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The proliferation of cameras deployed throughout our world is enabling and accelerating

exciting new applications such as virtual and augmented reality (VR and AR), autonomous

driving, drone analytics, and smart infrastructure. However, these cameras collectively

produce staggering quantities of video data. VR spherical (360◦) video is up to 20× larger in

size than its 2D counterparts. Closed-circuit television camera networks, often consisting of

tens of thousands of cameras, generate petabytes of video data per day. A single autonomous

vehicle can generate tens of terabytes of video data per hour.

Due to these massive data sizes and the complexity involved with reasoning about

large numbers of cameras, developing applications that use real world video data remains

challenging. Developers must be cognizant of the low-level storage intricacies of video formats

and compression. They need expertise in device-specific programming (e.g., GPUs), and, to

maximize performance, they must be able to balance execution across heterogeneous, possibly

distributed hardware.



In this thesis, we describe several video data management systems designed to simplify

application development, optimize execution, evaluate performance, and move forward the

state of the art in video data management. The first system, LightDB, presents a simple,

declarative interface for VR and AR video application development. It implements powerful

query optimization techniques, an efficient storage manager, and a suite of novel physical

optimizations. To further improve the performance of video applications, we next introduce a

new video file system (VFS), which can serve as a storage manager for video data management

systems (such as LightDB and others) or can be used as a standalone system. It is designed to

decouple video application design from a video’s underlying physical layout and compressed

format. Finally, analogous to standardized benchmarks for other areas of data management

research, we develop a new benchmark—Visual Road—aimed specifically at evaluating the

performance and scalability of video-oriented data management systems and frameworks.

By exposing declarative interfaces, LightDB and VFS automatically produce efficient

execution strategies that include leveraging heterogeneous hardware, operating directly on the

compressed representation of video data, and improving video storage performance. Visual

Road reproducibly and objectively measures how well a video system or framework executes

a battery of microbenchmarks and real-world video-oriented workloads. Collectively through

these systems, we show that the application of fundamental data management principles to this

space vastly improves runtime performance (by up to 500× increased throughput), enhances

storage performance (up to 45% decrease in file sizes), and greatly decreases application

development complexity (decreasing lines of code by up to 90%).
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Chapter 1

INTRODUCTION

Video data management has recently re-emerged as an active research area due to

advances in machine learning and graphics hardware, as well as the emergence of new

video-oriented application domains such as virtual reality (VR) [47, 55, 153, 166, 100],

augmented reality (AR) [65, 103], drone analytics [13, 27, 53, 154, 156, 157], autonomous

driving [75, 146, 158, 172], and large-scale traffic and surveillance analytics [98, 169, 170, 172].

These new application domains differ from previous-generation video-oriented applications

such as content-based search and adaptive streaming both in volume of video data being

processed, the need to jointly reason about groups of videos (e.g., every drone camera in a

swarm), and increased emphasis on each camera’s physical location and orientation in the

physical world.

Instances of these applications, which we call visual world applications, are abundant, and

are typified by the following examples:

Example 1.1 (Predictive spherical panoramic video tiling). Many streaming video

services (e.g., YouTube VR [166]) stream extremely large, high-resolution 360◦ panoramic

videos to client devices. This approach is suboptimal, because at any instant only a small

portion of the panorama is displayed on a VR headset, which generally have a constrained

field of view. Recent work [48, 56, 67, 106] has demonstrated substantial savings (up to 75%)

in data transfer by degrading the quality of the “unimportant” areas of a 360◦ video. This

example application is increasingly common today and it exemplifies the need to easily reason

about, query, and process 360◦ panoramic video data.
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Input Video Frame Output Video Frame

Figure 1.1: An augmented reality application that highlights detected objects (people and

cats) on top of a live video stream. Image by Mewpro, CC-BY 3.0.

Example 1.2 (Augmented reality object detection). An augmented reality application

that has seen heightened interest in the computer vision [129, 95] and mobile sensing [26, 128]

communities involves ingesting a live video stream from a worn camera or mobile device,

automatically detecting salient objects within the viewer’s field of view, and highlighting

them in real-time with a bounding rectangle. Figure 1.1 shows the input and output of this

process for a single video frame. Developers who write augmented reality applications must

tediously manage details such as video compression and resolution, which motivates a need

to abstract these physical details. These details can increase the size of programs by more

than 10× (in terms of lines of code; see Section 3.5.1).

Example 1.3 (Surveillance camera networks & autonomous driving). Large net-

works of city-wide surveillance cameras are an increasingly common occurrence. They require

various types of processing large numbers of videos in various locations and orientations. An

example application in this area might involve tracking vehicle sightings throughout a city

(e.g., identifying vehicles across all cameras and assembling a montage of each video segment

containing a given license plate) for offline viewing. At the same time, autonomous driving

applications consume video in various formats (e.g., LiDAR, RADAR, stereoscopic cameras)

and spatial configurations (e.g., monoscopic, stereoscopic), reason about its position relative

to nearby objects, and may be augmented by information provided by other agents (e.g.,

nearby cars, surveillance cameras, or other intelligent transportation infrastructure) [172].

In both cases, joining together and reasoning about multiple videos is complex and difficult

https://creativecommons.org/licenses/by/3.0/deed.en
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in existing video processing systems, both because of varying physical formats (e.g., frame

layouts include RGB, RGBA, NV12, YUV420, YUV422, and many others) and a lack of

support for spatiotemporal position and orientation. This motivates a need for systems

that can more easily reason about many videos captured from proximate locations in a

format-agnostic manner.

These new application domains have led to many new systems that efficiently process and

manage video data. This has led to new video-oriented data management systems, platforms,

and frameworks (collectively “VDBMSs”) that enable developers to more easily implement

and execute applications such as those described above. These new systems target areas such

as 2D analytics [98, 124, 6, 89, 83, 169] and machine-learning [73, 86, 85].

However, current VDBMSs—including all the systems referenced above—process individual

video data streams in isolation, leaving the developer responsible for combining, overlaying,

and intermixing videos per her requirements. They do not expose high-level support for, or

reasoning about, a video source’s “real world” characteristics such as dynamic spatiotemporal

position or visual overlap between cameras. They additionally require tedious management

of low-level details such as resolution and frame rate. Finally, with the exception of recent

VR and AR systems (e.g. [65]), current systems do not expose support for reasoning about a

viewer or video’s orientation or perspective. However, even these VR and AR systems allow

reasoning only about the angular orientation of a “current viewer” on a single client device or

headset, and lack support for spatial reasoning, multiple video inputs, and multiple viewers.

Despite this lack of support, an important class of emerging video-oriented applications

(including Examples 1.1 to 1.3) rely on exactly these “real world” concepts such as spatiotem-

poral position, orientation, and field of view. These visual world applications (VWAs) require

reasoning about or operation over one or more of these additional concepts. They are thus

distinguished from previous-generation video-oriented applications such as adaptive content

delivery [80, 7], content retrieval [41, 1], and those that perform modifications to groups of

location-agnostic, largely independent video streams [124, 57].
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While implementing VWAs on many current VDBMSs is possible, doing so requires over-

coming a number of conceptual and technical challenges, and leads to brittle implementations

that intermix application logic with the plumbing required to address these challenges. This

VWA impedance mismatch is typified by the following disconnects and challenges:

Definition 1.1 (VWA impedance mismatch). Expressing and implementing VWAs using

existing VDBMSs is impeded by the following factors:

Lack of uniform coordinate system. Unlike previous-generation video applications

that process the input iteratively by independent video frames, VWAs emphasize and

need to reason about viewer, camera, or object position, whether relative or absolute.

No support for orientation and overlapping field of view. VWAs often require joint

reasoning about the positions of sets of cameras or viewers. For example, a VWA might

apply object recognition to identify the same object in multiple, overlapping cameras,

select all cameras that can see a particular point in three-dimensional space, or decrease

the quality of video outside of a viewer’s current field of view.

Physical data dependence. VWAs often require joining together multiple videos taken

from different perspectives (e.g., multiple physically-proximate traffic cameras). However,

developers who use current VDBMSs have to consider details about video in its physical

format, and must manually account for physical differences between videos in terms of

resolution, frame rate, pixel formats (e.g., NV12 [143]), and video codec idiosyncrasies

(e.g., [110]). For VR and AR video, developers must additionally deal with issues such as

spherical projections (e.g., [21, 133]), nonuniform sampling [19], and angular periodicity.

Opaque, coarse-grained storage. File system support for interacting with video data

is limited to coarse-grained reads and writes of separately-stored video files. These opaquely

compressed files have no support for co-locating, indexing, or caching spatially-similar

video data, which is common in VWAs.
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Compounding this, the performance and scalability of current VDBMS are evaluated in

an ad hoc manner. Such evaluation requires large volumes of globally-consistent, realistic,

high-resolution video datasets in a variety of formats, resolutions, and with accurate ground

truth. Comparing scalability and performance between VDBMSs requires a common set of

queries and operations found in VWAs, but objective measures for this evaluation are missing.

Finally, in addition to the impedance mismatch that hinders implementing VWAs, optimizing

execution in these systems is also a substantial engineering challenge. While all video applications

tend to be data-intensive and latency-sensitive, VWAs are often particularly so. The need to

reason about position and orientation often requires joining together multiple video streams

(e.g., two traffic cameras that can see the same intersection), resulting in higher complexity (and

opportunities for optimization) compared to applications that process video streams independently

and potentially in parallel. Additionally, operations in real or virtual space often requires

computation over video metadata such as depth, increasing the cost of such operations.

1.1 Summary of Research Contributions

We critically need new and innovative video-oriented data models, data management systems,

and query execution and optimization techniques to address the impedance mismatch found

in VDBMSs when expressing, executing, and optimizing VWAs. With this in mind, this

thesis presents new innovations in expressing, optimizing, and executing these applications

and in evaluating the performance of systems they run on.

Specifically, our core contribution is a set of three systems—LightDB, VFS, and Visual

Road—each designed to explore this space from a different perspective and level of the

system stack. As illustrated in Figure 1.2, these systems, summarized below and detailed in

ensuing chapters, build upon each other and collectively form a cohesive software stack for

applications in this space. Collectively, this thesis contributes novel and application-driven

approaches to expressing, executing, and evaluating both new and future VWAs, branching

disconnects between the requirements of VDBMSs and the operations they support.

We next describe each contribution in further detail.
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LightDB [65]

Video File System (VFS) [63]

V
is

u
al

 R
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 [

6
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]

Vignette [108]TASM [36] ⋯

VisualWorld [64]VisualCloud [67] ⋯

Figure 1.2: Systems developed in the context of this thesis ( , ), along with related

contributions led by collaborators ( ), form a cohesive software platform. This monograph

focuses on the systems highlighted in yellow ( ).

1.1.1 LightDB: A Database Management System for Virtual & Augmented Reality Video

As described previously, advances in computing, network hardware, and display technologies

have generated increased interest in immersive VR and AR video applications. These

applications have rapidly become mainstream and widely deployed on mobile and other

consumer devices. As a result, a number of specialized systems have been introduced for

preparing and serving VR and AR video data (e.g., [153, 47, 166, 55, 100, 103]), with the

goal of aiding application development. However, developers who use current VR and AR

systems still must overcome the challenges defined in the VWA impedance mismatch.

To address these challenges, we introduce the LightDB system (Chapter 3), which is

a VDBMS designed to handle the storage, retrieval, and processing of both archived and

live VR and AR video. This system was first demonstrated at SIGMOD’17 [67] and later

appeared in PVLDB’18 [65].

A key contribution of LightDB is its unified data model, which contains a logical construct

called a temporal light field (TLF). A TLF captures the degrees of freedom available to a

human viewer in virtual space and serves as an abstraction over the various physical forms of

VR and AR video that have been proposed.
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In addition to a logically-unified data model, LightDB includes a logical algebra, data

storage, query optimization, and execution components, along with a language that allows

developers to easily write declarative queries in the LightDB algebra. We show implementation

of real-world workloads using the LightDB language, and demonstrate that their expression

requires far fewer lines of code than existing systems.

We have implemented LightDB as a prototype system that includes the TLF data model,

algebra, and language. Our LightDB prototype comes with a storage manager, indexes,

physical algebra, query language, and simple rule-based query optimizer. During execution,

LightDB automatically selects an execution strategy that takes advantage of a number of

optimizations for VR and AR VWAs. These execution strategies exploit heterogeneous

hardware and device parallelism. Additionally, where possible, LightDB performs operations

directly on compressed video and thereby avoids extremely expensive encoding and decoding

costs.

We have used LightDB to implement a variety of real-world workloads, with significant

improvement in application performance as compared to those implemented using existing

VDBMSs and video processing frameworks. In particular, our microbenchmarks show orders of

magnitude improvement (up to 500×) in terms of throughput for fine-grained operations, and

up to 4× throughput performance improvement for end-to-end VR and AR video applications.

1.1.2 VFS: A File System for Video Analytics

To mitigate the video data deluge described earlier in this chapter, many VDBMSs have

emerged to ingest, transform, and reason about video data [98, 65, 83, 124, 73, 86, 169].

These systems, however, treat video data as large, opaque blobs and stores them on persistent

storage as independent files. As a result, storage-related operations on video data are inflexible

and limited to reads, writes, and coarse-grained seeks. These limited storage capabilities

create the following challenges for application developers:
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� Developers are forced to tightly intermingle data plumbing with application logic and

must manually handle the details associated with physically-persisted video data (e.g.,

(de)compression, resolution resampling, framerate alignment).

� The close coupling of application logic with physical video data storage makes it difficult

to deploy optimizations and other techniques (including systems such as TASM [36]

that are introduced after an application has been implemented or deployed) to improve

application performance.

� As described previously, many recent VWAs collect large amounts of video data with

overlapping fields of view and physically proximate locations. However, reducing the

redundancies that occur among these sets of physically-proximate or otherwise similar

video streams is neglected in all modern video-oriented systems.

To address these issues, we introduce a new video file system (VFS), which is designed to

decouple VWA design from video data’s physical layout and compression optimizations. This

decoupling allows application and system developers to focus on their relevant functionality,

while VFS handles the low-level details associated with video data persistence and retrieval.

In this way VFS takes responsibility for addressing the challenges listed above, freeing the

developer to focus on relevant application logic.

Analogous to relational database management systems, developers using VFS treat each

video as a logical video and let VFS determine the best way to perform operations over one or

more of the physical videos that it maintains on disk. To enable this, VFS exposes a simple

declarative interface where users read and write video data through file system operations,

command line, or by directly utilizing its API. Users initially write video data in any format,

encoding, and resolution and VFS manages the underlying compression, serialization, and

physical layout on disk. For subsequent reads, VFS automatically identifies and leverages the

most efficient methods to retrieve and return the requested data.
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To transparently improve performance, VFS deploys a number of optimizations and

caching mechanisms to improve read and write performance. For example, VFS indexes video

fragments and the resulting structure allow VFS to read only the minimal set of subsequences

necessary to satisfy a request for portions of a video.

Our results indicate that utilizing VFS can improve read performance by up to 54% (by

materializing results and using them to answer future queries), reduce storage costs by up

to 45% (by reducing redundancies in pairs of overlapping videos), and enable developers to

focus on application logic rather than video storage and retrieval.

1.1.3 Visual Road: A Video Data Management Benchmark

When existing VDBMSs quantify their performance, they do so by reporting efficiency

under various ad hoc workloads both in terms of the input videos selected and the executed

queries. These ad hoc workloads, however, preclude comprehensive and easily reproducible

system comparisons. This leads to a substantial challenge: there is no clear way to reliably

and objectively benchmark performance among the many recently-proposed systems. This

deficiency is due to a lack of a robust, sufficiently-complex video dataset, an architecture-

agnostic set of queries that may be executed on current and future VDBMSs, and the

difficulties in determining whether a VDBMS produces a correct answer to a query, which

requires accurate ground truth that is laborious to generate.

To remedy these issues, and analogous to standardized benchmarks for other areas of data

management research, we introduce a new benchmark called Visual Road. Visual Road is a

benchmark aimed at VDBMSs and is designed to objectively evaluate the relative performance

and scalability of modern video processing systems. This work appeared at SIGMOD’19 [66].

Visual Road comes with a dataset generator and a set of evaluation queries (expressed

using the declarative LightDB query algebra formally defined in Section 3.2). These queries

are divided into “microbenchmark” operations that test isolated features found in current

VDBMSs, along with larger “composite” queries that measure a VDBMS’s ability to execute

typical end-to-end applications drawn from the recent literature.



10

Visual Road automatically generates an unlimited amount of realistic, synthetic VWA

video data. To do so, Visual Road leverages a modern simulation, visualization, and gaming

engine [42] to deterministically generate realistic videos within a simulated metropolitan

world. In addition to allowing unlimited size and resolution for the resulting video datasets,

this approach additionally allows for the automatic calculation of precise ground truth and

other metadata about generated videos, without the need for manual annotation.

Through the composition of small operations available in all current VDBMSs (e.g., image

cropping), the Visual Road query suite is designed to be implementable across a wide variety

of VDBMS architectures. Further, and in the same way that relational database systems

target subsets of benchmarks (e.g., a specific TPC query), Visual Road is flexible such that a

user may either select specific applicable queries or groups of queries appropriate for their

systems in addition to executing the entire benchmark to demonstrate broad functionality.

We show the utility of the benchmark by evaluating three recent VDBMSs both in capabil-

ities and performance and demonstrate that our approach enables performance comparisons

between VDBMSs with results that are more reliable and scalable than current approaches

(e.g., small ad hoc datasets or randomly generated videos).

1.2 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2 we describe the minimal

background in video capture and storage necessary to understand the details in this monograph.

In Chapter 3 we introduce LightDB, a database management system designed for VR and

AR video applications. Chapter 4 describes VFS, a specialized file system designed for video

analytics. Chapter 5 describes Visual Road, a benchmark for evaluating the performance

and scalability of VDBMSs. We then describe related work in Chapter 6 and conclude in

Chapter 7.
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Chapter 2

OVERVIEW OF VIDEO CAPTURE & STORAGE

In this chapter we briefly summarize the concepts and terminology relating to video

capture, compression, and format. This background is not intended to be comprehensive,

and we refer a reader to a more robust treatment of these topics (e.g., [133, 145]) for details

beyond the scope of this monograph. We begin in Section 2.1 by briefly describing how

cameras capture and store visual information. Section 2.2 introduces techniques relating to

video encoding and streaming, and Section 2.3 discusses the terms and concepts necessary

for managing virtual reality video.

2.1 Photographic & Video Camera Physical Structure

Cameras record visual information in the form of photographs or videos. To capture this

visual information, most digital cameras contain one or more lenses that focus light onto an

image sensor. Each image sensor can be conceptualized as an n×m array with elements that

correspond to pixels in a photograph or video.

All cameras have a field of view that determine the angular extent visible on the resulting

photograph or video. By way of example, a 35mm camera typically has a horizontal field of

view of 39.6◦. Spherical panoramic videos, described further in Section 2.3, are often referred

to as 360◦ videos because they have a maximal field of view and capture visual information

from every direction.

The mapping between a light ray incident to a camera at a particular angle (θ, φ) (i.e., the

azimuth and altitude) and the corresponding image sensor array element (i, j) is a function of

the lenses and other physical properties of the camera. For two-dimensional photography, this

is a straightforward linear forward projection and illustrated in Figure 2.1(a). For cameras
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Forward 
Projection

Photographic
Lens

(a) Photographic camera. A two-

dimensional photographic camera

with a field of view defined by its

lens and other physical characteris-

tics. A forward projection is used

to map light rays onto a plane.

Equirectangular
Projection

Fisheye
Lens

(b) Spherical panoramic cam-

era. A spherical panoramic camera

with dual fish-eye lenses used to cap-

ture visual information from every

angle. An equirectangular projec-

tion is used to map light rays in

every direction onto a plane.

Photographic
Lens

Light Field 
Projection

(c) Light field camera. An n×m

bank of light field cameras (see Sec-

tion 2.3.2) captures visual informa-

tion incident to a plane. A light

field projection maps each light ray

onto a plane.

Figure 2.1: High-level illustration of a photographic, spherical, and light field cameras

capturing light from their respective field of view and projecting it onto an image plane.

with a maximal field of view such as spherical panoramas and light fields (see Section 2.3),

more sophisticated projections are used. Figure 2.1(b) shows a spherical panoramic camera

with a dual fish-eye lenses using an equirectangular projection function to map spherical

visual information onto a plane. Finally, as illustrated in Figure 2.1(c), a light field camera

uses an array of ordinary cameras and a complex projection to map the substantially larger

amount of visual information onto a plane.

2.2 Video Encoding & Streaming

A video is logically composed of a sequence of video frames that are periodic temporal

samples of visual data. Each frame is an independent image sampled at a point in time.

Common frame rates generally fall between 25 and 150 frames per second. Each frame is a

two-dimensional array with extents given by its resolution R = (Rx, Ry). Typical resolutions
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Predicted frameKeyframe

GOP 2

⋯

GOP 1

⋯

Figure 2.2: Illustration showing keyframes (a.k.a. intra-coded frame or I-frame), which are

compressed in isolation, and predicted frames that must be decompressed in conjunction with

their dependencies (shown by arrows between frames). Two groups of pictures (GOPs)—a

sequence of frames with no external dependencies–are also labeled.

are 1k (960× 540), 2k (1920× 1080), and 4k (3840× 2160), and a resolution is typically

fixed for a given video. Each element of a frame is a pixel containing an encoded color (e.g.,

YUV420p) in a given color space (e.g., CMYK).

Naively serializing a video as described above would be cost-prohibitive, as uncompressed

4k video consumes approximately 7GB of space per hour of video. To reduce storage and

transmission costs, videos are encoded and compressed using a video codec (e.g., h264 [160],

hevc [144]). Most modern video codecs compress each frame as a keyframe (a.k.a. intra-coded

frame or I-frame) or a predicted frame (a.k.a. P- or B-frame). Keyframes are compressed

in isolation and may thereafter be decoded independently without reference to any other

frame. Predicted frames take advantage of redundant visual information between frames and

maintain references to other frames to improve compression performance. As a consequence,

each predicted frame must be decoded in conjunction with its dependent frames. These

dependencies are illustrated in Figure 2.2.

Video codecs also use redundant information within each frame to improve compression

by identifying regions with high similarity and storing each region only once. While codecs

may search across the entire frame when looking for similar regions, it is often useful to

restrict this search to tiles (equivalent to slices for the purposes of this discussion) within

a frame. While this technique—called motion constrained tile sets—reduces compression
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Tile 2
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Figure 2.3: In (a), a frame is subdivided into three independently-decodable tiles. Subfigure (b)

shows its corresponding physical representation, where an index points to the offset of each tile.

performance, it enables tiles to be (de)compressed in parallel and allows other tiles (e.g.,

of different qualities) to be substituted without affecting the rest of the frame. As shown

in Figure 2.3, state-of-the-art video codecs (e.g., hevc, vp9) associate a tile index with

each frame that utilizes tiles. This index allows for rapid identification of the data region

associated with each tile.

Many video codec implementations produce groups of pictures (GOPs) that are inde-

pendently decodable as a group and begin with a synchronizing keyframe. This means that

within a GOP, every predicted frame depends only on frames within that GOP. Two GOPs

are shown in Figure 2.2. GOPs are an important part of adaptive streaming (e.g., DASH [80],

HLS [7]), which varies the quality of each GOP delivered to a client based upon its current

network conditions [137].

Finally, rather than streaming raw encoded video streams to clients, videos are typically

“muxed” into files such as the MPEG-4 Part-14 (MP4) [79] or WebM/Matroska [147] media

container formats. These “containers” standardize a flexible format for video and audio

metadata, support aggregation of multiple streams into a single file structure (e.g., different

audio languages or camera perspectives), and allow for data indexing.

An MP4 file may be associated with any number of tracks that contain independent video

streams. For example, as we will describe in Section 3.4.4, our prototype LightDB system

stores stereoscopic visual information for the left and right eyes in separate video streams.

Additionally, if depth map information is available, LightDB stores it as a separate video

stream.
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MP4 File

moov: metadata container

External Media File

GOP 1

GOP 𝑛
⋮

mdat: media data

GOP 1

GOP 𝑛
⋮

trak 1:

sv3d: Projection

stsd: Codec, etc.

⋮

stream metadata trak 2:

sv3d: Projection

stsd: Codec, etc.

⋮

stream metadata

stss: GOP index stss: GOP index

Figure 2.4: Abridged MP4 layout showing atoms relevant to this monograph. This MP4

file contains a moov atom holding media metadata. This includes two trak atoms, each

containing metadata about a single media stream. A stss atom provides a GOP index over

media data stored in a mdat atom or externally.

As illustrated in Figure 2.4, an MP4 file is composed of a forest of atoms (often called

“boxes”). An atom is a self-contained data unit that contains information about media. Each

atom is associated with a four-character identifier that indicates its type and a variable-length

data region. Examples relevant to the discussion herein include:

� mdat atoms, which hold actual encoded media data.

