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Scientific discoveries are increasingly driven by analyzing large volumes of data. Advances in

data collection and storage technologies, availability of cloud compute resources, and better algo-

rithms and readily available open-source libraries are responsible in equal measure for this phe-

nomenon. Large proportion of scientific data is in form of images as many scientific instruments

such as telescopes, microscopes, satellites, x-rays, MRIs, etc. produce data in image formats.

However, commercial systems have paid scant attention to scientific image analysis workloads and

as a result scientists working with images spend a lot of effort building bespoke and often fragile

support for such analyses.

In this dissertation, we first evaluate several popular systems on scientific image analysis work-

loads. We then perform an in-depth image analysis, which yields novel results in ophthalmology.

Finally, we use our findings to propose a novel technique to ease some of the data management

burden associated with scientific image analysis, specifically debugging of deep neural networks.

Specifically, first we assess existing big data systems and frameworks for suitability of scientific

image analyses workloads. We evaluate five representative systems (SciDB, Myria, Spark, Dask,

and TensorFlow) both qualitatively (ease of use) and quantitatively (scalability and performance)

on two real-life image analysis use cases from astronomy and neuroscience. We find that each of

them has shortcomings that complicate implementation or hurt performance.

Next, we propose a new, comprehensive, and more accurate ML-based approach for population-



level glaucoma screening. In this project we embed ourselves in the process of scientific discovery

by analyzing a publicly available large dataset to further the state of art in ophthalmology. Our

model is highly accurate (AUC 0.97) and interpretable. It validates biological features known to be

related to the disease, such as age, intraocular pressure and optic disc morphology. Our model also

points to previously unknown or disputed features, such as pulmonary capacity and retinal outer

layers.

Finally, we utilize lessons from building interpretable deep learning models for automated glau-

coma detection to propose a novel sampling technique for deep learning model diagnosis. Our

experience demonstrated that scientists utilizing deep learning often spend majority of their time

managing the data associated rather than focusing on science. Our sampling technique seeks to

reduce the data management burden for scientist working on such analyses, making the process of

deep learning model diagnosis simpler and more efficient.
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Chapter 1

INTRODUCTION

“Begin at the beginning,” the King said, very gravely, “and go on till you come to the end: then

stop.”

– Lewis Carroll

“Scientific breakthroughs will be powered by advanced computing capabilities that help researchers

manipulate and explore massive data sets.”

– Jim Gray, The Fourth Paradigm

With advances in data collection and storage technologies, data analysis has been heralded

as the fourth paradigm of science after empirical evidence, scientific theory, and computational

science [61]. Scientific discoveries are increasingly driven by analyzing immense volumes of data.

Many of these massive and varied data sets are publicly available. For example, UK Biobank [184]

an international health resource that strives to improve prevention, diagnosis, and treatment of a

wide range of life-threatening illnesses recruited 500,000 people between 40-69 years in 2006-

2010; these participants underwent clinical assessment, provided blood, urine, and saliva samples

for future analysis, and gave detailed information about themselves, agreeing to have their health

followed over time. The size of this data is staggering: Magnetic Resonance Imaging (MRI) data

alone contains over 200 TB [119]. This data is being used by over 13,000 researchers working in

more than 1375 institutes in 68 countries across the globe [184]. Another example is the Large

Synoptic Survey Telescope (LSST), a large-scale international initiative to build a new telescope
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for surveying the visible sky [107], which plans to collect 60PB of images over 10 years. In

previous astronomy surveys (e.g., the Sloan Digital Sky Survey [158]), an expert team of engineers

processed collected images on dedicated servers, and results were distilled into textual catalogs for

other astronomers to analyze. In contrast, LSST seeks to broaden access to the collected images

for astronomers around the globe, enabling them to run analyses directly on the images.

These initiatives have become the norm. Many other programs are similarly making vast collec-

tions of data available to researchers [5, 87, 179]. In a broad range of scientific fields, an increasing

portion of this data consists of images [82, 83].

1.1 Image Analytics

Image analytics involves extracting meaningful information from image data. Scientific instru-

ments (such as telescopes, microscopes, satellites, x-rays, MRIs, etc.) record data in image form.

Analyzing these scientific images requires performing tasks such as: (1) cleaning images, or re-

moving background noise and instrument artifacts, (2) finding areas of interest, which involves

automated segmenting or inferring areas of interest using a labeled image set, and (3) combining

images, which requires stacking two-dimensional images to form a three-dimensional volume or

stitching multiple over-lapping smaller images to generate a combined larger one. Once these and

other tasks are completed, scientists can extract specific properties of interest and use the processed

images to enhance further scientific discovery.

For instance, astronomers use telescope images to create a sky map. Their analysis requires

loading images from Flexible Image Transport System (FITS) files; FITS is an open standard

defining a digital file format useful for storage, transmission and processing of data. Scientists

then process the images, which involves cleaning them by normalizing pixel values according

to minimum and maximum intensities observed across the full sky; transforming the images by

mapping their pixels to a new pixel grid; merging images across multiple observations to remove

temporary artifacts; and rendering a sky map at the desired resolution with interpolation. Image

analysis tasks include performing operations such as spatial joins, slicing, dicing, roll-ups, stencil

operations (over sliding windows) and complex user-defined functions expressed in higher level
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languages such as Python. This type of analysis is computationally intensive. As larger volumes

of data are collected, scientists need to scale their image processing use cases.

However, systems for storing, managing, and analyzing ’big data’ do not support image data

and the associated scientific image analysis workflows, as we next describe.

1.2 Big Data Systems

Big data systems are characterized by their ability to store, manage and systematically extract in-

formation from, or otherwise deal with, data sets that are too large or complex to be dealt with by

traditional data-processing application software [194]. A “big data system” describes any database

management system or cluster computing library that provides parallel processing capabilities on

large amounts of data as well as scalable and efficient ways to store and analyze such data via

programming models that are easily used by domain scientists (e.g., astronomers, physicists, bi-

ologists). Most big data systems aim to support massive scale and high- speed data processing.

Examples of popular big data systems include open-source systems such as Hadoop, Spark, and

Cassandra [167, 68, 33].

Current big data systems are built and optimized for primitive data types, such as integers, floats

and strings. Utilizing these existing systems for dense, high-dimensional data, such as images,

poses critical performance and usability challenges. These challenges include ingesting, storing,

and managing a smaller number of larger data items as opposed to a large number of smaller data

items. Additionally, as noted, image analytics workloads require complex computations. These

computations cannot be expressed using relational operators; they instead require complex, user-

defined operations in high-level languages such as Python and R. Such use cases emphasize the

need for effective systems to support the management and analysis of image data: systems that

are efficient, scale effectively, and are easy to program without requiring deep systems expertise to

deploy and tune.

Surprisingly, scant research from the data management community addresses building systems

to support large-scale image management and analytics. Rasdaman [152] and SciDB [156] are two

well-known DBMSs that specialize in the storage and processing of multidimensional array data
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Figure 1.1: Top-5 error rate (percentage) on image classification on ImageNet data.

and are a natural choice for implementing image analytics. Besides these systems, most other work

targets predominantly image storage and retrieval based on keyword or similarity searches [55, 32,

35] and does not support the image analysis use cases described above.

1.3 Deep Learning

Deep learning (DL) is an important tool scientists use to work with images. No discourse on large-

scale image analytics is therefore complete without discussing its contributions. Here, we describe

deep learning in the context of image analyses and data management support required to build,

diagnose and explain deep learning image models.

Deep learning is a subset of machine learning where artificial neural networks, viz., algorithms

inspired by the human brain, learn from large amounts of data. Compared to the traditional ap-

proach, i.e., selecting features before training a model, deep learning features are not manually

given but rather learned post hoc and automatically from the input data, which is arranged in

dense, high-dimensional numerical arrays (e.g., images, audio, and text). It is with this kind of

data that deep learning has achieved paradigm-shifting performance. For instance, deep learning

models outperform humans in classifying images from the ImageNet data set [84, 85], a com-
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monly used benchmark for convolutional architectures, showing better-than-human performance

(seeFigure 1.1).

