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Abstract

Lahar: Warehousing Markovian Streams

Julia Maureen Letchner

Chair of the Supervisory Committee:
Professor Magdalena Balazinska

Computer Science and Engineering

A huge amount of the world’s data is both sequential and low-level. Many applications consume

higher-level information, such as words and sentences, that is inferred from low-level sequences

such as raw audio signals using a model (e.g., a hidden Markov model). This inference pro-

cess is typically statistical, resulting in high-level streams that are imprecise. These imprecise

streams, once archived, are useful for analytics support including sequence-finding event queries

(e.g. “Find all times when the phrase ‘Barack Obama...veto’ occurs in the NPR news podcast from

July 9.”), event query aggregates (e.g. “How many times do 2008 NPR podcasts use the phrase

‘Barack Obama...veto’?”), and event query lineage (e.g. “What words appeared between the word

‘Obama’ and ‘veto’ in the previous query?”). These queries are difficult to support efficiently be-

cause archives can be large, and standard relational warehouses cannot support analytics on the rich

semantics of imprecise sequences; however, these analytics are critical for allowing applications to

effectively leverage this data.

In this thesis, we introduce Lahar, the first database system for a common type of imprecise,

sequential model called a Markovian stream. Lahar includes novel algorithms for efficiently pro-

cessing aggregated event queries, and event query lineage. Lahar accelerates performance and scal-

ability of all queries using several techniques, including a set of novel Markovian stream indices

and novel methods for approximating Markovian streams. Through experiments on two real-world

datasets (one collected from an office-building RFID deployment and the other collected from audio

podcasts) we demonstrate that Lahar is an efficient Markovian stream warehousing system.
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Chapter 1

INTRODUCTION

People and computers worldwide generate exabytes of audio, video, text, GPS1, RFID2, and

other types of multimedia and sensor data—and because disk storage is cheap, most of this data

is archived for future use [51]. These information-rich archives are poised to revolutionize data-

centric applications in diverse areas including patient and asset tracking in hospitals [100], activity

monitoring for elder care [85], scientific environment observation [37], e-Learning [123], phone

conversation mining, and multimedia search/retrieval.

Such data stream archives are valuable to applications for the information they contain. How-

ever, applications are generally interested in high-level information that is implicitly contained in

data streams, but is not exposed explicitly in the raw data and must instead be inferred using sophis-

ticated post-processing techniques. Audio indexing/search applications, for example, cannot index

raw audio signals directly, but instead operate on sequences of spoken words that are inferred from

the audio signals. Similarly, location-based applications report location to users in terms of rooms

in a building or addresses on a street, but these locations must be inferred via post-processing from

raw GPS coordinates or RFID antenna detections.

Many applications also share a need for sophisticated queries on such implicit, high-level infor-

mation. Such queries include event queries, which detect occurrences of fixed patterns in a single

stream [128, 35]. Example event queries include, “Find all occurrences of the phrase ‘launchers

ready’ in telephone conversations recorded in January 2008,” and “Find all times when the crash

cart went straight to the ICU after exiting sterilization during the week of May 1.” Applications may

also require aggregated event queries to compute simple statistics about the occurrences of events

across a set of high-level streams. These queries are important for performing analytics or data min-

ing on stream archives. Example aggregate queries include, “How many people entered the ICU on

1Global Positioning System

2Radio Frequency Identification
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March 20, 2009?” and “How many times does the word ‘launchers’ appear across all telephone

conversations recorded in 2008?” Finally, applications require access to detailed information about

specific event query matches, to filter out results based on these details or to understand unexpected

results more fully. For example, consider the event query, “Find all times when the crash cart went

from the ICU to a sterilization unit during the week of May 1,”. Example questions that require

access to the details of intervals matching this query include, “What path did the cart take from the

ICU to the sterilization unit?” or “Which sterilization unit did the cart enter?”

A major challenge to supporting these application queries on high-level streams is that the high-

level information inferred from data archives is nearly always imprecise, due to noise, ambiguity, or

both. For example, in an audio indexing application, background noise or speaker dialect may render

a speech processing system unable to determine the difference between “Tom has” and “Thomas”.

Similarly, language ambiguities like “eight” vs. “ate” can be difficult to resolve. The result is that

applications must process queries on high-level information that is presented as a set of possible

values (as in Figure 1.2), instead of a single “true” answer.

Because high-level streams are often difficult to extract, and most applications are poorly-

equipped to handle the imprecise results of such extraction, today’s analytical tools only scratch

the surface of the information contained in data archives. Current speech processing tools, for ex-

ample, can identify audio files containing particular keywords or keyword pairs, but cannot support

searches on audio files using keyphrases of arbitrary length, or that include wildcards. Similarly,

archives of location data collected using RFID or GPS can be used to answer basic questions about

an object or person’s location at a given time, but detecting patterns or events of interest (e.g. the

movement of equipment from a patient room into an access-controlled surgery unit) on these same

archives is difficult.

In cases such as these, extracting utility from raw data sequences is difficult, not because the

desired information does not exist in the data, but because applications lack a sufficient framework

for performing post-processing and analysis on the data. In the absence of such a framework, three

general approaches have emerged for performing sophisticated stream analysis (Figure 1.1). The

first approach, shown in Figure 1.1(a), is an ad-hoc approach in which application developers write

their own inference and analysis code from scratch. Clearly, this approach is time-consuming and

produces brittle solutions that are difficult to adapt to novel data or analyses.
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(a) (b) (c) (d)

Figure 1.1: Four approaches to processing high-level information in data streams. (a) Ad-hoc ap-

proach in which applications perform hand-coded analyses. (b) Database approach in which raw

data is placed directly in a database. (c) Artificial intelligence approach in which queries are en-

coded in a graphical model, and query processing is framed as probabilistic inference. (d) Marko-

vian stream approach in which probabilistic inference is used to generate a Markovian stream, which

is then queried using an appropriate database (e.g. Lahar).

The second approach (Figure 1.1(b)) has emerged from the artificial intelligence (AI) commu-

nity, and encodes all extraction/analysis as a single probabilistic inference problem [61, 58]. This

approach can be applied only for the most basic of the example queries outlined above—pattern

matching queries—and even when applicable the approach scales poorly because it must begin

analysis afresh, from scratch, for each query. However, when applicable, the probabilistic inference

techniques used in this approach are robust to noise and produce high-quality results.

The third approach, shown in Figure 1.1(c), has emerged from the database community. In

this approach, raw data is placed directly into a database, and analysis is performed using SQL

queries [43, 22, 50]. This approach bypasses high-level information entirely, making it difficult to

use on many data sets (e.g. RFID queries in this approach are highly sensitive to noise in the data),

and impossible to use on others (e.g. audio data in this approach must be analyzed using queries

directly on the raw audio signal, with no reference to high-level word information). Of course, when
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the database approach is applicable, it is fast and scalable because it is based on standard database

technology, which also allows queries to be written flexibly in SQL.

1.1 The Markovian Stream Approach

In this thesis, we propose a framework for sophisticated analysis of the high-level information con-

tained in sequential data such as audio or multimedia streams, or sensor streams like RFID, GPS,

etc.. We call this approach the Markovian stream approach, and it is illustrated in Figure 1.1(d).

The Markovian stream approach to stream analysis has two parts. In the first part, high-level

sequences are extracted from raw data using standard probabilistic inference techniques [39, 58].

These high-level sequences are represented as Markovian streams [94, 73, 61], which are a specific

type of imprecise sequence which we define formally in Chapter 2. Markovian streams use proba-

bility distributions to represent uncertainty about the true value of a data sequence (i.e. the words

spoken in a sentence, as in Figure 1.2(a), or the true location of an object, as in Figure 1.2(b)).

Markovian streams are extremely general, and subsume the types of sequences commonly used in

today’s applications, including sentences inferred from audio signals, location sequences inferred

from RFID/GPS, etc..

In the second part of this approach, the inferred Markovian streams are materialized to disk and

queried/analyzed using a database engine. Because standard relational databases cannot support

Markovian stream data, a novel database is required to support this half of the Markovian stream

approach. Lahar3, the topic of this thesis, is the first database to support Markovian streams and its

design and implementation are motivated by the Markovian stream approach to stream analysis.

The key feature of the Markovian stream approach is that it uses materialized Markovian

streams to separate the inference process—that is, Markovian stream generation—from the anal-

ysis process—that is, Markovian stream querying. One benefit of this separation is that applications

using this approach are free to substitute different probabilistic inference techniques to generate

Markovian streams from different types of data. Along the same lines, each application must con-

vert a raw input stream into a Markovian stream only once: the database can query the Markovian

stream as often as necessary without ever again touching the raw input stream. Another benefit

3A Lahar is a huge mudslide, or stream of dirt and debris, caused by the eruption of a snow-covered volcano. This
system is named Lahar for its ability to manage massive streams of “dirty” (imprecise) data.
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Figure 1.2: (a) Sample Markovian stream over a text (language) domain, inferred from spoken audio.

(b) Sample Markovian stream over a location domain, inferred from RFID sensors. Boxes represent

the possible stream values at each instant, while arrows represent the conditional probability of two

values in sequence. In (a), for example, if the true word spoken at time s2 is “eight”, then the word

spoken at time s3 is “lunches” with probability 0.7 and “launchers” with probability 0.3”

of this approach is that the Markovian stream database (Lahar, in this case) can optimize perfor-

mance for high-level queries, and need not worry about extracting high-level streams from raw data.

This allows the database to support a query language and data model that are independent of any

particular data domain.

By separating Markovian stream generation and analysis, the Markovian stream approach

achieves the flexibility and scalability of a database-oriented approach, but also maintains the high

accuracy and robustness to noise of an AI-oriented approach. The Markovian stream approach is

a conceptual contribution of this thesis. The generation of Markovian streams is not a contribution

of this thesis; many techniques exist for generating these streams, as we outline in our background

discussion (Chapter 2). Similarly, the basic algorithms for processing real-time Markovian streams

were developed elsewhere [94]. The contributions of this dissertation are algorithms for efficient

and powerful querying of markovian stream archives. These techniques include (1) indexing, (2)

approximation, and (3) lineage processing, as we discuss in more detail below. We first introduce

two data domains that serve as running examples throughout the thesis.

1.2 Motivating Applications

Here we introduce two applications that we use as running examples throughout this thesis, and in

the experimental evaluations of Lahar.
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1.2.1 RFID-Based Location Tracking

RFID readers are increasingly deployed in warehouses, office buildings, and hospitals, to track the

locations of products, equipment, and even people (e.g. patients carrying RFID tags [100, 117,

83, 101, 11, 50]). This data is used in real-time to locate objects, but can also be queried in a

historical context to streamline efficiency (“How often does the ICU need to borrow a crash cart

from neighboring units?”) or to evaluate details of an organization’s procedures (“How long does

each patient spend in pre-op before entering the operating room?”).

Currently, analysts interested in historical queries on such RFID data store the raw data directly

in a relational database, or in a database built specifically for RFID data [45]. Such databases

may provide some level of data cleaning (e.g. insertion of missing readings) [46, 56], but they are

incapable of reflecting the fundamental uncertainty inherent in sensor systems. Furthermore, these

databases all require analysts to reason in terms of tag-detection tuples (e.g. “Bob was sighted by

reader 6”) instead of room-level locations that are more natural and more useful (e.g. “Bob was in

the ICU”). The result is that today’s RFID analyses are unintuitive and brittle in the face of noisy

data.

In the Markovian stream approach, raw RFID streams are used as input to probabilistic inference

(e.g. a particle filter [39]). The output of inference is a Markovian stream that concisely captures the

uncertainty about an object’s true location (e.g. Bob is either in triage or in the neighboring ICU).

This uncertainty is represented as a probability distribution over possible object paths, and takes the

form shown in Figure 1.2(b). The first timestep of the stream represents a probability distribution

over the possible initial locations of the object. Subsequent timesteps contain temporal correlations

that capture the probability of the object transitioning to a new location (or remaining stationary),

since an object’s location at each instant is strongly related to its location at the previous instant.

Lahar allows analysts to query these uncertain location streams without reasoning explicitly about

uncertainty. Importantly, RFID-based Markovian streams are expressed at a semantic level that is

interesting to analysts (i.e. room-level location).

After the data in a raw RFID stream is converted into a Markovian stream, analysts can run

sophisticated queries on the Markovian streams using Lahar. In this framework, analysts can express

their queries at the intuitive level of rooms (i.e. “When did Bob enter the ICU”), and without
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regard for any uncertainty or noise present in the input data. This abstracted, robust-to-noise view

of location is important in domains beyond hospitals, including supply chains [50, 45] and office

environments [124].

1.2.2 Semantic Audio Processing

Text processing is a complex but common task today. Search engines can retrieve text documents

based on keywords or keyphrases, and can use techniques such as tf-idf [105] to rank these docu-

ments based on their relevance to a particular query. Sophisticated data mining techniques can also

compute the similarity between two text documents, for example to detect plagiarism [71].

Search engines and data analysts can, in theory, apply these text analysis techniques to audio

and video data by first extracting a text-based transcript of the sentences spoken in these multi-

media files. Speech recognition systems have been using probabilistic models for decades to infer

phoneme- and word-level transcripts of raw audio signals [87,74]. However, such transcripts invari-

ably contain imprecision (Figure 1.2(a)), because natural language is inherently ambiguous (e.g.

“ate” vs. “eight”), because dialects and accents vary across individuals, and because in many sit-

uations poor data quality such as background noise limits the amount of information that can be

reliably extracted. Standard text analyses are difficult to apply directly to text sequences that con-

tain uncertainty; today’s spoken audio analysis tools are limited to single-keyword searches, or rely

on phrase retrieval algorithms that provide approximate rankings and yield many false positives.

By using the Markovian stream approach and processing these imprecise transcripts as Marko-

vian streams in Lahar, analysts can perform more sophisticated analyses on audio data, such as

searches on multi-word keyphrases, searches for phrases that include wildcards, and word-counting

queries.

1.3 Contributions

To enable applications to easily process sensor, multimedia, or other sequential data, this thesis

proposes a novel Markovian stream approach in which raw data sequences are first preprocessed

into Markovian streams, which are then queried using a database. Central to this approach is a

data management system that can support event queries and event query variants on Markovian
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streams. While previous work has studied event query processing on streaming data [94], in this

thesis we focus on processing stream archives. An imprecise stream archive processing system is

challenging to build for several reasons. First, relative to traditional (deterministic) data, imprecise

data is extremely slow to process because each of the exponentially-many possible worlds encoded

by the data’s imprecise values must be considered. Second, the scale of sensor and multimedia

archives can be huge, due to both the high rate at which data is collected over months and years,

and because the number of individual input streams is large (e.g. the number of items in a hospital

or of podcasts on the web). Finally, some queries return results that scale with the size of the input

data, and are thus impossible to enumerate even if they can be efficiently computed. For example,

the previously-introduced query, “What path did the crash cart take from the ICU to a sterilization

unit?” can produce result paths that are arbitrarily long, depending on the amount of time that the

cart spent in the hallways before reaching a sterilization unit.

This thesis presents the design, implementation, and evaluation of a series of query pro-

cessing techniques for Markovian stream archives. Together, these techniques support the

first Markovian stream database implementation, called Lahar, which makes the Marko-

vian stream approach to stream processing possible. The input to Lahar is a set of imprecise,

sequentially-correlated streams called Markovian streams [94,73,61], which are described in detail

in Chapter 2 and shown in Figures 1.2(a) and (b). Lahar supports event queries, aggregates over

event query results, and lineage queries. The novel contributions of this thesis are algorithms for

processing aggregate-event and lineage queries, and several scalability techniques for improving the

speed of Markovian stream processing in general. Concretely, the technical contributions of this

thesis are as follow:

1. Markovian Stream Indexing (Chapter 4): In relational databases, indexing is commonly

used to accelerate query processing over large relations. Traditional indices, however, do not

support ordered, imprecise data like that of Markovian streams. To address this challenge,

we introduce two variations of traditional B+ tree indices, adapted for indexing Markovian

streams, and a third, novel Markovian stream index called the Markov chain index. The first

two indices allow Lahar to efficiently identify the Markovian stream intervals that are directly

relevant to a particular query, and to retrieve them for processing in order (either chronological
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order or order of the highest probability, depending on application requirements). The Markov

chain index provides efficient lookup of the correlations between any two Markovian stream

instants (equivalently, timesteps), reducing the lookup time from O(N) to O(log N), where N

is the distance between the two instants. Experimental results on synthetic and real Markovian

streams demonstrate that these indices reduce query times by two orders of magnitude in the

best case, and incur negligible overhead even in the worst case.

2. Approximating Markovian Streams (Chapter 5): Approximation techniques are often used

in data modeling and data management systems to improve performance. Applications that

rely on Markovian streams are accustomed to handling imprecision, and are often willing to

trade accuracy for performance. To support such a tradeoff, we introduce several Marko-

vian stream approximations that reduce the size and/or complexity of the representation of

each Markovian stream instant. We demonstrate on real-world Markovian streams that the

complexity, and not the size, of the approximate representation determines performance. We

furthermore demonstrate that, by processing approximate representations, Lahar can trade

accuracy for efficiency, increasing speed by one to two orders of magnitude with effects on

accuracy that vary based on both the type of query and the data domain.

3. Markovian Stream Lineage (Chapter 6): Although event query processing is fundamental

to Markovian stream management, many applications require additional queries that return

detailed information about not only when, but how an event is matched in an input stream.

Supporting these queries is challenging because “how” explanations can grow exponentially

in the length of the input stream. To address this challenge, we formally define Markovian

stream lineage, which, informally, is a representation of the parts of a Markovian stream that

contribute to a particular query result. We introduce an O(N) algorithm for producing the

lineage of event queries, where N is the length of a Markovian stream. We further introduce

two algorithms for supporting projection on event query lineage, allowing applications to

see only subsets of lineage (e.g. start and end locations, or the duration of a query match).

We demonstrate on real-world Markovian streams that lineage can be generated and queried

scalably, and we further demonstrate optimizations that can reduce the cost of projection by
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half.

The rest of this thesis is organized as follows: Chapter 2 provides a brief introduction to Marko-

vian streams and event queries; Chapter 3 discusses the Lahar system, including architecture, pro-

totype implementation, language, and experimental data sets. The primary research contributions

of this thesis are presented in Chapters 4, 5, and 6, which discuss indexing, approximation, and

lineage, respectively. A discussion of related work follows in Chapter 7. Chapter 8 concludes and

outlines areas for future work.
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Chapter 2

BACKGROUND

Lahar is the first database for managing Markovian streams. In this chapter, we define these

streams formally and give examples of streams from two real-world domains (Section 2.1). We also

introduce event queries, a basic form of Markovian stream processing (Section 2.2), and discuss

more complex types of Markovian stream processing that are not covered elsewhere in this thesis

(Section 2.3).

Before moving on to formal definitions, it is worth noting here that the concept of Marko-

vian streams is a novel one, as is the concept of managing these streams in a database. Although

Markovian stream data is generated frequently by various applications (e.g. speech processing [87]),

these streams are seldom materialized for later use. Instead, these applications generate Markovian

streams as an intermediate processing step, and discard them when processing is complete.

In contrast, a key idea of this thesis is to materialize Markovian streams, store them to disk for

later processing, and manage them using a database that is aware of their semantics (i.e. Lahar).

Thus, although data meeting the Markovian stream definition has been common for decades, the

term “Markovian stream” was coined for this data in the first paper about Lahar, by Ré, Letchner et

al. in SIGMOD 2008 [94], where the idea was first put forth to manage these streams as first-class

objects in a database.

In this chapter, we first formally define Markovian streams (Section 2.1). We then describe

important background for understanding Lahar, focusing on a key algorithm for basic event query

processing on these streams which was first introduced by Ré, Letchner et al. [94](Section 2.2). We

finish with an overview of additional types of Markovian stream queries (Section 2.3): Some of

these are background to this thesis [94], while others are novel but minor contributions of this thesis

that do not appear in other chapters.
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2.1 Markovian Streams

In the context of this thesis, a stream is an unbounded set of pairs 〈e, i〉 where e is a stream element

(equivalent to a tuple in a standard relation) and i is an index indicating the logical ordering of

elements e in the stream. For example, an RFID location-tracking system might produce a stream

in which each element e = (a, g) is a two-dimensional tuple identifying an RFID antenna ID a and

RFID tag ID g, and the stream index i is the timestamp at which the given tag was sighted by the

given antenna.

A Markovian stream is a stream in which the elements e are 1) imprecise and 2) contain Marko-

vian correlations. A Markovian stream is thus an imprecise, temporally-correlated data sequence.

Markovian streams appear in many different domains, when high-level information is inferred from

low-level data (e.g. location inferred from RFID, or activity inferred from wearable sensors or smart

homes). Such inference typically involves some uncertainty. For example, spoken words inferred

from an audio signal are often noisy, due to language ambiguity or background noise: a two-word

phrase may be “eight launchers” or “ate lunches”, each with some likelihood. Intuitively, Marko-

vian streams capture this uncertainty by identifying: 1) the set of different possible “true” stream

values at each instant in time, and 2) the correlations between possible values at adjacent instants.

The Markovian stream in Figure 1.2(a), for example, reflects the fact that one of two possible words

({eight, ate}) was spoken at instant s2, and one of four possible words ({lunches, launchers, lunch,

once }) was spoken at instant s3. Similarly, the arrows between the values at instants s2 and s3

represent correlations, which indicate the likelihood of sequences: if the true value of the stream at

instant s2 is “eight”, then the true value of the stream at instant s3 is either “lunches” or “launchers”.

If, on the other hand, the true value at s2 is “ate”, then the next value is either “lunch” or “once”.

Each of these possible values and correlations carries a probability value identifying the likelihood

with which it is true.

In the remainder of this section, we first give a brief, formal definition of Markovian streams.

We follow this definition with two real-world Markovian stream examples which provide a more

intuitive description of the Markovian stream data structure.
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2.1.1 Formal Definition

Conceptually, a Markovian stream of length N represents a probability distribution over a set of

possible worlds, which are deterministic sequences of length N. Elements in these sequences are

taken from an l-dimensional domain D = (D1 × · · · × Dl). All examples and datasets in this thesis

use single-dimensional stream domains, so for simplicity of notation we will use a uni-dimensional

domain D throughout. Thus, a Markovian stream of length N over domain D is a probability distri-

bution over the sequences (possible worlds) in the set DN .

Formally, a Markovian stream is a pair (M0, ~C). Here, M0 is a marginal probability distribution

over D, representing the distribution over the first element in the stream. The vector M0 consists of

entries (d, p) that indicate the probability p that the value of the first stream element is d. ~C is a

sequence of conditional probability distributions Ci, (0 ≤ i < N), over D × D. These conditional

distributions indicate the probability of specific transitions in the stream (i.e. the probability that

one particular domain element follows another at a specific instant i in the stream). For example, the

entry (d, d′, p) in conditional distribution Ci indicates that p is the probability that the (i+1)th stream

element is d′, conditioned on the fact that the ith stream element is d. For example, in Figure 1.2(a),

the entry (“eight”, “launchers”, 0.3) in C2 indicates that the probability of the fourth word in the

sequence is “launchers” with probability 0.7, given that the third word in the sequences is “eight”.

The set of all entries in a conditional distribution Ci together define the transition, or the correlations,

between the stream state at instants i and i + 1.

Markovian streams encode a probability distribution over the set of sequences DN as follows: a

deterministic sequence x ∈ DN has probability p(x) = M0(x0)C1(x0, x1)C2(x1, x2) . . .Cn−1(xN−1, xN).

That is, the probability of sequence x is the probability of the first element in x, as given by M0, times

the probability of each transition in x, as given by the conditional distributions Ci. As an example,

the probability of the sequence (“Tom has eight launchers ready”) in the Markovian stream in Fig-

ure 1.2(a) is (0.4*1.0*1.0*0.3*1.0)=0.12. Because a Markovian stream is a probability distribution,

the probabilities of all possible worlds (sequences) in the stream sum to 1.0.

Markovian streams are so-named because they exhibit the Markovian property: the stream state

at instant i is independent of the rest of the stream, given the stream state at instants i − 1 and i + 1.

Markovian streams exhibit the Markovian property because the conditional distributions Ci encode
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correlations only between adjacent instants (as opposed to encoding relationships between more

distant pairs of instants, which would yield a non-Markovian stream).

Markovian streams are produced as the output of probabilistic inference on a temporal graphical

model such as a hidden Markov model (HMM) [87], dynamic Bayesian network (DBN) [76], or a

junction tree [58]. Many standard techniques exist for performing this inference, including exact

(e.g. message passing) and approximate (e.g. MCMC) methods. The generation of Markovian

streams is not a contribution or focus of this thesis, since these techniques are standard and Marko-

vian stream generation occurs outside of the Lahar system. However, Section 3.3.1 describes the

processes used to generate the Markovian streams used in the evaluation of Lahar.

The ordering of elements in a Markovian stream is defined implicitly by the element indices i.

However, Lahar’s data model provides support for additional, redundant timestamps to be associated

with each stream element. This timestamp field is not part of the formal stream definition, but

it is a convenient way for applications to reason in terms of sequences meaningful to them (e.g.

timestamps instead of indices assigned by Lahar). For simplicity, Figure 2.1(b) and some other

figures in this thesis use the more intuitive, application-set timestamp sequence identifiers instead

of the raw indexes used in the formal definition.

2.1.2 Examples

In this section, we revisit the example Markovian stream domains from the introduction to describe

Markovian streams from these domains in more detail and to provide additional intuition about the

definition of Markovian streams.

Location From RFID

Recall that an RFID deployment includes a set of mobile RFID tags attached to people or ob-

jects, and a set of statically-located RFID readers that detect the presence of tags when they

are in the vicinity of the reader. Readers record the presence of nearby tags by recording

〈tagID, readerID, timestamp〉 tuples in a database.

Figure 2.1(a) shows a small portion of such an RFID deployment, while Figure 2.1(b) shows a

sample Markovian stream derived from the RFID readings collected in this setting, which could be
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Figure 2.1: (a) Sample floor plan of a building showing an RFID installation. (b) Markovian stream

over an RFID tag’s location, inferred from RFID readings recorded in the setting shown in (a). (c)

A relational representation of the conditional distributions ~C.

an office building, a home, a hospital, etc.. Figure 2.1(c) shows a relational representation of the

Markovian stream in Figure 2.1(b). The domain D = {Office1, HallA, . . . } of this Markovian stream

is the set of locations in the building: each instant of the stream defines a probability distribution

over the location of the RFID tag at that instant. In Figure 2.1(b), M0 indicates that the first element

in the sequence is Office1 with probability 0.45, HallA with probability 0.1, etc. (rooms not pictured

have probability 0.0). The conditional distribution C0 indicates that, conditioned on Office1 being

the “true” room at instant 0, then the “true” room at instant 1 is Office1 with probability 0.9, or

HallA with probability 0.1. Each entry in a conditional distribution Ci is drawn visually as an arrow

connecting two domain elements at instants i and i + 1 in Figure 2.1(b), but these entries are stored

on disk using a relational format (as in Figure 2.1(c)).