� A trak atom, which holds metadata about a particular media stream (e.g., its codec)

and a pointer to media data. Actual media data may be stored externally (trak1 in

Figure 2.4) or embedded inside a mdat atom (trak2).

� The stss atom contains an index of the GOPs in a video stream, and is used to

efficiently look up the beginning of any GOP without needing to linearly search through

the encoded video data.

� The sv3d atom is a custom atom defined in the Spherical Video V2 RFC [141] and is used

to store metadata relevant to virtual and augmented reality video (see Section 3.4.4).
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Figure 2.5: A VR head-mounted display (left) and an example of the stereoscopic 360◦ video

image projected to the viewer (right).

2.3 Light Fields & Spherical Panoramas

In this section we discuss the details of the most popular forms of virtual reality video:

spherical panoramic (a.k.a. 360◦) and light field videos. In Chapter 3 we describe LightDB’s

support for both video formats, while in Chapter 5 we describe Visual Road’s support for

evaluating the performance of producing and operating on 360◦ workloads.

Ultimately both 360◦ and light field videos are encoded using the two-dimensional video

techniques described in Section 2.2 to reduce the amount of storage required. The following

two subsections introduce each type of video and highlight various techniques applied prior

to encoding.

2.3.1 Spherical (360◦) Panoramas

360◦ videos are a popular form of VR video that allow a viewer wearing a head-mounted

display or using a mobile device to observe a scene from a fixed location at any angle.

Figure 2.5 shows a typical mobile headset device and a corresponding 360◦ view. Because

a user may rapidly adjust the direction of view, the critical variable for this format is the

direction that a user is looking. Spherical panoramic images are a special case of a 360◦ video

where the scene is captured at a single instant of time.

As shown in Figure 2.6, the common approach to generate 360◦ video is to use multiple

input cameras and stitch the streams together using specialized software that approximates

a spherical representation. Rather than attempting to compress each sphere as a three-
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(c)

2D Image2D ImageFront

(d)(a) (b)

Figure 2.6: A typical 360◦ video ingest pipeline. In (a-b), an input camera rig generates

overlapping 2D images in every direction. In (c-d) the 2D images are stitched into a spherical

representation and then equirectangularly projected onto a 2D plane [67].

dimensional construct, the typical approach projects each sphere onto a two-dimensional

plane using a specialized projection function and then compresses it using an ordinary 2D

video codec. Common projections are equirectangular (ER) [133], cubic [133], or equiangular

cubic [21].

360◦ images and videos may be monoscopic or stereoscopic. Stereoscopic videos (shown

in Figure 2.5) encode visual data from two spatially-nearby points—the distance between a

viewer’s eyes. This encoding may be explicit, where two separate spheres are mapped onto two

planes and delivered to viewers as separate video streams. Alternatively, if depth information

is available (either from the capture devices or by applying an estimation algorithm), this

may be encoded as a separate stream (i.e., a depth map [134]) and delivered to a viewer.

The viewer uses the depth information to generate and render stereoscopic spherical images

locally.

2.3.2 Light Fields

A 360◦ video enables a user to look in any direction, but the user must remain static. A light

field enables a user to both look in any direction and move about in space. Obviously, this

requires knowing the location and orientation of a viewer.
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To enable such flexibility, a light field is a function that, for any point in a given volume

and for any viewing direction, returns the color and amount of light flowing into a user’s eye.

Building a light field function requires a matrix of cameras to sample all of the light flowing

through a volume in space. Figure 2.1(c) shows an example of this camera matrix.

One method of encoding light field data is to use a light slab [91], which encodes the

color of each light ray by its intersection at points (i, j) and (k, l) with two planes uv and

st. Multiple light slabs at various orientations are used to capture an entire volume. For

example, six slabs could be used to capture the light in a cube. Figure 2.7(a), adapted from

Levoy & Hanrahan [91], shows the uv and st planes of a single slab.

As with 360◦ videos, data from the uv and st planes can be projected onto a single

two-dimensional plane and compressed using standard 2D video encoders. One common

projection technique, used herein and shown in Figure 2.7(b), encodes each light ray color as

an array of arrays [91]. For a given light slab S, the intersection (i, j) with the uv plane is

used as a lookup in the outer array, and the intersection (k, l) with the st plane is used to

look up the color in the nested array. Entry S[i, j][k, l] gives this color.

Figure 2.7(b) shows a 2×2 sampling of a light field (typical light slabs have many more

samples). The red and blue rays illustrated in Figure 2.7(a) are highlighted respectively at

entries S[u=2, v=1][s=1, t=1] and S[u=2, v=1][s=1, t=2]. When a viewer wishes to render a

pixel for a user’s position and orientation, a corresponding light ray is retrieved from this

representation. To render rays that fall between samples, nearby rays are extracted and an

interpolation function approximates the original light ray. When multiple light slabs are

present, each is encoded into its own physical array and multiple slabs may be used during

interpolation.
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Figure 2.7: Logical and physical encoding of a light slab with a 2×2 sampling of the uv and

st planes. Two equivalent light rays are highlighted in red and blue.
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Chapter 3

LIGHTDB: A DATABASE MANAGEMENT SYSTEM FOR
VIRTUAL & AUGMENTED REALITY VIDEO

In this chapter we introduce the LightDB video database management system (VDBMS).

LightDB’s design targets the virtual reality (VR) and augmented reality (AR) domains—an

important subset of the visual world applications (VWAs) described in Chapter 1. LightDB

includes support for both spherical panoramic (360◦) and light field video (see Section 2.3).

We use LightDB to implement recent virtual and augmented reality applications and show

that their performance (in terms of programmability and throughput) far exceeds that of

other state of the art VDBMSs and video processing frameworks. The work presented in this

chapter appeared in PVLDB’18 [65].

Over the last several years, advances in computing, network hardware, and display

technologies have generated increased interest in immersive 3D VR video applications. AR

applications, which intermix 3D video with the world around a viewer, have gained similar

attention. Collectively, these VR and AR applications have become mainstream, widely

deployed on mobile and other consumer devices, and represent an exciting and important

subset of recent VWAs.

Managing VR and AR data at scale is an increasingly critical challenge. While, as we

highlighted in Chapter 1, VWAs tend to be data-intensive and time-sensitive, VR and AR

video applications are often particularly so. For example, recent VR light field cameras

(introduced in Section 2.3.2), which sample every visible light ray occurring within some

volume of space, can produce up to a half terabyte per second of video data [101, 109].
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For spherical panoramic VR videos (a.k.a. 360◦ videos; see Section 2.3.1), encoding one

stereoscopic frame of video can involve processing up to 18× more bytes than an ordinary

2D video [67].

AR video applications, on the other hand, often mix smaller amounts of synthetic video

with the world around a user. Similar to VR, however, these applications have extremely

demanding latency and throughput requirements since they must react to the real world in

real time.

To address these challenges, various dedicated frameworks have been introduced for

preparing and serving VR and AR video data (e.g., [153, 47, 166, 55, 100, 103]), with the goal

of enabling developers to easily implement their applications. All current systems, however,

suffer from the VWA impedance mismatch we described in Chapter 1 (see Definition 1.1):

developers who use these systems must reason about 2D encoded video in a 3D VR or AR

world; consider physical details about data in its compressed 2D format; and manually account

for projections, angular periodicity, nonuniform sampling [19], and video codec idiosyncrasies

(e.g., [110]). This leads to brittle implementations that intermix application logic with the

plumbing required to address this impedance.

Further compounding this, current VR and AR systems are highly physically data

dependent. For instance, we are aware of no other 360◦ system that is able to accept light

field data, nor any light field system able to accept 360◦ video data. Incompatibilities even

exist between 360◦ systems due to differing stereoscopic representations, video codecs, and

incompatible spherical projections. Unfortunately, transforming data from one 2D format

to another is prohibitively expensive, and this limits interoperation between systems that

otherwise would be compatible.

To address the VWA impedance mismatch in this area, we design, implement, and evaluate

LightDB, a new type of VDMS specialized for this new type of VR and AR video data.

LightDB treats all types of VR and AR video in a logically unified manner. It introduces a

unified data model containing a logical construct that we call a temporal light field (TLF). A

TLF captures the degrees of freedom available to a human viewer in (potentially augmented)
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virtual space and serves as an abstraction over the various physical forms of VR and AR video

that have been proposed [21, 91, 133]. Modeling VR and AR videos as TLFs allows developers

to express their video operations as declarative queries over TLFs, and decouples the intent

of a query from the plumbing and manual optimizations that developers need to implement

when using existing VR and AR systems along with 2D video processing frameworks such as

FFmpeg [17] and OpenCV [118]. Declarative queries also offer the opportunity to introduce

query optimization techniques that improve video workload performance, as we show in this

chapter.

Under the TLF data model, LightDB is designed to handle the storage, retrieval, and

processing of both archived and live VR and AR video. It additionally includes a novel

algebra; data storage, query optimization, and execution components; a language that

allows developers to easily write declarative queries for VR- and AR-oriented VWAs; and an

implementation of each of these contributions.

LightDB builds on recent work in multimedia [14, 70, 96, 127] and multidimensional array

processing [15, 22, 120, 119]. Its physical operators combine the state of the art in array-

oriented systems (e.g., multidimensional array representation, tiling) with recently-introduced

optimizations by the multimedia and graphics communities such as motion-constrained tile

sets [110] and light field representations [91].

To allow developers to express queries in its algebra, LightDB exposes a declarative

query language, VRQL, for developers to use. LightDB automatically selects an execution

strategy for VRQL queries that takes advantage of a number of optimizations. We have

used VRQL to implement a variety of real-world workloads, with significant improvement in

resulting application performance as compared to those implemented using existing VR and

AR systems.

In summary, we make the following contributions through the LightDB system:

� We introduce the temporal light field (TLF) data model, which unifies various physical

forms of VR and AR video data under a single logical abstraction.
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� We introduce a logical algebra and query language (VRQL) designed to operate over

TLFs, and describe real-world workloads using VRQL.

� We describe the architecture of LightDB, a prototype system that implements the TLF

data model and VRQL. LightDB comes with a no-overwrite storage manager, indexes, a

physical algebra, and a simple rule-based query optimizer for optimizing VRQL queries.

� We evaluate LightDB against other video processing frameworks and array-oriented

database management systems and demonstrate that LightDB can offer up to a 500×

increase in frames per second (FPS) in our microbenchmarks, and up to 4× increase in

FPS for real-world workloads.

The remainder of this chapter is organized as follows. We begin by introducing LightDB’s

data model (Section 3.1) and algebra (Section 3.2). We then describe the LightDB query

language, VRQL, and use it to implement several recent VR and AR applications (Section 3.3).

Finally, we describe the LightDB architecture in Section 3.4 and evaluate its performance in

Section 3.5.

3.1 Data Model

Existing database management systems specialized in the processing of image and video data,

including RasDaMan [15], SciDB [22], and Oracle Multimedia [119], model image and video

data as multidimensional arrays. These arrays typically have three dimensions: x, y, and

t. As detailed in Chapter 1, we find this model ill-suited for VWAs in general and VR and

AR applications specifically. In particular, while standard spatiotemporal dimensions can

identify a pixel in a single, isolated video stream, VR and AR applications do not reason

only in those terms.
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As highlighted by the VWA impedance mismatch (see Definition 1.1), for VR and AR

applications that operate on video data, the fundamental concepts are: the location of cameras

and the direction in which they are facing. These concepts, illustrated in Figure 3.1, are

elegantly captured by the light field abstraction presented in Chapter 2 (see Section 2.3.2).

We therefore adopt light fields as our fundamental construct and will show how it is

broadly useful for expressing and executing VR and AR VWAs. Because video data (and

its corresponding light field) changes over time, we use temporal light fields (TLFs) [2] to

represent all data, whether originally ingested as an ordinary 2D photographic video, light

field, or 360◦ video. Collectively the use of and operation over a TLF forms the basis of the

temporal light field data model described in this chapter.

Concretely, we model video data as multidimensional objects with both rectangular and

angular coordinates and six overall dimensions—three spatial (x, y, z), two angular (θ, φ),

and one temporal (t). The spatiotemporal dimensions capture a camera or viewer’s position

over time while the angular dimensions capture orientation. This object is captured in the

following definition:

Definition 3.1.1 (Temporal light field (TLF)). A TLF L is defined by a TLF function

L(x, y, z, t, θ, φ) that determines the color and luminance associated with light rays throughout

a (possibly infinite) volume V ⊆ R4×Dθ ×Dφ. Application of L at points not in V produces

the null token ω.

The domain DTLF of a TLF is the product of the domains of each of its dimensions. For

the spatiotemporal dimensions x, y, z, and t, this is the reals. The domain of angles θ and φ

are respectively in the right-open range [0, 2π) and [0, π), which we denote Dθ and Dφ.1

In the graphics community, the TLF function is called a plenoptic function [2]. Our TLF

function formulation, which is equivalent to that proposed by Adelson and Bergen [2], is

a function from position and orientation to a point in a user-specified color space C (e.g.,

1Ranging φ over [0, 2π) would be ambiguous. For example, (π2 , π) and ( 3π2 , 0) identify the same point on
a sphere.



25

𝜙1

𝑦

𝑥

𝑧𝜃1
Time 𝑡

𝜙2

𝜃2

(a) A temporal light field (TLF) L containing two

cameras c1 and c2. At time t each camera respec-

tively observes a red and blue light ray at angles

(θ1, φ1) and (θ2, φ2).

𝑦

𝑥

𝑧𝜃1

𝜙2

Time 𝑡

(b) A viewer positioned at (x, y, z) in the TLF L

defined in (a). At angles (θ1, φ1) she observes, at

time t, the red light ray captured by camera c1.

Figure 3.1: Illustration of a TLF L in three-dimensional space. In (a) at time t, rays from

every angle in c1 and c2’s field of view are captured. Two such rays—one red and one

blue—are shown at angles (θ1, φ1) for c1 and (θ2, φ2) for c2. In (b), a subsequent viewer

positioned at (x, y, z) observes the light rays previously captured by c2.

RGB, CMYK). For example, consider a color space containing the colors red and blue at

a fixed intensity and a volume R defined by the points (−x, y0, z0) and (x, y1, z1) (without

constraining time or angles). The following TLF, illustrated in Figure 3.2(a), defines a field

RB in R that is red for all x ≤ 0 and blue otherwise:

RBR =

red if x ≤ 0

blue otherwise

(3.1)

Data objects in LightDB take the form of temporal light fields. Every TLF L is also

associated with metadata that includes a unique identifier and a bounding volume. We refer

to them as id(L) and V (L).

TLFs may further be partitioned into pieces for parallel processing. For example, Fig-

ure 3.2(b) shows RB′ as a possible partitioning of RBR, where one partition contains the

red light rays and another contains the blue. Figure 3.2(c) shows a further subdivision of

RB′ into six equal-sized volumes with height y1−y0
3

.
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RB′ 𝑥 < 𝑥0, 𝑦, 𝑧, 𝑡, 𝜃, 𝜙 = ω

(a) RBR at time t bounded by

(−x, y0, z0) and (+x, y1, z1).

(b) RB′: RBR partitioned on x ≤

0.

(c) RB′′: A further partition of

RB′ along the y axis.

Figure 3.2: A temporal light field (TLF) and two possible partitionings.

To improve efficiency, we require that a TLF’s volume and partitions be hyperrectangles

(i.e., a six-dimensional analog of a rectangle). This partitioning information is also part of a

TLF’s metadata. Finally, TLF metadata includes a streaming flag to indicate whether its

ending time monotonically increases (i.e., it is streaming) or is constant (e.g., a complete

video serialized to disk).

3.2 Algebra

In this section we describe a query algebra over TLFs. This query algebra is designed

to enable a variety of operations on different types of visual data to capture the logical

specifications of those operations while hiding their physical complexities. For example,

it abstracts the intricacies of physical video formats such as resolution, continuousness,

interpolation, geometric projection, and sampling. To allow for easy composition and avoid

the need for more complex transformations that produce or operate over TLF tuples, each

operator accepts zero or more TLFs (along with other scalar parameters) and produces a

single output TLF. Since TLFs are nullable and defined in a 6D space, developers need not

be concerned with TLFs defined over different volumes.



27

The TLF algebra exposes nineteen logical operators for expressing queries. We classify

them into three broad categories. First, we describe the data manipulation operators used

to manipulate TLFs. Next, we present the input and output that are used to transform an

internal TLF representation to and from an encoded representation (i.e., a MP4 file). Finally,

we describe the data definition operators used to create, modify, and remove TLFs from

persistent storage.

3.2.1 Data Manipulation

The data manipulation operators in the TLF query algebra include:

Selection. The select operator derives a “smaller” TLF from its input. For example,

Figure 3.2(a) illustrates selection over the TLF defined by Equation 3.1.

Similar to relational selection, this operator restricts the domain of a TLF L to some

subset R (i.e.,LR). Unlike in relational algebra, TLF selection requires that the predicate over

dimensions be restricted so that R be a well-defined hyperrectangle. We denote a selection of

TLF L over a hyperrectangle R as:

select(L, [x, x′], [y, y′], [z, z′], [t, t′], [θ, θ′], [φ, φ′]) =LR

Alternatively, a developer might wish to discretize a TLF at a regular interval (e.g., at 30

samples per second). The discretize operator performs this operation by sampling a TLF

over some interval ∆d along a given dimension d ∈ {x, y, z, t, θ, φ}. It produces a new TLF

with every point not on the interval set to null:

discretize(L,∆d = γ) =Ld∈{i·γ|i∈Z}

As an example, a developer might reduce the physical size of a TLF by angular sampling

at some resolution (e.g., 1920× 1080) by invoking discretize(L,∆θ = 2π
1920

,∆φ = π
1080

).

Partitioning. The partition operator “cuts” a TLF into equal-sized, non-overlapping

blocks along a given dimension. For example, given an unpartitioned TLF L with dura-

tion of ten seconds. partition(L,∆t = 1) creates a TLF with ten one-second partitions.

Figures 3.2(b)–(c) show further examples.
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Inversely, the flatten operator removes a TLF’s partitions.

Merging. The union operator merges two or more TLFs into a single TLF. When inputs

to union are non-overlapping, merging is unambiguous. However, an overlapping light ray

may be present in one or more of the inputs. To resolve this ambiguity, when two inputs

Li and Lj are both non-null at point p, union applies a user-supplied merge function m to

disambiguate as follows:

union(L1, ..., Ln,m) = p 7→

Li(p) if ∀j 6=iLj(p) = ω

m(L1(p), ..., Ln(p)) otherwise

Transformation. The map operator transforms a TLF into a new field defined within

the same bounding volume as its input. Given a transformation function f , the map operator

produces a new field with the color and luminance at each point replaced with the one given

by the application of f . For example, Figure 3.5 shows use of the built-in sharpen filter.

The transformation function is parameterized by a point p and the source TLF (i.e., it is

a function f : (p, TLF )→ C), where C is the color space of the TLF, and is defined as:

map(L, f) = p 7→ f(p, L)

In practice, the above formulation requires that the entire TLF L be available during every

invocation of f . This restriction makes parallelization difficult, since L may be expensive to

transfer (e.g., CPU to GPU). However, many transformations only need a small region (i.e.,

a “stencil”) surrounding a point p. For example, a truncated Gaussian blur convolution [133]

only requires points within some hyperrectangle R centered on p. In this case, we can omit

non-nearby TLF data when invoking f . This allows for more efficient parallelization.

To better-support parallelization, a developer may optionally include a neighborhood

when using a map. Formally, given a hyperrectangle stencil R, this map overload produces a

new TLF defined by:

map(L, f,R) = p 7→ f(p,LR+p)
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A second transformation operator, interpolate, converts null values into some new

value given by a transformation function. Interpolation is useful to “fill in” parts of a TLF

that have been discretized due to encoding at a particular resolution. For example, given a

nearest-neighbor function nn that gives the color of the closest non-null point in a TLF, the

operation interpolate(L, nn) produces a new TLF with all null values replaced by their

closest color. Like map, the interpolate operator offers an overload that accepts a stencil

to improve performance.

Finally, the subquery operator performs an operation on each partition in a TLF. For

example, Section 3.2.4 shows use of subquery to encode a TLF’s partitions at different

qualities.

subquery logically consists of both select and union. Given a subquery q, subquery

executes it over each partition volume V1, ...Vn in a TLF L. It then unions each partial result

into a single output TLF. Formally, it produces a TLF defined as follows:

subquery(L, q,m) =

union(q(select(L, V1)), ..., q(select(L, Vn)),m)

Translation & Rotation. The translate operator adjusts every light ray in a TLF

by some spatiotemporal distance (∆x,∆y,∆z,∆t). Similarly, the rotate operator rotates

the rays at each point by angles ∆θ and ∆φ. We omit their formal definitions here due to

space.

3.2.2 Input & Output

The TLF algebra includes scan and store operators, which are respectively used to

read and write a TLF to LightDB’s internal catalog. load and save operators perform

equivalent operations to or from a URL (e.g., file:///input.mp4 or rtp://localhost).

Finally, developers may optionally use the encode operator to transform video data into a

specific encoding (e.g., hevc); the decode operation performs the inverse operation.
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Table 3.1: Example expressions using the temporal light field algebra

Description Algebraic Expression

Self-concatenate a 5-second TLF union

(
scan (name) ,translate

(
scan (name) ,∆t = 5

))

Grayscale and h264 encode encode

(
map

(
scan (name) ,grayscale

)
,h264

)

Sharpen middle third of a TLF subquery


partition (scan (name) ,∆φ = π/3) ,

L 7→

map(L, sharp) if Vθ(L) = [π/3,
2π/3]

L otherwise



3.2.3 Data Definition

create and drop operators function in a manner equivalent to relational systems. Given a

unique name, create creates a new TLF that is a copy of Ω, a distinguished, immutable

TLF where each point is associated with the null token ω (see definition 3.1.1). Simi-

larly, the drop operator removes a TLF from LightDB’s internal catalog. Finally, the

createindex(L, d1, ..., dn) operator is used to create an index over TLF L in dimensions

d1, ..., dn, and the dropindex operator removes a previously-created index.

3.2.4 Examples

TLF algebraic operators can be composed into expressions in the same way as relational

algebra operators. Table 3.1 shows a few simple examples. In Chapter 1 we highlighted two

VR and AR applications (see Examples 1.1 and 1.2), and now show their implementation in

the TLF algebra along with several others:

� Predictive Spherical Panoramic Video Tiling (Example 1.1). The predictive

tiling application degrades the quality of out-of-view areas of a 360◦ video in order to

improve performance (e.g., up to 75% reduced data transfer). The algorithm in the
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Algorithm 3.1: Pseudocode for predictive spherical panoramic video tiling applica-

tion
inputs : b, bitrate at which to encode high quality region

:n, number of regions to reencode

: o(t), viewer’s orientation at time t

output : out contains a 360◦ video reencoded by importance

function transcode(partition: TLF): TLF

if o(V(partition).t) ∈ V(partition) then return encode ( partition, b);

else return encode (partition, b
10

);

end

let l = load (“input”)

let p = partition (l, ∆θ = 2π
n
,∆φ = π

n
,∆t = 1)

let s = subquery (p, transcode)

save (s, “out”)

TLF algebra for Example 1.1 is shown in Algorithm 3.1. This query subdivides the

input TLF into one-second segments and partitions of size (2π
n
, π
n
). Next, the subquery

operator changes the quality of each partition to that given by a function o that predicts

a user’s future orientation. For example, and as implemented in Algorithm 3.1, we

might use dead reckoning to predict a user’s next orientation and encode that partition

at quality b (and a lower quality b
10

elsewhere).

� Augmented Reality (Example 1.2). Algorithm 3.2 shows an implementation of

Example 1.2 in the TLF algebra. This UDF applies an object detection algorithm

such as YOLO9000 [129] and generates a result that is red at detection boundaries

and null otherwise. Since YOLO9000 expects an input at a particular input resolution
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Algorithm 3.2: An algorithm that performs object detection on an input TLF and

overlays bounding boxes around detected objects.

inputs : detect, an object detection user-defined function

:n,m, neural network trained resolution

output : out contains the input TLF overlaid with bounding boxes

let l = load (“input”)

let d = discretize (l, ∆θ = 2π
n
,∆φ = π

m
)

let b = map (d, detect)

let u = union (l, b)

save (u, “out”)

l b u

𝜔

Figure 3.3: Augmented reality TLFs for one 360◦ frame. Image by Mewpro, CC-BY 3.0.

(416× 416), the query first lowers the resolution of its input, and applies a map using

a user-defined function (UDF) called detect. Finally, the result is combined with the

original input. Figure 3.3 illustrates this process for a single frame of l, d, and u.