Deep learning is a data-hungry workload [69]. The rule of thumb is that training should use

10X as many data samples as the number of dimensions of the input data [183]. For a 200 ×

200 × 3 image, this results in 1.2 million data samples. Additionally, machine learning is an

iterative process. A machine learning (ML) practitioner must build and tune dozens of models

before selecting one. Selection ultimately depends on measures such as accuracy being applied

to a test data set that is new to the deep learning model. Selecting the best model means that the

practitioner must run many experiments, each resulting in a candidate model. Each experiment may

vary model hyper-parameters, which include: learning rate (step size of how much model weights

are changed in each iteration), number of epochs (number of times that the learning algorithm

will work through the entire training data set), or other strategies, such as different loss functions

(optimization objective for learning), regularization strategies (explicitly designed to reduce the

test error) or model architectures (number, width and type of layers). While such iterative work is

true of any machine learning model, using high-dimensional input data takes longer to train deep

learning models, which exacerbate the problem.

An enduring criticism of deep learning models is their black-box nature. This opacity presents

a barrier to adoption of these models in applications such as medical diagnosis, where it is essential

that models be easily explainable. Additionally, practitioners ask certain questions when a model

does not produce desired results: ”Why did the model incorrectly classify a data instance?” or

”Why is the model’s accuracy so low?” Conversely, when a model performs well, they want to

know, ”What did the model learn to achieve such high accuracy?”

Answers to these questions in the context of interpretability and diagnosis requires access to

artifacts, such as model activations and gradients. Activation values, or activations, are learned rep-

resentations of input data. Gradients are partial derivatives of target output (e.g., the true label of

the input data) with respect to input data. These artifacts are essentially high-dimensional vectors

of floating-point numbers that encapsulate how deep learning models represent input data (acti-

vations) and what parts of the input data they consider important (gradients). Pre-computing and
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storing all artifacts required for model diagnosis is a naive solution, one that scales prohibitively as

the product of input data size and the number of parameters of the deep learning model increases.

For instance, consider a VGG-16 [190] model trained on CIFAR-10 [41]. CIFAR-10 is a moderate-

sized data set with 60k images, 32 × 32 × 3 pixels each; VGG-16 [190] is a deep learning model

with 22 layers and 33, 638, 218 learned parameters. Storing the activations for ten experiments of

training CIFAR-10 data on a VGG-16 models results in 350GB of data. While the total size of

the artifacts for small data sets and models may be manageable, an overhead that is three orders of

magnitude larger than the input data per model adds a significant burden of data management on

the ML practitioner.

1.4 Contributions and Thesis Outline

This doctoral research and the thesis based on it make the following contributions to understanding

of scientific image data processing and management:

1. We assess big data systems in terms of their ability to support image analytics workloads

(Chapter 2).

2. We extend the state-of-the-art in ophthalmology by building an interpretable model for au-

tomated glaucoma detection (Chapter 3).

3. We develop new techniques for reducing the data management burden imposed by deep

learning model diagnosis (Chapter 4).

Our first project investigates the efficacy of existing big data systems for large-scale image

analytics. We assess five existing open-source big-data systems to evaluate their suitability for

image processing tasks and outline the resulting challenges and opportunities for large-scale image

analytics. The assessment criteria are both qualitative (ease of use) and quantitative (scalability and

performance).
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The second project introduces a new, comprehensive, and more accurate ML-based approach

for population-level glaucoma screening. This approach is based on building multiple deep learn-

ing models on different retinal image modalities and combining them with clinical data to create

ensemble models that are both highly accurate and explainable.

In the third and final project, we draw upon our experience building an automated disease

detection model to propose a new sampling technique that reduces the data management burden,

thereby making the process of building and diagnosing deep learning models simpler and more

efficient. We discuss Related Work in Chapter 5 and conclude our inquiry in Chapter 6. We now

describe each contribution in more detail.

1.4.1 Comparative Evaluation of Big-Data Systems for Large-Scale Image Analytics

In Chapter 2, we describe in detail our research that evaluates the suitability of large-scale data

systems and frameworks for the scientific data analysis of images. Our goal was to assess where

current big data systems perform well and where they fall short in their utility for image analytics.

We investigated two real-world scientific image data processing use cases for this evaluation. The

first use case takes as input diffusion MRI (dMRI) images of a human brain, which are cleaned,

segmented and then used to build a model of brain connectivity. The second use case takes as input

telescope images of the sky over multiple observations, which are cleaned, aligned and combined

to create a comprehensive sky map.

The key questions we ask in this assessment are (1) How well do existing big data systems

support the management and analysis requirements of real scientific image processing workloads?

(2) Is it easy to implement large-scale image analytics using these systems? (3) How efficient are

the resulting applications built atop such systems? (4) Do these systems require deep technical

expertise to optimize?

We chose five big data systems for parallel data processing: a domain-specific DBMS for

multidimensional array data (SciDB [156]); a general-purpose cluster computing library with per-

sistence capabilities (Spark [167]); a traditional parallel general-purpose DBMS (Myria [70, 193]);

and a general-purpose (Dask [154]) and domain-specific (TensorFlow [4]) parallel-programming li-
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brary. We selected these systems because they have open-source implementations, can be deployed

on commodity hardware, support complex analytics (such as linear algebra and user-defined func-

tions), use the scientifically popular Python language for APIs [136], and have different internal

architectures so we could evaluate the performance of different implementation paradigms.

Implementing both use cases on five systems was not always straight-forward and occasion-

ally required completely re-writing the reference implementation provided by the scientists. The

use cases themselves had important similarities: input data was in the form of multidimensional

arrays encoded in domain-specific file formats (FITS [57], NIfTI [130], etc.); data processing in-

volved slicing along different dimensions, aggregations, stencil (a.k.a. multidimensional window)

operations, spatial joins and complex transformations expressed in Python.

Our analysis showed that leveraging the benefits of all systems requires deep technical ex-

pertise. For these systems to better support image analytics in domain sciences, they must si-

multaneously provide comprehensive support for multidimensional data and high performance for

UDFs/UDAs written in popular languages (e.g., Python). Additionally, they must completely au-

tomate data and compute distribution across clusters and provide memory management in order to

eliminate all possible sources of out-of-memory failures. Overall, we argue that current systems ad-

equately support image analytics, but they also reveal new opportunities for further improvements

and future research. The ability to use existing domain-specific code to perform sophisticated and

difficult-to-rewrite operations, combined with the ability to automatically parallelize computation

(by reasoning over multi-dimensional arrays) without having to manually create and process col-

lections of image fragments, will make it easier for scientists from all fields to use these systems. It

will also reduce the now effortful work of creating and maintaining bespoke and fragile solutions

to support scientific image analysis.

As a precursor to this evaluation, we extended Myria with support for (1) large binary objects

(BLOBs) as a native data type, and (2) user-defined functions (UDF) and aggregates (UDA) in a

higher level language (e.g., Python) used in CIDR’17 [193]. The comparative evaluation study was

published at VLDB’17 [116].
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Figure 1.2: Illustration of an eye with glaucoma.

1.4.2 Automated Detection of Glaucoma in Multi-Modal Images

In Chapter 3 we present a new, comprehensive, and more accurate ML-based approach for population-

level glaucoma screening. This project had two goals. First, we wanted to create a new and in-

terpretable approach for detecting glaucoma using both clinical measurements as well as retinal

images of multiple modalities. Second, we sought to understand the challenges inherent in build-

ing interpretable deep learning models by working on a real-life problem with domain experts to

leverage their knowledge about useful systems and techniques for deep learning workloads.

Glaucoma, the leading cause of irreversible blindness worldwide, affects approximately 76

million people (2020) and is predicted to affect nearly 111.8 million by 2040 [178]. The risk

of glaucoma increases with age [128]. As life expectancy continues to lengthen, glaucoma is

expected to become a significant public health concern [178]. This disease is characterized by the

progressive loss of retinal ganglion cells, which manifests as thinning of the retinal nerve fiber

layer (RNFL) and characteristic changes in the optic nerve’s head appearance [34]. In later stages

of the disease, visual field defects develop which, if uncontrolled, can ultimately result in complete

blindness.