Note that, although Figure 2.1(b) explicitly shows the marginal distributions M1 and M2, indi-

cating the distribution over the RFID tag location at instants 1 and 2, these marginal distributions

~M = [M0, . . .MN] are not included in the formal Markovian stream definition because they are redun-

dant. Their values can be derived from (M0, ~C): The marginal probability that a particular domain

element (location) dk is the true domain element at instant i is the sum of the probabilities of all

deterministic sequences d0, d1, d2, . . . dn ∈ (M0,C1, . . .CN) whose ith element di is equal to dk. How-

ever, explicit visualization of these marginal distributions is useful for understanding a Markovian
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stream, and indeed Lahar stores these marginal distributions explicitly for performance reasons

(Section 3.2.4). Thus, in some cases, we refer to a Markovian stream as (~M, ~C), to make clear the

explicit presence of the marginal distributions M.

Similarly, Lahar does not explicitly store distribution entries (locations, in this example) with

zero probability. Instead, any domain element not explicitly listed in a probability distribution (ei-

ther marginal or conditional) is implicitly assumed to have zero probability (e.g. Lab2, HallC, in

Figure 2.1(b).

Location-based Markovian streams are often inferred from RFID readings using sample-based

inference methods such as MCMC [39]. Such inference receives as input not only the RFID an-

tenna readings, but also information about the floor plan of the building, the locations of the RFID

antennas within the floor plan, statistics about the speed at which objects generally travel, and phys-

ical constraints (i.e. that objects cannot move through walls or floors). Sophisticated models may

include additional information such as the direction in which people or objects typically turn when

passing through a hallway intersection, or information about where people spend the majority of

their time. These details serve to increase the fidelity of the Markovian stream with respect to the

true movement of the person or object being tracked. We discuss the details of the model used to

infer the real-world, RFID-derived Markovian streams in this thesis in Section 3.3.1.

Text From Speech

Recall from Section 1.2.2 that audio processing techniques return imprecise transcripts of the sen-

tences spoken in a given file. These transcripts are difficult to process using standard text processing

algorithms, but they are easy to model as Markovian streams, allowing text analysis to be performed

in Lahar.

In this case, the stream’s uncertain domain D is the set of all English words. An example of

such a stream is shown in Figure 1.2(a). The marginal probability distribution at each instant i of

this stream represents the distribution over the ith word spoken, while each conditional distribution,

drawn as arrows in the figure, states the probability that one particular word is followed by another at

a given instant, based on language models and the sounds in the input audio recording. Figure 1.2(a)

is shaded to reflect the importance of correlations in this setting: note that either one of the green
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to Office2 using only the Hall."
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"health" "overhaul"S0

"care"

"Find all occurrences of the phrase, 'health 
care overhaul'."

Figure 2.2: (a-b) Sample event queries over a location domain. (c) Sample event query over a speech

domain.

(“Tom...”) sentences was spoken, or one of the red (“Thomas...”) sentences was spoken, but there is

zero probability of any sentence that mixes together words from these two sets.

For a discussion of the speech processing used to generate Markovian streams from recorded

speech, see Section 3.3.2.

2.2 Event Queries

Event queries search for particular sequences of states within an ordered data sequence. They are a

common foundation for deterministic stream processing [35,5], and are thus a natural fit for querying

Markovian streams. Example event queries include, “When did the crash cart move from the ER to

the ICU?” (for location streams), or, “Find all instances of the phrase ‘health care overhaul’.” (for

speech streams).

2.2.1 Defining Event Queries

Event queries can be represented as nondeterministic finite automata (NFAs), or equivalently, reg-

ular expressions. Event query NFAs differ from standard NFAs in that they are expressed in terms

of Boolean predicates on the Markovian stream domain, instead of in terms of static alphabet sym-
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Figure 2.3: Query signal for a query similar to the one in Figure 2.2(b), on a Markovian stream

inferred from real-world RFID data.

bols. For example, the NFA query in Figure 2.2(c) is written for the speech domain and searches

for three consecutive stream timesteps satisfying equality predicates on the words “health”, “care”,

and “overhaul”, respectively. In all figures in this thesis, NFA edge labels such as “Hall” or “health”

are shorthand for function-like Boolean predicates that operate on the uncertain elements of the

stream (i.e. Hall(location) on an RFID-derived stream or health(word) on an audio-derived stream).

The most simple predicates are equality tests (e.g. health(word)), but predicates can be arbitrarily-

sophisticated tests on a domain element. Sophisticated predicates may join domain elements with

dimension tables (e.g. a “Hall(location)” predicate that returns true on any hallway location by join-

ing with a Hall table listing the IDs of all hallway locations). Composite predicates can also be

created using conjunction, disjunction, and negation.

Figure 2.2(a-c) shows several event queries. The first two queries are written for a location

domain. The first, (a), identifies all timesteps in which the RFID tag (attached to Bob, in this

case) is in a location labeled “Office1”. The second (b), identifies all instants in which Bob has

entered location “Office2”, having previously been in location “Office1” and then having been only

in locations satisfying the “Hall” predicate described previously. Figure 2.2(c) shows a query written

for a speech domain and searching for all instances of the phrase, “health care overhaul”.

Event query processing on a deterministic stream proceeds by reading a single stream element

(i.e. a single instant of data), and updating the state of the NFA according to the transitions triggered
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by the element. For example, if the state machine in Figure 2.2(b) is in state s0, an input satisfying

the Hall predicate will cause the machine to transition out of s0 and into s1. An input of Office2,

however, triggers no transitions out of s0 because it does not satisfy the Hall predicate; in this case

the state machine reverts back to its start state (drawn as small, unmarked circles in Figures 2.2(a-

c)). An event query is satisfied at any instant in which these transitions cause the NFA to enter its

final, or accepting, state, identified in Figure 2.2(a-c) using double circles. Section 2.2.2 discusses

event query processing on Markovian streams.

In deterministic stream processing, the output of event query processing is a sequence of N zeros

and ones, where a 1 at position i means that the query was satisfied at the ith stream instant, and a

0 means the query was not satisfied at that instant. In Markovian stream processing, the output

is a sequence of N probabilities, where the probability pi at position i in the output indicates the

probability with which the event query was satisfied at the ith instant in the stream. These output

probabilities reflect the fact that Markovian streams are imprecise. The output sequence of 〈i, pi〉

tuples is called a query signal. Figure 6.1 shows an example of a query signal computed on a real

RFID-based Markovian stream, for a query similar to the one shown in Figure 2.2(b). The signal

spikes when the RFID tag enters the office (t ≈ 1100), and shows a much lower series of peaks

around a false positive (t ≈ 1600), when the RFID tag simply moved past the office’s doorway

without entering. Applications can use simple thresholding to detect the instants when an event

actually occurred (e.g. the tag has entered the office at all times when p > 0.3).

2.2.2 Processing Event Queries

As described in Section 2.2.1, the input to event query processing is 1) a Markovian stream and 2)

an event query. The output is a list of 〈i, pi〉 tuples describing the probability pi with which the event

query is satisfied at each instant i in the input stream. Query processing can be performed using one

of two methods: a naı̈ve method that requires time exponential in the length of the input stream, or a

linear-time algorithm originally published by Ré, Letchner et al.. in SIGMOD 2008 [94]. The event

queries that we discuss here correspond to ”regular queries” presented in the SIGMOD 2008 paper.

The naı̈ve method for processing event queries performs a straightforward enumeration of all

|D|N deterministic sequences encoded in the input Markovian stream. It uses standard NFA process-



20

ing techniques to evaluate the query separately on each stream—that is, to identify the timesteps in

each deterministic stream that satisfy the query. The final probability that the query is satisfied at

instant i is the sum of the probabilities of all deterministic streams in which i is a satisfying timestep.

Clearly, this approach is not feasible in practice because it requires enumeration of an exponential

number of sequences. Another processing alternative is to process only a sampling of possible

worlds, but to guarantee a high-quality result using this approach requires a number of samples that

grows exponentially with the length of the input stream.

In place of naı̈ve enumeration, Lahar processes event queries using a matrix-based algo-

rithm [94] that adapts NFA processing machinery to handle Markovian input streams. The algorithm

is a single-pass algorithm that runs in time linear in the length N of the input stream. The algorithm

processes each instant in the stream exactly once, reading each instant in order from the beginning

of the stream to the end.

The event query processing algorithm maintains a 2D state matrix Q with a row for each possible

set of NFA states (sets instead of individual states because the NFA is non-deterministic and can be

in multiple states at once) and a column for each element d in the Markovian stream’s uncertain

domain. Entry Q(i, j) represents the joint probability that the NFA is in the ith state set and that

the “true” value of the last input was the jth element of the uncertain domain (e.g. Office1, Lab1,

etc.). The entries of Q sum to 1.0. Figures 2.4 (a), (b), (c), and (d) show an example event query,

input stream, and the Q matrix after processing the query on instants 0 and 1 of the input stream,

respectively.

The algorithm computes its updated state using each stream instant into a temporary matrix Q‘,

which is then copied back into Q before the next update. Q′ is computed as follows: For each entry

Q(i, j) (with value pi j) of the state matrix, and for each possible uncertain value j′ of the current

uncertain input, the algorithm computes two values. First, it determines the state set i′ that results

from a transition out of the NFA states in set i on input value j′. This value depends on the NFA

structure and predicates. Second, the algorithm determines the probability p( j′| j): the probability

of input j′ conditioned on the previous input being j. This probability can be read directly from

the temporal correlations in the input instant of the Markovian stream. The algorithm operator then

adds probability p to the value of Q′(i′, j′), where p = Q(i, j) ∗ p( j′| j).

Consider the event query and input stream shown in Figure 2.4(a) and (b), respectively. After
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Figure 2.4: (a) Sample event query. (b) Sample Markovian stream snippet. (c) State of the matrix Q

after processing the marginal distribution of i0 in (b). (d) State of Q after processing the correlations

linking instants 0 an 1 in (b). Color highlights show the correspondence between the NFA (query)

edges activated by each stream element, and the resulting transitions in Q.

initializing Q with the marginal distribution at instant 0 (where p(Hall) = 1.0), the state of Q is as

shown in Figure 2.4(c). Using the conditional distributions linking instants 0 and 1, Q is updated to

the state shown in Figure 2.4(d).

After a given stream instant i is used to update Q, the probability that the query is satisfied at

instant i is the sum of all entries in any row of Q corresponding to an NFA state set that includes at

least one final (accepting) NFA state.

On each input, computation of Q′ requires O(2M×D×D) multiplications, where M is the number

of NFA states and D is the size of the Markovian stream’s uncertain domain. This cost is quadratic

in the size of the uncertain domain (a direct result of Markovian correlations) and exponential in the

number M of states in the query NFA. In practice, the D terms are closer to D′ << D, where D′ is

the size of the active domain, which is the number of domain elements at each timestep that have

non-zero probability. Furthermore, the exponential 2M term reflects the size of the query, which is

generally not considered under standard data complexity analyses because it does not change with

the size of the data.
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2.3 Beyond Event Queries

Markovian stream analysis requires support for many types of query beyond basic event queries.

Some of these queries are covered in this thesis, while others are beyond the scope of this work.

This section gives a brief description of various types of Markovian stream queries that are not

described elsewhere. These include aggregate queries (Section 2.3.1, which are a novel but minimal

contribution of this thesis, since they can be computed using a simple variant of the basic event query

processing machinery. Section 2.3.2 describes several query classes, first outlined in Ré et al.’s 2008

SIGMOD paper, which are increasingly sophisticated extensions of event queries and are beyond

the scope of this thesis and not supported by Lahar. In addition to event queries, Lahar supports

lineage queries, which are a novel contribution of this thesis and described in detail in Chapter 6.

2.3.1 Aggregate Queries

Markovian stream aggregates come in two flavors: intra-stream aggregates (Section 2.3.1, also

called multi-stream aggregates), which execute on a single Markovian stream, and cross-stream

aggregates (Section 2.3.1) which combine the results of a single query run over multiple Markovian

streams.

Intra-Stream Aggregates

Lahar supports two types of intra-stream aggregation. The first, EXISTS, determines whether an

event query is satisfied at any instant in a Markovian stream. EXISTS queries thus produce a single

probability value after processing an entire stream. The second type of cross-stream aggregation is

COUNT. COUNT queries return the number of instants in a stream that satisfy an event query. Of

course, since each instant satisfies a query with some probability, the output of a COUNT query is a

distribution over the possible count values.

Intuition suggests that these two aggregations might be computed as a post-processing step on

the output of event query processing. Such an approach would be incorrect, however, since event

query result probabilities produced for different stream instants are correlated (this is a consequence

of the temporal correlations in the Markovian input stream).

Fortunately, intra-stream aggregations can easily be computed using a simple variant of the
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Figure 2.5: Q matrices augmented for intra-stream aggregation processing. (a) and (b) are aug-

mented versions of Figures 2.4(c) and (d), respectively. Note that in (b), when probability mass

enters the column of the query’s final state s1, the mass moves “backward” one step in the third

dimension, incrementing the aggregate count value by one.

event query processing described in Section 2.2.2. In this variant, the matrix Q is extended from

two dimensions Q(i, j) to three: (i, j, k). The third dimension has an entry for each possible value

of the aggregation. Figure 2.5(a) and (b) show the extended versions of the matrices shown in Fig-

ure2.4(c) and (d), respectively. Using the extended matrix Q, processing continues as described

in Section 2.2.2, with one addition: when any probability is added into a matrix entry whose col-

umn label corresponds to a final NFA state (e.g. s1 in Figure 2.5, its k value is increased by one

(informally, the mass is “pushed back” one level in the matrix).

One important characteristic of this approach to processing intra-stream aggregates is that per-

formance can degrade with the length of the input stream. The size of the third, k dimension grows

with the size of the COUNT domain, which in turn can grow linearly (worst-case) with the length of

the input stream. This scaling problem has been noted in prior art and can be avoided in cases where

only summary statistics (e.g. the expected value) about the final count are required [61]. However,

Lahar’s current implementation always computes an exact count distribution.
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Cross-Stream Aggregates

Lahar supports two types of cross-stream aggregation: STREAMEXISTS, which computes the prob-

ability that any input stream satisfies the event query, and STREAMSUM, which counts the number

of streams that satisfy a query. Despite their similarity to intra-stream aggregates, cross-stream ag-

gregates are much simpler to process because separate Markovian streams are assumed to be inde-

pendent. For this reason, both cross-stream aggregates can be computed by first evaluating the basic

event query separately on each input stream, and then aggregating the results as a post-processing

step. For example, the post-processing step for a STREAMEXISTS aggregation over n input streams

is: p(agg) = 1.0 −
∏n

i=1 (1 − pi).

2.3.2 Additional Query Types

Among the Markovian stream queries beyond the scope of this thesis are safe queries and unsafe

queries [94]. Informally, safe queries join together the results of related but non-identical event

queries processed on two or more different input streams. An example safe query is, “Find all

times when Sue and Bob entered room 355 together, and then Bob left the room without Sue.”. Safe

queries are tractable in archived settings, but processing them requires an extended algebra beyond

the scope of Lahar’s regular-expression-based machinery. In contrast, unsafe queries are intractable.

Intuitively, unsafe queries are characterized by sequence queries with “global” predicates that cannot

be evaluated on a single stream instant. An example unsafe query is, “Find all times when the crash

cart stayed in the same room for 5 minutes.”. In this case, the “same room” predicate requires the

location of the crash cart at time i to be compared to its location at time i − 1, etc.. which is a

non-local (i.e. global) evaluation. Note that the same query reduces to a standard event query and

is thus tractable if it is rewritten to specify a particular room (e.g. “Find all times when the crash

cart stayed in room 355 for 5 minutes.”). The original SIGMOD paper on event query processing

includes a formal definition of unsafe and safe Markovian stream queries [94].

2.4 Summary

In this chapter, we first reviewed the Markovian stream model of imprecise sequences. The Marko-

vian stream model represents a probability distribution over a set of sequences, and is characterized
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as a sequence of timesteps: Each expresses a marginal probability distribution over domain ele-

ments (e.g. locations), as well as a conditional probability distribution correlating domain elements

at the given timestep and its immediate successor in the stream. We reviewed event queries, which

are sequence-finding queries represented as NFAs whose edges are labeled with predicates over do-

main elements. Finally, we introduced aggregate variants of event queries, including cross-stream

and intra-stream aggregates, and we briefly discussed broader classes of Markovian stream query,

including safe and unsafe queries.
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Chapter 3

THE LAHAR SYSTEM

In this chapter, we outline system architecture and implementation details relevant to anyone

wishing to use or modify Lahar or the real-world data used in experiments in this thesis. Readers

interested only in understanding the research contributions of Lahar may wish to skip this chapter.

3.1 LaharQL: Specifying Queries

Lahar currently supports a declarative query language that allows applications to create/drop tables

(stream schemas), to load Markovian streams into Lahar from external locations, and to ask limited

versions of event queries and lineage/aggregate versions of event queries. This language is not ideal,

in that it cannot express the full set of queries that Lahar can answer (Lahar’s programmatic interface

allows for expression of the full range of supported queries). It is also not as intuitive or compact

as it might be. Development of a more suitable language is left to future work; in this section, we

outline Lahar’s current language and highlight areas for potential improvement.

Lahar partitions streams based on schemas, which are analogous to SQL tables or relations: each

schema is identified by a name (unique key), and contains data (here, streams) conforming to the

schema. Lahar can store multiple streams adhering to the same schema as long as each stream is

uniquely identified with a stream key (Lahar stores each stream adhering to a schema in a separate

file). Two example schemas used in this thesis are an Audio schema, which requires that each stream

instant contains a distribution over words (string objects), and an RFID schema, which requires that

each stream instant contains a distribution over locations (represented as integer identifiers).

3.1.1 Creating and Deleting Schemas

We begin with an example Lahar statement creating a schema named ’RFIDLocation’ with two

columns named ’location’ and ’velocity’, respectively:
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CREATE TABLE RFIDLocation (

location STRING,

velocity DOUBLE);

This statement creates a schema over a two-dimensional domain (location, velocity). Internally

to Lahar, this schema is simply a directory containing metadata about the schema. When RFID-

Location streams are loaded, Lahar will check their schemas against the schema metadata, and will

store each stream as its own file within the RFIDLocation schema directory. The schema conformity

check ensures that each instant of an RFIDLocation stream defines a joint probability distribution

over (location, velocity) as well as conditional distributions correlating these two values at the given

instant and its successor instant. Data types supported by Lahar include INT, DOUBLE, STRING,

LONG, and CHAR. Finally, Lahar does not support any further options for schema creation: specif-

ically, it does not allow for default value assignments or constraint specifications such as null or

consistency checks.

Lahar’s drop table (schema) statement is analogous to that of SQL. An example is:

DROP TABLE RFIDLocation;

In Lahar, if a DROP TABLE statement is issued on a non-empty table, the schema and all of its

contents are deleted.

3.1.2 Loading Streams

Recall from chapter 2 that Markovian streams are generated via a probabilistic inference process

that is executed externally to Lahar. For this reason, Lahar’s sole method of loading data is to copy

an existing stream into the system using a statement like the following:

LOAD STREAM Bob

INTO RFIDLocation

FROMFILE <path-to-stream>;

This statement loads the existing stream, expected to be in location 〈path-to-stream〉 in Berkeley

Database (BDB, a persistent key/value store) [82] format, into the RFIDLocation schema under

the stream key ‘Bob’. As mentioned previously, this loading operation comprises a consistency

check between the RFIDLocation schema and the instants of the ’Bob’ stream, and the creation of
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1.  SELECT [INSTANTS | EXISTS | COUNT]
2.  FROM SchemaName
3.     [WITHKEY = 'stream-key1' [AND stream-key2'] [...]]
4.  EVENT e1 [[NEXT | BEFORE e2] [NEXT | BEFORE e3] [...]]
5.      WHERE event-predicates
6.  GROUP BY stream-key-predicates 
7.      USING [STREAMCOUNT | STREAMEXISTS]

Figure 3.1: LaharQL syntax. Line 1 specifies temporal aggregations (if any). Line 2 specifies the

schema of the target stream, and line 3 specifies the stream key(s). Lines 4-5 specify the event query

NFA. Lines 6-7 specify cross-stream aggregations (line 7) and grouping predicates (line 6).

a new file ’Bob’ within the RFIDLocation schema directory, where the new stream is stored. If the

referenced stream file does not exist, or if the table being loaded does not exist or already contains a

stream with the key being loaded, the statement aborts without loading the stream. Data not in BDB

format, such as text files, must be converted into BDB format prior to loading.

Lahar’s statement for deleting streams is similar:

DELETE STREAM Bob

FROM RFIDLocation;

Lahar does not currently support append operations, although such functionality would clearly

be useful. This is not a fundamental limitation, but is simply a limitation of the current implemen-

tation (both in the functionality and in the language).

3.1.3 Querying Streams

We begin with an example of a basic event query (the full LaharQL syntax is shown in Figure 3.1).

The query below asks for the probability that each instant in the RFIDLocation stream with key

‘Bob’ has value ‘Office’; it returns this probability for each stream instant:

SELECT INSTANTS

FROM RFIDLocation

WITHKEY = Bob

EVENT e1

WHERE e1.location = Office;
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In the first line of this example, the keyword INSTANTS indicates that this is an event query

(as opposed to an aggregate or lineage query, discussed shortly). The second line specifies the

schema of the stream begin queried, and the third line identifies its key. Lines 4-5 express the event

pattern, which in this case is a simple one-state automaton (event query automata are discussed

in Section 2.2) that is satisfied by any timestep in which the (imprecisely-known) stream element

‘location’ has value ‘Office’.

Event query specifications can be more sophisticated, as in the following example:

SELECT INSTANTS

FROM RFIDLocation

WITHKEY = Bob

EVENT e1 NEXT e2 BEFORE e3

WHERE e1.location = Office1

AND e2.location = Hall

AND e3.location = Office2;

The last four lines of this query specify the NFA shown in Figure 2.2(b). The EVENT line

of the query specifies by its use of three event labels e1, e2, and e3 that the query pattern is a

3-state NFA. The NEXT keyword indicates an automaton state with only an incoming edge; the

BEFORE keyword, by contrast, specifies an NFA state that has an incoming edge and a self-loop

edge, both of which share the same predicate. The ordering of the events in the EVENT clause

specifies the ordering of the NFA states. The WHERE clause, which spans the last three lines of the

above example, specifies the predicates used to label the edges of the query NFA. Lahar currently

supports conjuncts and disjuncts (ANDs and ORs) of equality predicates, each of which must be

specified on a single event element (e.g. e1 or e2; predicates comparing the values of different

event elements such as e1.location = e2.location are not allowed).

One consequence of Lahar’s use of the NEXT/BEFORE construct is that this allows only the

specification of linear NFAs, which do not have branches (excepting self-loops). This limitation

is a language limitation only; Lahar can process arbitrary NFA queries. Although we have found

that in practice, most real-world queries are linear, Lahar’s programmatic interface accepts NFA

objects and can thus be used to process arbitrary NFAs. Overcoming the limitation of linear-only

NFA expression in Lahar’s language while maintaining an intuitive syntax is an area for future

consideration.
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Aggregate Queries

Lahar supports two classes of aggregate query—intra-stream aggregates and multi-stream

aggregates—each described in Section 2.3.1. Intra-stream aggregates aggregate the number or ex-

istence of pattern match instances in a single stream, and are specified in Lahar’s syntax using the

COUNT and EXISTS keywords, respectively. The following example shows an intra-stream aggre-

gate query which outputs the number (more precisely, a distribution over the number) of times that

the sequence ‘Hall’-‘Office’ occurs during Bob’s day:

SELECT COUNT

FROM RFIDLocation

WITHKEY = Bob

EVENT e1 NEXT e2

WHERE e1.location = Hall

AND e2.location = Office;

Lahar’s multi-stream aggregates compute the number of streams in which an event query is

satisfied, for each instant in the set of streams. The set of streams included in the aggregation

is specified using predicates on stream keys. Currently, Lahar’s syntax is limited to conjuncts of

equality predicates on stream keys. The type of multi-stream aggregation is specified using the

keywords STREAMEXISTS or STREAMCOUNT, which signal to return Boolean values indicating

whether a query was satisfied in any stream, or a counts of the number of streams in which a

query was satisfied, respectively. An example query asking for the number of streams in which the

sequence ‘Hall’-‘Office’ is satisfied at each instant in Bob’s and Jane’s day follows:

SELECT INSTANTS

FROM RFIDLocation

WITHKEY = Bob

AND WITHKEY = Jane

EVENT e1 NEXT e2

WHERE e1.location = Hall

AND e2.location = Office

USING STREAMCOUNT;

Finally, we note that intra-stream and multi-stream aggregations can be performed within a sin-

gle query by combining one of the SELECT COUNT/EXISTS keywords with one of the USING

STREAMEXISTS/STREAMCOUNT keywords. Figure 3.2 shows a schematic of the formats of
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Figure 3.2: Lahar’s aggregate query semantics for m streams of length n. (a) Standard event query

output (query signal). (b-d) Temporal (intra-stream) aggregation semantics: EXISTS, INSTANTS

and COUNT queries produce, respectively, single outputs per stream (b), a query signal per stream

(c), and a histogram of query matches (counts) per stream (d). (e-i) Cross-stream aggregation se-

mantics. STREAMEXISTS queries produce a single-valued result for each set of inputs, while

STREAMSUM queries produce a histogram for each set of inputs. The combination of COUNT and

STREAMEXISTS is not allowed.

query results under various combinations of these keywords.

Lineage Queries

Although we do not discuss lineage queries until Chapter 6, we note here that Lahar’s syntax in-

cludes a simple SELECT LINEAGE construct for specifying lineage queries:
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SELECT LINEAGE

FROM RFIDLocation

WITHKEY = Bob

EVENT e1 NEXT e2 BEFORE e3

WHERE e1.location = Office

AND e2.location = Hall

AND e3.location = Lab2;

This query returns the lineage (described in Chapter 6) of the event query shown in Figure 6.2(a).

In Chapter 6 we discuss projection operations on lineage results, but these operations can currently

be specified only through Lahar’s programmatic interface.

3.2 System Architecture

Lahar’s architecture is fairly conventional and reflects the organization of a standard DBMS. Fig-

ure 3.3(a) shows Lahar’s architecture, which is implemented in a prototype of approximately 25,000

lines of Java code. An application interface receives input (expressed either in Lahar’s language or

programmatically) and passes it to the parser, which passes data update commands to the data loader,

and translates queries into basic building blocks which are passed to the optimizer. The optimizer

then creates a query plan, which it passes to the execution engine to process. Output from the exe-

cution engine is passed back to the application interface, which relays it up to applications. Lahar’s

storage manager coordinates all disk accesses. This section describes each component in detail.

Lahar is currently a single-threaded, single-process, single-machine system. The performance of

many Markovian stream queries would benefit from a multi-threaded or distributed implementation,

and the research questions involved in the development of such an implementation are discussed in

Chapter 8.

3.2.1 Lahar API

Most human users interact with Lahar using its query language and an interactive terminal. Under

this model, users type queries into the terminal and Lahar prints query results back to the screen.

Applications wishing to post-process or visually display query results can alternatively use Lahar’s

programmatic API to provide more control over queries and the formatting of results.

The Java API comprises a basic set of capabilities, including functions to test for the presence of
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Figure 3.3: (a) Architecture of the Lahar system. (b) Data flow in Lahar. The three operators Ex,

Reg, and Post are chained together into a query plan that is executed in the Execution Engine.

a particular table (schema) or stream key; functions to list existing schemas or keys of the streams

adhering to a given schema; functions for creating or deleting schemas or individual streams; and

several functions for executing a query. The most simple function for executing a query accepts a

textual query string, while the most complex accepts many different arguments, including a query

NFA object and a set of flags indicating whether projection, aggregation, etc.are to be applied. This

latter function is particularly useful for applications wishing to process event query patterns that

are not expressible in Lahar’s current language, such as non-linear event queries. All of the API

functions for query execution return a set of query results in memory, allowing applications to sort,

print, visualize or otherwise post-process them as necessary.