� Depth Map Generation. Several recent projects have explored real-time depth

map generation using parallel or custom hardware [70, 112, 5, 107] in the context of

cloud-based VR streaming. For a light field stored in LightDB, the extremely high data

sizes (gigabytes or terabytes of raw data per second) make cloud-based streaming to

remote clients infeasible. One strategy to reduce the amount of data transfer involves

sampling a light field at two points near where a user’s eyes are located (i.e., her current

position p offset by an interpupillary distance i) and computing a depth map for the

https://creativecommons.org/licenses/by/3.0/deed.en
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Algorithm 3.3: An algorithm to generate stereo depth map information from a

TLF containing a light field.

inputs : p, viewer’s current position

: i, interpupillary distance

output : out contains a stereoscopic 360◦ video

let in = scan (“lightfield”)

let l = select (in, p− i
2
)

let r = select (in, p+ i
2
)

let s = union (l, r)

let i = interpolate (stereo, depth)

save (i, “out”)

360◦ videos incident to those points [88]. An implementation of this query in the TLF

algebra is shown in Algorithm 3.3, where the depth function implements the logic

described in [107].

� Non-VR & AR applications. Although the TLF algebra was designed for VR and

AR applications, it may also be used to express general VWAs. For example, the

non-VR application described in Example 1.3 may be implemented using the query

shown in Algorithm 3.4, which assembles videos within a region R into a mosaic using

a “horizontal stacking function” hstack. Chapter 5 shows further examples of VWA

queries expressed in the TLF algebra (see Tables 5.2 to 5.5).

3.3 Query Language

LightDB includes a declarative query language called VRQL. VRQL is an implementation of

the TLF algebra described in the previous section. It allows developers to describe queries

without the need to be concerned with the underlying complexities of the video data, how



34

Algorithm 3.4: An algorithm that creates a mosaic out of one or more surveillance

cameras in a region.

inputs : c1, ..., cn, 2D surveillance cameras

:R, spatial region of interest

output : out contains a mosaic of the cameras falling in the given region of interest

let c = union (scan (c1), union (scan (c2), ...))

let n = select (c, R)

let m = map (n, hstack , V (n))

save (m, “out”)

the query is executed, or which hardware to use for individual operations. This abstraction is

a key distinguishing feature from existing video processing systems, which require developers

to manually manage these details. We currently have bindings for VRQL in C++ and Python.

Our examples in this section show use of the Python variant.

In VRQL, developers write queries over TLFs using functions that correspond to the

TLF algebra. As a concrete example, consider the following example application, where a

developer wishes to perform the following operations live 360◦ video in order to stream it

adaptively:

i Ingest a live video from a 360◦ camera rig

ii Overlay a watermark on the video

iii Apply an image sharpening convolution

iv Temporally partition the intermediate result into short segments to support adaptive

streaming

v Encode each segment into a format suitable for the available network bandwidth of a

client device



35

To execute this example application, a developer writes the following Python query (see

Figure 3.5 for the equivalent algebraic structure):

Load("rtp://localhost/input")

.Union(Scan("W"))

.Map(sharpen) (3.2)

.Partition(Time, 2)

.Subquery(lambda p: p.Encode(Codec.H264))

.Save("output.mp4")

LightDB exposes each operator introduced in Section 3.2 as VRQL functions. As is common

in modern languages, the fluent interface f(α).g(β) is used as shorthand for composition

g(f(α), β).

To improve readability, a VRQL query may assign an intermediate result to a variable.

For example, the following query is equivalent to the TLF concatenation example shown in

Table 3.1:

auto tlf = Scan(name)

auto concat = tlf.Union(tlf.Translate(Time, 5))

LightDB also allows developers to create indices over existing TLFs using the createindex

method. For example, the following query modifies cat from the previous example by selecting

only the first three seconds of video data (line 1). Line 2 then creates an index over two

spatiotemporal dimensions of out. LightDB’s query optimizer may then elect to utilize this

index on line 3.

cat.Select(Time(0, 3)).Store("out")

Scan("out").CreateIndex(Y, Time)

Scan("out").Select(Y(0, 0), Time(0, 1)).Map(grayscale)
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In-Memory TLF Cache (TC)
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Figure 3.4: LightDB architecture

Finally, LightDB supports user-defined functions (UDFs) that may be used with the map

and union operators for functionality not available in its built-in library. For example, to

create the TLF shown in Figure 3.2(a), a developer would define an anonymous function used

in map in the following query:

x = 1

tlf = Create("RB")

.Select(Volume((-x, x), ...))

.Map(lambda p: Color.Red if p.volume.x < 0 else Color.Blue)

3.4 Architecture

In this section, we present LightDB’s current overall architecture together with the details of

its core components. LightDB is currently a single-node, primarily single-threaded system

written in C++, and contains approximately 20,000 lines of code.
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In LightDB, users submit individual queries as a statement or script that may include

variable assignments. Writes to TLFs are versioned, and version numbers are stored as part

of the TLF’s metadata (see Section 3.4.4). LightDB uses the immutability and versioning

of TLFs to provide snapshot isolation during query evaluation. When a query references

a TLF, LightDB operates on the most recent version available. Developers may optionally

parameterize the scan operator with a version number. We currently disallow queries that

overwrite the same TLF more than once.

LightDB supports both one-shot and streaming queries, with each executed similarly.

Either query type may operate over TLFs that are being continuously ingested (i.e., they

have their streaming flag set), those already stored in LightDB, or from other data sources

such as a socket, local disk, or distributed file system. All of the operators in LightDB are

non-blocking, though user-defined functions used as arguments may lead to blocking.

In our prototype, TLFs are immutable and writes are performed by persisting video data

at the track granularity (see Chapter 2). For example, if a query overwrites a TLF after

modifying information visible in video track T , LightDB materializes an updated version

T ′ and writes it to disk alongside T . Unmodified tracks are not rewritten; LightDB instead

stores pointers to the original video tracks.

The major components of LightDB are shown in Figure 3.4. The Query Processor (QP)

receives declarative queries as input. It converts them into physical query plans that it

executes and returns results to applications in the form of encoded videos.

During query execution, the (QP) interacts with an in-memory TLF cache (TC) to hold

data loaded from persistent storage. As shown in Figure 3.4, the TC contains entries for TLF

catalog metadata entries, which are parsed from their MP4 representation prior to caching. It

also contains a buffer pool for encoded (see Chapter 2) and contiguous sequences of decoded

frames that have been recently accessed. Buffering at this granularity improves temporal

locality and reduces misses for predictive frame requests. The TC uses reference counting

and a least-recently used eviction policy.
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MAP(𝐿1, SHARPEN)

UNION(𝐿0,𝑊, RIGHT)

PARTITION(𝐿2, Δ𝑡 2s)

LOAD(rtp://…)

SCAN(𝑊)

𝐿0

SUBQUERY(𝐿3, Q)

𝐿1

𝐿2

𝐿3
=

SAVE(𝐿4,output.mp4)

𝐿4

SCAN(𝐿3
𝑖 )

ENCODE(𝐿3
𝑖 ,H264)

𝐿4
𝑖𝑄

(a) Logical Plan

GPUOverlayUnion

GPUDecodeFromCPU

GPUMap

ScanRTPDecodeReader

GPUDecodeFromCPU

GPUTemporalSubquery

SaveToFile

Homomorphic
TemporalUnion

ScanSingleFileDecodeReader

ScanMaterializedGPU

GPUEncodeToCPU

(b) Physical Plan

Figure 3.5: LightDB logical and physical plans for the query shown in Equation 3.2, which

watermarks, sharpens, and adaptively encodes a 360◦ video.

The translation of the input declarative queries into logical query plans is a straightforward

one-to-one mapping. The logical-to-physical query plan translation, however, is amenable to

various optimizations that we describe in the following section.

3.4.1 Query Optimization

The LightDB algebra is amenable to several optimizations that improve performance. To

demonstrate this, LightDB comprises a rule-based query optimizer (QO) that performs two

types of optimizations.

The first type of optimization involves selecting the physical implementation for each

logical operation, including the device that should execute the operation. The selection is

heuristic and proceeds in a bottom-up fashion. We also have rules that combine, reorder,

and eliminate operators. We describe each in this section.
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Given a logical query plan as input, the QO generates the physical plan by first transforming

the logical plan in a bottom-up fashion starting from the scan and decode operations.

During that transformation, the QO uses two heuristics: (1) GPU-based operators are faster

than FPGA-based ones, which in turn are faster than CPU-based ones and (2) it is more

efficient to keep data on the same device for consecutive operations.

The QO first selects decoders, which are leaves in the query plan graph. For each TLF

stored within LightDB, the QO consults the TLF catalog (TC) and selects a GPU-based

scan physical operator if one exists for the video codec; otherwise it uses a CPU-based

scan implementation. For TLFs ingested using a decode operator, the QO first checks

for user-supplied hints (e.g., decode(url,hevc)). If no hint is supplied, the QO attempts

to infer a codec by examining (in order) MP4 metadata, the file extension, or a prefix of

the input data. If the QO is unable to identify a codec, query processing fails. Otherwise,

the QO uses a GPU-based decoder if one is available for a codec and falls back to a CPU

implementation if none exists.

Having selected physical operators for the leaves in the query plan, the QO then selects

physical operators for the remaining operator nodes in a bottom-up, breadth-first manner.

For each unary operator, the QO selects a physical operator that executes on the same

device as its predecessor. If no physical operator implementation is available for that device,

the QO selects a GPU-based implementation and inserts a transfer operator to mediate

the inter-device transfer. User-defined functions used in map and other operators, which

may include implementations that target CPUs, GPUs, or FPGAs, are similarly mapped to

physical operators.

A similar process applies to the n-ary union operator. If all predecessors execute on the

same device, the union also executes on that device. Otherwise, a GPU-based operator is

selected and transfer operators are inserted.
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A concrete example of this process is shown in Figure 3.5. On the left-hand side is a

logical plan constructed from the query labeled Equation 3.2 from Section 3.3. The right-hand

side shows one possible physical execution plan produced after the QO executes the steps

described above.

After producing an initial physical query plan, the QO performs further optimizations as

follows. First, it makes the following transformations and eliminations, which are applied in

order, iteratively, and until fixpoint:

� Consolidate consecutive maps: map(map(L, f), g) → map(L, f ◦ g) when both are

executed on the same device.

� Remove redundant selections: select(select(L, [d1, d
′
1])), [d2, d

′
2])→ select(L, [d2, d

′
2])

if d1 ≤ d2 and d′1 ≥ d′2.

� Combine partitions and discretizations: partition(partition(L,∆d = γ),∆d =

γ′)→ partition(L, γ′), and discretize(discretize,∆d = γ),∆d = γ′)→ discretize(L, γ′),

if γ′ = i · γ, where i ∈ Z.

� Convert discretize(interpolate(L, f),∆d = γ) → map(L,D(f)), where D is a

function that produces f on discretization intervals and null otherwise.

� Combine interpolations and maps:

interpolate(map(L, f), g)→ interpolate(L, f ◦ g).

Second, the QO “pushes up” instances of the interpolate operator. Delaying inter-

polation ensures that a TLF remains discrete for as many operations as possible. The QO

currently pushes interpolation above select and partition operators. Moving interpolation

may further eliminate operators as described above.

Finally, the QO attempts to substitute highly efficient homomorphic operators (HOps)

that may be executed directly on encoded TLF video. For example, unioning non-overlapping

TLFs can often be performed using a homomorphic operator. Because video encoding

and decoding is expensive relative to most other operations (see Figure 3.7), HOps always

outperform operators that execute over decoded video (by up to 500×; see Figure 3.11), even

if they require inter-device transfer.
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3.4.2 Physical Algebra

Our current implementation includes physical operator variants that target CPUs, GPUs,

and FPGAs and communicate using PCIe.

First, LightDB has a CPU-based implementation for each of the operators described in

Section 3.2. These operators rely on FFmpeg [17] for video encoding and decoding and make

direct modifications to decoded video frames.

LightDB also includes a GPU-accelerated operator implementation for each logical op-

erator. The encode and decode GPU-based operators utilize the hardware-accelerated

NVENCODE/DECODE interfaces [113]. The remaining operators each use CUDA [114]

kernels to perform their work.

LightDB also has homomorphic operators (HOps) that perform operations directly on

encoded video data without requiring that it be decoded. This leads to higher performance

— up to 500× faster compared to GPU-based operators (see Figure 3.11). Two categories

of HOps exist in LightDB: those that operate over encoded groups of pictures (GOPs; see

Chapter 2), and those that operate over the tiles (ibid.) in each frame. These operators are

currently executed on the CPU, and we plan on adding other HOps (e.g., keyframe selection,

scalable video coding [136]).

To understand the first category, consider a video encoded with a GOP duration of one

second. The gopSelect operator may be applied for any select operator that temporally

selects precisely at a GOP boundary (e.g., select(L, t = [i, j]), where i, j ∈ Z). It does so

by using the GOP index to identify the byte region in an encoded video file that contains the

frame data for the relevant GOPs, and outputs them without decoding.

The gopUnion operator performs a similar operation—given n encoded videos that are

temporally-contiguous, it concatenates the encoded GOPs in each video and produces a valid

unioned result.
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The second category of HOps perform a similar operation over the tiles (q.v. Chapter 2)

within each video frame. The tileSelect operator may be used for any angular selection that

includes complete, contiguous tiles. It does so by using tile index, as shown in Figure 2.3(b),

to efficiently identify the relevant bytes without video decoding. For example, consider a

video that has been tiled as shown in Figure 2.3(a). The tileSelect operator may be used

for the logical selection T1 = select(φ = [0, π
2
)), since it precisely selects the tile labeled 1

in Figure 2.3(b). Similarly, T23 = select(φ = [π
2
, π)), selects tiles labeled 2 and 3.

Analogous to GOP unioning, the tileUnion HOp concatenates tiles without video

decoding. To be applicable, each union operand must be defined at the same spatiotemporal

points and the tiles must be angularly non-overlapping. For example, in Figure 2.3(a) the

operation union(T1, T23) can be performed using this operator.

3.4.3 Physical Organization

In Chapter 2 we introduced two common encoding methods for virtual and augmented reality

video data: spherical panoramas (i.e., 360◦ videos optionally containing depth information)

and light slabs. The first method efficiently represents visual data incident to a point, while

the last is efficient at representing visual data incident to a plane.

LightDB supports both methods by physically representing each TLF using one of two

physical formats: a physical point TLF (PointTLF) or a physical light slab TLF (PlaneTLF).

Each PointTLF contains one or more 360◦ videos, with a separate video stream encoded

for each non-null spatial point in the TLF. PlaneTLFs contain one or more slabs at various

positions and orientations, with a separate stream encoded for each.

Both PointTLFs and PlaneTLFs may be continuous or discrete. The video data associated

with a discrete TLF is materialized and encoded into a video stream. For a continuous

TLF, since it is not possible to materialize every point in a volume of continuous space,

LightDB instead creates a partially materialized view by materializing an intermediate TLF

up to the latest point where it becomes continuous (i.e., the last interpolate operator).

It encodes this intermediate result as if it were an ordinary, discrete TLF. It identifies
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the remaining logical operator subgraph that acts on the intermediate result to produce

the full (continuous) query result. This subgraph is serialized in a special view subgraph

field alongside other TLF metadata. For example, given a discrete TLF L and the query

interpolate(scan(L), f), which produces a continuous TLF, LightDB materializes L and

records the call to interpolate and f in the view subgraph.

Combinations of PointTLF and PlaneTLFs may be merged through application of the

union operator. Similar to the above, LightDB materializes and stores each of the inputs to

the union and records the union operator in the view subgraph field in the TLF metadata.

The resulting composite TLF (CompositeTLF) contains any number of child PointTLFs and

PlaneTLFs, potentially recursively.

During encoding and when persisting, LightDB automatically converts between TLF

formats using the following rules:

� A PlaneTLF is converted to a PointTLF whenever it is spatially selected at a single

point or spatially discretized to a small number of points (≤ 4 in our prototype).

� A CompositeTLF is transformed to a PointTLF whenever it contains only PointTLFs,

and to a PlaneTLF when it contains only PlaneTLFs.

� When a PointTLF or PlaneTLF is no longer contained within its bounding volume, it

is dropped.

3.4.4 Data Storage

We now describe how discrete PointTLFs and PlaneTLFs are physically stored on disk. First,

observe that a PointTLF contains one or more encoded 360◦ videos defined at spatially distinct

points. As described in Chapter 2, each encoded video is associated with a projection function

(which defines how the visual data is projected onto a frame), a data stream compressed

using a video codec, and an optional depth map metadata stream.
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Similarly, a PlaneTLF contains a set of light slabs (defined in Section 2.3.2), where each

slab is associated with a data stream compressed using a video codec, geometric metadata

that includes the start and endpoints of the planes in three-dimensional space, and sampling

parameters (i.e., the number of uv and st plane samples).

For each of the formats, LightDB physically organizes a TLF within a single directory

on the file system. LightDB uses a multi-version, no-overwrite mechanism for TLF writes,

and each directory contains one metadata file for each version of the associated TLF. The

metadata file is a small (generally less than 20kB) MP4-compliant multimedia container (see

Section 2.2) that contains information about each version of a physical TLF. Using the MP4

format allows for better interoperation with viewing headsets and video processing libraries.

The metadata MP4 file is composed of a forest of data elements called atoms (see

Section 2.2) that contain the properties of the TLF and pointers to associated video streams.

When a new TLF version is created through a store, LightDB increments the version number

and atomically creates a new metadata file containing information about the new version

(i.e., 5-metadata.mp4 corresponds to TLF version five).

The directory also contains one or more video files containing encoded video streams.

This structure allows multiple TLFs to maintain pointers to the same encoded video files and

avoids data duplication. This allows multiple TLFs to reference the same video file without

requiring it to be duplicated on disk.

As described in Chapter 2 and illustrated in Figure 2.4, LightDB uses standard MP4

atoms to store pointers to separately-stored encoded video streams and the sv3d drawn from

the Spherical Video V2 RFC [141] to store a PointTLF’s projection function.

LightDB extends the MP4 format by introducing an additional atom (tlfd) to serialize

the remaining data about a TLF’s physical type. For a PointTLF, this includes the points at

which the TLF is defined. For a PlaneTLF, this includes geometry and sampling granularity

for each of the slabs. Finally, a CompositeTLF recursively contains two or more tlfd atoms

as children.
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Figure 3.6: Physical layout of a TLF defined at two points with depth metadata.

Each tlfd atom also contains pointers to video tracks, which store metadata about the

underlying video data that support the discrete TLF (see Chapter 2). For a PointTLF, the

tlfd atom contains a pointer to one or more video spheres and optional pointers to depth

map tracks. PlaneTLFs contains one pointer per slab.

To illustrate this structure, we show in Figure 3.6 an abridged physical layout for a TLF

defined at the origin. This TLF’s current version (stored in a file named version) is one, and

its associated metadata file 1-metadata.mp4. This file contains a tlfd atom that describes

the TLF. It is discrete, and so has no view subgraph. It has a pointer to a single trak video

track that contains the codec used to encode the video data, the projection function, an index

to the beginning of each GOP within the video file, and a pointer to the file that contains

the encoded video data: i-j-stream.mp4 (i.e., version i, stream j).
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3.4.5 Indexing

In Chapter 2, we introduced two indices found in encoded video: a tile index (Figure 2.3) and

a GOP index (Figure 2.4). When available, the LightDB QO uses the former for point or

range queries over one or more angular dimensions, and the latter for point or range queries

over time.

LightDB also supports spatial indices, which are external indices over any combination of

spatial dimensions and take the form of R-trees [59] that identify relevant encoded video files

in a TLF. Such indices are useful in the case of a TLF created from the union of videos or

light fields captured at different locations, such as at a concert, museum, or tourist location.

When executing a query, the QO first chooses a spatial index (if any) that covers the largest

subset of spatial dimensions included in each selection. For example, if a user has executed

the command createindex(L, x, z), LightDB utilizes the resulting R-tree for queries of the

form select(L, x ∈ [a, b], z ∈ [c, d], ...). As shown in Figure 3.6, a spatial index is stored as

an external file with a name containing its version and covered dimensions (e.g., 1-index.xz).

After the QO considers spatial indices (if any), if a temporal constraint is present in a

selection, LightDB uses GOP indices (if present) to identify relevant temporal regions in an

encoded video file. Each GOP index is embedded in the stss region of a TLF’s metadata

(see Figure 2.4) and maps a starting time to the byte offset of the associated GOP. Given

a temporal selection (e.g., select(t ∈ [a, b], ...)), the QO uses this information to look up

GOPs containing information between time a and b.

Finally, the QO considers a tile index (if present) to identify applicable and independently-

decodable subregions of each frame. For example, assuming an equirectangular projection, a

query of the form select(φ ∈ [0, π
2
]) might only need to decode Tile 1 shown in Figure 2.3.

Since this index is also used by video decoders, an attempt to drop an angular index results

in an error.
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3.5 Evaluation

We have implemented a prototype of LightDB in C++ using ∼20,000 lines of code. GPU-based

operators were implemented using NVENCODE/NVDECODE [113] and CUDA 8.0 [114].

We experimentally evaluate LightDB and compare it to four baseline systems in terms of

programmability for complex VR video workloads (Section 3.5.1) and performance (3.5.2).

In Section 3.5.3 we show how LightDB is able to utilize hardware accelerators, and in

Section 3.5.4 we detail LightDB operator performance.

Baseline systems. We compare LightDB against OpenCV 3.3.0 [118] and FFmpeg

3.2.4 [17], the most commonly-used frameworks for 2D video processing and analysis. OpenCV

is a computer vision library designed for computational efficiency and high-performance image

analytics, while FFmpeg is a platform designed for video processing that is invoked via the

command-line interface (CLI) or by linking to its C-based API.

We build both FFmpeg and OpenCV with support for GPU optimizations. FFmpeg

is configured with support for NVENCODE/NVDECODE [113] GPU-based encoding and

decoding. OpenCV is built with internal calls to FFmpeg and CUDA 8.0 [114].

We also compare against Scanner [124], a recent system designed to efficiently perform

video processing at scale. We installed Scanner by using its most recently-published Docker

container. This GPU-enabled container was built using Ubuntu 16.04, OpenCV 3.2, CUDA

8.0, and FFmpeg 3.3.1.

360◦ videos are loaded into OpenCV, FFmpeg, and Scanner as encoded, two-dimensional

equirectangular projections of a video sphere. While none of these systems natively support

operations on light slabs, in some cases we were able to apply operations directly on encoded

SlabTLF videos (e.g., conversion to grayscale). For other light field operations that are not

readily supported by the comparison systems, we show only LightDB results.
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Finally, we compare against SciDB 15.12 [22, 131], which is a distributed, array-oriented

database management system designed for efficient array processing at scale. For experiments

involving SciDB, we represent 360◦ videos as a non-overlapping decoded three-dimensional

array (x, y, t) and light fields as discrete six-dimensional arrays encoded as shown in

Figure 2.7(b).

Experimental configuration. We perform all experiments using a single node running

Ubuntu 14.04 and containing an Intel i7-6800K processor (3.4 Ghz, 6 cores, 15 MB cache), 32

GB DDR4 RAM at 2133 MHz, a 256 GB SSD drive (ext4 file system), and a Nvidia P5000

GPU with two discrete NVENCODE chipsets.

Datasets. We use the following two reference datasets in our experiments, one for

360TLFs and another for SlabTLFs. For 360TLF experiments, we utilize the “Timelapse”,

“Venice”, and “Coaster” videos from Corbillon et al [32]. Each of these 360◦ videos are

equirectangularly projected, 142-177 MB in total size, captured at 30 frames per second at 4K

resolution (3840×2048), and have an average bit rate of 13–15Mbps. Except for Scanner, we

truncated each video to the same duration (90 seconds) with one-second GOPs. As detailed

below, Scanner was unable to complete queries for these inputs, and so we show its results

for a further-abbreviated 20-second variant.

For SlabTLFs, we use the “Cats” light slab by Wang et al [155]. This light slab is encoded

at 4096×2816 resolution with 8×8 uv-plane samples. Since this dataset is provided as 109

separate images, we converted it into a video using the h264 codec at 30 frames per second

with one-second GOPs. We also looped the frames so that the resulting slab had a total

duration of 90 seconds (for LightDB, OpenCV, and FFmpeg) and 20 seconds (Scanner).

3.5.1 Programmability

To evaluate the programmability of LightDB relative to similar systems, we execute VRQL

queries for the predictive 360◦ tiling and augmented reality (AR) workloads described in

Section 3.2.4.
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For the predictive 360◦ tiling application, LightDB loads each 360◦ dataset (Timelapse,

Venice, and Coaster) from the file system, decodes it as a 90-second 360TLF, and partitions it

into one-second fragments. It then decomposes each partition into sixteen equally-sized tiles

(∆θ=π
2
,∆φ=π

4
) and re-encodes one tile at high quality (hevc at 50Mbps) and the remaining

fifteen at low quality (50kbps). It finally recombines the tiles and writes the result to the file

system. This process is repeated for each of the 90 one-second fragments in the input. To

emulate looking in different directions, the high quality tile is initially the upper-left of the

equirectangular projection and advanced in raster order (modulo 16) every second.