Fig. 1.2 shows an eye affected by glaucoma. This specific case depicts primary open angle
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Figure 1.3: CFP and OCT images: From left, anatomical image of of the eye, CFP and OCT
image. The black rectangle on the CFP shows the approximate area over which OCT images are
captured, and the green line corresponds to the OCT image shown on the right.

glaucoma (POAG); POAG causes pressure to build in the eye and leads to damage of the optic

nerve, resulting in thinning of the retinal nerve fiber layer and eventual loss of vision. To detect

glaucoma, we used the UK Biobank [184] data set to build deep learning models based on retinal

images. We used two categories of images: color fundus photos (CFPs) and Optical Coherence

Tomography (OCT) images. In CFP, the camera uses the pupil to take an image of the back of

the eye. Figure 1.3 shows an image of an eye on the left; at the back of the eye in the left image

is the area depicted by the fundus image. The CFP image in the center. OCT images are shown

on Figure 1.3. OCT, a non-invasive imaging test, uses light waves to take cross-section images of

retina; the OCT device scans the retina in horizontal lines, traversing from the top of the eye to

the bottom of the eye, creating several scans for a single retina. The black rectangle on the center

fundus image shows the area scanned for OCT images. The green line shows a single OCT image

on the right.

Our contributions from this project include: (1) a multi-modal model built upon a large data

set that includes demographic, systemic and ocular data as well as raw image data taken from

color fundus photos (CFPs) and macular Optical Coherence Tomography (OCT) scans, (2) model

interpretation to identify and explain data features that lead to accurate model performance, and

(3) model validation via comparison of model output with clinician interpretation of CFPs. We

also validate the model on a cohort that was not diagnosed with glaucoma at the time of imaging
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but eventually received a glaucoma diagnosis. Results show our model to be highly accurate (AUC

0.97) and interpretable. The model validates biological features known to be related to the disease,

such as age, intraocular pressure, and optic disc morphology. It also highlights previously unknown

or disputed features, such as pulmonary capacity and retinal outer layers.

This research was presented at the annual meeting of Association for Research in Vision and

Ophthalmology [17] and is now under submission.

1.4.3 Sampling for Deep Learning Model Diagnosis

In Chapter 4 we focus on the data management challenges facing ML practitioners who build

deep learning models. Specifically, we present a new sampling-based approach for deep learning

model diagnosis. When diagnosing deep learning models, ML practitioners pose queries such

as, “What are the top k maximally activated neurons for layer conv2 for all incorrectly classified

objects for modelA?” [90, 106, 92], and “What is the similarity between the logits of classa and

the representation learned by the last convolution layer by modelA?” [113, 100]. Such analyses

require activations for the entire model(s) over the entire input data set. If the training process is

being examined, or multiple models are being compared, the activations for multiple checkpoints

or models must be generated and stored.

As previously noted, the naive solution – pre-computing and storing all artifacts required for

model diagnosis – scales as the product of size of input data and number of parameters of the deep

learning model. Generating query results on-the-fly has a response time between tens of seconds to

tens of minutes, which makes it difficult to efficiently perform diagnosis tasks, often preventing in-

teractive diagnosis. Previous attempts at solving this problem either pre-generated all data required

to provide interactive query times [91, 90, 106, 169] or used varied storage optimization techniques

to manage the storage footprint [189, 117]. Both approaches require pre-generated artifacts. Some

visualization tools pre-generate aggregates but severely limit the type of queries that can be posed,

while others simply do the latter. Systems with storage optimizations [189] reduce data storage

requirements using techniques such as de-duplication and quantization.

We use sampling as a means to reduce the quantity of data we need to store, manage and
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query. Common sampling techniques that rely on uniform random sampling or stratified sampling

yield poor results. Instead, we propose a novel technique for creating a sample for deep learning

model diagnosis. Our key insight is for the deep learning model, along with its other objectives

(such as classification), to learn a lower-dimensional representation of the data. Deep learning

training transforms the input data, creating a new representation with each layer. Therefore, to

diagnose the model, we leverage this lower-dimensional representation of data rather than storing

and analyzing the distribution of activation values to create a sample. The sampling technique that

we developed specifically targets model diagnosis queries, which include top-k queries as well as

average values. It provides more accurate answers than uniform sampling, stratified sampling, and

other sampling techniques from the literature.

Our technique selects a sample from the input (test and training) data set so that artifacts can

be generated only for the sample. This approach not only reduces the storage footprint and speeds-

up queries since we store less data, but it also speeds-up the overall diagnosis process by saving

the time it would otherwise take to generate all artifacts for the entire data set. In Chapter 4, we

describe our sampling technique in greater detail and evaluate its performance on two data sets

compared to a variety of state-of-the-art alternatives. A short version of this paper was published

at ICDE’20 [142].

In summary, this thesis focuses on large-scale image analytics for scientific image data. We

assess existing big data systems on their ability to support image analytics and extend Myria to

support such workloads. Our work on automated glaucoma detection built a deep learning based

interpretable model to detect glaucoma. Finally, we drew on our experiences when building the

glaucoma detection model to propose a novel sampling technique that reduces the data manage-

ment complexity associated with building and diagnosing interpretable deep learning models for

large image data sets.
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Chapter 2

COMPARATIVE EVALUATION OF BIG-DATA SYSTEMS ON
SCIENTIFIC IMAGE ANALYTICS WORKLOADS

“Sooner or later all things are numbers, yes?”

– Terry Pratchett, Monstrous Regiment

“It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit

theories, instead of theories to suit facts.”

– Arthur Conan Doyle, A Scandal in Bohemia

In this chapter we describe in further detail the study evaluating the suitability of large-scale

data systems and frameworks for scientific data analysis using two real-world scientific image data

processing use cases. We evaluate five representative systems (SciDB, Myria, Spark, Dask, and

TensorFlow) and find that each of them has shortcomings that complicate implementation or hurt

performance. We evaluate all systems for both performance and ease-of-use. To evaluate these

systems, we implement two representative end-to-end image analytics pipelines from astronomy

and neuroscience. Each pipeline has a reference implementation in Python provided by domain

scientists. We then attempt to re-implement them using the five big data systems described above

and deploy the resulting implementation on commodity hardware in the Amazon Web Services

cloud [18], to simulate the typical hardware and software setup in scientists’ labs. We evaluate the
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resulting implementations with the following goals in mind:

• Investigate if the given system can be used to implement the pipelines and, if so, how easy is

it to do so (Section 2.3).

• Measure the execution time of the resulting pipelines in a cluster deployment (Section 2.4.1

and Section 2.4.2).

• Evaluate the system’s ability to scale, both with the number of machines available in the

cluster, and the size of the input data to process (Section 2.4.1).

• Assess tuning required by each system to correctly and efficiently execute each pipeline

(Section 2.4.3).

Overall, we find that all systems have important limitations. While performance and scalability

results are promising, there is much room for improvement in usability and efficiently supporting

image analytics at scale.

2.1 Evaluated Systems

In this section we briefly describe the five evaluated systems and their design choices pertinent to

image analytics. The source code for all of these systems is publicly available.

Dask [1] (v0.13.0) is a general-purpose parallel computing library implemented entirely in Python.

We select Dask because the use cases we consider are written in Python. Dask represents paral-

lel computation with task graphs. Dask supports parallel collections such as Dask.array and

Dask.dataframe. Operations on these collections create a task graph implicitly. Custom (or exist-

ing) code can be parallelized via Dask.delayed statements, which delay function evaluations and

insert them into a task graph. Individual task(s) can be submitted to the Dask scheduler directly.