3.2.2 Parser

Lahar’s parser takes as input a text string expressing a LaharQL statement (create/drop table,

load/delete stream, or query command). It produces as output a Java object called ParsedQuery,

which contains the basic information needed to construct a query plan—this construction occurs



34

in the Optimizer. Applications that interact with Lahar through the programmatic API bypass the

Parser. Each API call constructs an appropriate ParsedQuery object in memory, which is passed to

the Optimizer, at which point LaharQL commands and API commands follow the same pipeline. A

ParsedQuery object includes information such as the name/key of the stream(s) being queried, an

NFA representing the query pattern and its predicates, flags indicating whether any aggregation or

lineage processing is required, etc..

The LaharQL syntax is specified internally as an ANTLR [84] grammar, allowing Lahar to easily

parse inputs using standard ANTLR tools. ANTLR provides basic support for parsing context-free

grammars. Using this support, Lahar’s parser checks that each input is syntactically correct, then

converts text input into a parse tree. Custom Java code within the parser then converts each branch

of the parse tree (i.e. the WHERE clause, the SELECT clause, etc.) into information required by

the ParsedQuery object. Lahar’s language is discussed in Section 3.1.

3.2.3 Data Loader

Lahar’s data loader is responsible for loading a Markovian stream to disk. Recall that the stream

being loaded must already be in the appropriate BDB format. Lahar does not currently support

data updates, so the loader’s primary functions are checking for overwrites, and checking each new

stream for consistency (e.g. a stream’s first instant must have seqID zero, all subsequent seqIDs

must be consecutive, and the entries of each probability distributions must sum to 1.0).

The current no-update policy is a limitation of implementation—it is not a fundamental restric-

tion imposed by any of the query processing techniques used in Lahar. Because Markovian streams

must be created offline via post-processing of historical data, they are most commonly created and

inserted into Lahar in batches. Applications desiring arbitrary inserts/deletes are exceedingly rare.

However, an append-only model would be a useful abstraction for future versions of Lahar, to allow

streams to grow naturally over time as new data is collected. In the current implementation, such

appends can be achieved by deleting a stream and re-inserting a new copy that includes any desired

appends.
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3.2.4 Storage Manager

Lahar’s storage manager mediates interactions between Lahar and data stored on disk. The storage

manager keeps track of where each stream (identified by a stream key) resides on disk, and provides

an interface to allow Lahar to retrieve one or more instants from a particular stream. The storage

manager also creates and manages several indices for each archived Markovian stream, to optimize

retrieval of stream instants based on various criteria (Section 4), and a set of approximate versions

of each Markovian stream, for use in computing fast but approximate results (Chapter 5). Instead of

a traditional system catalog, Lahar’s storage manager maintains a directory structure that includes

unique folders for each stream key, and unique locations within that folder for each approximated

stream copy, index, lineage graph, etc.. This directory structure is hard-coded into the system and

eliminates need for a traditional system catalog.

As the interface between Lahar and disk, the storage manager is responsible for determining the

organization of Markovian streams with respect to each other, and also the organization of instants

within each Markovian stream. The current implementation of Lahar creates a separate file for each

Markovian stream, and within each file, it stores the appropriate Markovian stream and all indices

into the stream. These files are actually BDB databases.

Within a particular stream, instants are stored in order of their sequence IDs, starting at zero,

to optimize for scan-based accesses. There exist two reasonable alternatives for storing a single

Markovian stream: the “coclustered” option materializes both the marginal and conditional distri-

bution for each instant, and places them adjacent to each other on disk. The “separated” option

again materializes both types of distribution, but stores all of the marginal distributions, in sequence

order, in one location, and all conditional distributions, in sequence order, in a separate location.

The “separated” option optimizes for workloads in which many timesteps satisfy queries, while

the “coclustered” option optimizes for workloads in which queries are satisfied infrequently. For

simplicity, Lahar’s current implementation supports only the “coclustered” option.

3.2.5 Optimizer & Execution Engine

Lahar’s optimizer creates executable query plans from the information extracted by the parser from

raw input. The query plans are then passed to the execution engine, which executes the plan. Due
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to the structure of Lahar’s query plans, both the optimizer and the execution engine are extremely

lightweight. In order to explain this, this section begins with a description of Lahar’s operators,

continues on to describe the arrangement of these operators into a query plan, and finally discuss

the optimizer and execution engine in the context of the query plan structures.

Operators

Lahar’s query plans comprise three operators: Ex, Reg, and Post, each described next. Each

operator implements the “getNext” interface, in which operator outputs can be retrieved from each

operator one at a time by calling the getNext() function.

The Ex operator: The Ex (“Extract”) operator is responsible for retrieving stream instants from

disk. Different implementations of this operator use different access methods (stream scan, B+tree

index, etc.), exposed through the storage manager interface, to load stream instants into memory.

The output of the Ex operator’s getNext() function is a single Markovian stream instant (including

both a marginal distribution and the conditional distribution describing the correlations between the

returned instant and the next).

The Reg operator: The Reg (“Regular expression”) operator is responsible for evaluating a

regular expression (equivalently, an NFA) on its input. These inputs are Markovian stream instants

obtained from an Ex operator. The Reg operator generally produces one output for each input

instant: this output is a single probability value indicating the probability with which the query’s

NFA is satisfied at the input instant. In the case of intra-stream aggregate queries (EXISTS and

COUNT, described in Section 2.3.1), the Reg operator is also responsible for performing the intra-

stream aggregation. In this case, the Reg operator produces a single output (as opposed to an output

for each instant), and the value of this output is the value of the aggregation. The different behaviors

of the Reg operator for different circumstances are written internally as different implementations

of a single Reg operator interface. At runtime, the query optimizer is responsible for instantiating

the correct Reg operator according to the query specification.

The Post operator: The Post (“Postprocessing”) operator performs any necessary post-

processing on the output of the Reg operator. In some cases, this post-processing involves com-

puting aggregates across multiple Markovian streams. In other cases, the post-processing is devoted
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to computing or pruning lineage. In simple cases, when no post-processing is necessary, the Post

operator simply pipes its inputs straight through to output.

Query Plans

Every Lahar query plan contains at least one instance of all three operators, arranged into a pipeline

as shown in Figure 3.3(b). Queries that aggregate over multiple streams yield tree-shaped plans

rooted at a single instance of the Post operator, which receives input from a separate instance

of the Reg operator for each stream. In either case, data flows from the Ex operator to the Reg

operator to the Post operator. The output of the Post operator is returned to applications.

Optimizer & Execution Engine

Lahar’s optimizer is trivial, in part because of the rigid structure of Lahar query plans. In a re-

lational DBMS, optimizers have the freedom to reorder operators in a query plan (i.e. to push

selections down so they are applied before joins). In Lahar, the operator order is fixed. Thus, in

Lahar, the only opportunity for optimization is in the choice of which implementation of each oper-

ator to instantiate. Different implementations of the Ex operator, in particular, use different access

methods (indices), or pull data from streams approximated in different ways. In Lahar’s current

implementation, the optimizer chooses approximations based upon explicit instructions given pro-

grammatically by applications, with automatic optimization of this choice being an area for future

work (Section 8).

Lahar’s execution is simplistic for the simple reason that each operator implements the getNext()

interface. To execute a query plan, the execution engine simply calls getNext() on the plans’ root

operator (always a Post operator) until it returns an empty value. Each operator in the plan has a

handle to its child operator(s), and calls getNext() on these children to source it own input data.

3.3 Data Sets

The real-world experiments in this thesis are based on Markovian streams derived from two real-

world data sets. This section describes both the raw data and the process by which Markovian

streams were inferred from this data.
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3.3.1 Office-Based RFID

The primary motivation for most of the work done on Lahar was the desire to draw additional utility

from RFID data collected by the RFID Ecosystem at the University of Washington [116]. The

RFID Ecosystem is a deployment of 160 RFID antennas (40 readers) installed in the hallways of

the six-story Allen Center, which houses the Computer Science & Engineering department. Since

the data used in this thesis was collected, antennas have been added into some stairwells and a

small number of labs as well. Many faculty, students, and staff affix small RFID tags to their books,

laptops, keychains, etc., whose locations are then detected and logged by the readers. Although these

users are primarily motivated by access to real-time object- or friend-finding applications [125, 80],

the data generated by this system use is a rich source of historical data that can be mined using

Markovian streams.

Data collected by the RFID Ecosystem is logged in a standard relational database. RFID read-

ings are stored in a TRE (Tag Read Event) table with schema 〈Timestamp, AntennaID,TagID〉.

Separate dimension tables store information linking antenna IDs to antenna location information,

and tag IDs to (privacy-preserving) information about the type of object the tag is attached to, or

who it belongs to. The set of all readings in the TRE table that share a tag ID comprise the “evi-

dence” from which a single Markovian stream is inferred.

Inference of the RFID-derived Markovian streams used in this thesis was performed using a

particle filter [39] that we implemented in Java. Particle filtering is a sampling-based technique for

performing probabilistic inference. In this approach, samples (called particles) are used to represent

the distribution over a tag’s location. At timestep 7 (Figure 3.4(a1)), Bob (or more precisely, Bob’s

RFID tag) is sighted by antenna A and so his location distribution is tightly concentrated. To update

Bob’s location for timestep 8, the particle filter first predicts the location of each particle at the next

timestep based on its current location (but independently from the locations of other particles). It

then resamples the particles, choosing with a higher probability those particles whose locations are

more consistent with the sensor readings (e.g. those particles that are within the read range of an

antenna that sighted the tag). Because Bob is not sighted by any antennas at timestep 8, his location

distribution is correspondingly diffuse (Figure 3.4(a2)).

Both the particle motion and the notion of sensor-location consistency are defined by a hid-
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Figure 3.4: (a1) Particle filter state in an instant i in which antenna A detects the tag. (a2) Particle

filter state at instant i + 1.

den Markov model (HMM) [87]. The HMM’s motion model expresses distributions over normal

movement speeds, and also constraints on motion paths (e.g. tags cannot move through walls). The

HMM’s sensor model encodes characteristics of RFID reader ranges and noise characteristics.

A marginal probability distribution over a tag’s location at a given timestep is computed by

dividing the number of particles in each discrete location by the total number of particles. Relational

tables representing Bob’s location distribution at timesteps 7 and 8 are shown in Figures 3.4(b1) and

(b2), respectively (note however, that Lahar does not use this relational format for internal storage).

The above filtering process can be applied in real time to create a Markovian stream from

raw sensor readings; however, for applications interested in historical queries, an additional post-

processing step called smoothing [87] can be applied to produce a more refined Markovian stream.

Suppose that Bob is sighted by antenna C at timestep 9 (not pictured) of Figure 3.4. Given this

sighting, in retrospect it is highly unlikely that Bob was in O1 at timestep 8. The process of smooth-

ing revises past distributions (e.g. Bob’s location at timestep 8) to make them consistent with future

sensor readings (e.g. the sighting of Bob at C at time 9): in this case, by decreasing the probability

that Bob was in O1 at timestep 8. For simplicity, in Figure 3.4 the filtered and smoothed marginals

are identical, though in general smoothing changes marginal values as described.

The smoothing process also extracts a set of correlations between distributions at adjacent
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timesteps, capturing the likelihood of transitioning from one state to another. These correlations

are captured using probabilistic constraints encoded in the HMM. For example, the correlations

shown in Figure 3.4(c) reflect the fact that Bob cannot walk through walls: the bottom entry in the

table states that the probability of Bob entering O2 at timestep 8 given that he was in O1 at timestep

7 is zero. Similarly, given that Bob is in H2 at time 7, he is most likely to remain there at time 8 since

he is unlikely to abruptly switch direction and head back to O1. Thus the overall result of smoothing

is a Markovian stream that contains non-trivial correlations and reflects reality more accurately than

a filtered stream alone.

Many experiments in this thesis are based upon two sets of Markovian streams inferred from

real-world RFID data: we call these data sets the ambiguous and unambiguous data sets. Each

set comprises five traces of approximately 10 minutes ( 2MB) of data each. All traces reflect a

subject walking through the halls of an office building, visiting several different rooms for around 30

seconds each. In the ambiguous traces, the rooms visited by the subject are indistinguishable from

at least one other room, from the perspective of the RFID system. An example of indistinguishable

rooms is the pair (Office1, Lab1) in Figure 2.1(a). Another example of indistinguishable rooms is

the pair (O3, O5) in Figure 3.4, since an RFID reading at antenna C followed by no readings can

be equally-well explained by the subject entering room O3 or room O5. By contrast, the rooms

entered by the subject in the traces in the unambiguous set are all unambiguous–that is, it is largely

straightforward to determine when the subject has entered these rooms. Room O1 in Figure 3.4 is

an example of an unambiguous room, since an RFID reading at antenna A followed by no other

readings has only one explanation: the subject has entered room O1.

Noise in the system prevents probabilistic inference from ever determining a subject’s location

precisely, even when the subject enters unambiguous rooms; however, the level of certainty about

a subject’s location is generally higher in the unambiguous traces. By contrast, when the subject

enters rooms in the ambiguous traces, the Markovian stream generally reflects uncertainty about the

room that was entered, specifying 2-3 different rooms with approximately equal probability. When

the subject is walking through the hallways, the level of uncertainty is equal in both the ambiguous

and unambiguous traces.

One hour of active readings from a single tag in the RFID Ecosystem, in uncompressed, text

format fills up roughly 100-200KB of disk space—here, active means that the tag is detected at
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least once per minute. Thus one gigabyte of space can hold around 50-100 hours of raw RFID

readings. On the other hand, one hour of Markovian stream data derived from these RFID readings

requires around 12MB of space: the Markovian streams are 128 times larger than the raw data!

The exact size of a Markovian stream varies depending on the amount of uncertainty in the data,

but in the RFID case the relatively larger size of the Markovian stream is largely due to the highly

compact nature of raw RFID readings. In the next section we demonstrate that, in a different domain,

Markovian streams are more than an order of magnitude smaller than the raw data they represent.

3.3.2 Speech

Another domain in which Markovian streams are a useful model is speech processing, because a

Markovian stream can compactly model uncertainty about which words were actually spoken in a

given sentence or snippet which may be noisy. Lahar’s utility in this context is demonstrated on a

set of real-world Markovian streams inferred from spoken audio (five-minute NPR news updates).

The uncertain domain of these streams is the set of words in the English language; an example of a

stream from this domain appears in Figure 1.2(a).

Inferring a Markovian stream from an audio snippet is no trivial task. It requires detailed knowl-

edge of acoustics as well as models of language: speech processing is a long- and well-studied

problem. For this reason, Lahar’s audio streams are inferred using Sphinx, an off-the-shelf speech

processing tool [118]. Using generic English-language acoustic and language models (also off-the-

shelf), Sphinx transforms an audio snippet into a lattice. A lattice is a graph structure, standard in

speech processing, in which each node represents an utterance (a word along with its probability),

and a directed edge connects two utterances that occurred consecutively in the audio input. The

lattice is easily converted into a Markovian stream in which each path through the lattice becomes

a unique path (possible world) in the Markovian stream. This is done by aligning the lattice nodes

according to their sequence ordering, and normalizing the probabilities of edges exiting each node.

In the NPR newscasts used as audio input for Lahar’s test data, a Markovian stream representing

five minutes’ worth of speech is roughly 1.3 MB in size (equivalently, one gigabyte an hold around

64 hours’ worth of speech-derived Markovian streams), and has a length of around 800 instants.

Most instants in the NPR audio streams contain only one or two words with non-zero probability; the
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most uncertain instant represents non-zero probabilities on seven different words: ’thin’, ’things’,

’theme’ ’third’, ’tougher’, ’tough’ and ’think’. Interestingly, the true word at this instant is ’the’,

which is not even captured as a possibility by the speech recognition software.

In contrast, the original audio data from which the 1.3 MB Markovian stream is derived is

roughly 24MB: the Markovian stream is nineteen times smaller than the raw input data. Inter-

estingly, in the speech domain, Markovian streams are compact relative to raw data; in the RFID

domain, the reverse is true.
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Chapter 4

INDEXING MARKOVIAN STREAMS

Recall that Lahar’s basic event query processing algorithm uses a full, start-to-finish scan of the

Markovian stream(s). Such scan-based approaches are natural for streaming evaluation, but they are

highly inefficient for querying disk-based archives, which is the focus of this thesis. This chapter

discusses several techniques for leveraging the disk-based nature of Lahar’s input data via novel

access methods to improve performance. The work in this chapter was first published in ICDE

2008 [73].

In this chapter, we observe that, for most Markovian stream queries, the fraction of stream in-

stants that satisfy one or more query predicates is low. This situation is analogous to a relational

database in which only a small fraction of tuples satisfy one or more query predicates. In such sit-

uations, indexes are commonly used to identify and retrieve the small number of tuples that satisfy

a predicate, so that a full scan of the table can be avoided. In this chapter, we apply the same idea

to Markovian streams. We first adapt relational indexes to Markovian streams, to allow efficient,

targeted retrieval of only the set of stream instants that satisfies one or more query predicates. Al-

though these indexes can accelerate processing of some queries (specifically, fixed-length queries),

they cannot help Lahar avoid a full stream scan to process variable-length queries, in which large

intervals of the input stream are relevant because they express correlation information relating two

non-consecutive, possibly distant instants of an input stream. To accelerate these queries, we de-

velop the novel Markov chain index that allows efficient lookup of precomputed correlation rela-

tionships between any pair of two instants in a Markovian stream. Concretely, the contributions of

this chapter are as follow:

1. Access methods optimized for fixed-length queries, based upon a novel adaptation of standard

indexing techniques.

2. A top-k optimization for fixed-length queries. This second access method exploits insights

about the structure of Markovian event probabilities to adapt standard top-k pruning tech-
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"Find all times when Bob 
was in Office1."
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Office2 from Hall2."
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Office1 to Office2 using only the Hall."

Figure 4.1: Three linear event queries written for a location domain. (a) and (b) show fixed-length

queries, while (c) shows a variable-length query.

niques to Markovian stream data, using standard B+ trees.

3. A novel index structure (the Markov chain index) and associated access method for variable-

length queries, for which standard indexing is insufficient.

4. A discussion of practical issues relating to our three access methods, including predicate

evaluation and a comparison of physical disk layouts.

In this chapter, we consider only linear event queries. Linear event queries yield NFAs that are

linear (all query examples in this thesis are linear). Concretely, a linear event query is a concate-

nation of links, where each link is one of either 1) a single predicate (e.g. Hallway), or 2) a pair

of predicates in which the first contains a Kleene star (e.g. (¬CoffeeRoom∗,CoffeeRoom). In

the latter case, we refer to the second predicate as the link’s primary predicate or simply ‘predicate’,

since this is the predicate that transitions to the next query link. A list of links uniquely determines

a linear query. We restrict our discussion to linear queries because they guarantee that the states

of an NFA are visited in a fixed order, which simplifies the construction of indexing algorithms;

furthermore, Lahar’s current implementation supports indexing only for linear queries.

For the purposes of this chapter, (linear) event queries are divided into two classes: (1) fixed-

length queries, whose NFA representations are loop-free, and (2) variable-length queries, whose

NFAs contain loops. Figures 4.1(a) and (b) show fixed-length queries, while Figure 4.1(c) shows a

variable-length query. The class of fixed-length queries can be satisfied only by fixed-length stream

intervals (i.e. an m-link query can be satisfied only by stream intervals of length m). In contrast,

intervals satisfying variable-length queries may span an arbitrary number of timesteps. As we will
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see in the following sections, this distinction allows for very different optimization of the queries in

each class.

The work most closely related to Lahar’s indexing techniques is the INDSEP index by Kanagal

& Deshpande [62], which was developed shortly after the publication of material in this chapter.

The INDSEP index builds upon and generalizes the MC index presented here (Section 4.2). Singh

et al.’s index for categorical, imprecise data [112] predates the work in this chapter and is similar to

the B+ tree indices we present here (Section 4.1). Singh et al.’s work assumes relational rather than

sequential data and is thus designed to support select-project-join queries rather than event-style

queries; however, the basic index structure is similar in both cases. Remaining work on indexing

imprecise sequences focuses primarily on indices for supporting region-based queries in moving-

object databases [18,27,114], which is a very different problem from the one tackled in this chapter.

We discuss additional related work in Chapter 7.

The access methods in this chapter appear in Lahar as different physical implementations of

the Ex operator (Section 3.2.5). They are compatible with the aggregation queries discussed in

Section 2.3.1 and with the approximation techniques discussed in Chapter 5, but Lahar’s current

implementation does not support these access methods for processing lineage queries (Chapter 6).

4.1 Indexing Fixed-Length Queries

Fixed-length event queries can be processed using simple adaptations of standard indexing tech-

niques. In particular, Lahar constructs a standard B+ tree secondary index on a Markovian

stream. The B+ tree uses search keys of the form: (attribute, instant-index).

Here attribute is the uncertain stream attribute (or set of attributes) being indexed and

instant-index is the stream sequence identifier (seqID). For example, a query plan

for the Entered-Office query in Figure 4.1(b) might leverage an index on (location,

instant-index). We call this index BTC (C for “chronological”, since this is the ordering

of keys sharing the same attribute value). An example is shown in Figure 4.2.

The purpose of the BTC index is to allow Lahar to efficiently identify the set of instants satisfy-

ing a given predicate. For this reason, the BTC indexes the domain elements present in each instant’s

marginal probability distribution, which defines the set of domain elements that are possibly true



46

H2, t7 H2, t8 H2, t9 O1, t7 O1, t8 O2, t8

t8
H1   0.50
H2   0.30
O1   0.15
O2   0.05

p(t9 | t8)

H2, t7 O1, t7 O2, t8...

t9
H2     0.65
O3    0.35

p(t10 | t9)

...

t7
H1   0.80
H2   0.15
O1   0.05

p(t8 | t7)

Index

Archived
Markovian

stream

root

(BTC)

Figure 4.2: Bottom: Three timesteps’ worth of the Markovian stream representing Bob’s location,

also shown in Figure 3.4(b-c). Top: A portion of the BTC index on this stream. Note that the

conditional distributions (correlations) are represented only symbolically here, because the BTC

index only indexes the marginal distributions of each instant the Markovian stream.

at a given instant, rather than an instant’s conditional distribution, which defines correlations be-

tween domain elements at the given instant and the next. In Lahar’s data representation, both the

marginal and conditional distributions for each instant are stored together; thus, once an instant is

identified by the BTC as relevant, both the marginal and conditional distributions of the instant can

be simultaneously retrieved from disk.

Because each timestep represents a distribution over states, each timestep can appear multiple

times in this index. For example, timestep 7 in Figure 4.2 appears in three index keys, with locations

H2, O1, and H1 (not shown). Importantly, the index includes only value/time pairs with a non-zero

marginal probability, since zero-valued marginal entries are not explicitly stored in the stream.

Recall that a fixed-length query QF comprising m states can be satisfied only by stream intervals

of length m. The goal of indexing in this case is to efficiently identify these intervals. For each

predicate r in QF , an index such as BTC can be used to retrieve the set of stream timesteps satisfying

r. Here, satisfying timesteps are defined as the set of timesteps in which predicate r is satisfied with

non-zero probability.

A standard equijoin between the sets of timesteps satisfying various query link predicates is use-

less for identifying relevant intervals. Instead, Lahar requires a temporally-aware join that identifies
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contiguous sequences of timesteps. This join is implemented using a separate index cursor on each

predicate r. These cursors are advanced forward in parallel while maintaining the relative offsets

required by the ordering of predicates in QF . The cursors intersect when they together reference a

sequence of m consecutive timesteps, in the appropriate query-specified ordering. Thus every inter-

section identifies a length-m stream interval that is a potential query match. This process is similar

to the standard merge join, and shares the corresponding linear-time data complexity.

This access method, which we call the B+Tree approach, is shown in Algorithm 1. Lines 1-2

initialize cursors on the index entries satisfying the predicates of QF . In line 3 these cursors are

advanced until they intersect on an interval I. Lines 4-6 process I through the Reg operator.

An example of the pruning done by the B+Tree approach can be seen on the stream segment

pictured in Figure 4.2. On the two-link, fixed-length query shown in Figure 4.1(b), with predicates

(H2,O2), the cursors on H2 and O2 first intersect on the interval (t7, t8), which is passed to Reg. In

contrast, the index entry (H2, t8) has no intersecting entry (O2, t9), so this interval is not retrieved

from disk or passed through the Reg operator.

One convenient feature of Lahar’s implementation of temporally-aware index joins is that it

retrieves relevant intervals in chronological order. Overlapping intervals can thus be combined

before invoking Reg. To see this, consider the fixed-length query (O1,H2) on the data in Figure 4.2.

The B+Tree algorithm will identify both (t7, t8) and (t8, t9) as requiring further processing. By

instead passing the single, longer interval (t7, t9), through Reg, it can avoid double-processing of

timestep t8. Thus on the densest data sets, the B+Tree approach gracefully degenerates into a naı̈ve

stream scan, with additional overhead to handle the BTC index cursors.

Top-K Optimization

The B+Tree algorithm efficiently computes the probability of every query match in a stream; how-

ever, recall from Figure 6.1 that many of these matches are of low quality and are thus uninteresting

to applications. The challenge in this case is that of high-quality event retrieval, in which only the

top k query matches, or only those matches with probabilities above a given fixed threshold, are

returned.

The key observation for efficient optimization of these queries is the following: within a length-
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Algorithm 1 Fixed-Length Query Access Method (General)
Note: For simplicity, merging of overlapping intervals is not shown. For additional simplicity, we assume here

that the Ex operator can make calls to the Reg operator, although in Lahar’s implementation the getNext()

interface of these operators prohibits such direct communication.

Input: Fixed-length query QF comprising m states, Markovian stream M, B+ Tree index BTC on the single

attribute of M.

Output: Probability that QF is satisfied at each timestep t ∈ M

1: for each predicate r j in QF do

2: Initialize cursor C j on predicate r j in BTC

3: for each interval I in the intersection of (C0, ..., Cm) do

4: Reg.startSequence(I[0].marginal)

5: for each timestep i in I do

6: 〈I[i].t, p〉 = Reg.update(I[i].cpt)

m interval, the marginal probability that the ith link predicate is satisfied at the ith instant in the

interval is an upper bound on the probability that the interval satisfies the query (i.e. that the query

has a non-zero probability of being true at the last timestep in the interval). As an example, consider

the fixed-length query (H1,H2) (Figure 4.1(b)) on the interval (t7, t8) of the location stream shown

in Figure 2.1(b). Both p(H1 at t7) = 0.8 and p(H2 at t8) = 0.3 are upper bounds on the probability

that the interval (t7, t8) matches the query, which in this case is 0.8 ∗ 0.25 = 0.2. Intuitively, these

marginal probabilities are upper bounds because a sequence of events cannot be more likely than

any of its individual components.

This observation implies that Lahar can adapt the well-known Threshold Algorithm (TA) and its

variants [40] to its problem. The basic idea is to process fixed-length stream intervals in decreasing

order of marginal probability. For each interval, Lahar uses the maximum marginal probability

among all query predicates to determine an upper bound on the probability that the interval will

match the query; it then processes each interval in order of decreasing upper bound.