For the AR application, LightDB loads each dataset from the file system and decodes

it into a 360TLF (for Timelapse, Venice, and Coaster inputs) or SlabTLF (Cats dataset).

This TLF is then discretized and fed into a UDF that executes the YOLO9000 detection

algorithm [129]. This result is finally unioned with the original TLF.

For the SciDB, OpenCV, FFmpeg, and Scanner variants, we use the same inputs and map

each step into a system-specific equivalent. Both OpenCV applications are written in C++.

For FFmpeg, we execute the predictive 360◦ tiling workflow using both a C++ implementation

and via the command-line interface (CLI). The FFmpeg CLI does not expose extensibility for

custom UDFs, so we did not execute the AR application for this case. We used the Scanner

Python API and leveraged existing functions when possible and implemented custom kernels

using its C++ API for unsupported operations (e.g., tiling, recombining). Since SciDB does

not natively expose video-related functionality, we implement encode, decode, and the AR

UDF externally using OpenCV and transfer data using standard SciDB import and export

operations.

We show the number of lines of code associated with each query and system in Table 3.2.

Here, both LightDB and SciDB are able to express the complex workload in a small number

of lines, while OpenCV and FFmpeg require many more lines of code to express the same

query. The Scanner versions fall between these extremes.
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Table 3.2: Lines of code required to reproduce the predictive 360◦ and augmented reality

queries described in Section 3.2.4. Numbers in parenthesis show the lines required to implement

user-defined functions for operations not natively supported.

System
Lines of Code

360◦ Tiling Augmented Reality (UDF)

LightDB 9 9 (18)

SciDB 12 13 (98)

Scanner 37 (144) 35 (110)

OpenCV 112 90

FFmpeg 283 161

FFmpeg CLI 895 N/A

The VRQL and SciDB queries for both of these workloads are declarative, with a developer

needing only to express the form of the desired result. By contrast, the implementation for

OpenCV and FFmpeg is much more imperative, and developers need to be heavily involved

in deciding how the workload is executed. This includes details such as calculating 2D

tiling, copying data between video frames, calculating codec parameters, and managing file

IO. Scanner again falls between these two extremes, where a developer must decide some

execution details (e.g., selecting hardware, calculating tile sizes, aligning unsynchronized

frame rates) but is spared from others. For each comparison, managing these details requires

additional lines of code that are interspersed with application logic.

For these workloads, LightDB produces correct results using significantly fewer lines of

code than the imperatively-oriented video frameworks, and is able to do so in a declarative

manner that avoids requiring developers to be involved with the low-level details associated

with workload execution.
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3.5.2 Application Performance

We next evaluate the performance of LightDB and compare it to OpenCV, FFmpeg, Scanner,

and SciDB. For this comparison, we evaluate the performance of the applications described

in the previous subsection: predictive 360◦ tiling and augmented reality.

Predictive 360◦ Tiling. We first execute the predictive 360◦ tiling application described

in Section 3.2.4 using the Timelapse, Venice, and Coaster datasets.

The throughput for each system and dataset is shown on the left plot of Figure 3.7(a). Here,

LightDB is able to process up to 4×, 7×, 13×, and 190× the number of frames per second

compared to the FFmpeg, OpenCV, Scanner, and SciDB systems, respectively. SciDB suffers

due to its lack of native video encoding support, which necessitates an expensive export/import

cycle to/from an external UDF. On the other hand, Scanner pins all uncompressed frames

in memory and requires an expensive per-tile, per-frame allocation. This quickly exhausts

available memory and prevents operations on video that cannot be completely materialized

(e.g., 4K videos longer than ∼20 seconds).

The key means by which LightDB is able to achieve the highest performance is that it

utilizes its efficient physical tile union operator (tileUnion, see Section 3.4.2) that avoids an

expensive additional decode/encode step that is required by the other systems. At runtime

and as discussed in Section 3.4.1, LightDB recognizes that this physical tile union HOp is

applicable and automatically uses it.

This ability to automatically select from many available optimizations is a key strength

for LightDB. Its declarative VRQL language removes the need for a developer to hard-code

the low-level mechanics of query execution, which allows LightDB to automatically apply

available optimizations at runtime.

The predictive tiling workload is motivated by related work [67, 56, 48, 106], which

demonstrates a substantial decrease in video size by encoding regions of a 360◦ video at

different qualities. We thus evaluate LightDB and the baseline systems on their ability
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to decrease total 360◦ video size. Table 3.3 shows the results. LightDB is able to offer

performance comparable to FFmpeg. Here, the other systems (which all depend on OpenCV

in our experimental configuration) suffer due to their lack of robust support for codec settings.

Finally, the right graph in Figure 3.7(a) breaks down total query execution time by

LightDB operator for the Timelapse dataset and various tile configurations. Across each tile

configuration, total execution time is dominated by the GPU-based encode and decode and

not by other query operators such as union and map.

Augmented Reality (AR). We next execute the AR application described in Sec-

tion 3.2.4 using the 360◦ datasets as input.

Throughputs for LightDB and comparison systems are shown on the left plot in Fig-

ure 3.7(b). Here LightDB is again able to process up to 21× more frames per second than

OpenCV, 3× for FFmpeg, and 8× for Scanner. This performance is possible because LightDB

is able to perform most of the processing (decode, discretize, and union) using its GPU-

optimized physical operators and parallelize the GPU-to-CPU transfer required by the UDF.

Neither OpenCV nor FFmpeg are able to fully parallelize the operation, and OpenCV suffers

in particular due to its lack of support for NVENCODE on Linux. After reviewing Scanner’s

internal implementation, we observed that Scanner’s performance is degraded because it relies

on OpenCV to convert frames to a format compatible with the object detection algorithm.

Additionally, Scanner’s built-in bounding box overlay operator also relies on OpenCV.

The right plot in Figure 3.7(b) shows each operator’s contribution to query execution

time for each dataset. As before, the GPU-based encode and decode operations account for a

substantial portion of total execution time. The object recognition UDF, which requires a

GPU-to-CPU transfer, constitutes the bulk of the remaining time.



53

3.5.3 Hardware Acceleration

An important feature of LightDB is its ability to integrate specialized hardware accelerators

in its query execution pipeline. To demonstrate this ability and to illustrate its performance

potential, we characterize the performance for the depth map generation application described

in Section 3.2.4 using a UDF with a CPU and hybrid FPGA implementation [107] executed

on a Xilinx Kintex-7.

For this experiment, we show results for the Cats SlabTLF (sampled at two spatial

points) and the Timelapse 360TLF experiment using adjacent frames. Figure 3.8 compares

performance for CPU and hybrid FPGA versions of the query. Here introducing a FPGA-

based UDF variant allows the LightDB query optimizer to reduce query execution by more

than 25%. This is a useful performance advantage since high-quality depth map generation is

computationally expensive and is often performed offline [107].

3.5.4 Operator Performance

360TLF Operator Performance. We first examine the individual performance of LightDB

operators for 360TLFs using the Timelapse dataset. Figures 3.9(a)–(d) respectively illustrate

the operator performance for the select, map, union, and partition operators. For each

unary operator O, we executed a minimal query Decode(L).O(...).Store(L′).

To benchmark the selection and partition operators, we select a subset of or partition the

360TLF along different dimensions.

For the map operation, we use a grayscale UDF that drops the chroma signal from its

input and a blur UDF that performs a truncated Gaussian blur convolution [133].

We demonstrate the union operator by combining the Timelapse dataset with three

TLFs. We first union it with the Venice dataset. Next, we use a 360TLF that contains

a 64×64 watermark; this is denoted as “Watermark” in Figure 3.9. Finally, the “Rotated

Timelapse” TLF contains the original Timelapse dataset rotated by 90◦. All operations use

the last merge function (see Section 3.2).
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For each operator shown in Figures 3.9(a)–(d), LightDB outperforms other systems

by a modest amount. This result is expected, since application of each operator requires

the same expensive decode/encode cycle that dominated execution time in our previous

experiments. For most operations, LightDB performs better since it utilizes its GPU-based

physical operators across the entire query, which minimizes data transfer. The one exception

is with temporal selection and partitioning, where LightDB outperforms the other systems

by a sizable margin. In this case LightDB uses its GOP index to decode only the relevant

portions of the 360TLF. LightDB performs slightly worse for unions due to its merge UDF

overhead.

SlabTLF Operator Performance. We next show the average throughput for queries

using SlabTLFs as input. Figure 3.10 shows the results for the select and map operators

using various input parameters. Because the baseline systems do not support light fields, we

only show results for LightDB.

For the select operator, we show in Figure 3.10(a) selection at one or two points

(representing a mono or stereoscopic selections), over the temporal interval t = [11/2, 3
1/2], and

over angles. Here LightDB is able to generate results at approximately 60 frames per second,

which is a common throughput for 4K VR video. Similarly, blur and grayscale operations,

shown on Figure 3.10(b), perform at a rate comparable to their 360TLF counterparts (see

Figure 3.9(b)).

Effectiveness of Optimizations. Finally, we evaluate the performance impact of several

LightDB optimizations in Figure 3.11.

The left two plots in Figures 3.11(a) and 3.11(b) show performance of the HOps in

LightDB, in terms of the application’s frames per second. These operators allow LightDB to

far outperform the baseline systems—in some cases by more than 500×! The one exception is

FFmpeg’s GOP unioning performance, which matches LightDB because it utilizes a similar

GOP stitching mechanism that it calls a “concat protocol” [30].
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The “Self Union” plot illustrates the effect of other query optimizations on LightDB

performance. Here, we execute the degenerate query union(L,L), which LightDB simplifies

to L to produce a result without an expensive decode. The other systems are unable to

recognize this pattern and perform far more work to produce the degenerate result. A

similar effect is seen in the “Self Select” plot, where we show results for the degenerate

select(L, [−∞,+∞]).

3.5.5 Index Performance

Our final evaluation explores index performance in LightDB using queries of the form

Scan(L).Select(di ∈ [a, b]).Store(L′), where di is an indexed dimension.

Figure 3.12(a) shows performance of temporal selection on the Timelapse dataset for

two choices of [a, b] both with and without a GOP index. Here the presence of the index

substantially improves performance for queries over a small interval but does not impact

performance for queries over a large extent.

Next, we tiled the Timelapse dataset using the configuration shown in Figure 2.3. Fig-

ure 3.12(b) shows resulting tile index performance for two choices of φ. In this experiment,

LightDB’s use of the tile index is able to improve performance by allowing LightDB to decode

only the relevant tile rather than the entire encoded video.

To evaluate spatial indexes, we first created a large 360TLF that simulates many 360◦

videos taken over time at a popular tourist destination. To do so, we repeatedly unioned the

Timelapse dataset until it contained five million 360◦ videos defined at random points in a

unit cube and at the origin. We then performed two selections with and without a spatial

index defined on (x, y, z). The results are shown in Figure 3.12(c), and illustrate that the

R-tree yields a modest benefit relative exhaustive search for relevant videos.
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3.6 Summary

In this chapter, we presented LightDB, a video database management system (VDBMS)

designed to efficiently process virtual reality (VR) and augmented reality (AR) video. LightDB

exposes a data model that treats VR and AR video as a logically continuous six-dimensional

light field. It offers a query language and algebra, allowing for efficient declarative queries.

We implemented a prototype of LightDB and evaluated it using several real-world appli-

cations. Our experiments show that queries in LightDB are easily expressible and yield up to

a 500× performance improvement relative to other video processing frameworks.
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System
% Reduced

Coaster Venice Timelapse

LightDB 78% 78% 67%

FFmpeg 75 76 71

Scanner 20 23 38

OpenCV 19 21 34

SciDB 19 23 33

Table 3.3: Percent reduction for the predictive 360◦ query.
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Chapter 4

VFS: A FILE SYSTEM FOR VIDEO ANALYTICS

As we discussed in Chapter 1, the volume of video data captured and processed is rapidly

increasing. YouTube receives more than 400 hours of uploaded video per minute [161]. More

than six million closed-circuit television cameras populate the United Kingdom, collectively

amassing an estimated 7.5 petabytes of video data per day [29]. In the United States, law-

enforcement use of body-worn cameras is expected to exceed 200,000 units in service by the

end of 2019 [77], collectively generating almost a terabyte of video data per day [165]. A single

autonomous vehicle can generate more than 19 terabytes of video data per hour [69]. Recent

VR light field cameras (see Section 2.3.2), which sample every visible light ray occurring

within some volume of space, can produce up to a half terabyte of video data per second.

As we introduced in Chapter 1, a large number of systems have emerged to ingest,

transform, and reason about video data to mitigate this data deluge. Each of these systems,

however, suffers from the storage-related deficiencies described in Definition 1.1. Specifically,

each stores data on disk as large, opaque, and independent blobs. As a result, storage-related

operations on video data are inflexible and limited to reads, writes, and coarse-grained seeks.

In this chapter we focus on these limited storage capabilities, which create three sets of

physical challenges for application developers.

First, video-oriented applications are forced to tightly intermingle data plumbing with appli-

cation logic (q.v. Definition 1.1 item 3). Developers must manually handle the (de)compression

of physically-persisted video data, resolution resampling before applying machine learning

and computer vision algorithms, and frame rate subsampling in network-constrained and

edge-processing applications. This intermixing leads to applications that are brittle and

difficult to evolve.
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Second, the close coupling of application logic with physical video data storage makes it

difficult to deploy optimizations and other techniques to improve application performance (q.v.

Definition 1.1 item 4). For example, applications that select or produce multiple versions of a

video (e.g., at different resolutions or by selecting multiple regions of interest) are responsible

for (re)compressing, persisting, and selecting from amongst the potentially many versions

when performing subsequent operations. Many applications avoid this additional complexity

by inefficiently reapplying operations to the original video data.

Finally, many video applications collect large amounts of video data with overlapping

fields of view and physically proximate locations (q.v. Definition 1.1 item 2). For example,

traffic camera and surveillance networks often have multiple cameras oriented toward the same

intersection. Similarly, autonomous driving and drone applications come with overlapping

multiple sensors that capture nearby video data. Reducing the redundancies that occur

among these sets of physically-proximate or otherwise similar video streams is neglected in

all modern video-oriented systems. Leveraging spatial overlap between videos could improve

performance, but doing so is difficult given that developers need to devote considerable effort

dealing with low-level video compression idiosyncrasies.

In this chapter, we introduce a new video file system (VFS), which is designed to decouple

video application design from video data’s physical layout and compression optimizations. This

decoupling allows application and system developers to focus on their relevant functionality,

while VFS handles the low-level details associated with video data persistence.

Analogous to relational database management systems, developers using VFS treat each

video as a logical video and let VFS determine the best way to perform operations over one

or more of the physical videos that it maintains on disk. To enable this independence, VFS

exposes a simple and familiar file-system interface where users read and write video data

through POSIX file system operations or by using VFS’s command line or C++ API. Users

initially write video data in any format, encoding, and resolution—either compressed or

uncompressed—and VFS manages the underlying compression, serialization, and physical
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layout on disk. When users subsequently read video—once again in any configuration and

by optionally specifying regions of interest and other selection criteria—VFS automatically

identifies and leverages the most efficient methods to retrieve and return the requested data.

VFS’s interface frees users from worrying about video formats, compression, sampling,

and other low-level persistence details. A user writes data in whatever video format is on

hand, and later reads video data in whatever format is needed, even if she has not previously

written video in that format to VFS.

VFS may be used standalone or integrated at the lowest level of a video database

management system (VDBMS). As a standalone system, VFS improves flexibility and

performance for developers and data scientists who read and write video data from and to

the file system using frameworks such as OpenCV [118]. When used as a foundation for

a VDBMS, the VDBMS may leverage the optimizations offered by VFS to improve query

performance, especially when videos are queried multiple times.

In either mode, VFS’s API supports reads and writes of video data with optional spatial

(e.g., resolution, region of interest), temporal (e.g., frame rate, start and end time), or physical

(e.g., compression method) predicates. By contrast, existing frameworks and VDBMSs are

naively limited to monolithic or coarse-grained reads and writes of video data with fixed

spatiotemporal and physical characteristics. This naive approach introduces substantial

overheads that VFS is able to avoid using the optimizations we describe below.

Under the hood, VFS deploys the following optimizations and caching mechanisms to

improve read and write performance. First, rather than storing video data on disk as opaque,

monolithic files, VFS decomposes each video into sequences of contiguous, independently-

decodable, optionally-compressed sets of frames. VFS then indexes those video fragments and

the resulting structure allows VFS to read only the minimal set necessary to satisfy a read

operation. As VFS handles requests for video over time, it maintains a per-video, on-disk

collection of materialized views that is populated passively as a byproduct of read operations.

Later, when a user performs a subsequent read operation, VFS leverages a minimal-cost
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# Write initial video

$ vfs write traffic.mp4

# Read small RGB version

$ vfs read traffic.rgb -r 320x180

# Read 1K RGB between time 5 and 20

$ vfs read traffic.rgb -r 1280x720 -s 5 -e 20

# Read 1K RGB cropped at 640x720 between time 5 and 20

$ vfs read traffic.rgb -r 1280x720 -s 5 -e 20 -w 640 -h 720

# Read the same video as above using the POSIX interface

$ cat /vfs/traffic/1280x720s5e20x640y720.rgb > traffic.rgb

Figure 4.1: Example commands using the VFS command-line interface to read and write

traffic video data.

subset of these views to generate its answer. Finally, because video fragments can arbitrarily

overlap and have complex interdependencies, VFS uses a satisfiability modulo theories (SMT)

solver to identify the best sets of views to satisfy a request.

Second, to trade off read performance with the storage size of the materialized view

collection, VFS exposes an application-specified video storage budget. This budget allows

administrators to balance between these factors. When a video’s storage budget is exceeded,

VFS prunes stale views by selecting those least likely to be useful in answering subsequent

queries and, among equivalent entries, VFS optimizes for quality and defragmentation.

Finally, VFS reduces the storage cost of redundant video data collected from physically

proximate cameras. It does so by deploying a joint compression optimization that identifies

overlapping regions of video and stores the overlapping region only once. Developers may

explicitly indicate videos eligible for joint compression or may allow VFS to automatically

identify eligible video data.
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Collectively, by decoupling video-oriented systems and applications from the underlying

physical representation of video data, VFS allows for easier application development, faster

read and write performance for computer vision and machine learning pipelines, and lower

storage costs for physically proximate video datasets.

The remainder of this chapter is organized as follows. First, in Section 4.1, we give a

high-level description of the architecture and API of VFS. We then detail the three major

functions of VFS. First, VFS must choose the most efficient way to answer a read query,

and we describe the query answering approach used by VFS in Section 4.2. Second, when

ingesting video data, VFS must efficiently physically arrange and persist the written video

data on disk. We describe the approach used by VFS in Section 4.3. Next, in Section 4.4 we

discuss data compression techniques automatically deployed by VFS for serialized video data.

We finally evaluate the performance of VFS in Section 4.5.

4.1 Architecture

Consider an application designed to monitor an intersection for license plates associated with

missing children or adults with dementia. A typical implementation of such an application

would ingest video data from multiple locations around the intersection, decompress it,

and convert it to an alternate representation suitable for input to a machine learning

model trained to detect license plates. Such models are typically deep learning models

that are expensive to execute. Therefore, the application might first use an inexpensive low-

resolution video representation to prune frames that are unlikely to contain license plates at all.

VStore [164], for example, implements this type of optimization, but requires the application

specify beforehand that it needs both a low- and high-resolution approximations. Other

image processing systems use similar optimizations [85, 99]. Once vehicles with potentially

matching plates are found in the video, the application might apply another machine learning

algorithm to cross reference the vehicle make and model. This third processing step may

require the video in yet another representation. Finally, a user might request and view all
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video sequences containing likely candidates. This might involve further converting to a

representation compatible with the viewer (e.g., at a resolution compatible with a mobile

device or compressed using a supported codec).

An application working with video files stored in a regular file system must manually

convert to and from these various representations, while an application that utilizes a system

like VStore must decide a priori every possible format or resolution that might be needed in the

future. On the other hand, an application leveraging VFS can simply read video data in the

desired form. For example, when the above application wants low-resolution, uncompressed

video data to find frames with license plates, it can directly read the file traffic/320x180.rgb

from VFS (or execute the command line variant vfs read traffic.rgb -r 320x180), letting

VFS be responsible for efficiently producing the desired data.

Figure 4.1 shows additional examples of VFS commands using the VFS command-line

interface. A vfs write command ingests video data into VFS, which creates a logical entry

for the video (if it does not already exist) and writes the video data as an initial physical

video. The vfs read command produces a new file on disk containing the requested video

fragment at the desired resolution, times, and physical format (if it has not already been

cached).

Critically, VFS automatically selects the most efficient way to generate the desired video

data in the requested format based on the original video and cached representations. For

example, only certain regions of frames generally contain license plates. If the low-resolution

heuristic identifies such a region, the application can explicitly request just that region, e.g.,

traffic/1280x720x640y360.rgb, requests a 1280×720 resolution video cropped to the region

defined by the rectangle at (0, 0) and (640, 360).

Table 4.1 summarizes the full set of operations that VFS exposes. Importantly, these

operations are over logical videos, which VFS executes to produce or store physical video data.

Each operation involves a point- or range-based scan or insertion over a single logical video

source. VFS allows constraints on any combination of temporal (T ), spatial (S), and physical

(P ) parameters. Temporal parameters include start and end time interval ([s, e]) and frame
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Figure 4.2: The video file system (VFS) directory structure. Each video is organized under its

own directory entry, which contains physical videos and a policy file. Each physical video is

associated with a sequence of optionally-compressed video segments called groups of pictures

(GOPs).

rate (f); spatial parameters include resolution (rx × ry) and region of interest ([x0..x1] and

[y0..y1]); and physical parameters P include physical frame layout (l; e.g., yuv420, yuv422)

and compression method (c; e.g., hevc).

Besides the POSIX-compliant file system interface (Table 4.1), VFS also provide a C++,

Python, and OpenCV-compatible API, and a command-line interface similar to that exposed

by HDFS [140] (Figure 4.1). Our prototype treats the POSIX interface as primary, and each

of the other APIs delegate to it.

An exemplary directory hierarchy of VFS is illustrated in Figure 4.2. To create the missing-

person application described above, a user simply executes vfs write or writes each traffic

camera’s video using the POSIX interface (e.g., to /vfs/traffic.mp4). In both cases, VFS

implicitly executes create(traffic), which creates a new logical video and directory, traffic,

on the file system. It then automatically extracts the video’s metadata for spatial, temporal,

and physical parameters, and uses these to execute write(traffic, S, T, P ). For example,



68

Table 4.1: VFS operations. Both reads and writes require specification of spatial (S; resolution,

region of interest), temporal (T ; start and end time, frame rate), and physical (P ; frame layout,

compression codec) parameters.

Op Parameters

read
(
name, S, T, P

)
write

(
name, S, T, P, data

)
create

(
name

)
delete

(
name

)
policy

(
name, parameter, value

)
pin

(
name, S, T, P

)
unpin

(
name, S, T, P

)

if the video traffic.mp4 contained video data at 2K resolution, 30 frames per second, and

yuv420 format, the vfs write would create a new file traffic/1920x1080r30fyuv420.hevc.

In cases where VFS cannot automatically extract video parameters (e.g., when writing raw

uncompressed data), the user must specify them explicitly.

Later, the application may read this or other representations of the logical video from

VFS. Critically, rather than being able to read only the previously-written variant, users

may read the logical video using any combination of valid parameters and are not limited

to reading previously-written results (e.g., opening and reading /traffic/999x999r99.h264

would constitute a valid read). Regardless of what an application reads, VFS transparently

manages decompression and resampling, freeing the application from needing to be involved.

Under the hood, VFS arranges each physical video as a sequence of entities called groups

of pictures (GOPs). Each GOP is composed of a contiguous sequence of frames in the

same format and resolution. A GOP may contain raw pixel data or be compressed using a

video codec. Compressed GOPs, however, are constrained such that they are independently

decodable and may not take data dependencies on other GOPs.
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Figure 4.3: An example VFS physical organization that contains one logical video and two

underlying physical videos. For physical video 1920x1080r30.hevc, the first m GOPs are

each one second in length, while the remaining n−m are two seconds. These durations are

recorded in the associated index. Shading is as shown in Figure 4.2.

Though a GOP may contain an unbounded number of frames, video compression codecs

typically fix their size to a small, constant number of frames (30–300) and VFS accepts as-is

ingested compressed GOP sizes (which are typically less than 512kB). However, partitioning

extremely long GOPs on ingest is a straightforward enhancement. For uncompressed GOPs,

our prototype implementation automatically partitions video data into blocks of size ≤ 25MB

(the size of a single rgb 4K frame), or a single frame for resolutions that exceed this threshold.