Submitted tasks return Futures. Further tasks can be submitted on Futures, sending computation

to the worker where the Future is located. The Dask library includes a scheduler that dispatches

tasks to worker processes across the cluster. Processes execute these tasks asyncronously. Dask’s
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scheduler determines where to execute the delayed computation, and serializes the required func-

tions and data to the chosen machine before starting its execution. Dask uses a cost-model for

scheduling and work stealing among workers. The cost-model considers worker load and user

specified restrictions (e.g., if a task requires a worker with GPU) and data dependencies of the

task. Computed results remain on the worker where the computation took place and are brought

back to the local process by calling result().

Myria [70, 193] is a relational, shared-nothing DBMS developed at the University of Washing-

ton. Myria uses PostgreSQL [150] as its node-local storage subsystem and includes its own query

execution layer on top of it. Users write queries in MyriaL, an imperative-declarative hybrid lan-

guage, with SQL-like declarative constructs and imperative statements such as loops. Myria query

plans are represented as graphs of operators and may include cycles. During execution, operators

pipeline data without materializing it to disk. Myria supports Python user-defined functions and

a BLOB data type. The BLOB data type allows users to write queries that directly manipulate

objects like NumPy arrays. We select Myria as a representative shared nothing parallel DBMS and

also a system that we built. Our goal is to understand how it compares to other systems on image

analysis workloads and what it requires to effectively support such tasks.

Spark [200] (v1.6.2) supports a dataflow programming paradigm. It is up to 100× faster than

Hadoop for in-memory workloads and up to 10× faster for workloads that persist to disk [167]. We

select Spark for its widespread adoption, its support for a large variety of use cases, the availability

of a Python interface, and to evaluate the suitability of the MapReduce programming paradigm for

large-scale image analytics. Spark’s primary abstraction is a distributed, fault-tolerant collection

of elements called Resilient Distributed Datasets (RDDs) [200], which are processed in parallel.

RDDs can be created from files in HDFS or by transforming existing RDDs. RDDs are partitioned

and Spark executes separate tasks for different RDD partitions. RDDs support two types of oper-

ations: transformations and actions. Transformations create a new dataset from an exisiting one,

e.g., map is a transformation that passes each element through a function and returns a new RDD

representing the results. Actions return a value after running a computation: e.g., reduce is an

action that aggregates all the elements of the RDD using a function and returns the final result. All
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transformations are lazy and are executed only when an action is called. Besides map and reduce,

Spark’s API supports relational algebra operations as well, such as distinct, union, join, grouping,

etc.

SciDB [28] (v15.12) is a shared-nothing DBMS for storing and processing multidimensional ar-

rays. SciDB is designed specifically to support image analytics tasks such as those we evaluate in

this paper, and is an obvious system to include in the evaluation. In SciDB, data is stored as arrays

divided into chunks distributed across nodes in a cluster. Users then query the stored data using the

Array Query Language (AQL) or Array Functional Language (AFL) through the provided Python

interface. SciDB supports user-defined functions in C++ and, recently, Python (with the latter ex-

ecuted in a separate Python process). In SciDB, query plans are represented as an operator tree,

where operators, including user-defined ones, process data iteratively one chunk at a time.

TensorFlow [4] (v0.11) is a library from Google for numerical computation using dataflow graphs.

Although TensorFlow is typically used for machine learning, it supports a wide range of functional-

ity to express operations over N-dimensional tensors. Such operations are organized into dataflow

graphs, where nodes represent computations, and edges are the flow of data expressed using ten-

sors. TensorFlow optimizes these computation graphs and can execute them locally, in a cluster, on

GPUs, or on mobile devices. We select TensorFlow to evaluate its suitability for large-scale image

analytics given its general popularity.

2.2 Image Analytics Use Cases

Scientific image data is available in many modalities: X-ray, MRI, ultrasound, telescope, micro-

scope, satellite, etc. We select two scientific image analytics use cases from neuroscience and

astronomy, with real-world utility in two different domains. The choice of these use cases is influ-

enced by access to domain experts in these fields, availability of large datasets, and interest from

the domain experts in scaling their use cases to larger datasets with big data systems. Reference

implementations for both use cases are provided by domain experts who are also coauthors on this

paper, and were written for their prior work. Both reference implementations are in Python and

utilize wrapped libraries written in C/C++. We present the details of the use cases in this section.
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Both use cases are subdivided into steps. We use Step X N and Step X A to denote steps in the

neuroscience and astronomy use cases respectively.

2.2.1 Neuroscience

Many sub-fields of neuroscience use image data to make inferences about the brain [88]. The use

case we focus on analyzes Magnetic Resonance Imaging (MRI) data in human brains. Specifically,

we focus on measurements of diffusion MRI (dMRI), an imaging technology that is sensitive to

water diffusion in different directions within a human brain. These measurements are used to

estimate large-scale brain connectivity, and to relate the properties of brain connections to brain

health and cognitive functions [191].

Data: The input data comes from the Human Connectome Project [187]. We use data from

the S900 release, which includes dMRI data from over 900 healthy adult subjects collected be-

tween 2012 and 2015. The dataset contains dMRI measurements obtained at a spatial resolution

of 1.25×1.25×1.25 mm3. Measurements were repeated 288 times in each subject, with differ-

ent diffusion sensitization in each measurement. The data from each measurement, called a vol-

ume, is stored in a 3D (145×145×174) array of floating point numbers, with one value per three-

dimensional pixel (a.k.a. voxel). Image data is stored in the standard NIfTI-1 file format used for

neuroimaging data. Additional metadata about the measurement used during analysis is stored in

text files that accompany each measurement. We use data from 25 subjects for this use case. Each

subject’s data is ∼1.4GB in compressed form, which expands to ∼4.2GB when uncompressed.

The total amount of data from 25 subjects is thus approximately 105GB.

Processing Pipeline: The benchmark contains three steps from a typical dMRI image analysis

pipeline for each subject, as shown in Figure 2.1.

1. Segmentation: Step 1 N constructs a 3D mask that segments each image volume into two

parts: the brain and the background. As the brain comprises around two-thirds of the image

volume, using the mask to filter out the background will speed up subsequent steps. Segmen-

tation proceeds in three sub-steps. First, we select a subset of the volumes where no diffusion
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Figure 2.1: Neuroscience use case: Step 1 N Segmentation, Step 2 N Denoising, and Step 3 N

Model fitting.

sensitization has been applied. These images are used for segmentation as they have higher

signal-to-noise ratio. Next, we compute a mean image from the selected volumes by averag-

ing the value of each voxel. Finally, we apply the Otsu segmentation algorithm [138] to the

mean volume to create a mask volume per subject.

2. Denoising: Denoising is needed to improve image quality and accuracy of the analysis re-

sults. This step (Step 2 N) can be performed on each volume independently. Denoising

operates on a 3D sliding window of voxels using the non-local means algorithm [44] and

uses the mask from Step 1 N to denoise only parts of the image volume containing the brain.

3. Model fitting: Finally, Step 3 N computes a physical model of diffusion. We use the dif-

fusion tensor model (DTM) to summarize the directional diffusion profile within a voxel as

a 3D Gaussian distribution [21]. Fitting the DTM is done independently for each voxel and

can be parallelized. This step consists of a flatmap operation that takes a volume as input and

outputs multiple voxel blocks. All 288 values for each voxel block are grouped together be-

fore fitting the DTM for each voxel. Given the 288 values in for each voxel, fitting the model

requires estimating a 3×3 variance/covariance matrix. The model parameters are summa-

rized as a scalar for each voxel called Fractional Anistropy (FA) that quantifies diffusivity

differences across different directions.
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Figure 2.2: Astronomy use case: Step 1 A Pre-Processing, Step 2 A Patch Creation, Step 3 A

Co-addition, and Step 4 A Source Detection.

The reference implementation is written in Python and Cython using Dipy [63].

2.2.2 Astronomy

As noted before, astronomy surveys are generating an increasing amount of image data. Our second

use case is an abridged version of the LSST image processing pipeline [108], which includes

analysis routines used by astronomers.

