequency-

based test described in Section 5.2.1.

Given a multi-class data distribution with k classes, define the class frequencies as

p ∈ ∆k = {p ∈ Rk
+ :

∑k
i=1 pi = 1} such that pi = Pr[Y = i].

For a given multiplicative threshold m ≥ 1, we say class frequencies p are “imbalanced” if

min
i

pi <
1

mk
(A.1)

Define the imbalanced and balanced distributions as,

Pimbalanced =

{
p ∈ ∆k : min

i
pi <

1

mk

}
(A.2)

Pbalanced =

{
p ∈ ∆k : min

i
pi ≥

1

mk

}
(A.3)

Denote an empirical count vector as C ∈ Zk
+ where n =

∑
i Ci is the total count. We

define the test statistic as ϕ(C) = miniCi. We will say the distribution is imbalanced if

ϕ(C) is sufficiently small (say less than or equal to a threshold t). We want to bound the

False Discovery Rate (FDR) by a probability such as 5% or 1%. For a threshold t ∈ Z+, the

worst-case FDR is,
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max
p∈Pbalanced

Pr
C∼Multinomial(n,p)

(ϕ(C) ≤ t) = (A.4)

= max
p∈Pbal

Pr
C∼Multinomial(n,p)

(∃i : Ci ≤ t) (A.5)

≤ max
p∈Pbalanced

k∑
i=1

Pr
C∼Multinomial(n,p)

(Ci ≤ t) (A.6)

≤
k∑

i=1

max
p∈Pbalanced

Pr
C∼Multinomial(n,p)

(Ci ≤ t) (A.7)

=
k∑

i=1

Pr

(
Binomial

(
n,

1

mk

)
≤ t

)
(A.8)

= k Pr

(
Binomial

(
n,

1

mk

)
≤ t

)
(A.9)

Thus, the “p-value” with n samples and test statistic ϕ(C) is bounded by:

k Pr

(
Binomial

(
n,

1

mk

)
≤ ϕ(C)

)
(A.10)

We implement this in Python as:

p_value = k * scipy.stats.binom.cdf( min(C), n, 1/(m*k) )
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