Figure 4.3 illustrates the internal physical state of VFS after executing the write described

above. VFS has created a directory that contains the previously-written physical representa-

tion for the logical video traffic. VFS has stored each GOP in this representation on disk

as a series of distinct files v/1920x1080r30.hevc/1, ..., v/1920x1080r30.hevc/n. It has also

constructed a non-clustered temporal index that maps from time to the GOP file containing

visual information for that time. This level of detail is invisible to applications, which access

VFS only through the operations summarized in Table 4.1 and also illustrated in Figure 4.1.
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Table 4.2: Video policy parameters and default values.

Parameter Default Description

Quality threshold 35 Maximum quality degradation (PSNR)

Storage budget 10× Per-video cache size

Joint compression ∅ Joint compression candidates

Finally, each logical video is also associated with a policy that determines the hyperpa-

rameters (listed in Table 4.2) used to tune read and write performance. Policies are modified

using the policy API method shown in Table 4.1. Developers may also pin (and unpin)

regions of a logical video to prevent their being evicted from VFS’s internal cache. Pinned

regions are not counted against the video’s storage budget.

4.2 Data Retrieval

As mentioned, VFS internally represents each logical video as a collection of one or more

cached physical videos. When executing a read, VFS must produce the result using one or

more of these physical videos.

Consider a simplified version of the alert application described in Section 4.1, where a

single camera has captured 100 minutes of hevc-encoded video and written it to VFS using

the name V . The application first reads the entire video and applies a computer vision

algorithm that identifies two regions (at minutes 30–60 and 70–95) containing license plates.

The application then retrieves those fragments again requesting h264 compression to transmit

to a device that only supports this format. As a result of these operations, VFS now contains

the original video (m0) and the cached versions of the two fragments (m1,m2) as illustrated

in Figure 4.4(a). The figure indicates the labels {m0,m1,m2} of the three videos, their spatial

configuration (4k), start and end times (e.g., [0, 100] for m0), and physical format (hevc or

h264).
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𝑚0 4K , 0, 100 , HEVC

𝑚1 4K , 30, 60 , H264 𝑚2 4K , 70, 95 , H264

𝑟𝑒𝑎𝑑 𝑉, 4K , [20, 80],H264

(a) Read operation on three cached physical videos

𝑓5, 𝑐5 = 2 𝑓6, 𝑐6 = 2

𝑓1, 𝑐1 = 32 𝑓2, 𝑐2 = 32 𝑓3, 𝑐3 = 12 𝑓4, 𝑐4 = 12

ቊ

ቊ ቊ

𝑚0

𝑚1 𝑚2

(b) Physical video fragments with simplified cost formulae

Figure 4.4: Figure 4.4(a) shows the query read(V, 4k, [20, 80],h264) executed over a video

with cached physical videos {m0,m1,m2}. Figure 4.4(b) shows the weighted physical video

fragments using simplified cost formulae. The lowest-cost result is shaded.

Later, a first responder on the scene views a one-hour portion of the recorded video on

her mobile device, which only has hardware support for h264 decompression. To deliver this

video, the application executes read(V, 4k, [20, 80],h264), which, as shown at the bottom of

Figure 4.4(a), requests video V between time [20, 80] in spatial configuration 4k and physical

configuration h264.

VFS responds by first identifying subsets of the available physical videos that can be

leveraged to produce the result. For example, VFS can simply transcode m0 between times

[20, 80]. Alternatively, it can transcode m0 between time [20, 30] and [60, 70], m1 between

[30, 60], and m2 between [70, 80]. The latter plan is the most efficient since m1 and m2 are

already in the desired output format (h264), hence VFS need not incur a heavy transcoding

cost for these regions. Figure 4.4(b) shows the different selections that VFS might make

to answer this read. Each physical video fragment {f1, ..f6} in Figure 4.4(b) represents a
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different region that VFS might select. Note that VFS need not consider other subdivisions of

these fragments—for example by subdividing f5 at time [30, 40] and [40, 60]—since f5 being

cheaper at [30, 40] implies that it is at [40, 60] too.

To model these transcoding costs, VFS employs a transcode cost model ct(f) that represents

the cost of converting a physical video fragment f from a source physical format into a target

physical format.

VFS must also ensure that the quality of a result has sufficient fidelity. For example, using

a heavily downsampled physical video (e.g., 32× 32 pixels) to answer a read requesting 4k

video is likely to be unsatisfactory. To avoid this, VFS adopts a quality model u(f0, f) that

gives the expected quality loss of using a fragment f in a read operation relative to using the

originally-written video f0. When considering using a fragment f in answering a read, VFS

will reject it if the expected quality loss is below a user-specified cutoff: u(f0, f) < ε. The user

optionally specifies this cutoff in the read’s physical parameters (see Table 4.1); otherwise a

default threshold is used (ε = 35 in our prototype). The range of u is a non-negative peak

signal-to-noise ratio (PSNR), a common measure of quality variation based on mean-squared

error [71]. Values ≥40 are considered to be lossless qualities, while ≥30 are near-lossless.

Given this cost and quality model, we now turn to how VFS selects fragments for use in

performing a read operation. In general, given a read operation and a set of physical videos,

producing a result requires VFS to perform several operations. First, it must select fragments

that cover the desired spatial and temporal ranges. To ensure that a solution exists, VFS

maintains the initially-written video (the root physical video m0), and VFS returns an error

for reads extending outside of the temporal interval of m0.

Second, when the selected physical videos temporally overlap, VFS must resolve which

physical video fragments to use in producing the answer in a way that minimizes the total

conversion cost of the selected set of video fragments. This problem is reminiscent of prior

work in materialized view selection [60]. Fortunately, a VFS read is far simpler than a general

database query, and in particular is constrained to a small number of parameters with point-

or range-based predicates.
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We motivate our initial solution by continuing our example from Figure 4.4(a). First,

observe that the collective start and end points of the physical videos form a set of transition

points where VFS may opt to switch to an alternate physical video.

In Figure 4.4(a), the transition times include those in the set {30, 60, 70}, and we illustrate

them in Figure 4.4(b) by partitioning the set of cached physical videos at each transition

point. We also omit fragments that are outside the read’s temporal range, since they do not

provide information relevant to the read operation.

Now observe that between each consecutive pair of transition points VFS must choose

exactly one physical video fragment. In Figure 4.4(b), we highlight one such set of choices

that covers the read interval. Each choice of a fragment comes with a cost (i.e., f1 has

cost 32), derived using a cost formula that assigns a transcode cost equal to (i) twice the

fragment’s duration if it requires decoding and then re-encoding, (ii) the fragment’s duration

if it only requires encoding, and (iii) zero for fragments already in the target physical format

Pq (e.g., h264 for the example in Figure 4.4). Formally:

ct(f) =


0 if physical-format(f) = Pq

duration(f) if uncompressed(f)

2 · duration(f) otherwise

(4.1)

To conclude our example, observe that we must choose a set of physical video fragments

that (i) cover the queried temporal range, and (ii) do not temporally overlap. Further,

of all the possible paths between 20 and 80, the one with the lowest cost—highlighted in

Figure 4.4(b)—minimizes the total cost of producing the answer. These characteristics

collectively meet the requirements identified at the beginning of this section.

4.2.1 Interval Cover Fragment Selection

We propose two algorithms to solve the cost minimization problem. The first targets videos

without dependent frames, while the second (to be discussed in Section 4.2.2) considers frames

of this type.
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Our first algorithm models the problem as a weighted interval cover problem, with each

fragment being temporally arranged on a real-number line. Weights for each fragment are

given by the cost function c, and only fragments admitted by the quality model u are

considered. Given a VFS read, we identify the minimum-cost set of physical view fragments

as follows:

Problem (Cached physical video fragment interval cover). Consider a read(D,Sq, Tq, Pq)

operation over logical video D, which is associated with cached physical videos M =

{m1, ...,mn} each having configuration (Si, Ti, Pi). We are given a function C(m,T ) that

converts physical video m into configuration (Sq, T, Pq) at cost c(m,T ), and a function ⊕

that concatenates physical videos with identical configurations. We want to find a result

A = C(m∗0, T
∗
0 )⊕ · · · ⊕ C(m∗k, T

∗
k ) that is:

� Valid such that it is non-overlapping (i.e., T ∗i ∩ T ∗j = ∅) and is a cover of T (i.e.,⋃
T ∗i = Tq).

� Minimal cost such that ∀{(m,T ) | m ∈M,T ⊆ Tq} :
∑
c(mi, Ti) ≥ c(A).

Definitions. Let (si, ei) be the start and end time of physical video mi and (sq, eq) be

the start and end times of the read operation (i.e., Tq). Let W = {sq, eq, s1, e1, ..., sn, en} be

the set of all such start and end times. Finally, let Ri =
{
p | p ∈ W ×W,max(si, sq) ≤ p ≤

min(ei, eq)
}

be the transition points associated with mi.

Solution. We begin by identifying the physical video fragments relevant to a solution

(i.e., {f1, ..., f6} in Figure 4.4(b)). The start and end times associated with each such fragment

are defined by the intervals Fi =
{

[α, β] | α, β ∈ Ri, α < β, @γ ∈ Ri : α < γ < β
}

. The size

|Fi| is at most O(|M |), the number of physical videos. Collectively, let F =
⋃
Fi be the set

of all fragments, and because |Fi| = O(|M |), |F | = O(|M |2). We associate weight c(f) to

each fragment f ∈ F .

Using the fragments, which cover the interval (sq, eq), we wish to find a minimum-weight

cover. While covering problems are NP-hard in most contexts, interval covering problems

are solvable in polynomial time [126]. As illustrated in Figure 4.4, our formulation of
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Fragment start

Dependent frame

Independent frame

Previously-selected frame

Δ 𝑓3

𝑓5

⋯

𝑓1

Figure 4.5: In this simplified illustration based on the fragments {f1, f3, f5} in Figure 4.4,

VFS is considering using fragment f3 starting with the frame highlighted in red, and has

already decided to use f1 and f5. However, this frame cannot be decoded without also

transitively decoding the dependencies represented by directed edges and labeled ∆. VFS

look-back cost cl is a function of these frames, with the single independent frame being more

expensive than the two dependent frames.

fragment selection involves selecting minimum-cost intervals on the (temporal) positive real

number line. Since no intervals partially overlap, we sort the intervals by start time and

sequentially select the fragment with lowest cost. This approach is a special case of the greedy

weighted interval cover algorithm, which generates a minimum-weight cover R on the interval

(sq, eq) [12]. Applying this algorithm has complexity linear in the number of intervals, or

O(|F |) = O(|M |2).

4.2.2 Constraint Satisfaction Selection

The previous solution is inexpensive and optimal for selecting subsets of videos that have

transcode cost proportional to duration or number of frames. However, as video compression

codecs utilize data dependencies between frames, this assumption is frequently violated. We

model these data dependencies as a directed graph, with frames as vertices and directed edges

representing data dependencies between pairs of frames. For a given fragment, we denote ∆

as the set of reachable frames not part of the fragment itself (i.e., its dependent frames).
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As a concrete example, consider Figure 4.5, which shows the frames within a physical

video with their data dependencies indicated by arrows. If VFS wishes to use fragment f3

starting at the red-highlighted frame, it must first decode all of the red frame’s dependent

frames, labeled ∆ in Figure 4.5. This violates the assumption in the transcode cost model

above: the cost of transcoding frame depends on where within the video it occurs, and

whether its dependent frames are also transcoded.

To model this cost, we add a look-back cost cl(P, f) that gives the cost of decoding the

frames in fragment f along with the dependent frames ∆ not part of f and if they have

not already been decoded, meaning that they are not a member of the previously-selected

fragments P . As illustrated in Figure 4.5, these dependencies come in two forms: independent

frames A ⊆ ∆ (i.e., frames with out-degree zero in our graphical representation) which are

more expensive to transcode, and dependent frames (those with outgoing edges) which are

inexpensive but require first decoding dependencies. On our hardware, we empirically found

independent frames to be approximately five times more expensive to decode than dependent

frames, and so our prototype sets η = 5. Formally, we define cl as:

cl(P, f) = η · |A− P |+ |∆− A− P | (4.2)

Optimizing the VFS robust cost model cr(P, f) = cl(P, f)+ct(f) requires jointly optimizing

both cl (see Equation 4.2) and ct (see Equation 4.1), where each fragment choice affects

the transitive dependencies P of future choices. This problem is not solvable in polynomial

time, so we employed a SMT solver [37] in order to generate an optimal solution to cr. Our

embedding constrains frames in overlapping fragments so that only one is chosen, and uses

information about the locations of independent and dependent frames in each physical video

to compute the cumulative decoding cost due to both transcode and look-back for any set of

selected fragments. Solving this is typically more expensive than the interval cover problem,

and we evaluate our two algorithms in Section 4.5.1.
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4.3 Data Caching

In the previous sections we described how VFS persists, reads, and writes physical videos. We

now describe how VFS decides which physical videos to maintain, and which to evict under

low disk space conditions. The caching process involves making two interrelated decisions:

� When executing a read operation, should VFS admit the result as a new physical video

for use in answering future reads?

� When disk space grows scarce, which existing physical video(s) should VFS discard?

To aid in both of these decisions, VFS maintains a video-specific storage budget that limits

the total size of the physical videos associated with each logical video. The storage budget is

stored in each video’s policy (see Table 4.2) and may be specified as a multiple of the size of

the initially-written physical video or a fixed ceiling in bytes. This value is initially set to

an administrator-specified default (10× the size of the root physical video in our prototype).

VFS never evicts the root physical video (see Section 4.2), which is always available in the

cache. Pinned regions of a logical video (see Section 4.1) are not counted against a logical

video’s storage budget, and VFS does not consider pinned regions for cache eviction.

As a running example, consider the sequence of reads illustrated in Figure 4.6, which

mirrors the alert application commands shown in Figure 4.1 and described in Section 4.1. In

this example, an application reads a low-resolution uncompressed video from VFS for use

with a license detection algorithm. VFS caches the result as a sequence of three-frame GOPs

(approximately 518kB per GOP). One detection was marginal, and so the application reads

higher-quality 2K video to apply a more accurate detection model. VFS caches this result

as a sequence of single-frame GOPs, since each 2K rgb frame is 6MB in size. Finally, the

application extracts two h264-encoded regions for offline viewing. VFS caches m3, but when

executing the last read it determines that it has exceeded its storage budget and must now

decide whether to cache m4.
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HEVC Physical Video H264 Physical Video Uncompressed Video

𝒎𝟎

𝒎𝟏

𝑟𝑒𝑎𝑑 traffic, (320 × 180), 𝑇1, RGB

𝒎𝟐

𝒎𝟑 𝒎𝟒

𝑟𝑒𝑎𝑑 traffic, 2K , 𝑇2, RGB

𝑟𝑒𝑎𝑑
traffic,

1K , 𝑇4, H264
𝑟𝑒𝑎𝑑

traffic,
1K , 𝑇3, H264

1

2

3 4

5 Cache Eviction

License Plate Detections

Midpoint6

Figure 4.6: VFS caches read results and uses them to answer future queries. In 1 an

application reads logical video traffic at 320×180 resolution for use in license plate detection

(see command two in Figure 4.1) and VFS caches the result as m1. In 2 VFS caches m2, a

region with a dubious license plate detection (command 3 in Figure 4.1). In 3 and 4 VFS

caches h264-encoded m3 & m4, where license plates were detected. However, reading m4

exceeds the storage budget and VFS responds by evicting the striped region at 5 . Finally, 6

shows the midpoint of m1 which is used in calculating the modified LRU score for eviction.

The key idea behind VFS’s cache is to logically break physical videos into “pages.” That

is, rather than treating each physical video as a monolithic cache entry, VFS targets the

individual GOPs within each physical video. Using GOPs as cache pages greatly homogenizes

the sizes of the entries that VFS must consider. VFS’s ability to evict GOP pages within a

physical video differs from other variable-sized caching efforts such as those used by content

delivery networks (CDNs), which are forced to make decisions on large, indivisible, and

opaque entries (a far more challenging problem space with limited progress in formulating

approximate solutions [18]).
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However, there are several key differences between GOPs and pages. In particular, GOPs

are related to each other:

� One GOP might be a higher-resolution version of another.

� Consecutive GOPs form a contiguous video fragment.

These correlations make typical eviction policies like least-recently used (LRU) problematic.

In particular, application of näıve LRU might evict every other GOP in a physical video,

decomposing it into many small fragments and increasing the cost of reads (which have

quadratic complexity in the number of fragments; see Section 4.2).

Additionally, given multiple, redundant GOPs that are all variations of one another,

ordinary LRU would treat eviction of a redundant GOP the same as any other GOP. However,

our intuition is that it is desirable to treat redundant GOPs different than singleton GOPs

without such redundancy.

Given this intuition, our eviction policy modifies LRU in the following ways:

� We decrease the recency of GOPs occurring at the beginning and end of a physical

video more highly than those in the middle.

� We decrease the recency of the lowest-quality (as given by our quality cost model; see

Section 4.2) GOP that has higher-quality redundant copies.

Formally, let r(g) be the normalized (i.e., range(r) = [0, 1]) distance of a GOP g from the

midpoint of a sequence of contiguous physical video entries that includes g (as an example,

Figure 4.6 highlights the midpoint of video m1). Let q(g) = min(u(g0, g), 40) be the quality

of g compared to its associated root physical video GOP clamped at 40, which we threshold

as lossless quality (see Section 4.2 for a definition of u). Our modified policy MLRU is then

defined by MLRU(g) = LRU(g) − α · r(g) − β · q(g). Through empirical observation our

prototype implementation sets α = 10 and β = − 1
40

.
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In Figure 4.6, we show VFS choosing to evict the three-frame GOP at the beginning of

m1 and to cache m4. If our prototype had weighed the second modification more heavily

than the first, VFS would instead elect to evict m3, since it was not recently used and is the

variant with lowest quality.

4.4 Data Compression

To improve the storage performance of written and cached video data, VFS employs two

compression-oriented optimizations and one optimization that reduces the number of physical

video fragments, each of which we describe in this section. Specifically, VFS (i) jointly

compresses redundant data across multiple physical videos (Section 4.4.1); (ii) lazily performs

compression on blocks of uncompressed, infrequently-accessed GOPs (Section 4.4.2); and

(iii) improves the performance of reads by compacting temporally-adjacent physical videos

(Section 4.4.3).

4.4.1 Joint Physical Video Compression

Many video applications capture video from cameras that are spatially proximate with similar

orientations. For example, a bank of traffic cameras mounted on a pole will each capture

video of the same intersection from similar angles. Despite the redundant information that

mutually exists in these video streams, most applications treat these video streams as distinct

and persist them separately to disk.

VFS optimizes storage of these videos by reducing the redundancy between pairs of

highly-similar video streams. This optimization, which we call joint compression, is applied

between pairs of logical videos written to VFS. VFS’s joint compression optimization currently

assumes stationary or slowly-translating cameras; the modifications required to support

dynamic and translating cameras are highlighted below and left as future work.
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In applying the optimization, VFS examines cached physical videos across pairs of logical

videos. For each pair of frames found, it identifies a region of overlap between the frames and

combines them. This process is transparent to users, who can continue to logically read the

individual videos as if they were stored separately on disk.

Figure 4.7 illustrates this process on two frames taken from a synthetic dataset (Visual

Road-1K-50%, described in Section 4.5). Figure 4.7(a) and Figure 4.7(b) respectively show the

two frames with the overlapping regions highlighted, and Figure 4.7(c) shows the overlapping

regions combined.

Critically, because the frames were captured from cameras at different orientations,

combining them requires more than an isomorphic translation or rotation (e.g., the angle of

the horizontal sidewalk is not aligned in the two frames). Instead, a homography between

the two frames is estimated and the result used to transform between the two spaces. As

shown in Figure 4.7(c), VFS applies this transformation to the right frame which causes its

right side to bulge vertically. However, after it is overlaid onto the left frame, the two align

near-perfectly.

More specifically, VFS applies joint projection by executing the following steps. First, it

estimates a homography between the two frames. To do so, it waits to receive two frames from

the pair of videos being jointly compressed (or reads two frames from video pairs being lazily

compressed). Next, it applies a feature detection algorithm (SIFT [97]) that identifies similar

features that co-occur in both frames. Using these features and random sample consensus

(RANSAC [50]), it estimates the homography matrix used to transform between frame spaces.

Our current prototype applies SIFT and RANSAC once per second of video (generally every

thirty frames), which suffices for stationary cameras. For dynamic cameras, however, it would

be advantageous to adaptively adjust the recalculation interval to avoid a loss in quality, and

we leave this as future work.
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With the homography estimated, VFS uses it to transform the right frame into the space

of the left frame. This results in three distinct regions: (i) a “left” region of the left frame

that does not overlap with the right, (ii) an overlapping region, and (iii) a “right” region

of the right frame that does not overlap with the left. VFS splits these into three distinct

regions and uses an ordinary video codec to encode each region separately.

This process is formalized in Algorithm 4.1. The function joint-compress iterates over

each frame in videos F and G and estimates homography every thirty frames. It then uses

the joint-compress-frames to perform pairwise joint compression on each frame f and

g by computing xf , the right extent of the overlap in the left frame and xg, the left extent

of the overlap in the right frame. It uses these cut-points to subdivide f and g into left,

overlapping, and right regions and compresses each individually.

This joint compression optimization process is activated in one of two ways. First, a

user may explicitly request joint compression between two videos by modifying a pair of

videos’ policies (see Table 4.2). Even when specified in the policy, VFS will only apply joint

compression when the estimated homography indicates that the amount of overlap exceeds

an administrator-specified threshold (25% in our prototype).

Alternatively, VFS lazily examines pairs of physical videos and applies joint compression

by randomly sampling GOPs of candidate physical videos and evaluating them for overlap. To

prevent false positives, when lazily compressing physical videos VFS applies joint compression

only for pairs of physical videos that have substantial overlap with high RANSAC confidence,

as specified as an administrator-configurable threshold.

4.4.2 Deferred Compression

Most video-oriented applications operate over decoded video data (e.g., RGB). Such data is

vastly larger than its compressed counterpart: storage for a typical 4K video exceeds five

terabytes per hour when uncompressed (e.g., the VisualRoad-4K-30% dataset we describe

in Section 4.5 is 5.2TB uncompressed as 8-bit RGB). As VFS caches uncompressed video

regions as the result of reads (e.g., while scanning for license plates), it quickly accumulates
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many uncompressed cache entries that risk exhausting the video’s storage budget. In this

section we mitigate this risk by compressing these entries and balancing compression speed

with cache entry size.

To avoid this issue, one option is to perform lossless compression on uncompressed frames

prior to caching them. However, doing so when executing the read increases the operation

latency and leads to decreased performance for applications that request only small amounts of

high-resolution uncompressed frames. An alternative approach would be to begin performing

lossless compression during reads when the associated video’s storage budget exceeds some

threshold. For example, VFS might allocate half of its budget for uncompressed data and

compress cached entries after this amount is exceeded. This would increase read latency in

exchange for improved cache performance.

This approach, however, suffers from two disadvantages. First, it never prompts the

system to compress the data that was cached prior to the budget threshold being exceeded.

Second, the new read may produce a cache entry that is less useful for future reads than

an alternative cache entry (e.g., it might be immediately evicted). This means that the

computational expense of compression is wasted.

To avoid these disadvantages, VFS adopts the following approach. When a video’s

cache size exceeds some threshold (25% in our prototype), VFS activates a special deferred

compression mode. In this mode, when a read requests uncompressed data, VFS examines

the current cache and orders the uncompressed physical video entries by eviction order. It

then performs lossless compression on the last entry in this list (i.e., the entry least likely to

be evicted). It then executes the read as usual.

Our prototype uses Zstandard for lossless compression, which emphasizes compression

and decompression speed but has a lower compression ratio relative to more expensive image

and video codecs such as PNG and HEVC [46].

VFS performs two additional optimizations beyond the approach described above. First,

Zstandard comes with a “compression level” setting, which is an integer in the range [1..19],

with the lowest setting having the fastest speed but the lowest compression ratio (and the
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highest setting having the opposite characteristics). VFS linearly scales Zstandard compression

level with remaining storage budget, which has the effect of decreasing compressed size while

increasing compression time. Second, while deferred compression is active, VFS continues to

compress cache entries in a background thread during periods when no other IO requests are

being executed.

4.4.3 Physical Video Compaction

As a result of caching the result of user queries, VFS may persist pairs of cached videos

that contain data in contiguous time and with the same spatial and physical configurations.

For example, the cached reads resulting over a logical video at time [0, 90] and [90, 120] are

contiguous. Application of lazy compression may also create contiguous physical videos. For

example, if VFS lazily compressed an uncompressed physical video starting at time 120, it

would be contiguous with the cached video covering time [90, 120].

To reduce the number of physical videos that need to be considered in performing a

read, VFS periodically compacts pairs of contiguous cached videos and substitutes a unified

representation. To do so non-quiescently, it applies the algorithm shown in Algorithm 4.2.

This algorithm examines pairs of cached videos and, for each contiguous pair, uses hard links

to merge the GOPs from the second into the first. The result is a unified cached video that

contains the aggregated video data from both sources.