Data: We use data from the High Cadence Transient Survey [77] for this use case, as data from

the LSST survey is not yet available. A telescope scans the sky through repeated visits to indi-

vidual, possibly overlapping, locations. We use up to 24 visits that cover the same area of the

sky in this evaluation. Each visit is divided into 60 images, with each consisting of an 80MB 2D

image (4000×4072 pixels) with associated metadata. The total amount of data from all 24 visits is

approximately 115GB. The images are encoded using the FITS file format [57] with a header and

data block. The data block has three 2D arrays, with each element containing flux, variance, and

mask for every pixel.

Processing Pipeline Our benchmark contains four steps from the LSST processing pipeline as

shown in Figure 2.2:

1. Pre-Processing: Step 1 A pre-processes each image to remove background noise and ar-
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tifacts caused by imaging instruments. These operations are implemented as convolutions

with different kernels. This step can be parallelized across images.

2. Patch Creation: Step 2 A re-grids the pre-processed images of the sky into regions called

patches. Each image can be part of 1 to 6 patches requiring a flatmap operation. As pixels

from multiple images can contribute to a single patch, this step groups the images associated

with each patch and creates a new image object for each patch in each visit.

3. Co-addition: Step 3 A groups the images associated with the same patch across different

visits and stacks them by summing up the pixel (or flux) values. This is called co-addition

and is performed to improve the signal to noise ratio of each image. Before summing up the

pixel values, this step performs iterative outlier removal by computing the mean flux value

for each pixel and setting any pixel that is three standard deviations away from the mean to

null. Our reference implementation performs two such cleaning iterations.

4. Source Detection: Finally, Step 4 A detects sources visible in each co-added image gener-

ated from Step 3 A by estimating the background and detecting all pixel clusters with flux

values above a given threshold.

The reference implementation is written in Python, and depends on several libraries implemented

in C++, utilizing the LSST stack [107]. While the LSST stack can run on multiple nodes, the

reference is a single node implementation.

2.3 Qualitative Evaluation

We evaluate the five big data systems along two dimensions. In this section, we discuss each

system’s ease of use and overall implementation complexity. We discuss performance and required

physical tunings in Section 2.4. A subset of the computer science coauthors implemented each

use case on each system based on the reference implementations provided by the domain expert

coauthors. The team had previous experience with Myria, Spark, and SciDB but not Dask or

TensorFlow.
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2.3.1 Dask

Implementation: As described in Section 2.1, users specify their Dask computation using task

graphs. However, unlike other big data systems with task graphs, users do not need to use a

specific data abstraction (e.g., RDDs, relations, tensors, etc.). They can construct graphs directly

with Python data structures. As an illustration, Figure 2.3 shows a code fragment from Step 1 N

of the neuroscience use case. We first construct a compute graph that downloads and filters each

subject’s data on Line 2. Note the use of delayed to construct a compute graph by postponing

computation, and specifying that downloadAndFilter is to be called on each subject separately.

At this point, only the compute graph is built but it has not been submitted, i.e., data has not been

downloaded or filtered. Next, on Line 5 we request that Dask evaluate the graph via the call to

result to compute the number of volumes in each subject’s dataset. Calling result submits the

graph and forces evaluation. We constructed the graph such that downloadAndFilter is called

on individual subjects. Dask will parallelize the computation across the worker machines and will

adjust each machine’s load dynamically. We then build a new graph to compute the average image

of the volumes by calling mean. We intend this computation to be parallelized across blocks of

voxels, as indicated by the iterator construct on Line 9. Next, the individual averaged volumes

are reassembled on Line 10, and calling median otsu on Line 11 computes the mask. The rest

of the neuroscience use case follows the same programming paradigm, and we implemented the

astronomy use case similarly.

Qualitative Assessment: We find that Dask has the simplest installation and deployment. As

Dask supports external Python libraries we reuse most of the reference implementation. Our Dask

implementation has approximately 120 lines of code (LoC) for the neuroscience use case and 260

LoC for the astronomy one. When implementing compute graphs, however, a developer has to

reason about when to insert barriers to evaluate the constructed graphs. Additionally, the developer

must manually specify how data should be partitioned across different machines for each of the

stages to facilitate parallelism (e.g., by image volume or blocks of voxels, as specified on Line 9

in Figure 2.3). While Dask’s Python interface might be familiar to domain scientists, the explicit
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1 for id in subjectIds:
2 data[id].vols = delayed(downloadAndFilter)(id)
3

4 for id in subjectIds: # barrier
5 data[id].numVols = len(data[id].vols.result())
6

7 for id in subjectIds:
8 means = [delayed(mean)(block) for block in
9 partitionVoxels(data[id].vols)]

10 means = delayed(reassemble)(means)
11 mask = delayed(median_otsu)(means)

Figure 2.3: Dask code for Step 1 N.

construction of compute graphs to parallelize computation is non-trivial. Additionally, as the Dask

API supports multiple ways to parallelize code, choosing among them can impact the correctness

and performance of the resulting implementation. For instance, having to choose between futures

and delayed constructs to create a task graph implicitly and explicitly make Dask more flexibile

but harder to use. Dask is also hard to debug due to its atypical behavior and instability. For

instance, rather than failing a job after a large enough number of workers die, Dask respawns the

killed processes but queues tasks executed on the killed worker processes to a no-worker queue.

The no-worker state implies that tasks are ready to be computed, but no appropriate worker exists.

As the running processes wait for the results from the requeued tasks this causes a deadlock. We

also experienced several stability issues, some of which prevented us from running the astronomy

use case initially, but were fixed in a later Dask version. We still had to stop and rerun the pipelines

occasionally as they would freeze for unknown reasons.

2.3.2 Myria

Implementation: We use MyriaL to implement both pipelines, with calls to Python UDF/UDAs

for all core image processing operations. In the neuroscience use case, we ingest the input data

into the Images relation, with each tuple consisting of subject ID, image ID, and image volume (a
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serialized NumPy array stored as a BLOB) attributes. We execute a query to compute the mask,

which we broadcast across the cluster. The broadcast table is 0.3% the size of the Images relation.

A second query then computes the rest starting from a broadcast join between the data and the

mask. Figure 2.4 shows the code for denoising image volumes. Line 1 to Line 2 connect to Myria

and register the denoise UDF. Line 3 then executes the query to join the Images relation with the

Mask relation and denoise each image volume. We implement the astronomy use case similarly

using MyriaL.

1 conn = MyriaConnection(url="...")
2 MyriaPythonFunction(Denoise, outType).register()
3 query = MyriaQuery.submit("""
4 T1 = SCAN(Images);
5 T2 = SCAN(Mask);
6 Joined = [SELECT T1.subjId, T1.imgId, T1.img, T2.mask
7 FROM T1, T2
8 WHERE T1.subjId = T2.subjId];
9 Denoised = [FROM Joined EMIT

10 Denoise(T1.img, T1.mask) as
11 img, T1.subjId, T1.imgId]; """ )

Figure 2.4: Myria code for Step 2 N.

Qualitative Assessment: Our MyriaL implementation leverages the reference Python code, facil-

itating the implementation of both use cases. We implement the neuroscience use case in 75 LoC

and the astronomy one in 250. MyriaL’s combination of declarative query constructs and impera-

tive statements makes it easy to specify the analysis pipelines. However, for someone not familiar

with SQL-like syntax this might be a challenge. Overall, implementing the use cases in Myria was

easy but making the implementation efficient was non-trivial, as we discuss in Section 2.4.3.

2.3.3 Spark

Implementation: We use Spark’s Python API to implement both use cases. Our implementa-

tion transforms the data into Spark’s pair-RDDs, which are parallel collections of key-value pair
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records. The key for each RDD is the identifier for an image fragment, and the value is a NumPy

array with the image data. Our implementation then uses the predefined Spark operations (map,

flatmap, and groupby) to split and regroup image data following the plan from Figure 2.1. To

avoid joins, we make the mask, which is a single image per subject (18MB per subject, 0.3% of

the image RDD) a broadcast variable available on all workers. We use the Python functions from

the reference implementation to perform the actual computations on the values, passing them as

anonymous functions to Spark’s API. Figure 2.5 shows an abridged version of the code for the

neuroscience use case. Line 2 denoises each image volume. Line 3 calls repart to partition each

image volume into voxel groups, which are then grouped (line 4) and aggregated (line 5). Line 6

then fits a DTM for each voxel group. We implement the astronomy use case similarly.