More specifically, Lahar supports an additional secondary B+ tree index on the Marko-

vian stream, called the BTP (p for “probability”) index. It uses search keys of the form

(attribute,prob), where attribute is the uncertain stream attribute being indexed and

prob is the marginal probability that the attribute value is true at the indexed timestep. Within the
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BTP index, keys sharing an attribute value are ordered in decreasing order of marginal probability.

As with the BTC index, the BTP index includes only keys with non-zero probability.

Algorithm 2 outlines an access method (the top-k B+Tree approach) that leverages the BTP

index and the TA technique to efficiently process top-k queries. After initialization (lines 1-3),

the algorithm scans in parallel all leaves of the B+ tree that match the different query predicates,

returning the entry M[t] with the highest remaining marginal probability (line 4). The algorithm

terminates when the maximum marginal probability of all remaining index entries (e.g. the marginal

probability of predicate r j in timestep M[t]) is below the probability of all k of the current best query

matches (lines 5-6). If this condition is not met, the marginal probability of each predicate in the

interval I is examined (lines 7-8). If none of these is low enough to prune the interval, the interval

is processed through the Reg operator (lines 9-12) and the resulting probability is incorporated into

the top k matches if appropriate.

As mentioned above, the marginal probability of each predicate in a length-m interval is only

an upper bound on the probability that the interval matches the query; the actual match probabil-

ity may be much lower or even zero. In data where this is common, the top-k B+Tree algorithm

has little opportunity for pruning, and the B+Tree implementation of Ex based on the BTC index,

followed by a sort on the output tuples, will often outperform the top-k B+Tree approach because

of its ability to combine the processing of overlapping intervals. The top-k approach, by contrast,

significantly outperforms the standard B+Tree approach on queries with clear peaks, such as that

shown in Figure 6.1. This tradeoff is further discussed in the evaluation (Section 4.3).

4.2 Indexing Variable-Length Queries

The fixed-length access methods in the previous section are inapplicable to variable-length queries,

because variable-length queries can be satisfied by stream intervals of arbitrary length. A full stream

scan can be avoided in this case using the following insight: while query match intervals may be

arbitrarily long, generally only a small number of timesteps in each interval contain data relevant

to the query (i.e., satisfy at least one query predicate with non-zero probability). Furthermore,

the query NFA changes state only on these relevant inputs. In fact, the “irrelevant” intermediate

timesteps require processing only because together they contain the correlation information relating
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Algorithm 2 Fixed-Length Query Access Method (Top-K)
Note: For simplicity, we assume here that the Ex operator can make calls to the Reg operator, although

in Lahar’s implementation the getNext() interface of these operators prohibits such direct communica-

tion.

Input: Fixed-length query QF comprising m states, Markovian stream M, B+ Tree index BTP on the single

attribute of M, and k

Output: Top k timesteps at which QF is satisfied in M.

1: currTopK.initializeEmpty

2: for each predicate r j in QF do

3: Initialize cursor C j on predicate r j in BTP

4: for each timestep M[t] w/ max prob. referenced by any C j do

5: if M[t].marginal.prob(r j)<= currTopK.min then

6: Terminate

7: I = {M[t − j], ...,M[t − j + m]}

8: if I[l].marginal.prob(rl)> currTopK.min, ∀ 0 ≤ l < n then

9: Reg.startSequence(I[0].marginal)

10: for each i in I do

11: 〈I[i].t, p〉 = Reg.update(I[i].cpt)

12: currTopK.evaluate(p)

each relevant timestep to the next. Thus, processing might be optimized if we can develop an

efficient (in both space and time) method for retrieving the correlations between distant stream

timesteps.

This section introduces the novel Markov chain index (MC) that achieves this goal, along with

an Ex implementation that leverages it.

Markov Chain Index

The Markov chain (MC) index is a hierarchical index that provides efficient lookup and/or com-

putation of the correlations (also called CPTs, or Conditional Probability Tables) relating any two

Markovian stream timesteps. The index stores a small set of precomputed CPTs organized in the

hierarchy structure shown in Figure 4.3. The lowest level of the hierarchy (i = 0) is simply the
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Figure 4.3: Markov chain index for α = 2. The bottom row (i = 0) is the raw Markovian stream, in

this case over an uncertain location domain (in a hospital). The three upper rows are the index. The

index entries required to compute the CPT between timesteps t1 and t8 are highlighted; without the

index, a scan of the Markovian stream would be required.

length-M Markovian stream. The density of additional levels of the tree is controlled by an integer

parameter α. Each additional index level i contains a set of M/(αi) entries, each of which relates a

pair of timesteps separated by a distance of αi. The total number of levels in the index is logα(M),

and each index entry is the product of α entries of the index level below it. The example in Figure 4.3

is drawn for α = 2; larger values of α decrease the storage requirements of the index.

CPTs not stored directly in the MC index can be computed as the product of existing entries,

using the chain rule of probabilities: p(t j|ti) = p(t j|tk)p(tk|ti). The upper bound on the number of

CPTs that must be multiplied to compute a CPT spanning n timesteps is 2 logα(n), since at most

two entries from each applicable index level must participate. In comparison, without the index

this number would be simply n. In Figure 4.3, the two shaded index entries represent those whose

product is the CPT relating t0 and t5.
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Variable-Length Algorithm

The Markov chain index naturally yields a simple algorithm (Algorithm 3, which we call the MC

index approach) for processing variable-length queries. In lines 2-3, a separate index cursor on BTC

is initialized on each query predicate. Line 4 advances these cursors forward in parallel, entering

into the loop once for each timestep M[t] satisfying any of the query predicates. Upon the first

entrance into this loop, execution jumps to line 6. Upon subsequent iterations, line 8 uses the MC

index to lookup/compute the CPT between the previous relevant timestep (tprev) and the current one

(t). In line 9 this CPT is used to update the Reg operator. In this way the algorithm performs a

single conceptual pass over the entire stream, but leverages the MC index to avoid retrieving large

spans of irrelevant data from disk.

When a variable-length query contains loop predicates that are not negations of non-loop pred-

icates (e.g. the Hall loop predicate of the query in Figure 4.1(c)), the MC index and algorithm as

presented above are insufficient. In this case, the large stream intervals requiring summarization are

not those containing irrelevant data, but instead are those that continuously satisfy the query loop

predicate (Hall in the example of the previous sentence). These conditionals are not present in the

MC index as described above; however, they can be captured for a given predicate (e.g. Hall) in

a separate instance of the MC index whose entries are conditioned on satisfaction of the predicate.

The details of the index construction and associated access method are a straightforward extension

of those presented here for the general case.

In order to use the MC index approach to variable-length query evaluation, a BTC index must

be present for every predicate in the query, to guarantee that all relevant timesteps are identified.

This is in contrast to the B+Tree algorithm for fixed-length queries, which computes correct results

(though perhaps less efficiently) even when only a subset of query predicates is indexed.

4.3 Experimental Evaluation

In this section, we evaluate the B+ tree indexes and MC index through experiments with the proto-

type Lahar implementation described in Section 3. All experiments were conducted on a 2.0GHz

Linux machine with 16GB of RAM.

They demonstrate on both synthetic and real data that standard B+ tree indexing techniques (the
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Algorithm 3 Variable-Length Query Access Method (MC Index)
Note: For simplicity, we assume here that the Ex operator can make calls to the Reg operator, although

in Lahar’s implementation the getNext() interface of these operators prohibits such direct communica-

tion.

Input: Variable-length query QV comprising m states, Markovian stream M, B+ Tree index BTC on the single

attribute of M, Markov chain index MC

Output: Probability that Qv is satisfied at each timestep t ∈ M

1: tprev = Ø;

2: for each predicate r j in QV do

3: Initialize cursor C j on predicate r j in BTC

4: for each timestep M[t] referenced by any C j do

5: if tprev == Ø then

6: Reg.startSequence(M[t].marginal)

7: else

8: cpt = MC.computeCPT(tprev, t)

9: 〈M[t].t, p〉 = Reg.update(cpt)

10: tprev = t

B+Tree [Algorithm 1] and top-k B+Tree [Algorithm 2] methods) provide orders of magnitude im-

provements in performance over a naı̈ve stream scan on fixed-length queries, even while preserving

the probabilistic, correlated relationships within Markovian streams. They further demonstrate that

the novel Markov chain index provides the same magnitudes of speedup on variable-length queries.

4.3.1 Setup

We evaluated Lahar’s indexing methods using both synthetic and real Markovian streams. Each syn-

thetic Markovian stream comprises 8 hours of data (30,000 timesteps). To maintain realistic prop-

erties, we constructed these streams by concatenating together various 30-second stream “snippets”

generated from an RFID simulator reflecting the physical layout of the real-world RFID Ecosystem.

In each snippet, a simulated person carrying an RFID tag walks down a short corridor, into a room

where he stays for 15 seconds, and then back down the corridor. By altering the room labels in

these snippets, we controlled the relevant properties of each stream with respect to each test query.
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The real RFID data set was collected using the RFID Ecosystem. Eight volunteers carried 58

tags as they went through one-hour versions of typical daily routines (working in their offices, having

meetings, taking coffee breaks, etc.). These routines visited locations across two floors, spanning an

area of roughly 10,000 square feet discretized into 352 locations. The 17 antennas on each of the two

floors were placed only in the corridors (offices, labs, etc. had no antennas inside them). Markovian

streams were inferred from these RFID traces using the techniques described in Section 3.3.1. Eight

of the traces were selected for use in the below experiments, based on their realistic reflection of

location uncertainty (i.e., some tags were never or almost never detected and we did not use the

resulting traces).

We found that, on the real RFID data set, the fraction of relevant timesteps (timesteps satisfying

at least one query predicate with non-zero probability) exhibits bimodal behavior: either almost all

or almost none of the timesteps in a stream are relevant to a specific query. We call this fraction of

relevant timesteps data density and note that it is defined on a Markovian stream with respect to a

specific query. Data density tends to be bimodal simply because the amount of time that a person

spends in a given place tends to be bimodal. For example, the data density of queries involving a

person’s office tend to be high (0.75 and up) since the majority of a person’s time is spent in his

office. However, for queries about coffee rooms, other people’s offices, etc., the fraction of relevant

timesteps is very small because the percentage of time a person spends near these places is low.

Data density is an important parameter because it determines the relative performance of different

access methods.

4.3.2 Performance: Fixed-Length Queries

In this Section, we first evaluate the detailed performance of fixed-length access methods on a two-

link query, because it is a highly common type of query. We then present results generalized to

fixed-length queries of different lengths.

Performance of Two-Link Queries

In order to establish the viability of the B+Tree approach, we first evaluate its performance on a two-

link Entered-Room query (Figure 4.1(b)) on synthetic data, and compare the results to the naı̈ve full
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Figure 4.4: Evaluation of access methods optimized for fixed-length queries. (a) Worst-case perfor-

mance of the B+Tree algorithm on synthetic data. (b) Performance of fixed-length approaches on

real-world data. (c) Performance of the B+Tree algorithm on increasingly-favorable data sets.

stream scan. Figure 4.4(a) shows logscale performance numbers for both algorithms. As expected,

when the data density is low, the B+Tree algorithm significantly outperforms a full stream scan—in

this case, by 1-2 orders of magnitude. Conversely when most stream instants are relevant to the

query, the B+Tree approach degenerates into a full data scan with additional overhead for the B+

tree lookups. Note that the B+Tree algorithm performance here is worst-case, because in this data

set, every relevant instant (instants that satisfy at least one query predicate) participates in a valid

query match. This property reduces the amount of pruning and increases the amount of disk I/O that

the algorithm needs to do.

Figure 4.4(b) compares the performance of the naı̈ve stream scan and the B+Tree and top-k

B+Tree algorithms on a set of 22 different Entered-Room queries in one real, 28-minute RFID

stream. Each of the 22 queries corresponds to a different room, and is responsible for three plotted

points (one for each algorithm). Not surprisingly, the plot confirms the results shown in Fig. 4.4(a):

the speedup of the B+Tree approach over a naı̈ve scan increases as density decreases, providing

improvements of at least an order of magnitude when this density is low. The lack of data points in

the x range [0.1, 0.5] in Figure 4.4(b) reflects the bimodality of data density.

In the set of queries with low data density, the top-k B+Tree approach (Algorithm 2, plotted here

for k = 1) performs poorly relative to the B+Tree algorithm. The sparse nature of the relevant data
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here provides the top-k B+Tree approach with little opportunity for additional pruning. Furthermore,

the ability of the B+Tree algorithm to process overlapping intervals in a single pass often allows it

to outperform the top-k B+Tree algorithm.

When the data density is high, however, the performance of the top-k B+Tree algorithm is often–

though not always—much better (here, by an order of magnitude) than that of either alternative.

The key feature allowing efficient pruning and therefore fast performance is the existence of a small

number of sharp peaks in the query signal. The query signal shown in Figure 6.1 exhibits such

behavior, and indeed this query is responsible for the top-k B+Tree point highlighted in Fig. 4.4(b)

at x = 1.0. While the existence of such a peak cannot be precisely determined ahead of query

processing (indeed, to do so would be to answer the top-k query), a reasonable heuristic is to try and

use the top-k B+Tree algorithm for queries expected to have a high data density.

Figure 4.4(c) shows a more detailed, synthetic-data evaluation of the behavior of the B+Tree

approach on an Entered-Room query. Each curve plots the performance of the algorithm when a

different, fixed fraction of relevant timesteps participate in query matches. The curve for a query

match rate of 100% is precisely the curve from Figure 4.4(a).

For any single curve in Figure 4.4(c), decreasing the data density (x-axis) decreases the number

of query match intervals that the B+Tree algorithm must fetch from disk and send through the Reg

operator, which increases performance. For a given data density on the x-axis, a decrease in the

number of query matches causes a proportional increase in performance because some partial query

matches can be identified early as dead-ends, allowing Lahar to avoid reading some instants from

disk. When the fraction of relevant timesteps is low (e.g. 0.01), the difference between a 100% and

25% query match rate results in an order of magnitude difference in processing time.

Performance on Longer Queries

We demonstrate the scalability of the B+Tree algorithm on queries comprising more than two links

using real RFID data. Figure 4.5 shows the results. Each of the three major columns of this table

contains performance data for a real-world stream on an Entered-Room query written using 2, 3, or

4 links (real-world queries seldom require more than 4 links). The queries with 3 and 4 links require

a tag’s presence at multiple specific hallway locations outside a room before the room is entered.
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Stream length (timesteps)

Time: B+ Tree (msec)

548 625 1206
26 26 11
174 232 266
56 75 214

# query matches
554 613 1201
2 1 1
59 67 132
67 98 165

7.6 7.6 7.6
458 458 458
5 5 6

Time: Top-K B+ Tree (msec)

Time: Full Scan (msec)

Stream:  James
Q: Entered-Office
# States in query:

2 3 4

Stream length (minutes)

# relevant timesteps

Stream:  Sally
Q: Entered-Office
# States in query:

2 3 4

F
I
X
E
D

7.7 7.7 7.7
462 462 462
149 194 211

977 1124 3034
3 1 1
67 71 135
95 366 1970

Stream:  Pat
Q: Coffee-Room

# States in query:
2 3 4

28 28 28
1683 1683 1683
33 53 253

Figure 4.5: Statistics describing several streams from our real data set, and the speed of fixed-length

queries with varying lengths on these streams.

The Reg operator slows exponentially with each additional query link, as can be seen in the

fourth row of Fig. 4.5. Because the B+Tree approach is able to avoid many Reg updates, the perfor-

mance of the B+Tree approach relative to a full stream scan (row 6 vs. row 4) improves dramatically

on longer queries. The performance of the top-k B+Tree algorithm shows similar trends, although

the relative performance gain is slightly less pronounced than for the B+Tree approach.

The results in the figure show the performance of the B+Tree and top-k B+Tree algorithms when

indices serve to identify matching timesteps for all query predicates. In the case where some query

predicates are not indexed, performance scales predominantly with the selectivity of the intersection

of the available indices, independent of the number of predicates indexed. A second-order effect

reflects improved performance when the number of predicate indices decreases, simply because the

index overhead is reduced.

4.3.3 Performance: Variable-Length Queries

The performance of the MC index (α=2) approach versus a naı̈ve stream scan, on synthetic data

and the now-familiar Entered-Room query (a variable-length version, like that of Figure 4.1(c)),

are shown in Figure 4.6(a). Data density is again the dominant factor in the performance of both

algorithms, which exhibit the same trends as the B+Tree approach. Figures 4.6(a) and 4.4(a) are

directly comparable.
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Figure 4.6: Evaluation of access methods optimized for variable-length queries. (a) Performance

of the three algorithms as the number of relevant timesteps varies. (b) Performance on a real-world

stream.

The performance of the MC index algorithm on real-world data is shown in Figure 4.6(b). As on

the synthetic data in Figure 4.6(a), the MC index access method performance scales inversely with

data density and outperforms the full data scan by more than an order of magnitude when density

is low. The queries shown in Figure 4.6(b) are precisely the queries plotted in Figure 4.4(b), with

Kleene closures added to make these queries variable-length. The data in these two plots is therefore

directly comparable (note the fact that the naı̈ve data scan reflects the same constant time in both

figures).

Markov Chain Index

The purpose of the Markov chain index is to provide efficient access to (precomputed) correlations

between distant Markovian stream timesteps. Figure 4.7 provides details of the index’s tradeoff

between storage space and lookup speed.

Figure 4.7(a) shows the average time required to compute correlations between two timesteps

separated by intervals of varying size. Because the placement of these intervals relative to stored

index entries is important, reported results are the averages over all placements. Each higher curve

in the graph represents performance when an additional index level is removed (this is a proxy for
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Figure 4.7: (a) Time required to compute correlations across intervals of varying lengths using the

Markov chain index. Each successive line plots performance when omitting an increasing number

of lower index levels. (b) Storage requirements for the Markov chain index under varying α values.

increasing α) Clearly, correlations across intervals smaller than the span of the lowest available level

of the Markov chain index can be computed only with a full scan, which accounts for the upper-

bound behavior of the leftmost, naı̈ve scan curve. The spacing between the flat portions of each i

curve demonstrates that each additional index level reduces CPT lookup time by half.

In terms of speed, then, MC indices parameterized with lower values of α (roughly equivalent

to the addition of increasingly low levels i in the above discussion) provide better performance by

storing a greater number of precomputed conditionals. While this performance is gained at the cost

of disk space, note that the most efficient parameterization, using α = 2, merely doubles the stream

storage requirements. Certainly many applications in the archived, warehouse-like setting targeted

by Lahar will find this an acceptable tradeoff; however, disk-starved applications can leverage the

MC index within their resource limitations by increasing α. Storage requirements for various α on

streams of varying lengths are shown in 4.7(b).

4.4 Conclusions

In this chapter we presented access methods that enable Lahar to execute event queries efficiently

over archived Markovian streams. Using novel indices, Lahar is able to selectively process only

relevant parts of an input stream, thus achieving significant performance gains. At the same time,
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Lahar preserves result accuracy by retaining the Markovian properties of the stream while skipping

data.

To achieve high performance, Lahar distinguishes different types of queries (fixed-length and

variable-length). It then uses novel and efficient access methods specialized for each query type. For

fixed-length queries, Lahar uses novel adaptations of standard B+ tree indices. For variable-length

queries, it leverages a new type of index, the MC index, to effectively summarize unimportant parts

of a stream. Additionally, Lahar supports top-k queries that effectively filter out noise in query

results and can also improve performance in the case of fixed-length queries. Using synthetic and

real data, we demonstrated that Lahar offers performance that can be orders magnitude better than

that of a full stream scan.

Overall, effective techniques for managing noisy sensor data are important for many applications

today and we view this work as an important step in this direction.
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Chapter 5

APPROXIMATING MARKOVIAN STREAMS

Processing Markovian stream archives presents performance challenges not only because these

archives can be large, but because these streams are imprecise and thus more complex to process

than traditional, deterministic streams. Algorithms that rely on scanning an entire to stream to

answer a query [94] are untenable in this setting. In the previous chapter, we presented indexing

techniques that can help improve query performance. In this chapter, we study the complementary

question of stream compression.

In this chapter we focus on compression techniques to improve performance, as is common in

data warehouses [3, 89, 49]. The work in this chapter was first published in ICDE 2009 [73]. The

performance benefits of compression are complementary to those of Markovian stream indexing, as

both techniques can be used in conjunction with one another.

While traditional databases use lossless compression to improve performance, lossy techniques

(equivalently, approximations) are a more promising avenue for Markovian stream warehouses. In

addition to reducing the number of bytes required to represent a Markovian stream, judiciously-

chosen lossy compressions can reduce the cost of event query processing by shrinking the size of

the uncertain domain, or by reducing the complexity of the data representation. Applications that

query Markovian streams are already accustomed to handling uncertainty, so they can often tolerate

a small amount of additional imprecision incurred by the use of lossy techniques, which are the

focus of this chapter.

Lahar accommodates the needs of different applications by materializing several different ap-

proximate copies of each Markovian stream in addition to the original. This allows applications or

the Lahar optimizer to choose an appropriate approximate (or precise) stream at query time.

Existing work on approximation/compression for imprecise sequences is sparse. Some of the

approximations studied in this chapter, including independence [103] and MAP [87] are well-known

tools in the artificial intelligence community; however, their effect on the performance/accuracy
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of Markovian stream queries has not been studied. In this chapter we develop compressed data

representations that can be queried directly without decompression, an idea which has appeared

in other database systems (C-store [3], Blink [89, 90], Cypress [98]) but which has not yet been

explored for imprecise sequences. We discuss additional related work in Chapter 7.

5.1 Approximations

The approximations used in Lahar are used to improve query processing performance. Importantly,

reducing the size of a Markovian stream’s disk footprint is important only insofar as it improves

performance. Although a smaller stream footprint improves I/O time, we demonstrate shortly that

the primary bottleneck in Lahar is actually processing power. Lahar is largely CPU-bound due to the

quadratic complexity of handling correlations (Section 2.2.2). For this reason, the approximations

introduced here focus primarily on producing approximate structures that are faster to process than

standard Markovian stream instants, rather than focusing on compression techniques that make the

instants smaller. Each approximate representation uses a different, simplified structure to represent

the instants in a stream; each simplified structure is faster to process than a standard Markovian

stream instant. Because the reduction of processor load is the key to improving performance in this

context, none of Lahar’s compression techniques require decompression—that is, each approximate

Markovian stream instant can be processed directly in Lahar’s query plans.

These approximations techniques fall into two categories: numeric and semantic, described in

Sections 5.1.1 and 5.1.2.

5.1.1 Numeric Approximations

Numeric approximations do not consider the semantics of the stream’s uncertain domain. These

compressions include:

Independence compression simply removes all temporal correlations from a Markovian stream.

The effect of this compression is dramatic (more precisely, quadratic), both in terms of disk stor-

age and in terms of the effect on Reg performance. Independence compression is illustrated in

Figure 5.1(b).

Consider a Markovian stream on an uncertain domain D: the correlations between two adjacent
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Figure 5.1: A Markovian stream and four approximate representations.

timesteps of this stream form a matrix of size |D| × |D|. After dropping these correlations, the

independence-compressed stream view must store only the marginal distribution over the uncertain

domain at each timestep. This marginal distribution has size |D|, yielding quadratic space savings.

Independence compression yields quadratic performance improvements in the Reg operator

as well. Recall the state matrix Q (Section 2.2.2) that is the core of the event query processing

algorithms: this matrix has a separate column for each of the |D| elements in the Markovian stream’s

uncertain domain. Conceptually, each row of Q represents a different set of possible worlds; the ith

row of Q represents the possible states of the query NFA conditioned on the fact that the ith domain

element was the previous input (Figure 2.4(c)). The Reg operator must keep track of the previous

input in order to correctly compute the temporal correlations between this previous input and the

next input to arrive. If the input stream is independent, then the |D| columns of Q are identical at all

times, on all inputs. Clearly in this case there is no need for Reg to maintain a full matrix, and Q

can be reduced to a single vector V . Thus, instead of the M × D × D operations required to update

Q, the Reg operator update on an independence-compressed input requires only M × D operations.

This is a quadratic performance improvement.

MAP compression identifies the single most likely deterministic sequence (called the Maximum

a Posteriori sequence) in a Markovian stream. It saves this single, deterministic stream and discards
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everything else. MAP approximation thus eliminates not only correlations (like independence), but

it eliminates all uncertainty, as is illustrated in Figure 5.1(c). A MAP-compressed timestep requires

constant space to store, since it contains only a single element from the stream’s uncertain domain.

A MAP-compressed timestep also requires constant time to process, since it is deterministic. Instead

of a matrix or a vector, the internal state of the Reg operator on MAP input is simply a number that

identifies the single set of states that the NFA is currently in. MAP approximation has a special

significance since the MAP sequence is the most common way to deterministically represent an

uncertain stream.

Thresholding compression uses a parameter T to prune/discard any temporal correlations (con-

ditional probabilities) v such that v < T . This approximation is shown in Figure 5.1(d). The

remaining values are normalized in order to maintain a consistent Markovian stream. Recall that

Lahar implements null suppression—meaning that it does not explicitly represent elements with

zero probability—so assigning zero probability to any element is equivalent to pruning the element

from the stream. Clearly, higher values of T produce more aggressively-compressed streams. T val-

ues of 0.5 or higher produce deterministic streams in which the most likely element at each timestep

has a normalized probability of 1.0. We discuss the trade-offs of various choices of T in Section 5.2.

5.1.2 Semantic Approximation: Rollup

In contrast to numeric compression, semantic compression is applied with an awareness of the

semantics of Markovian streams.

Rollup compression uses a concept hierarchy to produce materialized Markovian stream rollups.

These rollups represent the uncertain domain elements at a coarser level of granularity. For exam-

ple, consider the uncertain location domain shown in Figure 2.1(a): {Office1, Lab1, Lab2, HallA,

HallC}. One possible rollup compression on this domain is defined by a “Floor Plan” concept hi-

erarchy that groups all room locations into a single concept and all hallway locations into another.

The resulting rollup compression has the domain: {Room, Hallway}, as is seen in Figure 5.1(e).

Rollup views retain both the uncertainty and the temporal correlations from the underlying

Markovian stream, so they require quadratic space to represent and quadratic time to process. How-

ever, these costs are quadratic in the size of a smaller domain. Rollups thus achieve performance
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gains according to the degree to which they collapse together the elements of the Markovian stream’s

uncertain domain.

A rollup view is equivalent to a Markovian stream produced by inference on a model (e.g. an

HMM) defined at the granularity of the rollup. Thus rollup compression is lossless with respect to

the coarse-grained underlying model. A rollup view is not lossless, however, with respect to the

Markovian stream inferred using the original, fine-grained model.

To see this, consider the fine-grained office model in Figure 2.1(a), and suppose that the the

dotted door between HallA and HallC is locked (Bob has no key). Suppose further that Bob’s

location in this model is uncertain: we do not know for sure which side of the door Bob was on.

Any Markovian stream inferred using this model will assign zero probability to trajectories in which

Bob visits both Lab1 and Lab2, since Bob cannot walk through walls or through locked doors. Now

consider a rollup-compressed view in which all hallway locations (in this case, HallA and HallC) are

collapsed into a single conceptual entity called Hallway. The trajectory Lab1-HallA-HallC-Lab2,

which had zero probability in the uncompressed Markovian stream, is mapped to Lab1-Hall-Hall-

Lab2 in the rollup-compressed stream. This latter trajectory may not have zero probability in the

compressed stream, because the rollup compression discards correlations between entities that are

collapsed together (e.g. it discards knowledge of the locked door between HallA and HallC that

makes these locations negatively correlated in a single trajectory).