4.4.4 Summary of Data Compression Optimizations

Collectively through the data compression optimizations described in this section, VFS

improves storage performance in three interrelated ways. First, it applies joint physical

video compression to reduce the redundancy between pairs of otherwise unrelated logical

videos. Second, it applies deferred compression to reduce the redundancy of physical video

data within a single video fragment cache entry. Finally, it applies its video compaction

optimization to improve the performance of sequences of physical video cache entries.
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4.5 Evaluation

We have implemented a prototype of VFS using approximately 5,000 lines of C++ code. GPU-

based operators were implemented using CUDA [114] and NVENCODE/NVDECODE [113].

We use the libfuse file system in userspace (FUSE) reference implementation to export VFS

to the operating system kernel and expose the POSIX-compliant interface for consuming

applications [92]. VFS also uses FFmpeg [17] for some video plumbing operations such as

GOP segmentation and concatenation. Our prototype currently adopts a no-overwrite policy

for logical videos and disallows updates. We plan on supporting both of these features in a

future release. Finally, when performing writes, VFS does not guarantee that data are visible

to other readers until the file being written is closed.

We evaluate VFS by comparing it to two baseline systems (and directly against the

local file system) in terms of read (Section 4.5.1), write and caching (Section 4.5.2), and

compression (Section 4.5.3) performance.

Baseline systems. We compare VFS against VStore [164], a recent storage system that

supports video analytic workloads by pre-computing all possible video representations. We

also evaluate VFS against direct use of the local file system.

We build VStore with support for GPU-accelerated video encoding and decoding, and

where available utilize these accelerated operations. We experienced intermittent failures

when running VStore on >2, 000 frame videos, and to work around this all experiments on

VStore are limited to this size. The local file system is formatted using ext4 and backed by a

SSD drive.

Experimental configuration. We perform all experiments using a single-node system

equipped with an Intel i7-6800K processor with 6 cores running at 3.4Ghz and 32GB DDR4

RAM. The system also includes a Nvidia P5000 GPU with two discrete NVENCODE chipsets.

Datasets. In our evaluation, we use a combination of real and synthetic video data. We

use the former to measure VFS performance under real-world inputs, while the latter allows

us to test on a variety of carefully-controlled configurations. We use the datasets shown in
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Table 4.3 for the experiments throughout this section. The “Robotcar” dataset consists of

two highly-overlapping videos captured using adjacent stereo cameras mounted on a moving

vehicle [102]. The dataset is provided as 7,494 separate images, which we converted into a

video using h264 at 30 frames per second and one-second GOPs.

The “Waymo” dataset is an autonomous driving dataset [158]. We selected one segment

(approximately twenty seconds) from the dataset, which was captured using two vehicle-

mounted cameras. Unlike the Robotcar dataset, we estimate that Waymo videos overlap by

approximately 15%.

Finally, the various “VisualRoad” datasets consist of synthetic video generated using

the video analytics benchmark described in Chapter 5. This benchmark, called Visual

Road, is specifically designed to evaluate the performance of video-oriented data management

systems [66]. To generate each dataset, we used Visual Road to generate a one-hour simulation

and produce video data at 1K, 2K, and 4K resolutions. We also modified the field of view of

each panoramic camera in the simulation so that we could vary the horizontal overlap of the

resulting videos. We repeated this process several times and produced five distinct datasets;

for example, the “VisualRoad-1K-75%” dataset contains two one-hour videos, where each

video has 75% horizontal overlap with the other.

Because the size of the uncompressed 4K Visual Road datasets exceed the storage capacity

of our experimental system, we do not show results for this dataset that require fully persisting

its uncompressed representation to disk.

4.5.1 Data Retrieval Performance

Read Performance. Our first experiment explores the read performance of VFS using vari-

ous numbers of physical videos generated by cached reads. In this experiment, we vary the num-

ber and types of fragments available in the cache. First, we repeatedly execute queries of the

form read(VisualRoad-4K-30%, 3840×2160, [t1, t2], P ), with times 0 ≤ t1 < t1 +1 ≤ t2 < 3600

(in seconds) along with a physical format P ∈ {h264,hevc,rgb,yuv420,yuv422,nv12},

with t1, t2, and P drawn uniformly at random. These cache entries might be generated by
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application of a machine learning algorithm (e.g., license plate detection) over many regions

of a video. We iterate this process until VFS has cached a variable number of physical videos.

For this experiment we assume an infinite storage budget.

We then execute a maximal read (i.e., from time 0 to 3600 seconds) of this dataset in

the hevc format, which is different from the format of the originally-written physical video

(h264) and allows VFS to leverage its cached physical video fragments.

We show the performance of this read in Figure 4.8 for the two application scenarios.

Since none of the other baseline systems support automatic conversion from h264 to hevc,

we do not show their runtimes for this experiment.

As we see in Figure 4.8(a), even a cache with a small number of entries is able to improve

read performance by a substantial amount—28% at 100 entries and up to a maximum im-

provement of 54%. We further observe that the constraint satisfaction algorithm outperforms

its interval cover counterpart. This is because the solution it finds requires decoding fewer re-

dundant dependent frames. However, while for 4K video the cost of applying both algorithms

does not constitute a significant fraction of the read operation, as we show in Figure 4.8(b)

the exponential cost of constraint satisfaction diminishes the performance benefit as the

number of fragments grows large. Switching to interval cover for extremely large caches would

likely improve performance in these edge cases, though we leave this as future work.

Read Format Flexibility. Our next experiment evaluates VFS’s ability to transparently

read video data in a variety of formats. To evaluate this functionality relative to the baseline

systems, we first write the VisualRoad-1K-30% dataset to VFS, VStore, and the local disk.

We write the data to each file system in both compressed (224MB) and uncompressed form

(approximately 328GB).

We use an empty cache for VFS and read the persisted videos from each system in various

formats and measure the throughput offered by each system. Figure 4.9 shows results for

a read in the same format (Figure 4.9(a)) written to a file system and different formats

(Figure 4.9(b)). Because the local file system and does not support automatic representation
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transformation (e.g., converting h264-compressed video into rgb), we do not show results

for these cases. Additionally, VStore does not support reading some formats from its store,

and we additionally omit its result for this case.

We find that read performance without a format conversion from VFS is modestly slower

than the local file system, due in part to recently-identified bottlenecks in FUSE [151], the

local file system being able to execute entirely without kernel transitions, and the need for

VFS to concatenate many individual GOPs. However, our results show that VFS is able to

adapt to reads in any format, a benefit not available when using the local file system.

We additionally find that VFS performance outperforms VStore when reading uncom-

pressed video and is similar when transcoding h264. At the same time, VFS offers more

flexible input and output format options and does not require a workload be specified in

advance.

Fragment Selection Performance. Our final read experiment evaluates the overhead

associated with the interval cover and constraint satisfaction fragment selection algorithms

using 30-frame GOPs (i.e., one independent frame and 29 dependent frames). The dashed

lines in Figure 4.8(b) shows the time required to execute each of the algorithms in isolation,

without the accompanying read.

We find that the overhead of selecting physical video fragments is low relative to the

cost of producing the output, and that the advantage offered by utilizing the physical video

fragments outweighs this cost except for a cache with many single-frame entries.

4.5.2 Data Persistence & Caching

Write Throughput. Our next evaluation explores VFS write and caching performance. To

evaluate the write performance of VFS relative to the other baseline systems, we write each

dataset to the respective systems in both compressed and uncompressed form. We measure

the write throughput of each system and report the results in Figure 4.10(a).
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For datasets that will fit on local storage, VFS performs similarly to using the local

file system and VStore, though VFS outperforms VStore for the extremely small Waymo

dataset. On the other hand, none of the baseline systems have the capacity to store the

larger uncompressed datasets. For example, the uncompressed VisualRoad-4K-30% dataset

is over five terabytes. However, as the video’s storage budget reaches capacity, VFS is able to

activate its deferred decompression optimization and automatically begin compressing the

data being written. This compression allows it to store datasets that no other system can

handle, albeit at the cost of decreased throughput.

We next write the compressed evaluation datasets to each store. Figure 4.10(b) shows

the performance results for each baseline system. Here all systems perform approximately

equivalently, with both VFS and VStore exhibiting minor overhead relative to the local file

system.

Cache Performance. To evaluate the VFS cache eviction policy, we repeat our experi-

mental setup for read performance in Section 4.5.1. We execute 5,000 random read operations

to populate the VFS cache. However, instead of assuming an infinite storage budget, we limit

it to be various multiples of the input size (e.g., 25×) and apply either the least-recently used

(LRU) or VFS eviction policy. This has the effect of limiting the number of physical videos

available for performing reads.

With the cache populated, we execute a final maximal read for the entire video range

(i.e., [0, 3600]). Figure 4.11 shows the runtimes for each policy and storage budget. These

results show that (i) that VFS is able to reduce read execution by approximately 14%, even

with a limited budget, relative to application of a LRU policy.
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4.5.3 Compression Performance

Joint Compression Quality. In this evaluation we examine the recovered quality of jointly-

compressed physical videos. For this experiment we write various overlapping Visual Road

datasets to VFS. We then subsequently read each video back from VFS and compare the

resulting quality against its originally-written counterpart. We use the peak signal-to-noise

ratio (PSNR) as a quality comparison metric.

Table 4.4 gives the PSNR for recovered data compared against the written videos. Recall

that a PSNR of ≥40 is considered to be lossless, and ≥30 near-lossless [71]. In general, we

find high quality recovery for the left input to jointly compressed videos, and near-lossless

degradation for the right input. This difference is due to our approach of copying the left

frame onto the right and a resulting loss in fidelity when performing the inverse projection

on the right frame. A potential enhancement, which we leave as future work, is to instead

write the mean of the overlapping pixels or to interlace them.

Joint Compression Throughput. Our next experiment examines VFS read throughput

with and without the joint compression optimization applied. For this experiment, we write

each video in the VisualRoad-1K-30% dataset to VFS, once with joint compression enabled

and separately with it disabled. We then execute a read operation in various physical

configurations and for the entire duration. Figure 4.13(a) shows the throughput achieved

when executing the read using each configuration. Our results indicate that read overhead

for videos stored using joint compression is modest and similar to reads that are not co-

compressed.

Applying joint compression to a pair of videos requires a number of nontrivial operations,

and our final experiment evaluates the overhead associated with its execution. For this

experiment, we write each video in each Visual Road dataset to VFS and measure throughput.

Figure 4.13(b) shows the results of this experiment. Surprisingly, joint writes are faster than

writing each video stream separately. This speedup is due to VFS’s encoding of each of the

three lower-resolution streams in parallel, and since compression time is roughly proportional
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to resolution, encoding the three lower-resolution components is faster than the original frame.

Additionally, the overhead in identifying homography (approximately 0.5 milliseconds for

every GOP) and partitioning frames (approximately 2 milliseconds applied per-frame) does

not obviate this performance advantage.

Deferred Compression Performance. Our final experiment evaluates the performance

of deferred compression of uncompressed video writes. To evaluate, we write 3600 frames of

the VisualRoad-1K-30% dataset to VFS, leaving storage budget (10× the input, or 2,240MB)

and deferred compression configuration (25% threshold) at their defaults. At regular intervals

we extract the storage used, Zstandard compression level, and write throughput.

The results for these metrics are listed in Figure 4.14. We show storage used as a

percentage of the budget. Similarly, we show throughput relative to writing without deferred

compression activated. Finally, we show compression level as a value in the interval [1..19].

As expected, storage used exceeds the deferred compression threshold early in the write,

and a slope change shows that deferred compression is having a moderating influence on

write size. Compression level scales linearly with storage used. Finally, throughput drops

substantially as compression is activated, recovers considerably, and then slowly degrades as

the compression level is increased.

4.6 Summary

In this chapter we presented a video file system (VFS) designed to improve the performance

of video-oriented applications and data management systems. VFS decouples high-level

operations such as computer vision and machine learning algorithms from the low-level

plumbing required to read and write data in a suitable format. Users or higher-level systems

leverage VFS by reading and writing video data in whatever format is most useful, and VFS

transparently identifies the most efficient method to retrieve that video data. To maximize

interoperability, VFS transparently behaves as if it were an ordinary file system.
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We compared our VFS prototype against a recent video storage system and a standard

local file system. Our experiments showed that, relative to both local storage and other

dedicated video storage systems, VFS offers more flexible read and write formats and reduces

read time by up to 54%. Our optimizations also decrease the cost of persisting video by up

to 45%.
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(a) Frame from left video (b) Frame from right video

Overlapping Region Overlapping Region

Unprojected
Left Frame

Projection
onto plane 
of left frame

0.joint.h2640.left.h264 0.right.h264

Video Encoder

(c) Left, overlapped, and right regions are separately encoded.

Figure 4.7: Joint compression applied to two horizontally-overlapping frames. VFS first

identifies the overlapping regions in each frame, combines them, and encodes the three

resulting pieces (left, overlap, and right) separately. Frames produced using Visual Road [66].
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Algorithm 4.1: Joint compression algorithm
let homography(f, g) estimate the 3×3 homography matrix of f and g

let partition(f, [x0, x1]) be the subframe defined by x0 ≤ x < x1

let merge(f, g) overlay frame g onto f

function joint-compress(F,G)

Input: Video frames F = {f1, ..., fn}

Input: Video frames G = {g1, ..., gn}

Output: Vector of compressed (left,merged, right) tuples

C ← ∅

for i ∈ [1..n]

if i mod 30 = 0 then

H ← homography(f, g)

if H1,2 < 0 then
F,G← G,F

end if

end if

C ← C ⊕ joint-compress-frames(fi, gi, H, i)

end for

return C

end function

function joint-compress-frames(f, g,H)

xf ←
[
H−1 ·

(
0 0 width(f)

) ]
0,2

xg ←
[
H ·

(
0 0 1

) ]
0,2

l← partition
(
f, [0, xf )

)
// left part of f

mf ← partition
(
f, [xf ,width(f))

)
// overlap of f

mg ← partition
(
g, [0, xg)

)
// overlap of g

r ← partition
(
g, [xg,width(fg))

)
//right part of g

m← merge(mf , H ·mg)

return
(
compress(l),compress(m),compress(r)

)
end function
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Algorithm 4.2: Contiguous materialized view compaction

Ensure: All pairs of contiguous physical videos compacted

let hardlink(f, d) create hard link for file f in dir d

let insert(m, f) insert file f into the temporal index of m

let dir(m) be the directory associated with m

let views(v) be the physical videos associated with v

let configs,p(m) give the spatial/physical config of m

let smi , emi be the start and end times of mi

for all v1 ∈ V FS, v2 ∈ V FS \ v1 do

for all m1 ∈ views(v1),m2 ∈ views(v2) do

if em1=sm2 ∧ configs,p(m1) = configs,p(m2) then

let F2 = dir(m2) sorted by time

for all f2 ∈ F2 do

hardlink(f2,dir(m1))

insert(m1, f2)

end for

delete(m2)

end

end for

end for
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Table 4.3: Datasets used to evaluate VFS

Dataset Resolution # Frames Compressed Size (MB)

Robotcar 1280×960 7,494 120

Waymo 1920×1280 398 7

VisualRoad 1K-30% 960×540 108k 224

VisualRoad 1K-50% 960×540 108k 232

VisualRoad 1K-75% 960×540 108k 226

VisualRoad 2K-30% 1920×1080 108k 818

VisualRoad 4K-30% 3840×2160 108k 5,500
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Figure 4.8: Total time to select fragments and perform a read with varying number of physical

videos.
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Figure 4.9: Read throughput in frames per second for the Visual Road 1K-30% dataset for

VFS and baseline systems. Each group I→O shows throughput reading video in format I

and outputting it in format O. An × means that a system does not support the read type

(e.g., the local file system does not support reading raw video as h264).

Table 4.4: Joint compression recovered quality

Dataset
Quality (PSNR)

Left Frame Right Frame

Robotcar 62∗∗ 17

Waymo 32∗ 29

VisualRoad-1K-30% 40∗∗ 30∗

VisualRoad-1K-50% 36∗ 28

VisualRoad-1K-75% 36∗ 24

VisualRoad-2K-30% 36∗ 30∗

VisualRoad-4K-30% 36∗ 30∗

∗∗ lossless quality ∗ near-lossless quality
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Figure 4.10: Throughput in frames per second to write uncompressed rgb (Figure 4.10(a))

and compressed h264 (Figure 4.10(b)) data to VFS and other baseline systems. An × means

that a system does not support the write type (e.g., the local disk lacks capacity to store the

>5 terabytes uncompressed VisualRoad-4K-30% dataset).
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Chapter 5

VISUAL ROAD: A VIDEO DATA MANAGEMENT
BENCHMARK

As detailed in Chapter 1, a number of recent video data management systems (VDBMSs)

have been introduced to allow developers to more easily express and efficiently execute video-

oriented applications. These VDBMSs quantify their performance by reporting their efficiency

when processing various ad hoc workloads both in terms of the input videos selected and the

executed queries. However, comprehensive and easily reproducible system comparisons are

missing. A key challenge is that there is currently no clear way to reliably and objectively

benchmark performance among the various recently proposed VDBMSs. This deficiency

is due to a lack of: (i) a robust, sufficiently-complex video dataset (in terms of resolution,

quantity, duration, and variety of content); and (ii) an architecture-agnostic specification

of a common set of queries that may be executed on current and future VDBMSs. These

deficiencies are exacerbated when evaluating visual world applications (VWAs), which require

large datasets consisting of many correlated videos capturing the same events from multiple

perspectives.

Analogous to standardized benchmarks for other areas of data management research (such

as transaction [149] and analytical processing [150]), we develop Visual Road1, a benchmark

designed to evaluate the performance of VDBMSs in the face of a diverse query workload.

Visual Road reproducibly and objectively measures how well a VDBMS executes a battery of

workloads over a temporal light field (TLF; see Chapter 3) that contain a variety of 2D and

360◦ videos. Visual Road includes a set of evaluation queries expressed in the TLF algebra

1Name inspired by Linear Road [8], a benchmark for streaming database management systems.
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(Section 3.2) that a VDBMS executes to evaluate performance. Visual Road is designed

to be useful in evaluating VDBMSs that support both VWAs and general video processing

applications. The work presented in this chapter appeared in SIGMOD’19 [66].

Visual Road comes with a data generator that populates the TLF used in the benchmark.

To allow the creation of a virtually unlimited number of videos embedded in the TLF, Visual

Road uses a modern simulation, visualization, and gaming engine [42] to deterministically

generate realistic videos within a simulated metropolitan world (see Figure 5.1). Visual Road

allows users to vary the city size, number of cameras, and length of video in its simulation to

arbitrarily large sizes. Additionally, its simulation allows for the automatic calculation of

precise ground truth and other metadata about generated videos, without the need for manual

annotation. Finally, the cameras used in Visual Road are extremely flexible. In addition to

generating ordinary two-dimensional video, they can also produce more complex video types

(e.g., panoramic 360◦ video) that are used with a more complex category of virtual reality

(VR)-oriented benchmark queries. Overall, Visual Road’s generated video datasets are rich

and highly realistic. They can serve to execute various real-world applications such as vehicle

tracking and compute meaningful results. The queries provided with the benchmark include

a variety of both simple queries and complex applications to exercise benchmarked systems

along various dimensions.

Visual Road is designed to be implementable across a wide variety of VDBMS architectures,

even those not designed to operate over a TLF. This includes those that perform video querying

at scale (e.g., Scanner [124], Optasia [98], Chameleon [83]), operate on emerging forms of

video data (e.g., LightDB [65]), and perform deep learning inference (e.g., NoScope [86],

BlazeIt [85], Focus [73]). In the same way that relational database systems target subsets of

benchmarks (e.g., a specific TPC query), Visual Road is designed to be flexible: a user may

either select specific applicable queries or groups of queries appropriate for their systems or

execute the entire benchmark to demonstrate broad functionality.
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(a) Rain with dense clouds (b) Overcast skies at sunset

Figure 5.1: Two example frames from Visual Road traffic cameras that illustrate the realism

and variety of videos in the Visual Road benchmark. Complete videos available at visualroad.

uwdb.io/datasets. Some depicted assets copyright [42] and [43].

Visual Road is also extensible, such that future innovations and workload types can be

easily incorporated into subsequent versions. This includes both the ability to introduce new

and unexpected elements into the TLF, and also to increase the complexity of the benchmark

queries (e.g., by increasing the number of cameras, range of benchmark parameters, or

available machine learning algorithms).

Each benchmark query is specified in the TLF algebra described in Section 3.2 and is

adaptable to a wide variety of VDBMS types and architectures. To illustrate this wide

applicability, we have implemented the benchmark on three recent VDBMSs, including the

LightDB system described in Chapter 3.

5.1 Synthetic Dataset Generation

The TLF used for the Visual Road benchmark is generated within Visual City, a pseudorandomly-

generated, simulated metropolitan area. Visual City currently contains road networks, vehicles,

pedestrians, landscaping, buildings, bridges, traffic, ground-based cameras, and other features

found in real-world cities. Visual City is also affected by a number of conditions such as cloud

cover, precipitation, and sun position. Sample photos taken from Visual City are shown in

visualroad.uwdb.io/datasets
visualroad.uwdb.io/datasets
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Figure 5.2: Overhead view of a randomized Visual Road TLF with L = 9.

Figure 5.1. We posit that this environmental complexity is both important and sufficient to

ensure that benchmarked VDBMSs are exercised in interesting ways. The features of the

generated city could also be extended in subsequent versions of the benchmark (e.g., by incor-

porating wildlife, tunnels, or lakes) to increase the complexity, variety, and unexpectedness of

the simulation.

5.1.1 Benchmark Data

As shown in Figure 5.2, Visual City is laid out as a disconnected set of tiles. Each tile is

drawn uniformly with replacement from a pool of tiles associated with a particular version

of Visual Road. The version described in this monograph contains 72 tiles and each tile is

several square kilometers in size. Each tile contains different weather conditions, pedestrian

and vehicle densities, and geography.

Video data is materialized in the Visual City TLF via a number of cameras. Each tile

is associated with a camera configuration C that specifies various types and numbers of

cameras. To monitor traffic conditions, each tile contains ct randomly-oriented traffic cameras
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positioned 10–20 meters above a roadway, along with cp randomly-oriented panoramic cameras

positioned 5–10 meters above sidewalks. Each panoramic camera is composed of four ordinary

cameras with overlapping 120◦ fields of view positioned so that they overlap to capture a

360◦ field of view. The Visual Road prototype currently sets C = {ct, cp} = {4, 1} for each

tile.

When generating the TLF, a user provides values for four hyperparameters. A scale factor

L determines the number of tiles in the city. A user also selects a resolution (e.g., 3840×2160)

and a simulation duration D that is globally applied to each of the cameras. Finally, a

random seed s allows other users to deterministically reproduce datasets by reinitializing the

pseudorandom number generator with the same seed.

In addition to providing city size, the scale factor also determines the number of queries

that a benchmarked VDBMS executes using the Visual City TLF. The Visual Road prototype

currently generates 4L queries for each type detailed in this section. This batch size allows

for a reasonable balance between dataset generation time and benchmark execution time.

The Visual City Generator (VCG) is used to generate the TLF containing video captured

within Visual City. It accepts the hyperparameters described above and uses these values to

construct a Visual City TLF. First, it randomly chooses L tiles from the available set of tiles

(with replacement). Each tile is configured and populated using a tile-specific configuration

(e.g., pedestrians and vehicles are randomly spawned in number and locations specific to that

tile). Cameras are then randomly positioned in each tile subject to the constraints described

above. The VCG then executes the simulation and captures videos generated by each camera.

These videos are encoded using the h264 codec [144] and stored as flat files. The VCG also

generates additional supporting metadata required for verifying the results of specific queries

(e.g., Q6 in Section 5.3).

A VDBMS reports performance by executing the benchmark using the Visual City TLF

as input. The benchmark comes with a set of pregenerated datasets for immediate use; users

may report results using these datasets when comparing to other systems (e.g., “We evaluate

using version 1.0 of the 4k-short TLF”). Alternatively, users may deterministically generate
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their own datasets (see below) and report the configuration along the results (e.g., “We

generated and executed the Visual Road 1.0 benchmark using scale L, resolution R, duration

t, and seed s”). By using the same configuration, competing VDBMSs can reproduce the

identical dataset and compare results.

5.2 Benchmark Execution

A VDBMS can execute the benchmark either offline or online. Offline processing simulates

batch processing of historical video streams, where the VDBMS has random access to entire

video files on persistent storage. Online processing simulates real-time video processing, where

data is exposed via a forward-only iterator with unknown total duration.

A separate Visual City Driver (VCD) is provided with the benchmark and is responsible

for reading the input videos, exposing encoded video data to a VDBMS, submitting queries

to the VDBMS being measured, and evaluating the correctness of a VDBMS’s query results.