1 modelsRDD = imgRDD
2 .map(lambda x:denoise(x,mask))
3 .flatMap(lambda x: repart(x, mask))
4 .groupBy(lambda x: (x[0][0],x[0][1]))
5 .map(regroup)
6 .map(fitmodel)

Figure 2.5: Spark code showing Step 2 N and Step 3 N.

Qualitative Assessment: Spark can execute user-provided Python code as UDFs and its support

for arbitrary python objects as keys made the implementation straightforward, with 114 and 238

LoC for the neuroscience and astronomy use cases respectively. The functional programming style

used by Spark is succinct, but can pose a challenge if the developer is unfamiliar with functional

programming. Spark’s large community of developers and users, and its extensive documentation

are a considerable advantage. Spark supports caching data in memory but does not store interme-

diate results by default. Unless data is specifically cached, a branch in the computation graph may

result in re-computation of intermediate data. In our use cases, opportunities for data reuse are

limited. Nevertheless, we found that caching the input data for the neuroscience use case yielded

a consistent 7-8% runtime improvement across input data sizes. Caching did not improve the run-
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time of the astronomy use case. As with Myria, the initial implementation was easy in Spark, but

performance tuning was not always straightforward as we describe in Section 2.4.3.

1 from scidbpy import connect
2 sdb = connect('...')
3 data_sdb = sdb.from_array(data)
4 data_filtered = # Filter
5 data_sdb.compress(sdb.from_array(gtab.b0s_mask), axis=3)
6 mean_b0_sdb = data_filtered.mean(index=3) # Mean

Figure 2.6: SciDB implementation of Step 1 N.

2.3.4 SciDB

Implementation: SciDB is designed for array analytics to be implemented in AQL/AFL, or op-

tionally using SciDB’s Python API. This is illustrated in Figure 2.6. When we began this project,

SciDB lacked several functions necessary for the use cases. For example, high-dimensional con-

volutions are not implemented in AFQ/AFL, rendering the reimplementation of some steps impos-

sible. SciDB recently added a Stream() interface, similar to Hadoop Streaming. This interface

enables the execution of Python (or other language) UDFs, where each UDF call processes one

array chunk. Using this feature, we implemented both use cases in their entirety. The SciDB

implementation of the neuroscience and astronomy use cases required 155 LoC and 715 LoC of

Python respectively. In addition, 200 LoC of AFL were written to rearrange chunks, and another

150 LoC in bash to set up the environment required by the application.

Qualitative Assessment: The recent stream() interface makes it possible to execute legacy

Python code, but it requires that data be passed to the Python UDF and returned from that UDF

as a string in TSV format (data ingest requires a CSV format). This means that we need to con-

vert between TSV and scientific image formats. While this is relatively straightforward for the

neuroscience use case, FITS files used in astronomy have multiple arrays per image and are more
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challenging to transform between SciDB arrays and TSVs for UDFs. This transformation and sub-

sequent parsing also causes performance issues as we discuss in Section 2.4.3. Setting up SciDB

is also difficult as there is no support for standard cloud deployment tools. The integration with the

LSST software stack for the astronomy use case is particularly challenging. Specifically, LSST’s

software stack requires dozens of dependent packages to be installed, along with setting up more

than 100 environment variables within child processes that execute the UDFs. Another limitation

of the stream() interface lies in its input and output ports: All the input can be read only through

the standard input (i.e., stdin) and all the output can only be written to standard output (i.e., stdout).

Therefore, the application crashes if it calls UDFs that have their own stdout messages. Overall,

SciDB presents significant barriers in implementation and setup for a domain scientist.

2.3.5 TensorFlow

Implementation: TensorFlow’s API operates on its own data structures (representations of multi-

dimensional arrays, or tensors) and does not allow any of the standard external libraries to be

used, such as NumPy. Hence, we had to completely rewrite the use cases. Given their complex-

ity, we only implemented the neuroscience use case. Additionally, we implemented a somewhat

simplified version of the final mask generation operation in Step 1 N. We rewrote Step 2 N using

convolutions, but without filtering with the mask as TensorFlow does not support element-wise

data assignment. TensorFlow’s support for distributed computation is currently limited. The de-

veloper must manually map computation and data to each worker as TensorFlow does not provide

automatic static or dynamic work assignment. As the serialized compute graph cannot be larger

than 2GB, we implemented the use case in steps, building a new compute graph for each step of the

use case (as shown in Figure 2.1). We distribute the data for each step to the workers and execute

it. We add a global barrier to wait for all workers to return their results before proceeding. The

master node converts between NumPy arrays and tensors as needed. Figure 2.7 shows the code for

mean computation in Step 1 N. The first loop assigns the input data with shape sh (Line 8) and

the associated code (Line 9) to each worker. Then, we process the data in batches of size equal to

the number of available workers on Line 19.
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1 # steps contains the predefined mapping
2 # from data to workernodes
3 pl_inputs = []
4 work = []
5 # The first for loop defines the graph
6 for i_worker in range(len(steps[0])):
7 with tf.device(steps[0][i_worker]):
8 pl_inputs.append(tf.placeholder(shape=sh))
9 work.append(tf.reduce_mean(pl_inputs[-1]))

10 mean_data = []
11 # Iterate over the predefined steps
12 for i in range(len(steps)):
13 this_zs = zs[i*len(steps[0]):
14 i*len(steps[0]) + len(steps[i])]
15 # Define the input to be fed into the graph
16 zip_d = zip(pl_inputs[:len(steps[i])],
17 [part_arrs[z] for z in this_zs])
18 # Executes the actual computation - incl. barrier
19 mean_data += run(work[:len(steps[i])], zip_d)

Figure 2.7: TensorFlow code fragment showing compute graph construction and execution.

Qualitative Assessment: TensorFlow requires a complete rewrite of the use cases, which we find

to be both difficult and time-consuming. TensorFlow also requires that users manually specify

data distribution across machines and it automates only a small part of the cluster initialization

procedure with Bazel [23]. The 2GB limit on graph size further complicates the implementation

of use cases as we described above. In its current form, unless there is a specific reason, e.g., a

specific algorithm only available in the TensorFlow library, or need to utilize GPUs or Android

devices, the amount of effort required to re-write the computation in Tensorflow is high enough to

render it not worthwhile. However, TensorFlow is under active development so this might change

in future versions.
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2.4 Quantitative Evaluation

We evaluate the performance of the implemented use cases and the system tuning necessary for

successful and efficient execution. All experiments are performed on the AWS cloud using the

r3.2xlarge instance type, with 8 vCPU,1 61GB of memory, and 160GB SSD storage.

2.4.1 End-to-End Performance

We first evaluate the performance of running the two use cases end-to-end. For each use case, we

start the execution with data stored in Amazon S3. We execute all the steps and leave the final

output in worker memories. We ask two questions: How does the performance compare across the

systems? How well do the systems scale as we increase the size of the input data or the cluster?

To answer these questions, we first fix the cluster size at 16 nodes and vary the input data size. For

the neuroscience use case we vary the number of subjects from 1 to 25. For the astronomy use

case, we vary the number of visits from 2 to 24. The largest input data sizes are then 105GB and

115GB, respectively as shown in Figure 2.8a and Figure 2.8b. The tables also show the sizes of

the largest intermediate relations for the two use cases, which are 210GB and 288GB, respectively.

In the second experiment, we use the largest input data size for each use case and vary the cluster

size from 16 to 64 nodes to measure speedup.

Figure 2.8c and Figure 2.8f show the results as we vary the input data size. We implement the

neuroscience use case in all five systems and the astronomy use case in all but TensorFlow.