Rollup-compressed views are thus lossy with respect to fine-grained models, because some cor-

relation information is discarded by the compression. However, rollup-compressed marginal val-

ues are not affected, and thus rollup compression can be used in conjunction with independence

compression without incurring additional loss beyond that incurred by independence alone. The

combination of independence and rollup compression is particularly advantageous because it can

significantly reduce the size of the uncertain domain.

5.2 Experimental Evaluation

This section examines the impact of lossy compression techniques on both performance and the

precision of query results, demonstrating that these techniques can yield large performance gains

while altering result probabilities only minimally.
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5.2.1 Setup

[Data] Real-world Markovian streams are critical to this evaluation of Lahar’s approximations,

which focuses on empirical rather than worst-case accuracy. The test streams are inferred from

readings collected in the RFID Ecosystem, as described in Section 3.3.1. From over 6.6 million

tag sighting events we curated two data sets which labeled unambiguous and ambiguous. These

data sets are described further in Section 3.3. Each set contains five distinct RFID traces manually

annotated with detailed ground-truth location information, for a total of 2.2 hours of Markovian

streams (sampled at 1Hz).

The traces in both sets reflect a person walking around an office environment like the one shown

in Figure 2.1(a), entering and exiting various rooms for brief (1 minute) intervals. The Markovian

streams inferred from the unambiguous dataset contain significant uncertainty, but identify a single

most likely room during each in-room interval; in contrast, streams inferred from the ambiguous

dataset generally identify 2-3 most likely rooms with roughly equal probability. Temporal correla-

tions are thus stronger in the ambiguous data. More concretely the conditional distributions in this

data are less similar to independent distributions; the latter would include possible paths in which

the person “hops” between different rooms at different instants.

[Queries] In this chapter, we evaluate Lahar on a set of queries designed to highlight the

strengths and weaknesses of various compression techniques. We also evaluate the sensitivity of

these queries to Markovian stream ambiguity/correlations. These queries search for the room-entry

events present in the trace sets (specified using varying numbers of query links, according to the pur-

pose of each experiment). For simplicity we restrict the evaluation to fixed-length event queries—

these queries are more common and also more sensitive to correlations.

[Defining Error] Throughout this evaluation, we define error as the absolute difference between

the exact probability of a query and the probability as computed on an approximated stream. An

equally valid and interesting evaluation might compare query results on different compressed views

with respect to their fidelity to the underlying ground truth sequence. Such an evaluation confuses

two sources of imprecision, however: imprecision from the inference process and imprecision from

the compression process. For clarity, we us the inferred Markovian streams as the exact baseline.

As a point of reference, the error of randomly-chosen query probabilities in this framework is 0.5
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1 Link 2 Links 4 Links 8 Links

Original (D=966)

Rollup View 
(C=4)

Rollup View
(C=1)

57.37 ± 43.45 96.80 ± 68.70 391.4 ± 298.3 9924 ± 7356 

4.36 ± 1.80 6.37 ± 3.10 19.12 ± 10.39 256.3 ± 203.1 

3.60 ± 0.91 4.86 ± 1.20 12.64 ± 2.25 212.7 ± 10.9 

Query Length

Rollup

Milliseconds per stream timestep (INSTANTS query)

Figure 5.2: Performance of Lahar using compressed stream views to compute exact query results

for non-aggregated queries of varying lengths. For rollup views, the parameter C indicates the size

of the rollup domain; thus, a rollup view with C=1 is not useful, but represents an upper bound on

the performance benefits that can be achieved using rollup compression.

(the expected difference between two randomly-chosen values between 0.0 and 1.0).

5.2.2 Efficiency of Lossless Compression

Lahar can leverage compressed stream views to compute precise query results in two cases. First,

Lahar can compute precise results (with respect to a coarse-grained data model, as explained in

Section 5.1.2) using rollup-compressed views. Figure 5.2 shows Lahar’s performance on a rollup

view that reduces the stream’s uncertain domain from 966 discrete locations (individual rooms,

halls, etc..) down to 4 coarse-grained location types (offices, halls, stairs, and “other”). The 241-

fold reduction in domain size makes query processing 15-39 times faster (Figure 5.2 rows 1-2)—

the apparent mismatch between the magnitudes of these reductions reflects the fact that in this

experiment, the Reg operator was optimized to scale quadratically in the size of the active uncertain

domain (instead of the full uncertain domain). The active domain in the experiments in Figure 5.2

was roughly 20, which is consistent with the 15-39x speedups. The case of C=1 reflects a stream

with a domain size of one; while such a stream is not particularly useful, it provides an upper bound

on the magnitude of acceleration that an application can expect to achieve using rollup compression.

Second, single-link queries, such as the one in Figure 2.2(a), evaluated without temporal aggre-

gation (i.e. as INSTANTS queries but not EXISTS or COUNT) can be processed precisely on an

independence-compressed view. Assuming independence doesn’t affect these queries because they
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examine timesteps in isolation; however, if temporal aggregation is applied then these correlations

are again required to compute precise results. The independence approximation accelerates query

processing by approximately an order of magnitude, as can be seen in Figure 5.3.

5.2.3 Efficiency & Accuracy of Approximations

In this section, we examine in more detail the accuracy/performance tradeoffs incurred by Lahar’s

lossy approximations. We look first at the performance benefits of compression (Section 5.2.3), then

at the effects on result quality (Section 5.2.3).

Performance

The mean latency of Lahar’s Reg and Ex operators on various compressed stream views is shown

in Figure 5.3, computed over a set of five 4-link INSTANTS queries. Queries with different lengths

and temporal aggregation semantics show similar trends. Note that the y-axis is not in logscale, as

small timing differences appear more clearly on linear axes.

Figure 5.3 clearly demonstrates that Lahar can dramatically reduce processing time by leverag-

ing compressed stream views. Thresholded views accelerate performance by a factor of 2-7, de-

pending on the threshold. Independence- and MAP-compressed views achieve performance boosts

of one and two orders of magnitude, respectively.

The performance benefits of the independence- and MAP-compressed views stem directly from

their reductions to the dimensionality of the Reg operator’s state matrix. To see this, consider in

Figure 5.3 Reg performance on the thresholded stream with T=0.5; this stream is deterministic.

However, Lahar is able to process the independence view—which maintains full uncertainty within

each timestep—2.3 times faster than it processes the “deterministic” thresholded stream, despite the

fact that independence view is 1.45 times larger than the thresholded view! Because the determinism

of the thresholded view is a side-effect, but not a guaranteed property, of the thresholded view,

Lahar must still process it using a 2D state matrix Q that is an order of magnitude slower to update

than the 1D state vector used to process the independence view. The smaller physical size of both

independent and aggressively-thresholded streams is only a secondary factor contributing to the

lower latency of processing these views.
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Figure 5.3: Unaggregated Reg and Ex operator performance on various compressed stream views.

Performance on EXISTS and COUNT semantics is similar.

Result Quality

Lahar’s performance-improving compression techniques are worthwhile only if they produce query

results that can be used by applications. As we discuss in Section 5.2.3, compressed Markovian

stream views can differ significantly from the original stream; however, applications care not about

these stream-level differences but about their effects on query results. In this section we demonstrate

that, empirically, Lahar can compute high-quality query results on lossily-compressed Markovian

streams. Real-world RFID data is critical to this empirical evaluation.

The quality of Lahar’s query results is measured in terms of the absolute difference between

result probabilities computed on approximate and original Markovian streams.

Figure 5.4 shows the query-level probability differences on a single 4-link event query aggre-

gated using EXISTS semantics (left column), COUNT semantics (right column), and using no tem-

poral aggregation (middle column). The top and bottom row of the figure show query error on the

unambiguous and ambiguous trace sets, respectively. For EXISTS and INSTANTS queries, the

y-axis (error) is the average difference in query probability. For COUNT queries, which produce dis-

tributions over a count value, the error is computed as the Earth Mover’s Distance (EMD) between

these distributions [102]. Intuitively, an EMD value of n means that the count estimates of the two

distributions differ by n. Finally, the quartiles of the INSTANTS plots (Figure 5.4 middle column)
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Figure 5.4: Differences in query result probabilities computed on exact and compressed Markovian

streams. Differences are shown for each compression technique on a set of five 4-link queries with

varying temporal aggregation semantics (Figure columns) and on two trace sets (Figure rows).

include only errors incurred on instants in which query probabilities are non-zero, since the vast

majority of timesteps do not match the query and thus generate trivially-produced errors of zero

magnitude. If plotted, obscure the magnitudes of the errors on the small number of timesteps when

the query is actually satisfied with some probability.

Figure 5.4 shows that overall, differences in query results on compressed views are low. As

thresholds increase, these differences naturally increase (on all types of data and temporal aggrega-

tion). The differences incurred by independence- and MAP-compressed views are less predictable,

however, and since these are the views that yield the best performance, we look at these errors in

more detail below.

Independence views ignore the temporal correlations in a Markovian stream. In these data sets,

this generally results in overestimation of event query probabilities. Although the magnitudes of

these individual over-estimates are small (Figure 5.4(b), (e)), temporal aggregation of many of these

over-estimated values can result in larger differences (Figure 5.4(a), (c), (d), and (f)).
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In addition to computing potentially over-estimated event query values, independence also

causes COUNT queries to over-count. we verified that the EMD error shown in Figure 5.4(c) and (f)

is indeed caused by over-counting. The over-counting error is higher on the unambiguous trace set

(Figure 5.4(c)) than on the ambiguous trace set (Figure 5.4(f)) because the event query is satisfied

in the unambiguous trace set with higher probability—causing Lahar to have a higher confidence in

its over-counted values.

MAP views replace a Markovian stream distribution with the single most likely (deterministic)

sequence in the distribution. The quality of query results on these views is thus dependent on

the level of uncertainty in the data; highly uncertain datasets are poorly represented by a single

estimate. In practice we found that even our unambiguous trace set contained enough uncertainty

that MAP error varied widely across a wide range of queries; thus we abstain from drawing further

conclusions about MAP, except to note that the unpredictability of its error is a potential liability.

A Lahar administrator must carefully identify the datasets on which MAP views can be accurately

used.

Stream-Level Error

As mentioned in the previous section, approximated Markovian streams can differ significantly from

the original streams. We quantify these differences at the distribution (stream) level by computing

the EMD distance between the pairwise joint distributions of each stream. These differences, com-

puted over our entire RFID archive, are shown in Figure 5.5. Interestingly, while these stream-level

differences and the query-level differences shown in Figure 5.4 follow the same trends, the mag-

nitudes of the stream-level differences are much greater (COUNT magnitudes are not comparable).

We surmise that the reason these differences do not propagate up to the query/application level is

that our techniques are often trimming noise from the stream (e.g. thresholding may drop errant

tuples). This means that, perhaps counterintuitively, the approximations studied here may in some

cases improve Markovian stream quality (with respect to ground truth), although we do not test this

hypothesis in our experiments.
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Figure 5.5: Distribution-level differences between Markovian streams and lossily-compressed

views, computed over our entire RFID-based trace archive. Stream difference is computed using

the Earth Mover’s Distance on the joint distributions over each pair of consecutive stream timesteps.

5.3 Conclusions

In this chapter, we studied the performance/accuracy trade-offs of several standard approximations

of Markovian streams, in an RFID-based location tracking domain. This study is the first to per-

form a cost/benefit analysis on imprecise stream models. We found that the trade-off space is rich,

affording many opportunities for query acceleration with minimal impact on query error. We char-

acterized query error on event queries and aggregated event queries, including count- and existence-

based temporal and cross-stream aggregations. A detailed analysis of both performance and ac-

curacy revealed that high-performance applications are well-served by a combination of MAP and

independence models, while the needs of high-accuracy applications are best met by threshold- or

rollup-based model.



73

Chapter 6

MARKOVIAN STREAM LINEAGE

While the previous two chapters have focused on making Lahar more efficient, we turn our

focus in this chapter to making Lahar more expressive. In particular, we motivate the need for

lineage queries on Markovian streams, and describe a set of techniques used by Lahar to support

these queries.

Thus far we have focused primarily on event queries. Event queries are specified as NFAs, and

include questions such as, “When did the crash cart move from a sterilization unit into the ICU?”, or

“Find all occurrences of the phrase ‘overhaul health care’.” Recall that the output of an event query

is a list of Boolean values, one per instant of the input stream, specifying whether the query pattern

is satisfied at that instant. In practice, because Lahar evaluates event queries on imprecise streams,

the output is also imprecise. Thus Lahar answers event queries by producing a list of pairs (i, pi),

where i identifies an instant in the input stream and pi identifies the probability that the event query

is satisfied at instant i. An example of this output is shown in Figure 6.1. This output format is the

same for all event queries, independent of the complexity of the pattern being matched.

Although event queries are powerful, they identify only the instants at which a query pattern

is matched. They do not provide any information about how the input stream matched the pattern,

when the pattern match may have begun, or which domain elements within the input stream caused

the pattern to be matched. Many applications require this information, to determine for example

which sterilization unit a crash cart came from, or how long it took to reach the ICU; or, in an audio

domain, to retrieve the value of X in an occurrence of the phrase “X dollar project” or to retrieve

spoken quotations between the words “quote” and “unquote”.

Answering non-Boolean queries about how and when an event pattern was matched requires

examination of the lineage of an event query. Informally, event query lineage is a record of how an

event query is matched in a particular input stream, including information about when each query

match begins; what subsequence of the input stream corresponds to the match; and what stream
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Figure 6.1: Output of an event query. The x-axis shows the instant index and the y-axis shows the

probability with which the event query is matched at each instant i.

(domain) elements activate which query NFA transitions, and at what times. Figures 6.2(a) and

(b) show an example event query and Markovian stream, respectively, while Figure 6.2(c) shows the

lineage that describes the match of the query in (a) at instant i4 of the input stream in (b). The lineage

sequences in Figure 6.2(c) show that the query match began at either instant i0 or i1. The lineage

sequences further identify the input stream sequences that cause the query match (one example is the

sequence (Office1, HallA, HallA, HallB, Lab2) with probability 0.308), and the state that the query

NFA is in after each transition (for the input sequence just listed, the NFA state sequence is (s1, s2,

s2, s2, s3). We defer a formal definition of lineage and description of Figure 6.2(d) to Section 6.2.

Note that lineage is sufficient to reconstruct query execution: that is, given an event query’s lineage,

the original input stream contains no additional information relevant to the query.

The primary challenge to computing Markovian stream lineage is its size, which can grow ex-

ponentially in the length of the input stream. Recall that a Markovian stream of length N contains

an exponential number DN of unique sequences. Each of these sequences may generate a unique

lineage sequence, like those shown in Figure 6.2(c), for each instant 0 ≤ i ≤ N in the stream.

Enumerating the DN lineage sequences that describe a single query match is intractable, and doing

so for each query match in an input stream is even more unrealistic. Lahar addresses the exponen-

tial size of lineage by computing and storing lineage using a compact representation that leverages

the Markovian nature of both the input stream and the lineage sequences. Intuitively, Lahar rep-
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resents lineage using a Markovian structure similar to a Markovian stream, in which each element

is augmented to represent not only a domain element from the input Markovian stream, but to also

represent the state that the query NFA is in after processing the domain element. Figure 6.2(d)

shows an example of this structure, which we call a lineage graph. Note that the lineage graph is

not simply a subset of the input Markovian stream; lineage graph elements are augmented with NFA

state information which is specific to a particular NFA and is thus not found in the input itself. We

define the lineage graph structure formally in Section 6.2, but note here that its Markovian structure

allows it to compactly represent an exponential number of lineage sequences for each instant in the

input Markovian stream.

Although Lahar can efficiently compute and compactly represent an exponential number of lin-

eage sequences, enumerating all of these results for applications is neither feasible nor desirable.

Instead, Lahar takes a top-k approach that has become standard in systems that handle uncertain

data [29, 113, 93]. In the context of Markovian stream lineage, the top-k approach allows applica-

tions to specify an integer value k, and obliges Lahar to enumerate as output only the k most likely

lineage sequences associated with each query match. In most cases, a small value (less than 10) of

k is sufficient for applications to obtain meaningful results, as we demonstrate in Section 6.5. Enu-

merating only the k most likely lineage sequences from a lineage graph requires that Lahar support

ranked enumeration, which it does using a known variant of the Viterbi algorithm [41], described in

Section 6.3.2.

In many cases, applications are interested in only a subset of the elements in each lineage se-

quence. An application asking the query in Figure 6.2(a), for example, may be interested only in

knowing which office a person visited before entering Lab2, without caring about the sequence

of hallways the person visited between the office and lab. In this example, the desired result

is a set of lineage sequences in which elements corresponding to the Hall and Lab2 locations

have been projected away, leaving only the elements associated with the Office predicate. The

first lineage sequence in Figure 6.2(c) in this case projects down to a single-element result se-

quence (i1:Office2(s1)), while the second and third sequences project onto the same final result,

(i0:Office1(s1)). Similarly, an application interested only in when a query match begins may project

away all elements of lineage except for the first timestamp of the match.

Importantly, projection of lineage sequences must occur before top-k path enumeration, which
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requires that Lahar support projection internally: Projection cannot be left to applications. Consider

the top-1 lineage sequence in Figure 6.2(c), in which Hall and Lab locations are projected away. Pro-

jection performed on the top-1 result (the first sequence in Figure 6.2(c), with probability 0.315) will

yield (i1:Office2(s1)). When projection is computed before top-k sequence enumeration, the second

and third lineage sequences in Figure 6.2(c) project down to the same final result, (i0:Office1(s1)),

which has probability 0.308+0.0385=0.3465. This result is the correct top-1 projected result; note

that it is different from the result computed by performing projection after top-k enumeration.

Lahar supports projection on lineage graphs using several different algorithms, which we de-

scribe in Section 6.4. Intuitively, these algorithms remove edges of the lineage graph corresponding

to elements that are to be projected away, while maintaining just enough information to recreate

appropriate connections between the remaining sequence elements. We introduce a basic algorithm

that executes many scans of the lineage graph, followed by two optimized versions that each require

only a single pass over the lineage graph. All algorithms produce as output a modified version of

the lineage graph, allowing top-k enumeration to be executed after projection with no modifications

to the enumeration algorithm.

We evaluate the performance cost of constructing lineage, projecting it (in 2 different ways),

and of computing the top k lineage paths; we also evaluate the quality of top-k answer enumeration

for small k, all on 2 real-world data sets. We demonstrate that constructing a lineage graph and

enumerating the top k lineage sequences adds a query processing overhead of 3x or less using our

single-pass algorithms, compared to standard Boolean query processing without lineage. We further

demonstrate, through examples, the importance of supporting projection on a lineage graph, and we

demonstrate that the overhead incurred by processing such projection is manageable and can be

minimized by selecting an appropriate projection algorithm.

The Markovian stream lineage introduced in this chapter differs fundamentally from the lineage

used in imprecise data management systems [24] such as Trio [6,127] or prDB [63] because it is lin-

eage for sequence (event) queries; event query lineage cannot be captured by the Boolean formulas

used in existing systems. Similarly, lineage definitions and algorithms used in sequential data pro-

cessing systems such as SASE [5] or the work of Shen et al. [111] are inadequate. SASE tracks the

lineage of event queries on deterministic sequences, but defines lineage as subsequences of the input

(as opposed to this thesis which defines lineage as subsequences augmented with NFA state informa-
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tion), and it does not handle imprecision. The work of Shen et al. takes an approach similar to SASE

and handles imprecise streams but does not handle any correlations between timesteps, including

Markovian correlations. The only work to study event query lineage on Markovian streams is recent

work by Kimelfeld and Ré [68], which outlines a set of primarily negative results. Their work, how-

ever, identifies a set of Markovian stream transducers whose output is tractable. These transducers

can capture all of the real-world lineage queries motivating our work on Lahar, so in this chapter

we focus on such transducers. We develop and evaluate the first algorithms for computing tractable

lineage (the work of Ré and Kimelfeld does not provide any algorithms for computing lineage) and

enumerating top-k lineage paths. Additionally, in contrast to previous work, we demonstrate the

importance of supporting projections and provide the first algorithm for doing so.

In the rest of this chapter, we first provide an intuitive overview of lineage and a set of Marko-

vian stream lineage queries that we use as running examples through the chapter, and also in our

evaluation (Section 6.1). We then formally define Markovian stream lineage and its representation

in Lahar in Section 6.2. Section 6.3 introduces algorithms for constructing lineage and computing

the top k paths for a query match, while Section 6.4 introduces algorithms for performing projec-

tion on lineage. We evaluate the performance of these algorithms in Section 6.5 and conclude in

Section 6.6.

6.1 Motivating Scenarios, Overview, & Summary of Contributions

In this section, we outline a set of example queries, provide an intuitive overview of Markovian

stream lineage, and finally summarize the contributions of this chapter.

6.1.1 Motivating Lineage Queries

Figure 6.3 shows a set of queries used here as running examples, and which we also execute on

real-world data as part of our experimental evaluation. These queries are written to detect various

movements of a fictional character Bob as he moves throughout an office building. These queries

are all satisfied several times in our real-world RFID dataset, described further in Section 6.5. They

are representative of queries that might be used in a hospital or home to detect movements of people,

equipment, or objects.
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Our four representative event queries are labeled QA, QB, QC , and QD, and are shown in Fig-

ures 6.3(a), (b), (c), and (d), respectively. Each frame of the figure shows the DFA that describes the

event query, an English-language description of the sequence detected by the query, and a schematic

diagram of what the query’s lineage might look like on a real-world input stream (not pictured).

These queries are useful for applications trying to learn general usage patterns for a building, or

trying to learn about the daily movement patterns of individuals. We selected these queries in par-

ticular for two reasons: First, they each yield lineage graphs with different characteristics, allowing

us to demonstrate the effects of various lineage properties on query performance. Second, elements

of the lineage graphs of each of these queries can be projected in various ways to support novel

analyses, allowing us to demonstrate both the utility and the performance of our lineage projection

algorithms.

Two projection-based variations of each basic query QA, QB, QC , and QD can be seen in Fig-

ure 6.3(e), (f), (g), and (h), respectively. Projection-based variations of each basic event query QX

are labeled QX1 and QX2. Each frame of Figures 6.3(e-h) shows English-language versions of the

two projection-based variants of the corresponding event query, along with a diagram of what the

query’s lineage looks like after the appropriate projection has been applied. Query DFAs are not

redrawn because they are the same as the DFAs for the basic event queries.

Consider as an example queries QA1 and QA2, both of which are projected versions of QA (“Find

all times when Bob went from one room to another”). Query QA1 asks about the identity of the

rooms visited by Bob, but projects away all information about the halls Bob used to move between

the rooms. This projection is reflected in the lack of lineage elements in the projected graph corre-

sponding to Hall elements. Query QA2 represents the inverse projection of QA1: it asks about the

path Bob took between two rooms, but projects away the identity of the rooms themselves. As a

final example, consider QC1 which projects away all elements of the lineage graph, leaving identi-

fiers only for the start and final instants of the query match. Such aggressive projection is useful for

applications wishing to determine the length of a query match, which in the case of QC1 represents

the length of time that Bob spent in room A. We define more precisely in Sections 6.2 and 6.4 the

types of lineage queries and projections supported by Lahar.
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6.1.2 Intuitive Overview of Lineage

Intuitively, we define the lineage of a regular query on a Markovian stream as a set of lineage se-

quences. Each lineage sequence indicates a unique subsequence of elements in the input Markovian

stream that satisfy the query, along with the path of transitions through the query DFA that are trig-

gered by this sequence (starting with the DFA start state and ending at a final state). An example

DFA query Q, input Markovian stream M, and lineage of Q on M (for instant i4) are shown in Fig-

ures 6.2(a), (b), and (c), respectively. Each lineage sequence comprises a domain element from the

input stream and a DFA state. The set of lineage sequences for a particular instant i together indicate

the set of all possible ways in which the event query is satisfied on the input stream at instant i.

The lineage definition we propose here is a natural definition. It is analogous to “how” lineage in

a relational setting [24] because it identifies not only the set of input stream subsequences that match

a query, but also the operations (DFA edge transitions) used by each subsequence to create a query

result. This definition of lineage is equivalent to the output of an “indexed s-projector” as defined in

recent work by Kimelfeld and Ré [68], who identify this lineage format as the only tractable type of

the many alternatives they explore.

6.1.3 Summary of Contributions

The lineage work in this thesis extends the results of Kimelfeld and Ré in two ways: first, by

identifying and supporting a broader class of projections than the indexed s-projectors defined

by Kimelfeld and Ré, and second, by providing and evaluating algorithms for producing lineage.

Specifically, Section 6.4 demonstrates support for arbitrary projections on Markovian stream lin-

eage, while the work of Kimelfeld and Ré is restricted to projections of lineage prefixes and suffixes

only.

Concretely, the contributions of this chapter are as follow:

1. A definition of lineage for event queries on Markovian streams, and a compact lineage graph

representation for this lineage.

2. Algorithms for constructing lineage graphs and enumerating the top-k lineage sequences for

a query match, in time linear in the stream length.

3. A definition of lineage projection, and quadratic algorithms (in the stream length) for applying
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projection.

4. An experimental evaluation of our lineage processing algorithms on real-world streams in-

ferred from RFID data.

6.2 Defining Lineage

In this section, we define the set of queries for which Markovian stream lineage and provide a formal

definition of lineage. We also introduce a compact data structure, called a lineage graph, used to

represent lineage efficiently. Finally, we outline a set of measures used to characterize the event

query lineage; these characteristics are used to describe lineage in our experiments (Section 6.5).

6.2.1 Unambiguous DFA Queries

As shown by Kimelfeld and Ré [68], Markovian stream lineage is in general intractable to compute

for arbitrary NFAs. However, we identify a class of queries that are common in practice, and for

which efficient computation is possible. This is the class of unambiguous, DFA event queries, and

these are the only queries we consider in the remainder of this chapter.

DFA queries are those whose finite automaton representations are deterministic—that is, they are

expressed as DFAs rather than NFAs. Unambiguous queries are queries for which, on a deterministic

input stream, the longest and shortest substrings that match the query at a given instant are the same.

For example, the query pattern (RoomA, (¬RoomB)*, RoomB), which searches for instances of a

person first in RoomA and then later in RoomB, does not meet the definition of unambiguous. On

the deterministic input stream aaab, for example, the longest matching substring ending at instant 3

is ’aaab’, while the shortest is ’ab’. However, this query expression can be rewritten into a similar

query that is unambiguous: on the same input stream, the rewritten query (RoomA, (¬(RoomA

∨ RoomB))*, RoomB) yields the unambiguous match ’ab’. By definition, fixed-length queries

are unambiguous. DFAs beginning with a repeated pattern, such as RoomA*, are not (other DFA

structures can also cause ambiguity).

We introduce these constraints to achieve a definition of Markovian stream lineage that is as

expressive as possible but also yields efficient algorithms for construction, projection, and top-

k enumeration of lineage sequences. We require the DFA property because, as Kimelfeld and
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Ré [68] demonstrate, Markovian stream lineage cannot be tractably computed for arbitrary NFA

event queries. The unambiguous-query property ensures that each deterministic sequence encoded

in a Markovian input stream produces only one lineage sequence (the DFA property is also required

to achieve this effect). We use this property in Sections 6.2.2 and 6.2.3 to develop compact, Marko-

vian structure to represent lineage. We note from experience that the vast majority of real-world

event queries are naturally expressed as unambiguous DFAS; furthermore, most queries that do

not have both properties can be easily rewritten into DFA queries with similar semantics and no

ambiguity.