When benchmarking in online mode, a VDBMS may access each video using either a

named pipe (on a single local file system) or via the RTP protocol [135]. In this mode, video

data is throttled to a simulated real-time throughput (i.e., the VCD exposes video frames

at the corresponding camera’s capture rate). The VCD blocks on attempts to read video

data beyond this rate. For a VDBMS benchmarking in offline mode, the VCD additionally

ensures each input video is available on the local file system (on a single node, if the VDBMS

supports distributed execution) or a distributed file system.

The VCD uses the scale factor to simulate submission of simultaneous instances (a “query

batch”) of each benchmark query to the VDBMS. The VCD submits batches in benchmark

query order (i.e., Q1 is submitted before Q2). A VDBMS may execute each batch in a manner

that is most performant (e.g., serially or in parallel), and may optionally quiesce or restart

upon completing a batch.



106

Each benchmark query is a template with one or more parameters (see Table 5.1). The

VCD creates each instance in a query batch by assigning values selected uniformly at random

for each parameter from its respective domain. The VDBMS is only responsible for executing

the query instance and does not participate in selecting the parameter values.

A VDBMS may do one of two things with the h264- or hevc-encoded result of a query.

First, in write mode, as a VDBMS completes each instance in a query batch, it should

write the result to a VCD-specified location on the local file system (or on a VCD-specified

node for distributed systems) so the VCD can verify the correctness of each output. In this

mode the time to persist results is included in the total execution time for the query batch.

Alternatively, streaming mode allows a VDBMS to discard the results of a query and avoid

the write overhead. However, in this mode a user must ensure that the results of the queries

are correct, either by executing a second time in write mode or by doing so manually. We

show in [66] that the performance differences between these two modes are negligible.

Finally, the VCD also validates the correctness of the results generated by a VDBMS.

Depending on the query, it does so either by frame validation, which compares VDBMS output

videos to reference output videos, or semantic validation, which compares a query result

with the actual scene geometry used in its input(s). In Visual Road, most microbenchmark

queries are verified using frame validation. For these queries, the VCD executes its reference

implementation and compares each frame with the VDBMS’s output using a validation metric.

While future versions of Visual Road may allow for different metrics, the one used in the

present version is the peak signal-to-noise ratio (PSNR). The PSNR is a frequently-used

image comparison metric, and values ≥ 40 dB are considered to be near-lossless [78, 71].

Visual Road adopts this threshold as a cutoff for validation.

Query Q2(c) and Q2(d) are verified using semantic validation. In this case, the VCD

compares a VDBMS’s response to the actual objects that were present in the frames used

as input to the query. For example, if a VDBMS indicates a car i is present in frame j, the

VCD queries the simulation engine to determine if car i was visible to the camera at the

instant the frame was captured.
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When reporting results, an evaluator must report validation descriptive statistics for each

query. For queries executed in online mode, this should be reported in frames per second. A

VDBMS executing offline analytical queries should report total query runtime or frames per

second. The evaluator should also report other global elections such as scale factor, resolution,

duration, and execution mode.

5.3 Query Suite

The Visual Road benchmark aims to evaluate VDBMS performance by executing a varied

workload. It does so by measuring performance using microbenchmark (Table 5.2) and

composite macrobenchmark queries (Tables 5.3 and 5.4). Microbenchmark queries target the

performance of individual VDBMS operations in isolation. Each microbenchmark involves

a single, basic operation exposed by recent VDBMSs that are common in applications that

process video—including the visual world applications (VWAs) introduced in Chapter 1.

Composite queries, drawn from recent literature (see Chapter 6), are VWAs that utilize two

or more microbenchmarks to implement more complex tasks.

A VDBMS individually measures its performance for each query. As detailed previously,

for a given query Qi, the VCD uses the scale factor L to submit a query batch containing

4L instances of Qi to the VDBMS. The free parameters for each instance Qj
i , summarized

in Table 5.1, are uniformly selected (by the VCD) at random from their domain. Below we

describe each microbenchmark query. Each query operates on a randomly-selected camera

(i.e., a non-null spatial point in the Visual City TLF).

Several queries include ML-based computer vision algorithms, such as object detection.

The benchmark requires that all VDBMSs use specified, state-of-the-art algorithms, and

focuses on evaluating the execution performance of queries that need to apply those algorithms

rather than their quality. For the same reason, the benchmark videos do not purposefully

include unusual scenarios designed to challenge computer vision methods. In case query

accuracy or algorithm selection becomes a concern, users of the benchmark could be required

to publish the F1 scores of their query results.
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Table 5.1: Microbenchmark parameters and domains.

Query Parameter Domain

Q1 α1, α2 0 ≤ α1 < α2 ≤ 1

β1, β2 0 ≤ β1 < β2 ≤ 1

t1, t2 0 ≤ t1 < t2 ≤ D

Q2(b) d {10−n|n ∈ [2..4]}

Q2(c) A YOLO [129]

O {Pedestrian,Vehicle}

Q2(d) m {n/30|n ∈ [2..60]}

ε (0, 1)

Q3 ∆θ {2π/2n |n ∈ [1..3]}

∆φ {π/2n |n ∈ [1..3]}

bi {2n, n ∈ [16..22]}

Q4, Q5 ρ {2n|n ∈ [1..5]}

φ {2n|n ∈ [1..5]}

5.3.1 Microbenchmarks

The following microbenchmark queries, formally defined using the TLF algebra in Table 5.2,

measure a VDBMS’s ability to repeatedly perform small operations over input videos. In

Section 5.3.2 we compose many of these microbenchmarks to form more substantial, real-world

applications drawn from recent literature.

Spatial & Temporal Selection (Q1). A VDBMS must be able to efficiently spatially

and temporally select subregions of videos. This ability is exercised, for example, in applica-

tions that select highlights containing relevant data, construct cinematographic montages,

or apply object detection to a region of interest. Query Q1 measures a VDBMS’s ability to

perform this type of operation.

Given a cropping region bounded by the horizontal region (α1, α2), vertical region (β1, β2),

and a temporal range (t1, t2), query Q1 crops camera data occurring at a random point pi.

The cropping regions and temporal range are chosen uniformly at random.
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Transformation (Q2) & Subquery (Q3). A VDBMS must be able to efficiently

perform transformations at various granularities (e.g., per-pixel, using a stencil, over regions,

and for entire frames). Queries Q2 and Q3 test a VDBMS’s ability to transform input videos

at these scales.

The first transformation, Q2(a), requires that a VDBMS convert video data captured at

location pi to grayscale. The VCD reference implementation does this by dropping chroma

information (i.e., the U and V channels in YUV color space) and leaves luminescence (Y)

unchanged.

Query Q2(b) performs a Gaussian blur convolution [133] over an input video by applying

a d×d kernel over a video at spatial position pi. It does so by invoking a user-defined function

blur that is parameterized by the kernel size.

Next, query Q2(c) generates rectangular bounding boxes for objects in a video captured

at location pi. It does so by applying an object-detection algorithm A to each input video

frame (in the present version A is a singleton consisting of the YOLO [129] algorithm). This

algorithm associates each pixel xj with zero or more object classes O = {o1, ..., on}. The

VDBMS associates a constant color ck with each class ok and a “null” black color ω for regions

not associated with any class. It finally produces an output video with frames containing

pixels given by:

x′j =

cminO when O 6= ∅

ω otherwise

Q2(c) is verified using semantic validation, where each detected object is mapped back

to an actual object in the scene geometry that produced the input video, and a reference

bounding box is generated for the object. The maximum Jaccard distance between the

VDBMS-generated and reference boxes must not exceed ε. In the prototype version of Visual

Road we have adopted the PASCAL VOC [45] threshold of ε = 0.5.
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Query Q2(d) performs background masking on each input video by applying a mean

filter [9] to each video frame. Background masking is useful for removing static, unchanging

regions of a frame (e.g., sidewalks and buildings) and leaving the dynamic “foreground” areas

untouched. For each window of m video samples fj, ..., fj+m in a video, a VDBMS should

compute a background reference frame bj = 1
m

∑
k∈[i..i+m] fk. Next, for each pixel pv in frame

fj and pb in background reference frame bj , the VDBMS should output a black pixel ω when

their difference is below the threshold |pv−pb
pv
| < ε and pv otherwise.

Finally, query Q3 performs an operation on individual regions of the Visual City TLF. For

example, an application might deliver less-important regions at lower bitrates (see Q10) or

blur regions of a video frame that contain faces or other sensitive information. Q3 performs

the former operation by segmenting a video at point pi into regions of size (∆θ,∆φ). Each

resulting region ui is re-encoded at a bitrate given by bi. The resulting regions should then

be recombined.

Interpolation & Resampling (Q4, Q5). Computer vision algorithms and machine

learning models frequently require an input image sampled at a particular resolution. These

queries test a VDBMS’s ability to perform this sampling by asking it to perform interpolation

and resampling operations on input videos. First, query Q4 increases a video’s resolution

to (ρRx, φRy) using bilinear interpolation. The resolution R = (Rx, Ry) is drawn from the

hyperparameters used to generate the dataset. Query Q5 performs the inverse operation:

given a video at point pi, the VDBMS downsamples each frame to a lower resolution (Rx
ρ
, Ry
φ

).

Union (Q6). Modern video applications frequently require combining two or more

data streams. For example, an augmented reality application might overlay advertising or

informational text on a user’s display. Queries Q6(a) and Q6(b) test a VDBMS’s ability to

perform these operations by merging and combining data stored in various formats.

In particular, query Q6(a) merges the video at point pi with a bounding box video

b = Q2c(pi) by performing an outer join on the corresponding pixels within each video. The

bounding box video is generated offline by the VCD by applying the reference implementation

of query Q2(c) to the associated input video. The VCD exposes b in two formats: as an
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encoded video and as a serialized sequence of bounding box class identifiers and coordinates.

VDBMSs may consume either format when executing the query. As in Q2(c), the VCD uses

the black sentinel color ω to represent null pixels in the encoded variant of b.

Query Q6(b) overlays a set of text annotations stored in the TLF C onto an input video.

Here the data at point pi in C is a WebVTT [123] file embedded as a metadata track within

the input video’s container. The VCD randomly generates the WebVTT file and randomly

varies position and non-overlapping duration of each annotation. Benchmarking VDBMSs

may render the annotations using any font, and need only support the line and position

cue settings.

5.3.2 Composite Benchmarks

This section describes more complex, real-world workloads that we call composite benchmarks.

Each composite benchmark leverages one or more of the microbenchmarks introduced in the

previous section. Composite benchmarks are drawn from recent examples and applications in

the computer vision and machine learning literature (see Chapter 6).

Object Detection (Q7). This query leverages Visual City cameras to identify instances

of a given object class o ∈ O (e.g., pedestrians or vehicles). To draw attention to identified

objects, it also removes extraneous “background” portions of each video frame that do not

contain visual information about the class and persists or streams the results.

At a high level, a VDBMS implementing this query first applies the classification query

Q2(c) to every non-null point in the Visual City TLF V . Next, for each object type, it overlays

the resulting bounding boxes onto the video data using query Q6(a). Finally, it refines the

results by performing background removal as defined in Q2(d). Figure 5.3 illustrates this

process applied to a single video frame.

As formalized in Table 5.3, the inputs to the object detection query is the TLF V , and

object detection is applied to traffic cameras located as points t1, ..., tct·L. A VDBMS may

report results using additional object classes or detection algorithms, so long as it also includes

results for those defined in Table 5.1.
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(a) Input video frame (b) Output video frame

Figure 5.3: Sample input and output for one frame of the object detection query (Q7). Some

depicted assets copyright [42] and [43].

Vehicle Tracking (Q8). Query 8 simulates the tracking of vehicle sightings throughout

Visual City. Each automobile in Visual City has a unique front-facing license plate containing

six random alphanumeric digits.

A vehicle sighting instance is defined by the period in which it is identifiable by one or

more traffic cameras. Initially, a vehicle enters a traffic camera’s field of view when its license

plate is unobscured relative to that camera. It exits the traffic camera’s field of view when

one or both of these conditions is no longer met. The video frames occurring between a

vehicle entering and exiting a camera is a vehicle tracking segment (VTS).

The VCD simulates searching for vehicles by issuing vehicle tracking queries to the

VDBMS. The input to this query is the license plate of a random vehicle. As illustrated in

Figure 5.4, the output is a tracking video of temporally-ordered (by entry time), concatenated

VTSs for the vehicle associated with that license plate.

This query is formalized in Table 5.4 as a recurrence. Its output is defined by repeated

application of Q2(c). Each application uses a license plate recognition function L to identify

the next V TSi in the input video. Query Q1 is used to select the temporal range [ti, ti+1]

and the output is appended to the previous iteration until a fixpoint is reached.
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Figure 5.4: Illustration of a vehicle tracking query on a Visual Road dataset.

Illustration of the vehicle tracking query (Q8) on a Visual Road dataset (scale = 1) that

contains three vehicle tracking segments (VTSs). Each VTS is temporally ordered,

concatenated, and output.

5.3.3 Virtual Reality

Virtual reality (VR) video is an important, emerging subclass of video data. Panoramic VR

videos (a.k.a. 360◦ videos) are one popular member of this subclass. Visual Road includes two

benchmark queries that target the VR 360◦ data format. We include these queries because

VR video operations exercise sophisticated features possible only in the most recent VDBMSs,

and evaluating their performance at scale is an important differentiating factor between such

systems. Operations on VR videos are also useful to test a VDBMS’s ability to use higher

resolutions than typically seen in ordinary 2D video.

The following queries are more open-ended than the previous benchmark categories,

allowing an implementing VDBMS additional freedom to optimize their execution.

Panoramic Stitching (Q9). Modern panoramic cameras produce video panoramas by

“stitching” together two or more ordinary 2D videos into a 360◦ video. To take advantage of

modern video compression, the spherical video is reprojected onto a plane and encoded as if

it were an ordinary 2D video. Query Q9 requires that a VDBMS perform this process by

stitching video data from the panoramic cameras scattered throughout Visual City. Recall



114

from Section 5.1 that each panoramic camera is composed of four ordinary 2D cameras with

a 120◦ field of view. A VDBMS implementing Q9 should accept the video streams from the

constituent 2D cameras, execute a function to convert the four images into a single 360◦ video,

and output it. This process should be repeated for every panoramic camera in Visual City.

A VDBMS is free to implement the conversion in any manner that is most efficient, with

the constraints that (i) the resulting 360◦ videos should be equirectangularly projected [133]

and (ii) the result should be moderately similar (i.e., within 30 dB PSNR) to the reference

implementation.

Tile-Based Encoding (Q10). Recent research has suggested that streaming “unimpor-

tant” areas of a 360◦ video in lower resolution may yield substantial bandwidth savings and

reduced storage sizes [72, 168, 67, 108]. Additional savings may be achieved by reducing the

resolution of a VR video to match the resolution of the VR headset or viewing device. This

query, formalized in Table 5.5, measures a VDBMS’s ability to use both techniques to reduce

bandwidth costs. To execute this query, a VDBMS should use Q3 to decompose each video

frame into nine equal-sized “tiles” and encode high-importance tiles at a high-quality bitrate

bh and the remaining tiles at a low-quality bitrate bl. The VDBMS should also use Q5 to

downsample the video to a lower resolution that matches the viewing device. For simplicity,

we treat these parameters as global values that are applied over the entire duration of the

input 360◦ video.

5.4 Implementation

We implement the video generators for Visual Road 1.0 by adapting CARLA 0.84 [42], an

open-source simulator designed for autonomous driving research. CARLA itself is designed

as a “plugin” for the Unreal Engine 4.18, a commercial gaming engine that provides physics,

simulation, and other graphics-oriented features. CARLA includes resources, textures,

and geometry, which form the basis of the tiles used in Visual Road. It also exposes a

configuration-driven API that facilitates camera placement, rendering, and other convenience
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functionality. We modify CARLA to support efficient video encoding, camera rendering at

varying resolutions and frame rates, and multiple tiles and configurations. All artifacts are

developed using C++.

Version 1.0 of Visual Road contains a tile pool consisting of 72 tiles. Each tile is constructed

from one of two maps (town01 and town02), both drawn from the set of CARLA resources.

Each is also associated with one of twelve different weather configurations and one of three

different vehicle and pedestrian densities (e.g., a “rush hour” tile contains 120 vehicles and

512 pedestrians). Each tile is configured with 4 traffic cameras and 1 panoramic camera, both

capturing at 30 frames per second.

We also develop a Visual Road reference implementation for use in verifying benchmark

results using PSNR comparisons. The reference implementation was written in Python

and depends on OpenCV [118] for video-related operations. For semantic verification, the

reference implementation interacts with the Unreal Engine to generate metadata relating to

objects in a camera’s frame of view.

The current version of Visual Road includes support for h264 [160] and hevc [144], and

each query result must be encoded using either of these codecs. Visual Road also currently

supports frame rates in the range of 15-90 frames per second (FPS) and resolutions at 1k

(960× 540), 2k (1920× 1080), and 4k (3840× 2160). However, we anticipate that future

versions will extend support to additional codecs, containers, frame rates, and resolutions.

The VCG supports single-node and distributed modes of input video generation. In

distributed mode, the VCG uses the Amazon Elastic Compute Cloud (EC2) to launch

multiple instances of the Unreal Engine in parallel. Each node independently configures the

Visual Road environment, launches an Unreal Engine instance, simulates the tile for which it

is responsible, and collects video output.
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Figure 5.5: Visual Road log-scale performance by query with scale factor L = 4 at 1k and 60

minutes.

5.5 Evaluation

We experimentally evaluate Visual Road in three ways. First, in Section 5.5.1, we demonstrate

that Visual Road produces performance results for VDBMSs similar to real-world datasets and

better than alternative synthetic approaches. Next, in Section 5.5.2, we apply the benchmark

to three recent open-source VDBMSs and contrast the results. For these experiments we show

out-of-the-box performance numbers for all of the experiments. Better results could certainly

be achieved for each system with appropriate tuning. Our goal is to evaluate the benchmark

and not the systems. Next, in Section 5.5.3 we evaluate the quality of the video generated by

Visual Road, and in Section 5.5.4 we evaluate the performance differences between write and

streaming execution modes. Finally, in Section 5.5.3 we evaluate the scalability of Visual

Road when generating large corpora.
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Experimental configuration. Except where stated otherwise, we perform experiments

using a hardware configuration consisting of a single physical machine running Ubuntu 16.04

and containing an Intel 3.4 Ghz i7-6800K processor with 6 cores and 32 GB RAM. It is

equipped with a 256 GB SSD drive and a Nvidia Quadro P5000 GPU.

Benchmarked VDBMSs. To show wide applicability, we execute Visual Road on three

recent, open-source VDBMSs: LightDB [65] (see Chapter 3), Scanner [124], and NoScope [86].

These VDBMSs cover a variety of target use-cases, respectively including high-performance

virtual and augmented reality video, analytics at scale, and specialized application of deep

learning models.

Scanner is an open-source VDBMS that offers efficient distributed video processing at

scale. We deploy Scanner using its most recently-published Docker container, which was built

using CUDA 8.0 [114], OpenCV 3.2 [118], and FFmpeg 3.3.1 [17]. Scanner lacks support

for video cropping (Q1), captioning (Q6(b)), and license plate recognition (Q8), so we add

these features as custom C++ operators (respectively) using a modified resize operator, the

libwebvtt [111], and libopenalpr [117]. We also make minor modifications to Scanner’s

grayscale and resizing kernels so that queries Q2(a) and Q4–5 can be expressed.

NoScope is a specialized VDBMS that improves the performance of applying deep learning

models to video at scale. We deploy the most recent prototype of NoScope, which relies

on TensorFlow 0.12, CUDA 8.0, and cuDNN 5.1. Because NoScope is specialized for deep

learning and does not expose support for arbitrary queries or a mechanism for extensibility,

we are only able to express queries Q1 and Q2(c) using this system.

We execute all queries in this section using VCD’s offline mode, since neither Scanner nor

NoScope support operating on live-streaming video data. Except where stated otherwise, for

all systems we use default settings and did not attempt to optimize batch size or leverage

other optimization strategies.
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5.5.1 Dataset Validation

In this section, we evaluate whether Visual Road’s synthetically generated data yields

performance numbers similar to using real videos. We also evaluate whether other types of

synthetic inputs could work as well as Visual Road to test a VDBMS. Overall, we find that

Visual Road-generated input videos produce runtimes similar to using real-world, manually-

annotated data, whereas other synthetic datasets may yield misleading or incorrect results.

As a real-world baseline, we use the UA-DETRAC [159] video dataset. UA-DETRAC is

a manually-annotated corpus composed of recorded traffic camera videos of various durations.

Our experiments in this section utilize the training subset, which consists of 60 sequences of

1k video recorded at 25 FPS. The data are provided as 83,791 images, which we h264-encode

to produce approximately two hours of video.

We next use Visual Road 1.0 to create input videos that match the UA-DETRAC

configuration. We execute the VCG with scale factor L = 16 at 1k resolution to produce 64

traffic camera videos. From these, we randomly select 60 videos and re-encode each to 25

FPS. We finally truncate each video so its duration matches a corresponding video in the

UA-DETRAC dataset.

In addition to comparing with the Visual Road-generated input videos, we also construct

two alternative synthetic datasets as follows:

Duplicate videos. A user might test a VDBMS by reproducing one or more manually-

annotated videos to create a larger synthetic corpus. To simulate this process, we select the

longest UA-DETRAC video (“MVI 40172”) and replicate it 60 times. We then truncate each

replicated video to match the duration of a corresponding video in the UA-DETRAC dataset.

Random videos. Alternatively, a user might use randomly-generated video to evaluate

VDBMS performance. To simulate this approach, we generate a fully-synthetic video corpus

consisting of random noise. As in the previous dataset, we generate 60 videos matched in

duration to UA-DETRAC.
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We execute the microbenchmark queries on the Scanner and LightDB VDBMSs using

each of the datasets described above. Because NoScope is only able to execute two of the

queries, we omit it from this experiment. We were not able to execute Q4 on Scanner for

reasons we describe in Section 5.5.2.

Table 5.6 shows the performance results for each VDBMS, query, and dataset. For each of

the queries, VDBMS performance for the Visual Road input is similar to the UA-DETRAC

input. In no cases does the Visual Road dataset lead to a result that disagrees with the

UA-DETRAC counterpart, meaning that the benchmark correctly identifies the faster system

for each query. In general, performance for each query closely tracks the baseline.

The duplicate and random datasets do not consistently agree with the UA-DETRAC

performance results. For these datasets, at least one query produces a result that disagrees

with the baseline (i.e., where system X performs faster than system Y on UA-DETRAC but

worse on the synthetic input) and could lead a user to draw an incorrect inference about the

performance of a system when using real-world video.

Equally problematic are the cases where the performance differences between systems

differ by more than an order of magnitude compared to the baseline dataset. We have

highlighted discrepancies of this magnitude on Table 5.6. Such a difference occurs for more

than one query in both the duplicate and random datasets and could lead a user to draw an

incorrect conclusion about the relative performance differences between VDBMSs when using

one of these synthetic datasets.

Overall, system performance on Visual Road data is similar to the real videos with the

important advantage that Visual Road data is synthetically generated and videos can thus

be scaled and parameterized as needed.
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5.5.2 System Comparison

In this section, we apply the benchmark to the comparison VDBMSs at various scale factors

and show that Visual Road is a useful benchmark for comparing performance between

systems. The time to generate a Visual Road dataset need only be incurred once since a

given configuration determines the resulting videos.

Our first experiment gives a high-level overview of VDBMS performance. In this experi-

ment, we hold constant the scale factor (L = 4), resolution (1k), and duration (1 hour). We

use this configuration and execute applicable benchmark queries on each VDBMS.

Figure 5.5 shows the log-scale total runtime for each system and query combination.

NoScope shows excellent performance on Q2(c)—which closely matches the workloads it was

designed to execute—but its highly specialized implementation doesn’t support most of the

other benchmark queries. Scanner and LightDB show similar performance on Q1, Q6(b), and

Q7–Q10.

We next vary the scale factor L while holding other parameters constant at their previous

values. To accomplish this, we used the VCG to generate a series of one-hour datasets at 1k

resolution with increasing the size of the simulated city. We then execute each query on a

VDBMS and measure the total runtime until completion. As we discussed previously, the

NoScope system only supports Q1 and Q2(c) and so we show results only for these queries.

Figure 5.6 shows detailed VDBMS performance for each benchmark query. At small

scale factors, no single system dominates across all queries. As the scale factor increases,

however, Scanner often falls behind the other comparison systems. This drop-off appears to

be due to memory thrashing as more video data are introduced. Scanner also suffers from a

poorly-performing resize kernel (Q1) and its use of the Caffe [82] deep learning framework to

execute the Q2(c) YOLO neutral network.

LightDB performs well across many queries but suffers from a CPU-only implementation

of the captioning query. As expected, NoScope excels at efficiently applying the YOLO neural

network in query Q2(c).
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Both Scanner and LightDB have memory-related issues when executing Q4. When we

execute this query on Scanner, it quickly allocates all available memory and thereafter fails

to make progress. This occurs even when we attempt to execute Q4 on Scanner with one

input video or with a custom, Python-based implementation of the resize operator.