For the neuroscience use case (Figure 2.8c), while Dask, Myria and Spark achieve comparable

performance, SciDB and TensorFlow are much slower. It is not surprising that Dask, Spark, and

Myria have similar runtimes as all three execute the same Python code from the reference imple-

mentation but wrapped in UDFs (or directly in the case of Dask). Interestingly, the fact that Spark

and Myria incur the extra overhead of passing the data to and from external Python processes for

each UDF invocation does not visibly affect performance. Dask is a little slower in the case of

a single subject because the data is downloaded on a single node first before being spread across

1with Intel Xeon E5-2670 v2 (Ivy Bridge) processors.
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the cluster through work stealing as discussed in Section 2.4.2. SciDB is slower primarily due to

data reformatting at the input and output of each UDF and also at the beginning of the pipeline:

(1) SciDB’s data ingest requires the source data to be in CSV format, and in both use cases, we

needed to convert the original formats to CSV before executing the pipeline. We discuss data in-

gest in more detail when we present Figure 2.9. (2) When passing data from SciDB to the UDFs

through the stream() interface, the data gets flattened into a long 1-dimensional array and we

need to reformat it into the multidimensional NumPy array required by the function. (3) The re-

sults returned from each UDF are arrays of strings, one per parallel UDF invocation and need to

be parsed and merged to form voxel batches from image volumes. Additionally, we process one

subject at a time in SciDB instead of merging data from all subjects into a single array as combin-

ing multiple subjects incurs more overhead. For example, when we combine two subjects into one

array, the execution time doubled (not shown in the figure), relative to processing one subject at a

time. TensorFlow is the slowest to execute the neuroscience end-to-end pipeline. We attribute this

to several architectural restrictions. (1) All data needs to be downloaded and parsed on the master

node and then dispatched to the workers, as opposed to being downloaded and processed directly

by the workers as in the other systems. (2) Due to TensorFlow’s limitation on the computation

graph size (2GB), we construct multiple graphs for each step and put the results together on the

master node. This adds significant overhead at each step and prevents TensorFlow from pipelining

the computation. We further analyze per-step performance in the next section.

For the astronomy use case (Figure 2.8f), SciDB is an order of magnitude slower than the other

engines. In Step 3 A, we need to add patches from all visits. This means that we have to process all

visits as a single array, leading to large overheads due to parsing and combining the output of the

UDF in Step 2 A. We also implemented Step 3 A in AQL in SciDB, which performed as fast as

Spark, Myria and Dask, i.e., ∼ 10× faster than the stream() implementation. As we were unable

to implement the rest of the use case in AQL/AFL, we use the stream() timing in Figure 2.8.

In the astronomy use case, Dask does better with the smaller datasets but is unable to execute

the largest data set to completion as it runs out of memory on 16 nodes. We discuss out of memory

issues in Section 2.4.3. In terms of runtime, data for the astronomy use case is packaged into indi-
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vidual files for each image rather than a single compressed file per subject as in the neuroscience

use case, which results in finer-grained and more even data distribution.

Figure 2.8e and Figure 2.8h show the runtimes per subject and visit, respectively, i.e., the ratios

of each pipeline runtime to that obtained for one subject or visit. As the data size increases, these

ratios drop for all systems with the exception of SciDB in the neuroscience use case. The dropping

ratios indicate that the systems become more efficient as they amortize start-up costs. Dask’s

efficiency increase is most pronounced, indicating that it had the largest start-up overhead. In the

neuroscience use case, SciDB shows a constant ratio. This is due to the neuroscience use case

implementation in SciDB where the cluster processes a single subject at a time.

Figure 2.8d and Figure 2.8g show the runtimes for all systems as we increase the cluster size

and process the largest (>100GB) datasets. All systems show near linear speedup for both use

cases. Myria achieves almost perfect linear speedup for both cases (5395s, 2863s, and 1406s for

16, 32 and 64 nodes, respectively). Linear speedup can imply poor single instance performance.

To ensure that this is not the case, we tune single instance performance for Myria by increasing the

number of workers until each node has high resource utilization (average CPU utilization > 90%).

Dask has better performance when data completely fits in memory, as in the neuroscience use case.

For the astronomy use case, Dask runs out of memory on 16 nodes. For 32 nodes, the number

of workers had to be reduced to one per node to allow Dask to finish processing. This results in

lowered parallelism and higher runtime. In the 64 node experiment there was enough memory and

every step could be pipelined for both Myria and Dask, resulting in faster runtimes. Spark divides

each task into stages and does not start shuffling data until the previous map stage is complete. As

the tuples are large in size, (∼14MB for neuroscience and ∼80 MB for astronomy), the lack of

overlap between shuffle and map stages results in Spark’s slightly slower timings. This is a known

limitation for Spark [163], and makes it slower than Dask and Myria for some of the steps in the

context of image analytics as the shuffle cost for the larger image tuples is significant. Note that we

tuned each of the systems to achieve the timings reported above. We discuss the impact of tuning

in Section 2.4.3.
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2.4.2 Individual Step Performance

Next we focus on individual steps and examine performance across systems. We provide these

details for the neuroscience pipeline.

Data Ingest: Input data for both use cases is staged in Amazon S3. For the neuroscience use

case, image data is presented as a single NIfTI file per subject which contains compressed image

volumes. For the neuroscience use case, the reference implementation works on all of the image

volumes associated with the subject concurrently. To parallelize the implementation within each

subject, we split data for each subject into separate image volumes represented by NumPy arrays,

which can be processed in parallel. Therefore, NIfTI files need to be preprocessed for Spark

and Myria, de-compressed and saved as serialized NumPy Arrays. SciDB requires NIfTI files

to be converted into CSV format. TensorFlow requires images to be in NumPy array format for

conversion to Tensors. Pre-processing times are included in data ingest times, which are shown in

Figure 2.9. As the figure shows, data ingest times vary greatly across systems (note the log scale

on the Y-axis). Spark and Myria download pre-processed data in parallel on each of the workers

from S3. Myria is given a CSV list of images in S3 as part of the load statement, and Spark is

given the S3 bucket name. Even though Myria’s data ingest writes files to disk, it is faster than

Spark, which loads the data into memory. This is because Spark enumerates the files in the S3

bucket on master before downloading them in parallel and meta-data querying in S3 is known to

be a slow operation. For Dask, we manually specify the number of subjects to download per node,

as otherwise Dask’s scheduler assigns a random number of subjects to each node which lead to

memory exhaustion or excessive data shuffle between processing steps. Thus, Dask’s data ingest

time looks like a step function: when the number of subjects is fewer than the number of nodes

(16), each node downloads one subject concurrently. With more than 16 subjects, some nodes

download two subjects. For the TensorFlow implementation, all data is downloaded to the master

node and partitions are sent to each worker node. This is slower than the parallel ingest available

in other systems. For SciDB, we report two sets of timings in Figure 2.9. SciDB-1 shows the time

to ingest NumPy arrays with the from array() interface, and SciDB-2 shows the time to convert
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NIfTI to CSV and ingest using the aio input library. Because aio input() reads in multiple files

and parses them in parallel while SciDB’s native Python API (i.e., scidb-py) processes input data in

a serial manner, data ingest with the latter is an order of magnitude faster than the former and is on

par with parallel ingest on Spark and Myria. Nevertheless, the NIfTI-to-CSV conversion overhead

for SciDB is larger than the NIfTI-to-NumPy overhead for Spark and Myria, which makes SciDB

ingest slower than Spark and Myria.

Segmentation (filtering): Segmentation is the first step in the neuroscience use case (i.e., Step 1 N).

We discuss the performance of two operations in this step: filtering the data to select a subset of

the image volumes, and computing an average image volume for each subject. Figure 2.11a and

Figure 2.11b show the runtimes for these two operations as we vary the input data size on the 16-

node cluster. Myria and Dask are the fastest on the data filtering step. Myria pushes the selection

to PostgreSQL, which efficiently scans the data and returns the matching records (without indices)

on the Images relation. Dask is fast on this operation as all data is in memory and the operation is a

simple filter. Spark is an order of magnitude slower than Dask, even though data is in memory for

both systems. This is because the filter criteria is specified as an anonymous function in Spark, and

data and function have to be passed from Java to the external Python process and back. SciDB is

slower than other systems because the internal chunks are not aligned with the selection predicate.