6.2.2 Formal Lineage Definition

We first define Markovian stream lineage formally in a deterministic setting, and then broaden the

definition to cover imprecise (specifically, Markovian) streams. In both settings, recall that we define

lineage in terms of a single stream instant i. In a deterministic setting, the input stream is a single

sequence of domain elements (d0, . . . dN). The lineage LM
Q (i) for input stream M, unambiguous DFA

event query Q, and instant i is either empty, or is a single, contiguous sequence l = (is, ei−n, . . . , ei)

comprising a list of 〈 index, domain-element, DFA-state 〉 triples e preceded by a single element is

indicating the index at which the sequence begins. The index is is redundant with the index contained

in the element ei−n, but is required for performing projection, which we discuss in Section 6.4.

The number n is the length of the lineage sequence; the value of n can be as small as 1 or as

large as the length N of the input stream, depending on the input stream and query. Because each

sequence element e is a triple containing domain element identifiers and DFA states, the lineage

sequence l identifies both the segment of the input stream that matches the query at instant i, as

well as the DFA state transitions triggered by each element in the segment. Note that both the DFA-

query constraint and the unambiguous-query constraint are required for this definition of lineage

to hold, even in a deterministic setting. If a query violates either constraint, it is possible for the

lineage at instant i to comprise more than one sequence of elements e. We will see shortly that our

compact representation of lineage in a non-deterministic setting depends on the property that each

deterministic input produces at most a single lineage sequence for each stream instant.

This definition of lineage in a deterministic setting generalizes straightforwardly to an imprecise,
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Markovian setting. In the latter, the lineage LM
Q (i) for instant i has two parts: a set of j lineage

sequences {l0 . . . l j}, and a set of probability assignments {p(l0), . . . p(l j)} defining a probability p(l)

for each sequence l in the set. The probability p(l) assigned to a lineage sequence l is the sum of

the probabilities of all sequences in the input Markovian stream that generate lineage sequence l (by

definition, each sequence through the input stream can yield at most one lineage sequence ending

at each instant). Each individual lineage sequence l is defined as in the deterministic case. The

number of lineage sequences j can range from zero up to the number of unique sequences in the

input stream.

The lineage sequences in a set have three important properties: First, they do not define a proper

probability distribution, because they do not necessarily sum to one. Their sum is the probability

that the query is satisfied at instant i in the input stream. Second, they are unique and disjoint.

Finally, because the input stream on which lineage is defined is Markovian, the lineage sequences

in a set are also Markovian—that is, they can be compactly represented in a Markovian structure,

which we discuss shortly. Figure 6.2 shows an example of lineage in an imprecise, Markovian

setting. Figures 6.2(a) and (b) show an unambiguous DFA query and a Markovian input stream,

respectively, while Figure 6.2(c) shows the set of lineage sequences that represent the lineage of the

given query on the given input at instant i4. For simplicity, Figure 6.2(c) shows the index value of

each 〈index, domain-element, DFA-state〉 triple only once per instant, above the set of elements that

share the index value. We discuss Figure 6.2(d), a compact representation of this lineage, shortly.

6.2.3 Lineage Graphs

We now introduce a compact representation of lineage, which we call the lineage graph or equiv-

alently, lineage stream. The lineage graph is a Markovian structure that can efficiently encode the

lineage of a given query for every instant in a given input stream simultaneously. Given a Markovian

stream M and a query Q, the lineage graph of Q on M is a directed acyclic graph (DAG) 〈V M
Q , E

M
Q 〉,

comprising vertices v ∈ V M
Q and edges e ∈ EM

Q . The lineage graph may be disconnected, and is writ-

ten as simply 〈V, E〉when the query and input stream are clear from context. Figure 6.2(d) shows the

lineage graph for the query and input stream shown in Figures 6.2(a) and (b), respectively. Dashed

vertices and edges in this figure are not a part of the lineage and will be addressed in Section 6.3.
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Figure 6.2: (a) Unambiguous DFA query Q. (b) Input Markovian stream M. (c) The set of lineage

sequences describing the lineage for instant i4. (d) The lineage graph describing the lineage of query

Q on input stream M, for all instants (only instants i3 and i4 have non-empty lineage).

Each path in this graph that starts at a root (black) node and ends at a leaf (white) node represents a

unique lineage sequence, as defined previously.

Note that all edges in the lineage graph point backwards in time, in contrast to Markovian stream

edges which are directed forward in time. Although the edge direction does not affect the semantics

of the lineage graph, backward-pointing edges facilitate backwards-traversal of the graph, which is

useful for enumerating all lineage sequences ending at a particular instant.

We define the lineage graph by construction. Recall that each element in a lineage sequence is

defined as a triple: e = 〈i, d, s〉 where i is an instant index, d is a domain element, and s is a DFA

state. For each such element appearing anywhere in a set of lineage sequences, a single node vs
d(i) is

added to the lineage graph. Thus the lineage graph contains at most one node per sequence element

e (i.e. it is deduplicated). For example, the lineage sequences starting at instant i0 in Figure 6.2(c)

share a first element e = 〈i0,Office1, s1〉. In the lineage graph shown in Figure 6.2(d), the node
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vs1
O f f ice1(0) represents the first element in both sequences.

An edge is added to the lineage graph connecting node vs′
d′(i + 1) to node vs

d(i) if the two associ-

ated elements e = 〈i, d, s〉 and e′ = 〈i + 1, d′, s′〉 are consecutive in any lineage sequence in the set.

The probability assigned to such an edge is the probability of the corresponding edge in the input

Markovian stream, determined by the combination of instant index and domain element. For exam-

ple, the lineage graph edge from node vs2
HallA(1) to vs1

O f f ice1(0) in Figure 6.2(d) has probability 0.55,

because 0.55 is the probability of the edge connecting the Office1 element at instant i0 to the HallA

element at instant i1 in the input stream (Figure 6.2(c)). As with lineage graph nodes, edges are

deduplicated: Two lineage graph nodes can be connected by at most a single edge, regardless of the

number of times they appear consecutively in the enumerated set lineage sequences. Note that a sin-

gle Markovian stream edge may be associated with multiple edges in the lineage graph, connecting

nodes associated with different DFA states (this does not occur in the scenario of Figure 6.2).

In order to facilitate enumeration of all lineage sequences ending at a given instant i, the lineage

graph contains an additional “final” node v f inal(i) for each instant i at which any lineage sequence

ends. Edges with probability 1.0 connect this final node to any nodes associated with instant i and

associated with an accepting (final) DFA state. In Figure 6.2(d), final states are drawn in black and

are connected to nodes associated with s3, the accepting state of the DFA in Figure 6.2(a).

Similarly, the lineage graph contains a “start” node vstart(i) for each instant i at which any lineage

sequence begins. These start nodes are connected to other nodes at instant i that are associated with

DFA states reachable from the start state (e.g. state s1 for the DFA in Figure 6.2(a)). In Figure 6.2(d),

start nodes are drawn as small white circles. The probability assigned to an edge out of a node vs
d(i)

into start node vstart(i) is the probability that domain element d is true at instant i (according to the

input Markovian stream). Note that this probability is a marginal probability and not a conditional

one: it does not depend on the value of the previous element in the stream. Start nodes represent

the is prefix of each lineage sequence as defined in Section 6.2.2, and they are necessary in order

to mark the instant at which a query match begins once projection begins (discussed in the next

section).

The Markovian nature of the input stream, combined with the DFA and unambiguous-query

restrictions, guarantee that any set of lineage sequences can be compactly represented in this manner.

By contrast, an arbitrary set of lineage sequences not adhering to the definition in Section 6.2.2 might
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be represented only by a graph that also encodes additional sequences not present in the original set,

rendering the graph useless as an encoding of the original set.

As noted previously, the lineage graph is a compact encoding of the lineage for all instants of

an input stream, for a given query. Recall that the lineage LM
Q (i) for instant i is a set of lineage

sequences along with a probability for each: the sequences in this set are precisely the sequences

that are rooted at v f inal(i) of the lineage graph, and the probability of each sequence is the product

of the probabilities of all lineage graph edges participating in the sequence. Because 〈V M
Q , E

M
Q 〉 is a

DAG, each set of paths is finite and enumerable; however, although each set of lineage sequences is

compactly represented in the lineage graph, the number of paths in any set may be exponential in the

length of the input stream. Note that, while the lineage graph is defined for an entire query/stream

pair, lineage is defined in terms of a particular instant: lineage L(i) is a set of sequences that describes

all possible histories resulting in a query match at instant i.

As an example, the lineage graph in Figure 6.2(d) contains non-empty lineage for instants i3

and i4 of the input stream. The lineage LM
Q (3) is the set of all paths that begin at the final (black)

node. In this case there is only one such path, which spans instants 0 through 4, and has probability

(1.0*0.4*0.2*0.4*1.0) = .032. The lineage LM
Q (4) for instant five includes three paths, two of which

end at instant 0 and one of which ends at instant 1. Note that, although the example lineage graph in

Figure 6.2(d) contains at most one lineage node per Markovian stream entry, in general the lineage

graph may contain q nodes associated with a single domain element at a given instant, where q is

the number of states in the query DFA.

We describe algorithms for constructing lineage graphs in Section 6.3.

6.2.4 Characterizing Lineage

A lineage graph is a complex structure. Through our work with real-world lineage, we have iden-

tified several characteristics of lineage that have a significant impact on lineage query performance

and quality. We outline these characteristics here to provide a vocabulary for discussing lineage.

The effects on queries of varying these characteristics are demonstrated in Section 6.5.

Size: We define the size of a lineage graph as the number of nodes. Larger lineage graphs are

produced by queries that are more frequently satisfied, and/or are matched by longer subsequences
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of the input stream. Figure 6.3 shows examples of queries with differently-sized lineage graphs.

For the remainder of this chapter, we call query QA in Figure 6.3(a) a large-lineage query (7422

nodes); queries QB and QC in Figure 6.3(b) and (c) medium-lineage queries (1371 and 1885 nodes,

respectively); and QD in Figure 6.3(d) a small-lineage query (only 175 nodes). We describe the

real-world input streams on which these lineages were constructed in Section 6.5. We use the labels

’large’, ’medium’, and ’small’ only to facilitate discussion. As we demonstrate in Section 6.5, the

size of a lineage graph affects query performance, with large lineage graphs generally incurring

higher total I/O and CPU costs during generation of the lineage graph.

Connectivity: We define the connectivity of a lineage graph as the average degree of each of its

nodes. Here, degree is the total number of edges—either incoming or outgoing—associated with a

node. Highly-connected lineage graphs are generally produced by sequences or loops of unselective

predicates. Queries QA and QB in Figures 6.3(a) and (b) yield highly-connected lineage graphs due

to the presence of the unselective Hall predicate, while queries QC and QD in Figure 6.3(c) and

(d) yield poorly-connected lineage graphs. Connectivity is important for understanding the cost of

projection, with the cost of projection generally increasing with connectivity.

Skew: In contrast to size and connectivity, we define skew in terms of a lineage graph together

with a top-k value (an integer k). Skew measures the (weighted) fraction of lineage sequences

that are captured in the top-k set for a given query match; thus, skew is defined relative to the

probability of a given query match, and can be high even when the probability of the query match

is very low. Consider an event query Q that is satisfied at instant i of Markovian stream M with

probability p(Q[M]@i). The sum of the probabilities of all lineage sequences ending at instant i

equals p(Q[M]@i). The skew of this particular query match is the sum of the probabilities of the

top k lineage sequences, divided by p(Q[M]@i). Thus, skew values fall in the range (0.0, 1.0]. A

value of 1.0 indicates that all lineage paths are contained in the top-k set (for each instant), while

decreasing values indicate that smaller fractions of the lineage mass lies in the top-k set. High

skew values reflect a poor diversity of lineage sequences, usually because one or two sequences

have significantly higher probabilities than the rest. Viewed from a different perspective, skew is

a measure of the utility of a particular value of k for a given stream and query: high skew values

indicate that applications can indeed get meaningful information by examining only the k most

likely likely lineage paths, possibly saving them the cost of enumerating a larger number of paths.
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We define skew formally over an entire lineage graph: skew(〈V M
Q , E

M
Q 〉, k) =

∑N
i=0(
∑k

j=1(K(i, j)))∑N
i=0(p(Q[M]@i))

where K(i, j) refers to the probability value of the jth most likely lineage sequence resulting in a

query match at stream instant i, and N is the length of the input Markovian stream. As an example,

consider the three lineage sequences in Figure 6.2(c), which together describe the lineage for the

query in Figure 6.2(a) at instant i4 of the input stream in Figure 6.2(b). For k=1, the skew at instant

i4 is
0.315

0.315 + 0.308 + 0.0385
= 0.476. For k=2, the skew increases to

0.315 + 0.308
0.315 + 0.308 + 0.0385

=

0.942.

In the context of lineage, skew is a positive feature. High skew values indicate to applications

that the value of k is sufficient, and can possibly even be reduced to improve performance; low (poor)

skew values, on the other hand, indicate to applications that the value of k should be increased. As

we will demonstrate in Section 6.5, skew is a useful tool for measuring of the effect of projection

on lineage graphs.

6.3 Constructing Lineage

In this section, we first briefly describe a straightforward but intractable algorithm for constructing

Markovian stream event query lineage. We then introduce a novel, tractable algorithm with running

time linear in the length of the input stream.

6.3.1 Naı̈ve Construction Algorithms

Intuition suggests that a natural way to construct lineage for DFA queries on Markovian streams

is to simply adapt the standard Markovian stream DFA processing algorithm for this purpose. The

standard (Boolean) algorithm is described in Section 2.2.2. At a high level, it is a single-pass al-

gorithm that iteratively updates a two-dimensional probability distribution Q, using the correlations

linking each consecutive stream instant. Each row of Q corresponds to a set of DFA states, and

each column corresponds to a domain element d ∈ D; entry Q(i, j) is a number between 0 and 1,

indicating the probability that the query DFA is in the ith set of states, and that the “true” value of

the last stream instant is the jth domain element (Figure 2.4). For reasons of space we omit details

of the algorithm used to update Q; these details can be found in earlier papers on Lahar [94,73], and

also in Chapter 2.
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To compute lineage, the natural extension of this technique is to augment the distribution Q

with a third dimension, which contains a value for every possible lineage sequence. This allows the

processing algorithm to track in memory not only query match probabilities as before, but also to

construct and track the lineage sequences associated with each query match, including projections.

This technique of extending the distribution Q with a third dimension to track additional state has

previously been used to compute aggregations over regular query matches [73], as described in

Section 2.3.1. The details of the extension are similar in this case.

The clear problem with this approach is that, for many queries, the number of possible lineage

sequences grows exponentially with the length N of the input stream, quickly rendering Q too large

to process. Indeed, the standard Boolean event query processing algorithm is efficient precisely

because, by exploiting the Markov property of its input streams, it is able to ignore exponentially-

sized history; it is thus not surprising that the algorithm becomes intractable once it must track all

possible histories (lineage sequences). However, for queries whose lineage sequences are both small

and bounded, this approach can work very well. Such queries include short, fixed-length queries

(i.e. queries whose DFAs include no loops and only a small number of states).

A second naı̈ve approach to lineage construction is to enumerate each deterministic sequence

represented in the input Markovian stream, construct lineage separately for each, and then take the

union of the resulting lineage elements. In this case, the probability of a particular lineage sequence

is the sum of the probabilities of all deterministic paths that generate the sequence. This approach

is clearly intractable for any query, because the number of deterministic sequences that must be

enumerated is O(DN), which is exponential in the length N of the stream.

6.3.2 Linear-Time Lineage Construction

The lineage graph defined in Section 6.2.3 exhibits the Markov property. By exploiting the Markov

properties of both the input stream and lineage graph, Lahar is able to generate the lineage graph

〈V M
Q , E

M
Q 〉 for input Markovian stream M and query Q using a linear-time algorithm that performs

two passes over the input stream. This algorithm is described in this section. The number of paths

through this lineage graph that contribute to the lineage LM
Q (i) of a query match at a particular instant

i may be exponential in the length of the input stream: Even though the lineage graph compactly
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represents these paths, enumerating them can be costly. For this reason, Lahar supports enumeration

only of the top k paths associated with each LM
Q (i). The algorithm for converting a lineage graph

〈V M
Q , E

M
Q 〉 into a top-k version from which the top k paths can be easily enumerated is described

later in this section.

Lineage Graph Construction

Lahar’s construction of the lineage graph 〈V M
Q , E

M
Q 〉 occurs in two phases. In the first phase, the

input Markovian stream M is scanned from beginning to end. As instant i of the input stream is

read, a superset of the lineage nodes v(i) and lineage edges (v(i − 1), v(i)) are added to the lineage

graph. We call the resulting graph the pre-lineage graph, denoted 〈pV M
Q , pEM

Q 〉. The pre-lineage

graph contains the lineage graph in its entirety, but may also contain additional nodes and/or edges

that are not part of the final lineage graph. These additional nodes and edges are the result of partial

query matches that produce lineage histories for only part of a DFA, but never reach an accepting

(final) state. These additional edges are identified and pruned in the second phase of lineage graph

construction, which begins at the last instant in the graph and proceeds backwards until the first

graph instant is reached.

In the remainder of this section we describe in more detail the two phases of lineage graph

construction.

Lineage Construction: Forward Pass. At a high level, the forward pass of the lineage con-

struction algorithm processes the input stream from beginning to end. As it processes each instant

i, it generates nodes and edges in the lineage graph. For each instant, Lahar first creates nodes

associated with lineage sequences that begin at instant i, and then it creates nodes and edges that

extend existing lineage sequences (including those beginning at instant i). We review these two

construction processes in turn; they are also outlined in Algorithm 4.

Upon processing a new instant i of the input stream, Lahar first creates nodes (start nodes and

others) associated with lineage sequences beginning at instant i (Lines 3-9 of Algorithm 4). First,

Lahar adds a start node vstart(i) to the lineage graph. It then creates a lineage graph node vs
d(i) for

each pair (d, s), where d is a domain element with marginal probability pm > 0 at instant i, and s is a

DFA state reachable from the start state via a transition satisfied by d. “Start” edges vstart(i)← vs
d(i),
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with probabilities pm, are added connecting each new node with the start node of the same instant.

As an example, in Figure 6.2(d), the nodes created in this step are start nodes vstart(0) and vstart(1);

and vs1
O f f ice1(0) and vs1

O f f ice2(1), which are connected to their appropriate start nodes via edges having

probability 1.0 and 0.45, respectively.

As the second step of processing a new instant i, Lahar adds edges and nodes that continue

lineage sequences beginning at instant i or earlier (Lines 10-20 of Algorithm 4). New nodes are

added at instant i + 1 of the lineage graph, and new edges are added connecting nodes at instants

i and i + 1, as follows: For each lineage graph node vs
d at instant i; and for each edge d → d′

(with probability pe) from instant i to i + 1 in the input Markovian stream; and for each DFA

transition s → s′ satisfied by domain element d′, Lahar adds a “middle” edge vs
d(i) ← vs′

d′(i + 1)

with probability pe to the lineage graph. If the node vs′
d′(i + 1) does not already exist, it is added

to the graph to facilitate addition of the new edge. If a Markovian stream edge d → d′ does not

satisfy any transitions out of DFA state s, then Lahar does not add an edge t the lineage graph, and

simply continues examining other input stream edges. After all appropriate lineage graph edges

from instant i have been added in this manner, Lahar creates a final node v f inal(i + 1) and “final”

edges vs′
d′(i+1)← v f inal(i+1) connecting the final node v f inal(i+1) to each node vs′

d′(i+1) in which s′

is a final (accepting) state of the DFA. This final step is represented in Lines 18-20 of Algorithm 4.

As an example of the second processing step, in which existing lineage sequences are extended,

consider the node vs1
O f f ice1(0), where d = O f f ice1 and s = s1, in Figure 6.2(d). Two correspond-

ing edges d → d′ between instants 0 and 1 exist in the input stream in Figure 6.2(b): the edges

O f f ice1 → O f f ice2 (pe = 0.45) and O f f ice1 → HallA (pe = 0.55). Consider first the edge

O f f ice1 → O f f ice2 (e.g. assign d′ = O f f ice2). The DFA in Figure 6.2(a) contains no transition

s1 → s′ whose predicate is satisfied by domain element Office2, so in this case Lahar adds nothing

to the lineage graph. Now consider the edge O f f ice1→ HallA (e.g. assign d′ = HallA). The DFA

transition s1 → s2 with predicate ’Hall’ is satisfied by the HallA element, so Lahar adds the edge

vs1
O f f ice1(0)← vs2

HallA(1) to the lineage graph, with probability pe = 0.55.

These two steps are repeated for each instant i in turn, until the end of the input stream is reached,

signaling the end of the forward pass of the lineage construction algorithm.

Lineage Construction: Backward Pass. The second phase of lineage graph construction is a

backward pass over the pre-lineage graph constructed in the first phase. During this backward pass,
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“dead-end” branches of the lineage graph are identified and removed. These dead-end branches are

the result of partial query matches, and are illustrated in Figure 6.2(d) as dashed elements.

Pruning of unnecessary pre-lineage graph elements is straightforward. Beginning at instant

N − 1 and moving toward instant 0, Lahar performs the following steps for the pre-lineage graph

nodes associated with each instant i: 1) The final node v f inal(i) is marked as valid; 2) Any node v(i)

associated with instant i and reachable via a single edge from a valid node is itself marked as valid;

and finally, 3) Any node associated with instant i + 1 that is not marked as valid is removed. By

performing these steps for all instants, the pre-lineage graph is transformed into the lineage graph,

with no unnecessary elements.

The backward, pruning phase of lineage construction requires only the pre-lineage graph as

input; it does not read or write the input Markovian stream. Furthermore, this backward pass is

memory-efficient because it must keep only two instants’ worth of the pre-lineage graph in memory

at any given time.

Top-K Lineage

Once the lineage graph is constructed, Lahar can provide lineage paths to applications by enumerat-

ing the paths rooted at the final node of the instant for which lineage is requested. This enumeration

can be performed as a simple depth-first traversal of the lineage graph, but there is no way to enumer-

ate lineage paths in ranked order using this approach. A ranked enumeration algorithm is required

to allow Lahar to return meaningful results to applications without enumerating all lineage paths,

which as we have seen can number exponentially in the length of the input stream.

Lahar supports ranked lineage path enumeration using a top-k approach analogous to the top-k

queries supported in other database systems [29, 113, 93]. In this case, applications specify a value

for k, and, for each instant in which lineage is requested, Lahar returns only the k lineage paths with

the highest probabilities, instead of enumerating all relevant paths.

In order to support top-k lineage queries, Lahar converts the lineage graph into a top-k lineage

graph, from which the top k paths for each query match can be easily enumerated. This conversion

process requires a single pass in the forward direction over the lineage graph, and is separate from

any additional accesses required to later enumerate the top k paths.
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Figure 6.4: (a) Sample lineage graph snippet over locations {a, b, h1, . . . h4} and DFA states

{s0, s1, s2}. For clarity, the log-probability values of graph edges have been replaced with sym-

bolic integer values; in either representation, higher values are ranked before lower ones. (b) Graph

in (a) after top-k conversion, performed for k=3. (c) Output returned to applications, enumerating

the top-3 lineage sequences for instant i2.

Lahar’s top-k conversion algorithm is a dynamic programming algorithm, and is equivalent to a

known variant of the Viterbi algorithm which computes the k most likely paths (the standard Viterbi

algorithm is defined for k=1) [41]. This algorithm begins at the first (earliest/lowest) index in the

lineage graph and moves to the last, converting each node at the given index into a top-k lineage

graph node in turn. The conversion replaces each node’s outgoing edges with a set of top-k edges.

A top-k edge is a tuple 〈rank, dNode, dRank, p〉, where rank is the rank of the edge in its set

(i.e. a top-k edge with rank 1 marks the most likely path out of a node); dNode is the identity of

the previous node in the path; dRank is the rank of the edge to be followed out of dNode, and p is

the probability of the path. Note that a single top-k edge e out of a node n uniquely specifies a path

beginning at n and ending at (potentially) the beginning of the stream, and that the probability p
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associated with e is the total probability of this entire path. Because path probabilities are computed

as the product of the probabilities of each edge along the path, Lahar uses logarithmic probabilities

in its top-k algorithm, which allows multiplications to be replaced with additions and avoids numeric

underflow [103].

Figures 6.4(a) and (b) show a lineage graph snippet, and the top-k converted snippet for k=3,

respectively. In Figure 6.4(b), the rank and p values of each edge are shown explicitly in boxes, as

rank : p, while the dNode and dRank of each edge are indicated by arrows. For example, the most

likely path out of node h4 is indicated by edge 〈rank = 1, dNode = (h1, s2), dRank = 1, p = 10〉

while the third-most likely path out of the same node is indicated by the edge 〈rank = 3, dNode =

(h1, s2), dRank = 2, p = 6〉. Note that both of these edges share a destination node value of h1,

making the dRank value necessary.

Once a lineage graph is converted into a top-k lineage graph, Lahar can enumerate the top k

lineage paths matching a particular instant i simply by following the top-k edges out of the v f inal(i)

node of the converted graph. The top-k conversion and path enumeration process can be applied to

any lineage graph, whether the graph has undergone a projection transformation (next section) or

not.

6.4 Lineage Projection

Although some queries can be answered by enumerating ranked lineage paths directly from a lineage

graph, many queries require that parts of the graph be projected before such enumeration is useful.

Figures 6.3(e-h) list examples of such queries, along with lineage graphs projected as necessary for

each query (the lineage graphs prior to projection are shown in Figures 6.3(a-d), respectively). Con-

sider query QA1 (Figure 6.3(e)), in which an application is interested not only in when Bob moved

between rooms, but also in knowing the identities of the rooms themselves. The application is not

interested in knowing what path Bob took through the hallways, so lineage graph elements corre-

sponding to hallways can be projected away. A schematic diagram of the resulting lineage graph

after this projection is shown in Figure 6.3(e), while the original lineage graph, without projection,

appears in Figure 6.3(a). In Figure 6.3, queries QA1, QB1, QD1, QB2 and QC2 are which-style pro-

jection queries whose answers identify individual domain elements (here, locations); query QC1 is
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a when-style query whose answer is a time interval; and queries QA2 and QD2 are how-style queries

whose answers are paths or subsets of paths through the lineage graph.

We ran query QA1 on a real-world Markovian stream derived from RFID data, and compared

the quality of results obtained using projection, and using no projection (the latter is equivalent to

allowing an application to perform projection as a post-processing step on the k most likely paths

returned by Lahar). When Lahar performed projection of hallway elements before enumerating the

top ten lineage paths, these ten paths covered 79% of the lineage (i.e. skew was 0.79 for k=10). In

contrast, the top ten paths of the unprojected lineage covered only 1.17E-6% of the lineage (i.e. the

unprojected lineage graph has very low skew), which is not enough coverage to produce meaningful

query results even if the application chooses to perform its own projection on these top ten paths. To

underscore this point, we note that all ten of the most likely paths enumerated from the unprojected

lineage indicated that Bob began his journey in room A (although recall that this answer only covers

1.17E-8% of the lineage). The top ten paths computed on the projected graph, which together

cover 79% of the lineage, indicate that Bob started in room A with probability of only 0.43; with

probability 0.57, he began in an adjacent room, room B. Thus an application interested in query QA1

cannot produce accurate results without projecting the lineage graph, regardless of the sophistication

of its post-processing.