LightDB exhibits similar issues when attempting to subquery (Q3) or resize (Q4) more

than 40 videos, after which it fails due to lack of GPU memory. We work around this by

issuing these queries in two batches — one with the first 40 videos, and a second with the

rest.

We also observe that the composite and VR benchmark queries took far longer for both

systems than did the microbenchmark queries (with the exception of Q2(c), which requires

executing an expensive convolutional neural network). This supports that Visual Road is

effectively targeting a wide range of workload complexities.

Our final comparison shows the lines of code (LOC) required to execute each query on

a VDBMS. To calculate LOC, we construct a file containing the minimal code required to

execute each query, auto-format it, and count the number of non-empty lines. Scanner and

NoScope expose Python bindings and we use autopep for formatting; we similarly use

clang-format for LightDB’s C++ API. We separately count implementation for queries

that required additional logic (e.g., LightDB’s text caption plugin for Q6(b)) using the same

approach.

Figure 5.7 shows the resulting counts. Here, Scanner and LightDB have similar LOC

counts for many queries. The same is true for supporting extension implementation, primarily

because both are written in C++. Because NoScope narrowly targets only a single query,

invoking it requires only a few lines of Python code.

Overall, Visual Road effectively shows that NoScope is an excellent, highly specialized

engine while Scanner and LightDB are more general purpose. It also exposes the performance

advantages and limitations of each system on the different query types.
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5.5.3 Video Quality & Generation Time

Quality of Video

In this section we examine the quality of video produced by Visual Road and how similar it

is to real video. Again, our goal is to provide evidence that videos are of sufficiently good

quality to be used to evaluate query execution time.

To evaluate this aspect, we use the YOLOv2 [129] model to identify automobiles (i.e.,

cars and vans) in both synthetic Visual Road and real UA-DETRAC video. This model

comes pretrained on the COCO training/validation dataset [93]. Each test set contains 1920

randomly-selected frames.

The average precisions (APs) at 50% IoU for the Visual Road and UA-DETRAC datasets

were respectively 72 and 75%. This is similar to results reported by Redmon & Farhadi

(AP = 77% [129]) for this model on the “car” category of another benchmark dataset [45].

This suggests that the semantic structure of the synthetic Visual Road video is similar to

that of real video and supports its use for evaluating the query execution time of a VDBMS

at scale. However, these results notwithstanding, we again emphasize that Visual Road is

not intended to train machine learning models or evaluate a VDBMS in terms of prediction

accuracy.

Generator Performance

We next explore the performance of the Visual Road Generator (VCG) when creating large

video datasets. Figure 5.8 shows the total time to generate a one-hour dataset with increasing

scale factor and at three resolutions: 1k, 2k, and 4k. For this experiment, we executed the

VCG on a single node using the hardware configuration described previously.

These results show an approximately linear increase in single-node generation time as

the scale factor increases. This result is intuitive, since (i) the number of cameras is a linear

function of scale factor, (ii) at a constant resolution the total number of generated pixels

increases linearly with number of cameras, and (ii) the underlying scene geometry must be
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recalculated on a per-camera basis, precluding opportunities to render in parallel. The 4k

generation time increases more rapidly due to a software limitation related to the number

of cameras that can be simultaneously instantiated; we plan to further optimize this in the

future.

We next evaluate the performance of the VCG in distributed mode when generating

video in parallel using multiple nodes. We hold constant scale factor (L = 2), resolution

(1k), and duration (1 hour), and vary the number of nodes used to execute the VCG. For

this experiment, we use p3.2xlarge nodes on the Amazon Elastic Compute Cloud (EC2) to

generate video in parallel. Each instance has one Nvidia V100 GPU, 8 logical cores, and

61GiB of RAM.

Figure 5.9 shows the time required by the VCG to generate a dataset with the above

configuration and given number of nodes. Because dataset generation does not require

coordination between cameras, we see an expected linear decrease in generation time as we

increase the number of nodes available for processing.

5.5.4 Write & Discard Modes

Our final set of experiments evaluate the performance differences between benchmark execution

in write and streaming modes (see Section 5.2). To do so, we executed the benchmark on

the Scanner and LightDB systems in each execution mode. To support streaming mode on

Scanner, we modified each query to send results to the null device. We used LightDB’s sink

operator for this operation.

For each query, we found that the performance difference between the two modes was

less than 2.5%. This difference is in part due to pipelineing and also because disk IO is

inexpensive relative to video compression.
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5.6 Summary

In this chapter we presented Visual Road, a benchmark for video data management systems

(VDBMSs). Visual Road comes with a data generator that produces an unlimited amount of

synthetic video generated by simulating an active metropolitan area, along with a suite of

queries that evaluate VDBMS performance.

Our results show that video generated using Visual Road closely matches real-world,

manually-annotated video corpora and allows VDBMSs to be evaluated at any scale. We

used an implementation of the Visual Road benchmark to evaluate the performance of several

modern VDBMSs and show that it is a useful tool for capturing meaningful performance

comparisons between systems.
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Table 5.2: Microbenchmark queries over the TLF V expressed using the algebra described in

Section 3.2. Each query i targets a camera at location pi ∈ volume(V ) in Visual City.

# Name Pseudocode

Q1 Select select
(
select

(
scan(V ), pi

)
, α ∈ (α1, α2), β ∈ (β1, β2), t ∈ (t1, t2)

)
Select video data at point pi and crop it between (α1, α2), (β1, β2), and time (t1, t2).

Q2 Transform

(a) Grayscale map
(
select

(
scan(V ), pi

)
, f
)

Convert a video to grayscale using f that takes in a YUV pixel (y, u, v) and returns (y, 0, 0).

(b) Blur map
(
select

(
scan(V ), pi

)
,blur(d), Rd

)
blur generates a d× d Gaussian convolution function which is applied to the video data at pi. The

hyperrectangle Rd is defined by (x, y, z, t) = 0, θ ∈ (−d, d), φ ∈ (−d, d).

(c) Boxes map
(
select

(
scan(V ), pi

)
, boxes(A,O), Rαβ

)
boxes returns a function that identifies object classes O using algorithm A. It is applied to the video

at pi to produce boxes for detected instances. The hyperrectangle Rαβ is defined by (x, y, z, t) =

0, θ ∈ (0, 2π), φ ∈ (0, π).

(d) Masking v = select
(
scan(V ), pi

)
b = map(v,mask,Rm)

union

(
v,m, p 7→

ω when |v(p)− b(p)| < ε

v(p) otherwise

)

Apply an m-frame mean-filter at pi, and set non-null values below threshold ε to the mean. mask

is a function that returns the mean color in the range Rm. The hyperrectangle Rm is defined by

(x, y, z, θ, φ) = 0, t ∈ (0,m).

Q3 Subquery subquery

(
partition

(
select

(
scan(V ), pi

)
,∆θ,∆φ

)
, reencode(b1, ..., bn)

)
Cut each video frame into n components of size (∆θ,∆φ) and use the function reencode to encode

tile i at bitrate bi.

Q4 Upsample discretize

(
interpolate

(
select

(
scan(V ), pi

)
, bilinear

)
, ρRx, φRy

)
Upsample video data to (ρRx, φRy) samples using bilinear interpolation. R = (Rx, Ry) is the Visual

Road resolution hyperparameter described in Section 5.1.1.

Q5 Downsample discretize
(
select

(
scan(V ), pi

)
,Rx/ρ,Ry/φ

)
Reduce each video to (Rx

ρ
∈ N, Ry

φ
∈ N) samples. R = (Rx, Ry) is the Visual Road resolution

hyperparameter (see Section 5.1.1).

Q6 Union

(a) Boxes b = Q2c(pi)

union
(
b, select

(
scan(V ), pi

)
, left

)
Overlay bounding rectangles b produced by query Q2c on top of video data at pi.

(b) Captions select
(
union

(
scan(C), scan(V ), left

)
, pi

)
Overlay captions defined in Ci on top of an input video Vi.
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Table 5.3: Object detection query (Q7).

Input TLF V

Traffic camera positions p1, ..., pct·L

Object detection function A(V,O)

Object classes O = {o1, ..., om}

Output Videos {vo11 , ..., v
om
n } where

vi = select(V, pi)

voij = Q2d

(
Q6a

(
vi, Q2c(vj, A, {oi})

))

Table 5.4: Vehicle tracking query (Q8)

Input TLF V

Traffic camera positions p1, ..., pct·L

License plate l = (l1, ..., l6)

License plate recognition function L (OpenAPLR)

Output Video vout = V TS1 ⊕ · · · ⊕ V TSn where

vi = select(V, pi)

tj =
∑

k∈[1..j−1] |volume(V TSk).time|

V TSi = Q1

(
Q6a

(
vi, Q2c(vi,L, {l})), (ti, ti+1)

))
Table 5.5: Tile-Based streaming query (Q10).

Input TLF V

360◦ positions p1, ..., pct·L

Bitrates B = (b1, ..., b9), bi ∈ {bh, bl}

Client resolution Rc = {r1, ..., rn}

Output Videos {v′1, ..., v′n} where

vi = Q9

(
select(V, pi)

)
V ′i = Q5

(
Q3(vi, j → bj), ri

)
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Table 5.6: Visual Road ability to accurately measure VDBMS performance compared with

real videos. Values show total runtime in minutes and speedup relative to the UA-DETRAC

baseline for the LightDB system described in Chapter 3 and Scanner. Red cells indicate

a result where the relative performance between systems differs from the baseline, while

Yellow cells show performance discrepancies of an order of magnitude or more relative to

the baseline.

Query
UA-DETRAC Visual Road Duplicates Random

LightDB Scanner LightDB Scanner LightDB Scanner LightDB Scanner

Q1 1 2 1 (0.9×) 2 (0.8×) 1 (0.7×) 2 (1.0×) 3 (4×) 61 (26×)

Q2(a) 1 4 1 (0.7×) 3 (0.8×) 1 (0.8×) 4 (0.9×) 5 (4×) 4 (1×)

Q2(b) 8 36 5 (0.6×) 25 (0.7×) 1 (0.2×) 31 (0.9×) 9 (1.1×) 43 (1.2×)

Q2(c) 25 472 23 (0.9×) 360 (0.8×) 3 (0.1×) 432 (0.9×) 25 (1×) 451 (1×)

Q2(d) 32 18 30 (0.9×) 19 (1.0×) 6 (0.2×) 19 (1.1×) 118 (4×) 57 (3×)

Q3 13 45 9 (0.7×) 43 (0.9×) 1 (0.1×) 46 (1.0×) 158 (13×) 313 (7×)

Q4 26 N/A 25 (0.9×) N/A 16 (0.6×) N/A 103 (4×) N/A

Q5 1 4 1 (0.8×) 3 (0.6×) 1 (0.4×) 4 (0.9×) 24 (19×) 13 (3×)

Q6(a) 2 14 2 (0.9×) 13 (0.9×) 1 (0.4×) 15 (1.1×) 29 (16×) 19 (1.4×)

Q6(b) 12 11 11 (0.9×) 8 (0.7×) 2 (0.2×) 11 (0.9×) 53 (5×) 66 (6×)
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Chapter 6

RELATED WORK

In this chapter we review prior work related to the three core chapters of this thesis.

First, Section 6.1 describes related video data management systems, video analytics systems,

virtual and augmented reality frameworks, and data models. Next, Section 6.2 discusses

work related to file system support of video data (e.g., caching, edge storage, and related

abstractions). Finally, in Section 6.3 describes various data management benchmarks, along

with video-oriented datasets and simulation frameworks used to evaluate the performance of

video and related data management systems.

6.1 Video Database Management Systems

A substantial body of work exists that relates to the management of video data, including the

recent systems categorized in Table 6.1. Most of these systems [94, 98, 122, 3, 169, 89, 57, 124]

target general purpose 2D video analytics and processing. VideoStorm [169] allow users to

express distributed analytical workloads over 2D video (e.g., citywide security feeds), while

Optasia [98] also supports declarative queries. Similarly, VAIT [94] offers a small set of

predefined queries over large video datasets. However, none of these systems offer a high-level

way in order to reason about multiple video streams, nor do they support reasoning about

camera position, orientation, or overlap. Additionally, since these systems are limited to

2D video analytics, they do not readily support virtual reality or augmented reality video,

and force developers to manually map 3D environments onto 2D constructs. These factors

collectively result in rigid applications that are difficult to maintain and evolve. Other 2D
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Table 6.1: Video data systems & frameworks. Bolded systems have source available and can

execute the applications described in Chapter 3 (see Section 3.2.4).

Type Systems

2D General Purpose FFmpeg [17], GStreamer [57], GPAC [49] (also supports 360◦)

2D Vision OpenCV [118], OpenIMAG [61], Panorama [171]

2D Analytics Scanner [124], BlazeIt [85], Optasia [98], VideoStorm [169], Rocket [3]

2D Content/Feature Search VDBMS [10], BilVideo [41], VideoQ [25], AVIS [1], DelaunayMM [35]

2D Metadata Search VideoAnywhere [139], OVID [116]

2D Presentation MINOS [28]

Streaming & Transcoding Morph [52], 360ProbDASH [162]

video-oriented systems variously provide content-based [121, 28, 116, 85, 25], keyword or

metadata [139, 35], and similarity or feature-based search [115, 24, 41, 10, 61] for 2D video

and images.

More specialized VR and AR systems explore efficient video delivery that targets a single

format or workload. Examples include dedicated 360◦ streaming systems [96, 162] and light

field image-based rendering systems [14, 127]. While many of these systems support viewer

position or orientation, like their 2D counterparts they do not support the ability to reason

about cameras or the other characteristics highlighted in Chapter 1.

LightDB’s temporal light field (TLF) data model and algebra supports much richer

workloads than these systems. For example, the GStreamer [57] and Scanner [124] systems

allow for fixed pipelines that are similar to composed TLF algebraic operations (and LightDB

query plans), but these pipelines are rigid, closely tied to a physical execution strategy, and

also require manually mapping constructs such as camera orientation and projection onto

a 2D equivalent. Finally, the SQL multimedia (SQL/MM) standard [142] extends the SQL

specification to a limited set of operations (e.g., cropping, color histograms) over 2D images,

but does not support video, multiple cameras, user-defined extensions.
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The database community has explored the application of array-based data models that are

similar to the TLF model exposed by LightDB. For example, the RasDaMan [15], SciDB [22],

and TileDB [120] DBMSs allow developers to define and operate over multidimensional

arrays. While these systems offer excellent performance for scientific and other analytical

workloads, they do not take advantage of the unique nature of visual world applications

(VWAs) such as support for multiple cameras, orientation, virtual and augmented reality

video, continuousness, angular periodicity, and nonuniform projections. Additionally, existing

array DBMSs do not support video compression and its idiosyncrasies. As we show in our

evaluation of LightDB, first-class support for these constructs leads to dramatically improved

performance.

Other work (e.g., [54, 105, 107]) focuses on capture, stitching, and depth estimation

aspects of 360◦ video. Similar examples exist for light field capture [90]. These efforts are

complementary to the LightDB system presented in Chapter 3, which accepts preprocessed

360◦ and light field videos from these pipelines and performs further query processing. They,

however, do not generalize to mixtures of 2D and 3D video and do not allow for the expression

of arbitrary VWAs.

In the evaluation of LightDB (see Section 3.5), we demonstrated a substantial reduction

in total data transfer by tiling a 360◦ video sphere and adaptively delivering tiles at various

qualities. Recent work has shown similar performance improvements [67, 108, 48, 56, 106].

These applications and approaches, however, are dedicated exclusively to the task of 2D or

360◦ video tiling and do not generalize to other VR and AR workloads. Birklbauer et al. [20]

show similar advantages for light field rendering.

6.2 File System Support for Video Data

As highlighted in the previous section, increased interest in applied machine learning and

computer vision has led to the development of a number of new systems that target video

analytics. However, these systems continue to read and write video to a local or distributed file

system as opaque, coarse-grained entities and thereby suffer from the shortcomings discussed
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in Chapter 1 (in particular those described in the visual world application impedance

mismatch; see Definition 1.1). Video-oriented deep learning accelerators such as BlazeIt [85],

VideoStorm [169], Focus [73], and NoScope [86] suffer from similar shortcomings. Collectively,

these systems can transparently benefit from the approach described in Chapter 4 and

implemented in VFS.

While the systems community has a long history of introducing specialized file systems

(e.g., HDFS [140]), few prior systems have targeted video analytics (although other authors

have identified the need for systems like VFS [58, 84]). VStore [164] is one such example

that targets machine learning workloads by staging video in a pre-specified set of formats.

However, VStore requires that the developer to know beforehand the specific workload being

optimized, lacks the ability to efficiently read and write beyond these workload formats, and

does not take advantage of data independence to improve performance beyond persisting

these fixed materializations. Similarly, quFiles [152] offers a file system abstraction but

does not exploit video data independence in a granular manner (i.e., at the GOP or frame

level). Other authors have looked at optimizing on-disk layout of video data in the context of

scalable streaming [87]. Finally, related storage-oriented systems such as Haystack [16] and

VDMS [130] emphasize image-based operations and metadata access.

Interest in edge processing and networked cameras in the context of video analytics

is also emerging, prompting applications that exploit clusters of networked cameras (e.g.,

VideoEdge) [76, 81, 4, 163, 23]. Since these cameras have constrained storage and compute

resources, they would benefit from a storage system such as VFS that can transparently

balance these factors and improve performance.

Finally, the database community has a long history of exploiting data independence in

order to improve performance, which is a key technique used by VFS to obtain its performance

advantages. For example, it transparently employs Zstandard [46] compression rather than a

typical video codec. Other orthogonal optimizations could be employed to further improve

VFS’s performance such as Vignette [108], or the homomorphic operators described in

LightDB (see Chapter 3) [65].
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6.3 Video Performance Benchmarking

The database community has a long history of standardizing on various benchmarks, which

target a wide range of data models. These include longstanding areas such as OLTP [149],

and OLAP [124], and streaming [8]. They also cover more modern areas such as the Internet

of things [11], block chains [40], social networks [44], and big data analytics [148].

However, we are aware of no video performance benchmark that scales to an unlimited

duration or resolution and does not require manual annotation, despite the fact that a number

of recent video database management systems (VDBMSs) have emerged to support a wide

range of modern applications (see Table 6.1). To fill this gap, the Visual Road benchmark

described in Chapter 5 complements existing data management benchmarks by extending

robust support for performance evaluation in the domain of video processing at scale and

motivates subsequent work in improving video querying functionality and performance. To do

this, Visual Road’s query suite (see Section 5.3) targets functionality beyond simple content

search and information retrieval, including license plate recognition [98, 169] (Q8), background

subtraction/masking [98] (Q2(d), Q6), general object detection [65, 124, 83, 85, 73, 169]

(Q2(c), Q7), decode performance [65, 124], stitching [124, 74] (Q9), up/downsampling [74]

(Q4,Q5,Q10), user-defined transformations [6] (Q2(a-d)), and tile-based encoding [65, 72, 168,

67] (Q10). Each of the systems cited in Table 6.1 benefits from a robust benchmark such as

Visual Road, which allows for an objective comparison of features and performance.

A number of video-oriented datasets and benchmarks have emerged that target various

aspects of machine learning. For example, the UA-DETRAC [159] suite targets multi-object

detection and tracking. Other datasets such as BDD100K [167], ApolloScape [75], and the

Waymo Open Dataset [158] target autonomous driving. Still other datasets target diverse

areas such as traffic density estimation (e.g., WebCamT [170]) or human activity (e.g.,

ActivityNet [68]). While these datasets might be useful in evaluating VDBMS performance,

they are of fixed, modest size and must be laboriously annotated.
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Similarly, due to recent advances in autonomous driving, there have been a number of

recent video-oriented simulation frameworks released that relate to this specific aspect of AI

model training. Related simulation-oriented frameworks include CARLA [42]—on which the

Visual Road prototype is built—along with others such as AirSim [138] and DeepDrive [39].

Other areas have seen similar advances, such as in military (e.g., UTSAF [125]) and medical

applications (e.g., [33]). While these frameworks all use modern simulation and visualization

software (e.g., Unreal), they are not designed to produce large amounts of heterogeneous

video, nor do they come with a query suite useful for evaluating VDBMS performance.

Finally, generalizability and transferability of results is a significant challenge to applica-

tions that leverage synthetic data for use in real-world applications. Prior work in several

areas have examined this issue. For example, in their survey of robot simulators, Craighead

et al. argued that contemporaneous simulation software had high physical fidelity [34]. In

a subsequent survey on UAV and robot simulators, Cook et al. drew similar conclusions

in oceanographic robotics with respect to the physics engines (i.e., accuracy of rigid body

dynamics, collision detection) [31]. In the computer vision domain, researchers have evaluated

the transferability of models learned on synthetic data to real-world applications. Previous

approaches have been variously quantitative (e.g., precision/recall [62], multi-object tracking

accuracy [51], collision-free percentage [132], average accuracy [38], ROC curve [104]) or qual-

itative (e.g., observed similarity [138]). Some previous work has demonstrated that synthetic

data leads to superior models when data is limited or of low variety [62]. Visual Road evaluates

transferability using an approach similar to that described by Hattori et al. [62].
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Chapter 7

CONCLUSIONS & FUTURE DIRECTIONS

Our world is now filled with vast networks of correlated cameras which capture what

is happening around us from many diverse perspectives and positions. Today’s video data

management systems (VDBMSs), however, continue to assume that video streams are

independent and two dimensional. They lack data models that represent the real world and

require developers to manually track details such as camera and viewer position and orientation.

They make developers responsible for combining, aligning, downsampling, overlaying, and

intermixing sets of interrelated videos. They treat video data as if it were independent,

isolated, and stored on disk as opaque blobs. Collectively, these factors lead to the impedance

mismatch defined in Chapter 1 (see Definition 1.1).

In this thesis we presented systems designed to remedy these issues. In Chapter 3 we

introduced LightDB, a VDBMS designed to efficiently process virtual and augmented (VR

and AR) video. LightDB exposes a data model that treats such video data as a logically

continuous six-dimensional light field. It offers a query language and algebra, allowing for

efficient declarative queries. Our LightDB prototype show that queries in LightDB are

easily expressible and yield up to a 500× performance improvement relative to other video

processing frameworks.

LightDB relies on a new video file system (VFS; see Chapter 4) which improves the

performance of video-oriented applications and data management systems. VFS decouples

high-level operations such as computer vision and machine learning algorithms from the

low-level plumbing required to read and write data in a suitable format. Users leverage VFS

by reading and writing video data in whatever format is most useful, and VFS transparently

identifies the most efficient method to retrieve that video data. Our experiments showed that,
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relative to both local storage and other dedicated video storage systems, VFS offers more

flexible read and write formats and reduces read time by up to 54%. Our optimizations also

decrease the cost of persisting video by up to 45%.

Finally, in Chapter 5 we presented Visual Road, a benchmark for evaluating VDBMS

performance. Visual Road comes with a data generator that produces an unlimited amount

of synthetic video generated by simulating an active metropolitan area, along with a suite

of queries that evaluate VDBMS performance. Our results show that video generated

using Visual Road closely matches real-world, manually-annotated video corpora and allows

VDBMSs to be evaluated at any scale.

Collectively, these systems free developers from the impedance mismatch described in

Chapter 1 (see Definition 1.1), where developers need not be concerned about the low-level

details of video persistence and structure, and where domain-appropriate optimizations, such

as targeted deep-learning compression, are applied automatically without manual intervention.

Beyond these contributions, additional questions remain. For example, consider multiple

traffic and vehicle-mounted cameras that capture the scene of an automobile accident. While

each camera captures one perspective and potentially the scene of the accident, combined

camera output can help better reconstruct the sequence of events, especially since we can

exploit the fact that these video streams come with geospatial information that lets us reason

about their position and (potentially overlapping) fields of view.

These multi-camera video “worlds” represent a new, important, and increasingly common

way of reasoning about video. An important future research direction involves building a new

type of VDBMS around these concepts. Such a system, which we have initially explored in a

system called VisualWorldDB [64], represents an initial design and vision for a VDBMS that

is optimized for multi-camera video worlds. This system, built on top of LightDB [65] and

VFS [63] (see Figure 1.2), ingests spatial video data from diverse sources, makes it queryable

as one multidimensional visual world, and lets users reason directly about objects within this

world. For example, a user might query which vehicles left the scene of an accident and where

they went, rather than being required to reason about the underlying pixel data.
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Final remarks: This thesis introduces systems, techniques, and approaches that improve

the storage, management, and analysis of video data. In it we leverage state-of-the-art

methods in video compression, signal processing, computer vision, and data storage to

explore how we can best integrate these methods with modern data management techniques

to improve video application performance and programmability. In sum, we show that

application of fundamental data management techniques is critical in addressing the many

challenges associated with video data processing, storage, and evaluation.
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