In this section, we outline the semantics of lineage projection, and our algorithms for performing

this projection in practice. In this dissertation, we support projection at the level of individual lineage

graph edges. In the work of this dissertation, applications specify one or more Boolean projection

tests that Lahar applies locally to each edge in the lineage graph; those edges passing the test are

retained, while the rest are projected away. This is an extension to the work of Kimelfeld and Ré,

whose Markovian stream lineage analysis applies only to projection of prefixes and suffixes of an

event query. Of the queries in Figure 6.3(e-h), some (QB1, QC1, QD1, and QA2) are handled in the

framework of Kimelfeld and Ré, while the remaining projection queries QA1, QB2, QC2, and QD2

can be answered only using the techniques in this dissertation.



96

A
S1

A
S0

Hall
S1

(a1)

p1 p2
B
S2

p3
A
S1

A
S0

p1 p2
B
S2

p3

(a2)

A
S1

A
S0

Hall
S1

(b1)

p1 p2
B
S2

p3

C
S2

p4
A
S1

A
S0

Hall
S1

(b2)

p1
B
S2

p3

C
S2

p4

A
S1

A
S0

Hall
S1

(b3)

p1
B
S2

p3

C
S2

p4

p2p3

p2p4

A
S1

A
S0

(b3)

p1
B
S2

C
S2

p2p3

p2p4

Figure 6.5: (a1) A lineage sequence before projection of the element (i2, s1,Hall), marked by the

dotted edge. (a2) The sequence in (a1) after projection. (b1-b4): Transformation of a lineage graph

to project out the dotted edge. The three stages of projection are described in Section 6.4.2.

6.4.1 Formal Definition

We define projection on lineage LM
Q (i) as a transformation that removes a given element e′ from

all lineage sequences in which e′ is directly preceded by a given element e: that is, projection on

the pair (e, e′) transforms all sequences (. . . , s, e, e′, f . . . ) into (. . . , s, e, f , . . . ) by removing the

element e′. The sequence suffix ( f , . . . ) and prefix (. . . , s) may be empty, but element e cannot

(consequently, the start element is of each lineage sequence can not be projected away; we revisit

this point shortly). The probability of each lineage sequence is unaltered by this transformation;

however, when projection transformations result in two or more identical sequences, the sum of the

probabilities of these identical sequences is assigned to a single, deduplicated result. Figures 6.5(a1)

and (a2) show a lineage sequence before and after projection on the pair ([i1, s1, A], [i2, s1, Hall]),

respectively. We return to Figure 6.5(b) in Section 6.4.2.
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Figure 6.6: (a1) Sample lineage (Lahar output) for instant i4 from the example scenario in Figure 6.2.

(a2) Lineage from (a1) in which hallway elements have been projected away. (b1), (b2): Lineage

graphs encoding the lineage shown in (a1) and (a2), respectively.

The elements e′ and e used in the definition of projection include instant indexes, which makes

projection transformations specific to given instants in the lineage. After such a projection, the

element e′ may still be present in some lineage sequences (specifically, those sequences in which

e′ is preceded by an element other than e). We define projection in this way in order to guarantee

that projection preserves the Markovian property of the set of lineage sequences: that is, even after

arbitrarily-chosen projections of this type, the resulting set of lineage sequences can be compactly

represented using a lineage graph. Intuitively, the projection of a pair (e, e′) can be applied directly

to the lineage graph representation of a lineage sequence set, simply by removing the lineage graph

edge linking elements e and e′ (Figure 6.6).

This definition of projection requires that applications make projection decisions about pairs of

adjacent elements (e, e′). This definition allows for projection of lineage elements associated with

a particular DFA edge (identified by the DFA states of e and e). This definition of projection also

allows for projection of lineage elements associated with individual domain elements or DFA states.

Such projection decisions can be made simply by evaluating the domain element or DFA state as-

sociated with element e′ without regard to the values of e. For example, the projected lineage graph
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for query QA1 in Figure 6.3(e) is obtained from the lineage graph in Figure 6.3(a) by performing

projection on all pairs (e, e′) in which e′ is associated with DFA state s1, or equivalently, on all pairs

in which e′ is associated with a domain element satisfying the Hall predicate.

The characteristics of a lineage graph derive from the graph’s structure, and may therefore

change when projections are applied that alter the graph. Projection can potentially reduce, but

may never increase, the number of nodes (i.e. the size) of a lineage graph. Projection can increase

the skew (as when multiple paths in the original lineage graph are projected onto the same result);

however, projection may either increase or decrease the connectivity of a graph, depending on the

graph and the projections applied. We discuss the effects of projection on lineage graphs further in

Section 6.4.

As mentioned previously, the start element is cannot be projected out of any lineage sequence.

Without these start elements, two lineage sequences starting at different instants can potentially

project onto one another. Kimelfeld & Ré proved that projection is intractable in this case [68]; their

solution, the “indexed s-projector”, is able to produce lineage with start indexes equivalent to the

start indexes provided by the is element of the lineage definition in this thesis (indexed s-projectors,

however, handle projection only of prefixes and suffixes of lineage, while this chapter addresses

projection of arbitrary lineage graph edges).

6.4.2 Applying Projection

In the previous section, we defined projection formally as a transformation on a set of lineage se-

quences. In this section we note that this transformation can conveniently be applied directly on the

lineage graph representation of this set, eliminating the need to enumerate lineage sequences during

projection. Specifically, each projection transform specified by a pair of lineage elements (e, e′)

identifies a unique edge (e ← e′) in the lineage graph, to be projected out of the graph; however,

care must be taken to maintain connectivity of the graph during this process.

Concretely, applying the projection transform (e, e′) to a set of lineage sequences can be achieved

by: 1) removing the lineage graph edge (e← e′); 2) adding a new edge e← e′′ to the lineage graph

for every existing edge e′ ← e′′, and 3) removing from the graph all edges e′ ← e′′ if e′ has no

outgoing edges. This process is depicted in Figure 6.5(b), where (b1) shows a lineage graph, and
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(b2)-(b4) show the graph after each step of projection (the dotted edge is the one being projected

away). Together, steps one and two project the element e′ out of the graph while maintaining

connectivity. Step 3 removes from the graph edges that are no longer necessary because they reflect

information (connectivity) that is now represented by the new edges added in step two. When a new

edge (e ← e′′) is added to the graph (step two), its probability is the product of the probabilities of

the two edges (e ← e′) and (e′ ← e′′). When such a new edge connects two nodes that are already

connected, the probability of the existing edge is simply augmented by the probability of the new

edge, to avoid duplicate edges.

An important feature of this projection algorithm is that it alters the lineage graph so that it is

no longer Markovian after projection. Specifically, the edges that are added to the graph in step two

of the projection process can span an arbitrary number of instants. Thus, not only is the projected

graph not guaranteed Markovian, but its vertices have degree O(|V |2) instead of the O(|V |W) degree

of nodes in an unprojected lineage graph, where W is the maximum number of vertices associated

with a single instant in the lineage graph. The O(|V |2) nature of the edges in the projected lineage

graph means that the algorithm to produce a projected graph has running time quadratic in |V | (note

that edges added during projection may later be projected away themselves).

Conceptually, the set of lineage graph edges that must be projected away to satisfy a particular

query can be processed in any order (of course, edges added by the projection algorithm obviously

cannot be projected away until after they exist). Both the correctness and the complexity of a se-

quence of projection transforms is independent of the ordering in which they are applied. However,

in practice, projecting away edges starting at the beginning (i = 0) of the graph and moving to-

ward the end (i = N) can improve performance by increasing memory locality. In this scheme, all

projections of edges starting at instant i must be completed before projections of edges that start at

instant i+ 1 (recall that edges in the lineage graph point backwards in time). Because the projection

process only adds edges that start at the instant after the edge being projected, projection can be

performed keeping only two instants of the lineage graph in memory at a time: instant i from which

edges are being projected away in step one, and instant i+1 to/from which edges are added/removed

in step two/three. All experiments in Section 6.5 use this sliding-window, single-pass approach to

projection.

Recall from Section 6.3 that construction of a lineage graph occurs in two phases: the first phase
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constructs a superset of the graph, while the second phase prunes away dead-end graph branches

corresponding to partial query matches. Although it is conceptually cleaner to imagine projection

applied to a completed lineage graph, in practice projection can be applied before the pruning phase,

simultaneously with graph construction. In this approach, two instants’ worth of newly-constructed

graph elements are held in memory and projection is applied to them before they are written to

disk (and before pruning is applied in a separate, later pass over the resulting graph). For queries

where many elements are projected away, this approach can improve performance significantly by

avoiding I/O costs for reading/writing of elements that are eventually projected out. Of course,

the combined construction-plus-projection approach followed by pruning is not always superior to

the straightforward construction-pruning-projection approach; the latter is better when significant

pruning occurs, since time is otherwise wasted projecting elements that will eventually be pruned

away. We explore the tradeoffs of these two approaches to projection further in Section 6.5.

6.5 Experimental Evaluation

In this Section, we evaluate the performance of Lahar’s algorithms for constructing lineage graphs,

performing projection on them, and enumerating the top k lineage paths from them. All experiments

were performed on the Lahar implementation described in Section 3, on a 2.0GHz Linux machine

with 16GB of RAM.

6.5.1 Setup

We evaluate the performance of Markovian lineage queries on two real-world data sets, both of

which are described in detail in Section 3.3.

The first data set comprises five 12-minute RFID traces; we show performance results for queries

on one of these traces, which includes 714 instants of an individual’s location and is 8.2MB in size.

On average, the trace reflects 10.6 locations per instant that the person was in with some non-zero

probability. During the 12 minutes represented in this trace, the individual walked through the

hallways of an office building and visited several different offices for roughly one minute each; the

example queries we evaluate in this section, also shown in Figure 6.3 are patterns specified over

these offices and hallways.
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The second data set comprises four 5-minute NPR newscasts, converted into Markovian streams

over spoken words. The newscast that we use to demonstrate performance in this section comprises

915 instants, 1.3MB, and lists, on average, 4.9 words per instant with non-zero probability. The un-

certainty in the audio stream is less than the uncertainty in the RFID stream, and we will demonstrate

that the skew is correspondingly different (larger/better on audio queries). The three audio queries

we use to evaluate performance are each three-word phrases, including the phrase, “overhaul health

care”, “overhaul * *”, and “* * care”, where the symbol “*” represents a wildcard predicate satisfied

by any word. We selected these particular phrases for this evaluation because we knew them to be

satisfied at least three times each in our real-world audio stream.

We selected these queries to demonstrate a range of performance costs and lineage characteris-

tics. Although we present our analysis in terms of these queries, we performed these experiments

on a wider range of queries and using a broader set of input streams, and verified that the results are

within the ranges highlighted here. We thus omit these results for clarity of presentation.

6.5.2 Constructing & Enumerating Lineage

We begin by studying Lahar’s performance for generating and enumerating lineage without pro-

jection. Recall that, in this case, Lahar performs three sequential passes over the lineage graph: a

forward pass to generate the pre-lineage graph, a backward pass to prune the graph, and a final for-

ward pass to compute the top k set for each query match. The total time required for each of these

passes is shown in Figure 6.7 for four real-world RFID queries (left cluster) and three real-world

audio queries (right cluster). Here, top-k computation was performed for k=10. For comparison,

the time required to process these queries as Boolean event detection queries, without any lineage,

is also shown. Note that the four queries shown here from the RFID domain are precisely queries

QA, QB, QC , and QD from Figure 6.3(a-d), respectively.

Total Cost of Lineage Is Moderate: In both domains, the cost of each lineage-related pass is

less than twice the cost of the single-pass Boolean processing algorithm, and in many cases each

lineage-related pass requires only a fraction of the Boolean processing time. In any case, all queries

completed in under two seconds. For a worst-case overhead of roughly 4x, Lahar is able to compute

the top ten full-length lineage sequences associated with every query match in the input stream. This
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Figure 6.7: Performance of constructing the lineage graph and computing the top k paths for each

match, shown for four real-world queries in an RFID-derived stream (left), and three real-world

queries in an audio domain (right). Skew values and lineage graph sizes for these queries, computed

using k=10, are shown in Figure 6.8.

is true even when the lineage has size nearly equal to that of the input stream, as is the case for QA,

or when the pre-lineage graph is larger than the input stream but is then pruned down to a small final

lineage, as is the case for QC (lineage and input stream sizes are shown in Figure 6.8(b)). Nearly

every instant of the input stream contributes one or more pre-lineage graph nodes during processing

of queries QA and QC , creating maximum lineage processing overhead: these two queries are in the

range of worst-case scenarios for lineage performance on queries of this length (DFAs with more

states can of course incur additional overhead).

Lineage Construction Time Is Proportional To Size: The time required for the forward and

backward lineage passes are roughly proportional to the size of the pre-lineage graph, generated by

the forward pass and pruned in the backward pass. This cost can be (relatively) large even when the
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of these queries is shown in Figure 6.7.

size of the final lineage is small, as can be seen in Figure 6.7 for queries QC and the “* * care” audio

query. on which many nodes are generated in the forward pass only to be eliminated during pruning

(actual graph sizes are shown in Figure 6.8(b)).

Top-K Time Is Small: The cost of the top-k computation is proportional to both the value

of k and the size of the final lineage, with the size of the lineage being the dominant factor in

performance. Figures 6.7 and 6.8 clearly show the natural correlation between the size of the lineage

and the cost of top-k conversion: QA, with the largest lineage, incurs the highest cost; the mid-sized

lineages of QB and QC incur moderate top-k costs; and the remaining queries with small lineage

incur negligible top-k overhead. Indeed, even when the value of k is increased to 100 (not shown),

the top-k costs for queries generating mid-sized and small lineage remain similar because frequently

there are fewer than 100 paths to examine per node. The only query in Figure 6.7(a) for which top-k

costs more than double when k is increased to 100 is QA, whose top-k costs are 560 milliseconds

for k=10 and 2833 milliseconds for k=100. This worst-case scaling of cost still increases only 5x

for a 10x increase in k; the scaling is sub-linear because some nodes do not have k outgoing paths

and thus incur additional costs that scale less than linearly with k. We do not expect applications to
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use values of k near to or greater than 100.

Skew Varies By Query & Domain: Skew values for each query (for k=10) are shown above

the performance bars in Figure 6.7, and skew values for varying k are shown in Figure 6.8(a). In the

audio domain, skew is nearly always 1.0 on our sample queries because the lineage of these queries

is small and contains a minimal number (1-3) of unique paths. Indeed, skew is always 1.0 on the

“Overhaul Health Care” query, on any input data, because only one word sequence can ever match

this query. In the RFID domain, the queries with high skew (QB and QD) have lineage that contains

more than 10 paths, but in this domain the Markovian stream is itself skewed such that only a few

lineage paths have high probability. Indeed, we determined experimentally that the value of k can

be reduced to 4 for QB and 1 for QD while still maintaining a skew value over 0.99.

RFID queries QA and QC , however, which include loop predicates specifying arbitrarily-long

intervals of time in which Bob was in a hallway or a room, display poor skew. In the case of QA,

this low skew is due to the sheer number and length of paths in the lineage. Although the Markovian

stream itself is skewed such that only 1-3 locations have any significant probability in each instant,

the high connectivity of the lineage graph for QA means that each of these locations, at each stream

instant, participates in many lineage paths, leading to low skew. On the other hand, the low skew of

QC is due almost entirely to uncertainty about the starting time of each query match.

Overall, five of the seven representative queries shown in Figure 6.7 have skew of at least 0.99

for k=10. Independently of the cause of this high skew, its common appearance on real-world

queries and data indicates that projection/top-k optimizations that leverage high skew will be useful

in practice. We demonstrate this point further in the next section.

Projection must be performed before top-k enumeration, and thus must be performed by

Lahar: Consider the skew of query QA in Figure 6.8(a): even for k=10, the skew of this query is

very poor. Accurate evaluation of projection-based versions of this query (e.g. queries QA1 or QA2)

require that projection be performed before top-k enumeration, and not as a post-processing step

on the top k sequences enumerated before projection. In the next Section, we demonstrate that by

performing projection in Lahar (and thus before top-k enumeration), the skew of query QA1 rises to

0.79 for k=10.
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Figure 6.9: (a) Performance of lineage queries including projection on RFID data. The left bar of

each pair shows performance of an algorithm using a separate pass over the data for projection; the

right bar of each pair shows performance of an algorithm that combines lineage construction and

projection in a single data pass. (b) Performance of queries QA1 and QC2 broken down into I/O and

CPU components

6.5.3 Performance: Projecting Lineage

Figure 6.9(a) shows the performance of eight representative lineage queries that include projection.

Recall that each query is a variation of one of the four queries whose performance is shown in

Figure 6.7. The left bar of each pair of bars in Figure 6.9(a) shows query performance when separate

passes are used to construct, then project, the lineage graph. The right bar of each pair shows

performance when the lineage graph is constructed and projected in a single pass. We use this plot

to highlight the following key points regarding projection:

Projection is practical: Figure 6.9(a) shows that the overhead of performing projection is man-

ageable in practice: of the 8 representative queries, all completed in under 8 seconds, and all finished
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in under 4 seconds using the faster of the two projection algorithms (the better choice of algorithm

varies by query; we discuss this choice shortly). In theory, the quadratic cost of projection might add

a significant overhead to lineage processing. In practice, there is virtually no overhead for projected

variants of queries QB and QD because their lineage is very small even before projection, and we

see a significant overhead for projection on only one query, QA1. However, the benefit applications

gain from incurring this overhead is a set of top-10 lineage paths that cover 79% of the lineage

results, instead of the 1.2E-7% of results that can be obtained by performing projection after top-k

enumeration.

Combined lineage construction+projection usually improves performance (from I/O cost

reduction): On seven out of eight of the example queries whose performance is profiled in Fig-

ure 6.9(a), the combined construction+projection algorithm yields better performance than the algo-

rithm that performs each using separate passes over the data. In the case of query QA1 the difference

in performance is dramatic, reducing query completion time from 8 seconds down to 2.5. Lahar’s

performance on query QA1 is also shown in the first pair of bars in Figure 6.9(b), where it is clear

that the cost savings stems from an order-of-magnitude reduction in I/O time. A key feature of

query QA1 is that the lineage graph before projection is very large, and the graph after projection is

small. By performing projection as the graph is constructed, in memory, Lahar avoids the necessity

of writing most lineage nodes to disk (and also the cost of reading them back into memory later).

Combined lineage construction+projection can decrease performance: As the performance

of query QC2 shows, the combined construction+projection algorithm does not always outperform

the algorithm that processes the lineage graph in multiple passes. Two factors can cause the com-

bined algorithm to perform poorly, and both contribute to its poor performance on query QC2.

The first factor is visible in Figure 6.9(a), and is a dramatic increase in the cost of the backward
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pass (blue bar), which is performed after projection in the optimized algorithm, but before projection

in the standard algorithm. The optimized costs grow so much here for the combined algorithm

because the projected lineage graph is very highly connected. The backward pruning pass scans a

graph of roughly the same size in both algorithms (9168 vs. 9059 nodes), but the average degree

of each node is 55 in the projected graph constructed using combined construction+projection, and

only 2.15 in the unprojected graph to which backward pruning is applied before projection in the

multi-pass algorithm. This 25x increase in connectivity greatly increases the CPU costs associated

with the backward pruning pass of the algorithm, as can be seen in Figure 6.9(b).

A secondary reason for the poorer performance of the construction+projection algorithm on

query QC2 is that projection in this query removes relatively few nodes (less than two percent), so

the optimized version is not able to improve performance by reducing I/O costs as it does in the

other queries.

Top-k costs are unaffected by choice of projection algorithm: This is no surprise, since top-k

construction and enumeration algorithms are applied to the projected lineage graph, which is the

same regardless of the algorithm used to obtain it.

6.6 Conclusions

In this chapter, we have outlined a set of Markovian stream lineage queries that provide applications

with detailed information about how a query was matched in an input stream. We formally defined

a lineage graph to capture this information, and provided single-pass algorithms for constructing the

lineage graph, performing projection on it, and enumerating the top-k sequences for any particular

query match. We evaluated the performance of these algorithms on real-world data sets from two

domains to demonstrate that lineage queries can be answered efficiently in practice.

The work in this chapter leaves open some important questions. First, question of when to apply

projection before pruning and when to apply it afterward is left to future work. One approach to

this problem might be to collect a small sample of statistics (size, connectivity, number of dead-end

nodes, etc..) at the beginning of query processing, and to use these to determine how to approach

processing of the remainder of the query/stream. Additional open problems include development

of a language for specifying lineage queries (and projections in particular), and optimizations for
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specific types of lineage query such as duration queries interested only in the start and end time of

each match.
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Algorithm 4 Algorithm for the forward-pass phase of lineage construction, in which the pre-lineage

graph is created.

Input: Markovian stream M = (~M, ~C) with length N; unambiguous DFA query Q

Output: Pre-lineage graph 〈pV M
Q , pEM

Q 〉

1: pV = {∅}; pE = {∅}

2: for each i = 0→ N − 1 do

3: /* Lines 3-9 create the beginning of sequences starting at instant i */

4: add node vstart(i) to pV

5: for each (d, pm) ∈ Mi do

6: if there exists a DFA transition s0 → s′ ∈ Q whose predicate is satisfied by d then

7: add node vs
d(i) to pV

8: set (vstart(i)← vs
d(i)).probability = pm

9: add edge (vstart(i), vs
d(i)) to pE

10: /* Lines 10-20 continue or end sequences beginning before instant i */

11: add node v f inal(i + 1) to pV

12: for each vs
d(i) in pV do

13: for each edge d → d′ in Ci, with probability pe, do

14: for each DFA transition s→ s′ satisfied by d′ do

15: add node vs′
d′(i + 1) to pV if it does not exist

16: set vs
d(i)← vs′

d′(i + 1).probability = pe

17: add edge vs
d(i)← vs′

d′(i + 1) to pE

18: if s′ is an accepting DFA state then

19: set vs′
d′(i + 1)← v f inal(i + 1).probability = 1.0

20: add edge vs′
d′(i + 1)← v f inal(i + 1) to pE
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Chapter 7

RELATED WORK

Lahar draws heavily from three major areas of databases research: sequence/stream manage-

ment, uncertain data management, and data warehousing. The connection to the first two areas is

clear in light of the sequential, uncertain nature of Markovian streams. Lahar draws on existing

data warehousing work to achieve scalability, and also in its support of aggregations and lineage

queries. The relationships between these three major areas and Lahar are depicted in Figure 7.1,

which provides the structure for the following discussion of related work.

7.1 Stream/Sequence Management

Early support for sequential data management developed as extensions to standard SQL. These ex-

tensions include PREDATOR [110], SRQL [88], and SEQUIN [109]. None of these systems fully

supported event queries, because SQL joins cannot express Kleene closure. Later, SQL-TS [104]

was proposed with support for Kleene closure. As sensors grew in popularity, real-time data stream

management systems emerged, including Aurora/Borealis [2,1], SnoopIB [4], STREAm [10], Tele-

graphCQ [19] and others [7]. These systems focused on filtering individual stream elements, or on

relational sliding-window queries; none supported event queries or imprecise inputs.

More recently, streaming systems have emerged that directly support continuous event queries,

including Kleene closure, using finite automata. These include the SASE/SASE+ [128, 48, 5],

Cayuga [35,36,13], and ZStream [78] systems. Cayuga, designed to optimize simultaneous process-

ing of many continuous queries, returns only the final timestamp of each pattern match. In contrast,

SASE/SASE+ additionally returns the set of atomic input events that contribute to each match. In

order to maintain scalability, SASE requires that query matches be limited to a maximum duration;

Cayuga (and Lahar) impose no such constraints. Cayuga, however, uses interval-based temporal se-

mantics instead of the atomic instants-based semantics of SASE and Lahar. The recently-proposed

ZStream system [78] processes streaming event queries (with lineage) using a tree structure in lieu of
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Figure 7.1: (a) High-level view of the areas of database research related to Lahar. (b) Research

prototype systems in the areas related to Lahar.

NFAs, allowing it both the flexibility to optimize its query plans and the ability to express predicates

over multiple input events. None of these systems support imprecise input streams.

Lahar’s event query language is based on that of Cayuga, chosen for its operators’ clear seman-

tics. As in Cayuga, Lahar’s event query results include only the timestamps at which the event query

was matched, except in the case of lineage queries, where the return model more closely resembles

that of SASE/SASE+. Lahar moves beyond the capabilities of existing stream/sequence manage-

ment systems by 1) supporting imprecise input streams and 2) supporting processing techniques

beyond sequential, scan-based approaches which are optimized for streaming settings rather than

archives.

7.2 Uncertain Data Management

Uncertain data has been a topic of study in both the artificial intelligence and database communi-

ties for some time. The AI community has been historically concerned with efficient inference and
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learning of probabilistic models (factored joint probability distributions), including hidden Markov

models (HMMs) [87], conditional random fields (CRFs) [70], and Bayesian networks [30]. In-

ference in these models is restricted to the computation of marginal probabilities conditioned on

evidence. Inference is important to Lahar because it is the process by which its input (Markovian)

streams are generated from raw data; however, probabilistic inference is performed outside of the

Lahar system.

In the past several years, the database community has produced several probabilistic data

management systems (pDBMS’s), including MystiQ [34, 92, 97, 95], Trio [127, 12, 6], and

MayBMS [69, 8]. All three systems support relational queries using a possible-worlds semantics:

MystiQ using safe plans [34], Trio by tracking and processing Boolean lineage formulas [106], and

MayBMS using its own probabilistic relational algebra [69]. Like Lahar, these systems operate on

imprecise base tables whose imprecise values are given as input (in contrast to the set of systems

described next, which may determine these values internally). Unfortunately none of these systems

easily supports sequential, imprecise data, and none can express Kleene closure.

An alternate and increasingly-popular approach to uncertain data management uses probabilistic

inference, rather than relational operators, to perform query processing. Systems using this approach

represent imprecise base tables and the relationships (correlations) between them as a graphical

model. Operators add edges and/or nodes to the model such that the modified model contains one

or more nodes that represent the query result. Standard probabilistic inference is then used to com-

pute the marginal distributions over these result nodes. This approach has been advocated in the

Data Furnace project [42]; by Sen & Deshpande [107,108], who accelerate inference by identifying

commonly-replicated sub-graphs in the probabilistic model; by Kanagal & Deshpande [61,62], who

formalize model transforms corresponding to relational and sequencing operators; in the BayesStore

system [120]; and by Wang et al. [119] who frame inference as a recursive SQL query on determin-

istic relations.

Lahar is fundamentally different from these systems because it does not perform online infer-

ence. Not only is inference too slow to perform online at warehouse scale, but it would be unneces-

sary and redundant on Lahar’s append-only data model. Lahar is thus closer in spirit to MystiQ or

Trio than to inference-based systems.

Finally, a significant amount of work around uncertain data management has focused on top-k
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queries [29, 113, 93], in which only the k most likely query results are computed/returned. The

notion of top-k queries originated in traditional databases, but is particularly appropriate in prob-

abilistic databases where every tuple carries an implicit score (its probability), and full result sets

may be large and contain an overwhelming number of answers with probabilities so small as to be

negligible. Lahar optimizes top-k queries using pruning conditions based on probability-ordered

rankings, similar to the pruning used by Fagin et al. [40] on tuple scores.

7.3 Data Warehousing

Data warehouses are repositories for huge archives of historical data. The key challenge of a data

warehousing system is to provide rich analytics on its archives [21]. Addressing this challenge re-

quires a data warehouse to provide two components: 1) languages/algorithms for expressing and

computing these analytics, and 2) optimization tools that allow these algorithms to run efficiently

at scale. Relational data warehouses use a cube model [47] to support rich analytics including ag-

gregations, drill-downs, and in some cases, lineage. They achieve scalability using a variety of

techniques including compression, approximation, precomputation, and indexing. The following

discussion touches on those aspects of data warehousing that are most relevant to Lahar: aggrega-

tion, lineage, compression, and indexing.

7.3.1 Aggregation

Cube-based aggregation is the key concept on which traditional data warehouses are built. In a data

cube [47], a measure attribute is aggregated at various levels of granularity along each of many di-

mensions. This model has proved highly successful for business analytics and has spawned many

variations, including the S-Cube for sequence data [77] and, separately, a cube model for impre-

cise relational data [17] (discussed in detail in Sections 7.4.2 and 7.4.3, respectively). A major

feature of the data cube is its effective use of precomputation, applicable only to summarizable

data/aggregations [77]. Here, the term summarizable is used in a technical sense to describe ag-

gregations that can be computed at coarse levels of granularity using aggregated results from finer

levels (but without touching the underlying base data), such as SUM, MAX, or MIN (but not ME-

DIAN). Markovian streams are unfortunately not summarizable in this technical sense because of
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their temporal correlations, and for this reason Lahar does not adopt a cube model in its implemen-

tation.

7.3.2 Lineage

The lineage (alternately called provenance) of a query is an expression of a relationship between

database tuples, or “source” tuples, and the tuples produced as the output of the query. Different

types of lineage express different relationships. For example, “why” lineage expresses links be-

tween result tuples and the database tuples that are used to derive the result, while “how” lineage

additionally expresses the operations (select, project, join, etc.) by which each result tuple is derived

from source tuples [24]. The recently-introduced Panda system is intended as a platform for work

that unifies the various types of lineage [52].

In relational databases, lineage is often used to determine the derivation of a tuple (i.e. why a

particular tuple is present in a query result). Such lineage is useful for view maintenance: Given

a query that updates a view, lineage can be used to propagate view changes back to the raw data

tables from which the view is derived. The relationship between view maintenance and lineage is

explored in the WHIPS warehouse [31,32,33]. Similarly, lineage is useful in systems that associate

metadata (e.g. probabilities or confidence scores) with each database tuple, because lineage encodes

the computation by which metadata for result tuples is derived. One such system is the probabilistic

database Trio, which uses lineage to propagate tuple probabilities through query plans [127].

In some cases, tuple derivation lineage is interesting to users in its own right, particularly when

query results contain unexpected values [16, 20]. In this spirit, the recently-proposed ProQL lan-

guage allows users to query relational lineage directly (for example, to identify the set of result

tuples that were generated via a particular sequence of operators) [64]. The WHIPS warehouse also

contains a “drill-through” operation that allows users to retrieve lineage for the purpose of examin-

ing it.

In scientific databases or data exchange settings, where data is imported or shared across many

different sources, lineage is more often called provenance and it is used to identify the original data

sources that contribute to the presence of a result tuple [54, 15]. When various data sources are

trusted with different levels of confidence, or are updated at different times/frequencies, identifica-
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tion of the sources upon which a result tuple depends is critical. The ORCHESTRA system is a

collaborative data sharing system built for such settings; it uses provenance to track tuple deriva-

tions [53].

The lineage work most closely related to the work in this thesis is that of Shen et al. [111] and

Kimelfeld & Ré [68], who produce subsequence matches of event queries on imprecise streams.

Shen et al. consider only independent sequences, however. Kimelfeld & Ré propose a theoreti-

cal Markov sequence transducer whose output under specific conditions (those of an “indexed s-

projector”) is equivalent to the lineage graph proposed in Chapter 6, but they do not propose or

evaluate algorithms for constructing or manipulating the graph to answer lineage queries. The prDB

system proposed by Kanagal & Deshpande [63] generates lineage for conjunctive queries on Markov

sequences, but does not consider lineage of event queries, or projection of such lineage.

7.3.3 Compression

Scalability is a major concern in data warehouses, and compression has historically been an im-

portant tool for achieving it. Warehouse compression is unique in that its goal is to reduce query

processing time, which may or may not be achieved simply by reducing data size. The most success-

ful compression techniques are those that produce compressed representations that can be queried

directly, eliminating decompression costs. These include the run-length-encoded (RLE) columns

of C-Store [3] and the “constant-time” tables of Blink [89, 90]. These compression techniques ex-

ploit the relational model’s lack of tuple order, and are thus not applicable to Markovian streams,

which are inherently ordered. Lahar’s compression strategy of materializing multiple (approxi-

mately) compressed versions of each Markovian stream is similar at a high level to the work of

Chen et al. [23] (who study relational data), however, and Lahar’s use of approximate compression

techniques to create a performance/accuracy tradeoff is similar to the work of Apaydin et al. [9],

who apply approximate compression to relational indices.

7.3.4 Indexing

Indexing is another fundamental tool for achieving scalability in both OLAP and OLTP databases.

Work on indexing is vast, and Lahar’s use of existing work is fairly straightforward. The most
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closely-related work is highlighted in the next section.

7.4 Cross-Boundary Related Work

This section describes a more focused set of related works/systems that build on multiple of the

three areas related to Lahar. These discussions correspond to the three almond-shaped “intersection”

regions of Figure 7.1, and highlight the work most closely related to Lahar.

7.4.1 Uncertain Sequence Management

The two lines of work on uncertain sequence management that are most closely related to Lahar are

those by Shen et al. [111] and by Kanagal & Deshpande [59,60,61,63]. Shen et al. effectively extend

SASE+ [48] to handle imprecise input streams. The resulting system processes event queries—

including lineage—on imprecise input streams, and in this sense is very much like Lahar. However,

this work supports only streams with independent uncertainty across input timesteps. The temporal

correlations of Markovian streams add considerable complexity to size, generation, and querying of

Lahar’s lineage.

Kanagal & Deshpande also address Markovian stream management, including event query pro-

cessing. Their early work [60, 59] proposes a particle filtering method for generating Markovian

streams; this is one of many ways by which a Markovian stream might be produced as input to

Lahar. Later work proposed a relational algebra for SPJ, aggregate, and sequencing queries on

Markovian streams [61]; however, this algebra is executed via probabilistic inference and supports

only fixed-length event queries (Section 4). More recent work proposed a hierarchical index, IND-

SEP [62], that accelerates online inference in the graphical models produced by their algebra. This

index is a step toward the scalability sought by Lahar, and in fact INDSEP builds upon and general-

izes Lahar’s Markov Chain Index [73] (Section 4). The most recent work by Kanagal & Deshpande

proposes a lineage-based algorithm for computing conjunctive query results on imprecise, correlated

data, including streams, but this work does not extend to event queries.

Additional work on uncertain sequence management addresses problems related to Lahar’s

Markovian stream management, but tackle different problems or make different assumptions about

the data. Much of this work has grown out of efforts to manage spatiotemporal (“moving objects”)
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or continuously-updated sensor databases. The spatiotemporal work tends to focus on snapshot

queries (as opposed to sequence queries), and bounds uncertainty intervals without necessarily as-

signing a probability distribution over possible worlds [86, 25, 26]. Sensor data management has

drawn heavily from the AI community and tends toward a model-based approach in which high-

level streams of interest are inferred from noisy input streams using sequential models such as

HMMs [87], CRFs [70], or DBNs [76]. Systems in this category have been developed in the context

of textual information extraction [119], wireless sensor networks (the BBQ system [37]), and many

other types of streaming sensors [38, 115, 60, 59]. The online inference performed in these systems

is ideal for real-time, continuous updates but is too slow for the archived warehouse setting targeted

by Lahar; furthermore these inference-centric systems lack specialized processing for event queries.

The increasing ubiquity of RFID has led to some efforts to “clean” noisy RFID streams (e.g. the

SMURF project [56] and others [14,22,91]) or to detect events probabilistically directly on the raw

input (e.g. the PEEX [66, 67] and Cascadia [126] systems). These efforts use ad-hoc approaches

with unclear semantics, and additionally detect sequences using relational operators (SQL) instead

of finite automata.

Finally, some work on uncertain stream processing is related to Lahar only tangentially. In

particular, efforts to compute statistical aggregates [55], sketches [28], or synopses [57] over the

elements of imprecise streams use a streaming processing model, but do not support ordered streams

(i.e. the order in which stream elements arrive is unimportant in these models).

7.4.2 Warehousing Sequences

The sequence warehousing system most closely related to Lahar is the S-Cube by Lo et al. [77].

S-Cube’s novel contribution is its support for pattern-based sequence aggregation, which effectively

allows GROUP-BYs on pattern predicates specified at arbitrary granularities. In contrast to La-

har, S-Cube supports only fixed-length event queries (Section 4) and deterministic input sequences;

however, Lahar’s cube-based aggregation model follows very much in the spirit of S-Cube. Both

systems extend cube models to non-summarizable data, forcing them to compute all queries directly

on the lowest-level data, without leveraging precomputed views.

The majority of remaining work on scalable, archived sequence management has appeared in
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the context of supply-chain RFID management. These approaches leverage RFID-specific proper-

ties that do not hold for general Markovian streams. Hu et al. [50] exploit the hierarchical nature

of supply chain objects (products inside cases inside pallets), while Lee & Cheung [72] exploit the

shared-prefix nature of supply chain trajectories, to achieve significant data compression. The work

of Wang [121, 122] and separately, Gonzales [44, 45] achieve significant speedup by compressing

consecutive detection records into “stay” intervals. Gonzales develops this notion into a cube-based

warehousing model for RFID streams (FlowCube [43]) in which each cube cell contains a rep-

resentative trajectory, and if necessary, a list of significant exceptions. The underlying notion of

FlowCube—that presenting an easily-understood view of data is more important than presenting a

full, precise enumeration—is adopted in Lahar’s approach to lineage.

A small amount of sequence warehousing work targets indexing techniques for sequential data,

although such work focuses on streaming, rather than archived, settings. The goal of this work is

efficient retrieval of the system state that must be updated based on the current stream input. For

example, Tran et al. [115] leverage indices to identify a subset of RFID tags whose locations must

be updated, while the Cayuga system [35] leverages indices to identify the subset of NFAs that are

affected by the current stream input. Lahar does not currently support streaming queries and thus

these indexing techniques solve an orthogonal problem to that of Lahar.

7.4.3 Warehousing Uncertain Data

Several systems have recently emerged that support some combination of aggregation and/or lineage

in a scalable manner on imprecise data. None of these systems support sequential data and thus they

are not directly applicable to Markovian stream warehousing; however, Lahar draws on the novel

ideas and techniques used in these systems.

Aggregation & Uncertainty

Cube-based aggregation on imprecise data is more complex than in deterministic settings, because

pre-existing or query-induced correlations must be correctly handled. Three cube-based or similar

models for imprecise, relational data have been recently proposed: First, Burdick et al. [17] study the

problem of OLAP on relational warehouses containing imprecision in the dimension attributes. This
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work focuses on methods for assigning probability distributions over these imprecise dimensions; it

does not discuss algorithms for query execution. Second, Li et al. propose a Sampling Cube [75] for

performing OLAP over sampled data; here, the focus is on generalizing cube cells until they contain

a meaningful number of samples, without altering the statistical properties of aggregated query

results. Finally, Jampani et al. propose MCDB, which is not strictly a cube but can support cube-

style analytics using its sampling-based query execution model. MCDB is similar to inference-based

systems in that it can easily represent arbitrarily-correlated data (including Markovian streams), but

it performs inference via sampling instead of exact techniques. Although MCDB does not support

event queries, its support for “what-if” queries conditioned on hypothetical probability distributions

is a novel and interesting form of imprecise data analytics.

Lineage & Uncertainty

Several imprecise data management systems track lineage, not only to support lineage-related

queries, but as a tool for computing the probabilities associated with query results. Trio [6], Pip [65],

and work by Ré et al. [96] all track lineage for relational, imprecise data. This lineage takes the

form of boolean expressions, which can be evaluated either exactly or approximately to determine

the probability of a query result. This work addresses lineage for conjunctive queries on relational

data, and does not extend to event queries on sequences like Markovian streams.

Indexing & Uncertainty

Although indexing techniques have been heavily studied for traditional databases and warehouses,

relatively little work has focused on development of similar techniques specifically for imprecise

data. The two most relevant works are the INDSEP index developed by Kanagal & Deshpande [62]

(already discussed in Section 7.4.1) and two indices proposed by Singh et al. [112] for categorical,

uncertain data. Singh et al.’s first index is a B+ tree equivalent to Lahar’s BTP index (because they do

not support sequential data, Singh et al. of course do not explore the use of this index for efficiently

supporting event query computation). The other is a modified R-tree that supports efficient retrieval

of tuples based on their entire uncertain distribution. This index is useful for selection of tuples with

“similar” distributions, which are not a focus of Lahar.
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Additional work on stream indexing includes that of Reiss et al. [99], who focus on indices for

streaming data that can be efficiently updated as archives continuously grow; and Cheng et al. [27]’s

novel R-tree that allows moving objects with (uniform) uncertain location to be indexed by the

probability with which they intersect various spatial regions. Tao et al. [114] extend this index to

support arbitrary probability distributions; however, Lahar’s event queries do not require support for

the type of region-based queries targeted by these indices.

Compression & Uncertainty

Compression of imprecise data is only sparsely studied. The most relevant work is that of Tran et

al. [115] who compress discrete spatial distributions into more compact, continuous distributions

(e.g. Gaussians) when possible. Compressing Markovian streams in this way is an interesting

possibility for Lahar, although event query processing is currently supported only on streams with

uncertainty over discretely-valued domains.
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Chapter 8

CONCLUSION & FUTURE WORK

This dissertation has described the challenges associated with sophisticated processing of im-

precise sequence archives, and has presented a set of algorithms and data structures that make this

processing efficient. We propose a Markovian stream representation for modeling imprecise se-

quences, and introduce the Lahar database for managing and querying these streams. Lahar includes

a SQL-like query language and programmatic API for interfacing with applications. Internally,

it supports efficient event query processing using a combination of matrix-based processing, B+

tree and novel indices, and novel stream approximations. Lahar also supports novel, sophisticated

Markovian stream queries including aggregations within and across streams, and lineage queries

including those with projection. Concretely, the novel contributions of this thesis are as follow:

• A Markovian stream approach to imprecise sequence management. This thesis proposed

the use of materialized Markovian streams to separate the probabilistic inference and data

management/querying portions of imprecise data management. Central to this approach is

the Lahar database for managing Markovian streams efficiently; the technical contributions

of this thesis are implemented in a Lahar prototype.

• Markovian stream indices. We developed novel adaptations of B+ tree indices and a novel

Markov Chain index, which together improved Markovian stream processing speeds by up to

two orders of magnitude on real-world Markovian streams.

• Markovian stream approximations. We proposed and evaluated four different Markovian

stream approximations, some of which can improve performance by two orders of magnitude.

We broadly characterized the error incurred by these approximations, demonstrating that error

is sensitive to both the approximation and the type of query.

• Markovian stream lineage queries. We defined a set of lineage queries and developed a
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novel lineage graph structure to represent the results. We also developed O(N) and O(N2)

algorithms for constructing the lineage graph and projecting away arbitrary sets of its edges,

respectively. We demonstrated that in practice, the overhead of tracking event query lineage

is often a fraction of the total query processing cost, and that the overhead can in some cases

be reduced by applying projection at different points in the lineage processing pipeline.

Future Work

This thesis has demonstrated that Markovian stream processing is not only useful, but can be per-

formed practically in a system like Lahar. Nevertheless, there are many topics related to Markovian

stream processing that are not covered in this thesis, and which represent interesting areas for future

work. Here we outline a few of these topics, beginning with narrowly-scoped challenges specific to

improving Lahar’s functionality, and ending with broader challenges relevant to imprecise stream

processing in general.

Narrowly-Scoped Challenges

We have identified several challenges that, if addressed would significantly improve the performance

and functionality of Lahar. We outline these challenges here.

• Automatic Query Optimization: Currently, Lahar’s query optimizer doesn’t compare multi-

ple query plans: it relies on user input, given through the programmatic API, to specify which

indices or which approximations (or both) should be used to execute a query. Ideally, the

optimizer would compare these alternatives using a cost model and select the optimal plan on

its own.

Automatic query optimization in Lahar faces several challenges. First, to properly select an

approximation scheme, Lahar requires access to a cost function that includes estimates of

both accuracy and efficiency, as well as some user-supplied measure of equivalence between

these two factors. As mentioned in Chapter 5, a method for reliably predicting the accuracy of

various approximation schemes on different queries is difficult, and an area for future work.

Indexing, too, presents challenges for automatic query optimization in Lahar. Recall that the
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MC index can be used only when every predicate in a query is indexed. Currently, Lahar does

not create indices on the fly, but an optimizer might make a real-time decision about whether

creating a missing index on the fly in order to leverage the MC index in a query might be

worthwhile.

• Query Language: Lahar’s current query language is limited in several important ways. First,

it allows expression only of linear NFAs, when the basic query processing algorithm can

process any type of NFA. Furthermore, the current language only expresses NFAs in which

any loop predicate for a given state s is identical to the predicate on the forward (non-loop)

edge entering s. There is an inherent trade-off between a language’s expressiveness and its

simplicity, and we designed the current language to err on the side of simplicity (note that

applications can submit arbitrary NFAs for processing through the programmatic API). De-

velopment of a simple, flexible way to specify arbitrary NFA structures is an interesting are

for future work in many stream processing systems, including those that process deterministic

streams.

Lahar’s query language also suffers from an inability to allow users to specify many details

of lineage queries. In particular, the language currently provides no way for applications to

specify projection on lineage queries. Currently this must be done through the programmatic

API only. The same restriction applies for specifying the value of k in lineage queries.

• Distributed Markovian Stream Processing: In practice, real-world Markovian stream

archives may include thousands of individual streams, each of which may represent days,

weeks, or even months’ worth of data. Scalable management of such an archive requires a

distributed system, for both storage and query processing.

The current Lahar prototype is a single-threaded, single-machine system. Although the pro-

cessing of multiple, independent Markovian streams is an embarrassingly parallel problem,

several challenges are involved in creating a parallelized algorithm for processing a single

Markovian stream. One primary challenge is that Lahar’s query processing algorithms for

variable-length queries all rely on a sequential scan of the data—even when the MC index is

used to skip over intervals, the instants that require processing must be processed in sequen-
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tial order. In order to effectively parallelize query processing, a distributed algorithm must

be able to split a single stream into multiple units that can be processed in parallel. Straight-

forward, independent processing of individual stream segments is incorrect in the presence

of Markovian correlations; instead, a parallelized algorithm must process each segment con-

ditionally, and later use the results from earlier segments to condition the results from later

ones. Algorithms for performing this conditioning efficiently are an area for future work.

Distributing Lahar across multiple machines and disks presents additional challenges. A dis-

tributed system must include policies to determine the distribution of Markovian streams on

disk: Should all similar Markovian streams be co-located (e.g. all of Bob’s streams, or all

crash cart streams) on a single disk, or is it more effective to co-locate snippets of streams that

represent a wide variety of individuals/objects but that represent the same interval in time?

Answering these questions requires analysis of real-world query workloads, and it is possible

that applications requirements vary widely based on differences in their workloads.

Broadly-Scoped Challenges

In this section, we highlight two broadly-defined challenges that we believe are the primary re-

maining barriers to widespread adoption of the Markovian stream approach to imprecise sequence

management. These challenges are:

• Query signal utility model. Recall Figure 6.1, which shows an event query signal. For

each instant i in an input stream, the query signal indicates the probability that the event

query in question is satisfied at instant i. Although this signal is a precise representation of

the query answer, it is difficult for applications to make use of this signal without additional

context. For example, noise in the signal results in many instants having a non-zero but very

small probability of satisfying the query. Applications can handle this noise by thresholding

the query output so that only instants with probability above a certain threshold value are

considered. One challenge inherent to this approach, however, is how the threshold value

should be chosen. Appropriate threshold values can change depending on differences in the

input stream domain, the correlations in the data, and the length of a given query. Currently,

application thresholds must be calibrated by a human user in a trial-and-error approach. A
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better approach, and one for consideration in future work, is to build a utility model into Lahar

itself. Doing so might allow Lahar to suggest appropriate thresholds to applications, based on

statistics gathered on Markovian stream data and/or past query workloads.

Lahar’s current query signal output additionally causes difficulty for applications wishing to

correlate query match intervals with real-world events. Consider the query signal in Fig-

ure 6.1: a single real-world event at instant 1104 creates an interval of signal peaks beginning

around instant 900 and ending around instant 1150. Each of the instants in this interval sat-

isfies the query with non-trivial probability because, although the real-world event occurred

only once, the exact instant at which it occurred is highly uncertain. Another interesting

challenge for future work is the development of techniques to allow Lahar to correlate high-

probability intervals in the query signal with real-world events. One possible way to provide

this information is using lineage: stream instants with overlapping lineage are more likely to

be mutually exclusive and to correspond to a single real-world event. Another possible tech-

nique for handling these intervals is to smooth them out using post-processing on the query

signal itself. In either case, the question of how to assign probabilities to the result—and of

what format the result should take—are open for future work.

• Markovian stream generation. Both the Markovian stream approach to imprecise sequence

management, and the Lahar database, are agnostic to the method used to generate Marko-

vian streams from imprecise inputs (e.g. sensor streams). However, Markovian streams are

currently difficult to generate without sophisticated knowledge of probabilistic models, and

without knowledge of the Markovian stream domain. Because this knowledge is relatively

rare even among technical populations, conversion of imprecise sequence data into Marko-

vian streams is a significant barrier to the adoption of Lahar—even if Lahar itself is highly

intuitive and easy to use.

Although many algorithms and toolkits exist for generating Markovian streams (e.g. the HTK

toolkit [81], the HMM toolkit [79], etc.), these toolkits require significant knowledge about

probabilistic models and inference. In order for Lahar to achieve widespread adoption, a sim-

plified, intuitive tool for generating Markovian streams is required. Of course, development of
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such a tool is challenging because successful probabilistic inference requires an appropriate

data model as well as appropriate parameters for describing sensor noise and transition prob-

abilities (likelihoods of various word sequences, for example, or the connectivity between

various locations in a building).

We believe that development of a simplified, intuitive tool for Markovian stream generation

is possible, and might be developed by making several assumptions. The first assumption is

that data can be appropriately modeled using a Hidden Markov Model, the simplest form of

graphical model that can produce a Markovian stream. Although more sophisticated models

might produce higher-quality Markovian streams, providing a default structure alleviates the

need for users to explicitly specify a model. The second assumption is that the parameters of

the HMM can be learned from training data. Taking this approach requires that users provide

a small amount of input data labeled with true values (e.g. the actual locations visited, or

words spoken), but it removes the need for users to measure or characterize sensor noise, or to

provide language models or building maps. The quality of Markovian streams generated using

models constructed or learned in this manner is an interesting question for future analysis.

Conclusion

Markovian streams are well-suited to model a huge range of low-level, imprecise data, including

speech, location sensors, smart homes, etc.. The higher-level information (location, activity, etc..)

contained in these streams is valuable to applications wishing to perform a variety of tasks, including

keyphrase searches in audio data, operations support in hospital or office buildings, etc.. Supporting

such analytics efficiently on Markovian streams requires novel algorithms and systems. The algo-

rithms and data structures developed in the context of Lahar, as well as the Lahar system itself, are

a first step toward the goal of extracting utility from Markovian stream data. While the event query

processing, aggregations, and lineage processing supported by Lahar are important, many research

challenges remain to be addressed before applications can leverage the full power of Markovian

stream data. We hope that in time, low-level stream data will be as easy and efficient to analyze as

relational data is today.
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[73] J. Letchner, C. Ré, M. Balazinska, and M. Philipose. Access methods for markovian streams. In Proc. of the 25th ICDE Conf.,
pages 246–257, 2009.

[74] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An introduction to the application of the theory of probabilistic functions of a
Markov process to automatic speech recognition. Bell Sys. Tech. J., 62:1035, 1983.

[75] X. Li, J. Han, Z. Yin, J.-G. Lee, and Y. Sun. Sampling cube: a framework for statistical olap over sampling data. In Proc. of the
SIGMOD Conf., pages 779–790, New York, NY, USA, 2008. ACM.



131

[76] L. Liao, D. J. Patterson, D. Fox, and H. A. Kautz. Learning and inferring transportation routines. Artif. Intell, 171(5-6):311–331,
2007.

[77] E. Lo, B. Kao, W.-S. Ho, S. D. Lee, C. K. Chui, and D. W. Cheung. Olap on sequence data. In J. T.-L. Wang, editor, Proc. of the
SIGMOD Conf., pages 649–660. ACM, 2008.

[78] Y. Mei and S. Madden. ZStream: A cost-based query processor for adaptively detecting composite events. In Proc. of the
SIGMOD Conf., 2009.

[79] K. Murphy. The hmm toolkit. http://www.cs.ubc.ca/ murphyk/Software/HMM/hmm.html, 1998.

[80] A. Nemmaluri, M. D. Corner, and P. J. Shenoy. Sherlock: automatically locating objects for humans. In Proc. of the 6th MobiSys
Conf., pages 187–198, 2008.

[81] J. Odell, D. Ollason, P. Woodland, S. Young, and J. Jansen. The HTK Book for HTK V2.0. Cambridge University Press,
Cambridge, UK, 1995.

[82] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley db. In ATEC ’99: Proceedings of the annual conference on USENIX Annual
Technical Conference, pages 43–43, Berkeley, CA, USA, 1999. USENIX Association.

[83] New Oregon Hospital Adopts IR-RFID Hybrid System.
http://www.rfidjournal.com/article/view/4846/1, May 2009.

[84] T. J. Parr and R. W. Quong. ANTLR: A predicated-ll(k) parser generator. Software Practice and Experience, 25:789–810, 1994.

[85] D. J. Patterson, D. Fox, H. A. Kautz, and M. Philipose. Fine-grained activity recognition by aggregating abstract object usage. In
ISWC, pages 44–51, 2005.

[86] D. Pfoser and C. S. Jensen. Querying the trajectories of on-line mobile objects. In Proc. of the 2nd MobiDE Workshop, pages
66–73, 2001.

[87] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE,
77(2):257–286, 1989.

[88] R. Ramakrishnan, D. Donjerkovic, A. Ranganathan, K. S. Beyer, and M. Krishnaprasad. Srql: Sorted relational query language.
In Proc. of the SSDBM Conf., pages 84–95. IEEE Computer Society, 1998.

[89] V. Raman and G. Swart. How to wring a table dry: entropy compression of relations and querying of compressed relations. In
Proc. of the 32nd VLDB Conf., pages 858–869. VLDB Endowment, 2006.

[90] V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani, D. Kossmann, I. Narang, and R. Sidle. Constant-time query processing. In
Proc. of the 24th ICDE Conf., pages 60–69. IEEE, 2008.

[91] J. Rao, S. Doraiswamy, H. Thakkar, and L. S. Colby. A deferred cleansing method for rfid data analytics. In VLDB ’06:
Proceedings of the 32nd international conference on Very large data bases, pages 175–186. Proc. of the 32nd VLDB Conf.,
2006.
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