In addition to scanning chunks, SciDB must also extract subsets of these chunks and construct new

chunks in the resulting arrays. In TensorFlow, the data (tensors) takes the form of 4D arrays. For

each subject, the 4D array represents the 288 3D data volumes. The selection is on the volume

ID, which is the fourth dimension of the input data. However, TensorFlow only supports filtering

along the first dimension. We thus need to flatten the 4D array, apply the selection, and reshape the

array back into a 4D structure. As reshaping is expensive compared with filtering, TensorFlow is

orders of magnitude slower than the other engines on this step.

Segmentation (mean): Figure 2.11b shows the result for the mean image volume computations.

SciDB is the fastest for mean computation on the small datasets as it is designed to process arrays

in parallel at the granularity of chunks. In contrast, Myria and Spark group data by subject, which

leads to low cluster utilization for small numbers of subjects. The three systems have similar
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performance at larger scales. Dask is slower than the other three engines, especially for small

datasets, due to startup and work stealing overheads. TensorFlow is very slow as the mean has to

be computed in seperate graphs due to graph size limitations with data being sent to the master

after each graph computation.

Denoising: Figure 2.11c shows the runtime for denoising (Step 2 N). For this step, the bulk of

the processing happens in the user-defined denoising function. Dask, Myria, Spark, and SciDB all

run the same code from the reference implementation on similarly partitioned data, which leads

to similar overall performance. As in the case of the end-to-end pipeline, Dask’s higher start-up

overhead results in slightly worse performance for smaller data sizes, but similar performance for

larger datasets. SciDB’s stream() interface performs slightly worse than Myria, Spark, and Dask.

For every call to the UDF we have to convert between string streams and the UDF’s expected

formats, this known overhead for SciDB is small for this step as more time is spent in computation

compared to other steps. The TensorFlow implementation cannot use the binary mask to reduce the

computation for each data volume. This is because TensorFlow’s operations can only be applied to

whole tensors and cannot be masked. This limitation and compute graph-size limitations contribute

to slower performance of TensorFlow.

Model fitting: Figure 2.11d shows the runtime for the final step in the neuroscience pipeline.

There are two important difference between denoising and model fitting. First, model fitting is less

computationally intensive compared to denoising, Second, it offers a larger degree of data paral-

lelism. For denoising, parallelism is limited to an image volume per subject (288 image volumes

per subject). This is because all of the pixels from a single image volume are required to denoise

an image volume. For model fitting, each voxel in each image can be processed independently,

leading to 145 × 175 × 145 potential data partitions per subject that can be processes in parallel.

We implement model fitting on voxel batches rather than individual voxels to balance the cost of

scheduling and benefits of parallelism. We use similar voxel batch sizes for all systems to ensure

fair comparison (∼500 partitions per subject). A higher degree of parallelism (more partitions)

and smaller partition sizes (leading to smaller data shuffling times) for this step reduce Myria’s

pipelining advantage and make Spark faster. Dask is slower in this step as larger numbers of paral-
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lel computations lead to aggressive shuffling and job stealing, which dominate the processing time.

We suspect that this is due to Dask’s inaccurate estimate of the amount of data that needs to be

shuffled among workers. This results in almost constant time for model fitting as the number of

subjects increases. SciDB is the slowest. As the stream() interface does not support UDAs (only

UDFs), the splitting and aggregation of the denoised images into voxel batches has to be done in

AFL, which necessiates parsing the output from the previous step (i.e., denoising) from a stream of

strings into SciDB arrays with the correct chunking schema, aggregating, and splitting into voxel

batches. Finally, TensorFlow shows good performance on this step. Unlike denoising, which pro-

cesse entire image volumes, model fitting executes on voxel batches, which can be filtered before

the computation is performed. This and TensorFlow’s efficient linear algebra implementation lead

to a faster performance on this step compared to the other steps.

2.4.3 System Tuning

Finally, we evaluate the five systems on the complexity of the tuning required to achieve high

performance.

Degree of Parallelism: This key parameter depends on three factors: (1) the number of machines

in the cluster; (2) the number of workers that execute on each machine; and (3) the size of the

data partitions that can be allocated to workers. We evaluated the impact of the cluster size in Sec-

tion 2.4.1. Here, we evaluate the impact of (2) and (3).

For Myria, given a 16-node cluster, the degree of parallelism is entirely determined by the

number of workers per node. As in traditional parallel DBMSs, Myria hash-partitions data across

all workers by default. Figure 2.12 shows runtimes for different numbers of workers for the neu-

roscience use case. A larger number of workers yields a higher degree of parallelism but workers

also compete for physical resources. For both use cases (astronomy not shown due to space con-

straints), four workers per node yields the best results. Changing the number of workers requires

reshuffling or reingesting the data, which makes tuning this setting tedious and time-consuming.

Spark creates data partitions, which correspond to tasks, and each worker can execute as many

tasks in parallel as available cores. The number of workers per node thus does not impact the degree



35

of parallelism, as long as the number of cores remains the same. The number of data partitions

determines the number of tasks that can be scheduled, and the number of cores can be restricted

in Spark to increase the memory available per core on each node. As Spark did not run out of

memory for either use case we choose to utilize all the cores for the Spark implementation. We

further discuss memory management later in this section.

Figure 2.13 shows the query runtimes for different numbers of input data partitions on Spark.

On a 16-node cluster, the decrease in runtime was dramatic between 1 and 16 partitions, as an

increasingly large fraction of the cluster became utilized. The runtime continues to improve until

128 data partitions, which is the total number of slots in the cluster (i.e., 16 nodes × 8 cores).

Increasing the number of partitions from 16 to 97 resulted in 50% improvement. Further increases

did not improve performance. Interestingly, if the number of data partitions is unspecified, Spark

creates a partition for each HDFS block. The degree of parallelism then depends on the HDFS

block size setting.

Dask allows specifying the number of workers per node and threads per worker. Through

manual tuning, we find 8 to be the optimal number of workers per node when memory is abundant,

as shown in Figure 2.14. Running multiple threads per process cause data corruption as the UDFs

in Python are not all thread safe, so we use a single thread per process. Dask’s work stealing

automatically load balances across the machines, and work-stealing does not require any tuning.

In TensorFlow, we execute one process per machine. All steps include data conversions, which

have to be performed on the master. These data conversions are the bottleneck, limiting oppor-

tunities for additional tuning. For all steps, we must partition the data such that graphs assigned

to workers are below 2GB in size. Additionally, for the denoising step memory is the bottleneck

requiring the assignment of only one image volume at a time per physical machine. The model

fitting step can be parallelized at the granularity of individual voxels and we find that TensorFlow

performs best with 128 partitions on a 16-worker configuration. In general, we observe that Ten-

sorFlow tends to perform better with smaller chunk sizes.

The SciDB documentation recommends [157] running one instance per 1-2 CPU cores. The

chunk size, however, is more difficult to tune: we do not find a strong correlation between the
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overall performance and common system configurations. We tune the chunk size for each operation

by running the application with the same data but using different chunk sizes. For instance, in

Step 3 A we find that a chunk size of [1000 × 1000] leads to the best performance. A chunk size

of [500× 500], for example, is 3× slower; while chunk sizes of [1500× 1500] and [2000× 2000]

are 22% and 55% slower, respectively.

Memory Management: Image analytics workloads are memory intensive. Additionally, data

allocation can be skewed across compute nodes. For example, the astronomy pipeline grows the

data by 2.5× on average during processing, but some workers experience data growth of 6× due to

skew. As a result, systems can easily run out of memory. Big data systems use different approaches

to trade off query execution time with memory consumption. We evaluate some of these trade-offs

in this section. In particular, we compare the performance of pipelined and materialized query

execution. With pipelined execution, data flows directly from one operator to the next without

going to disk and without synchronization barrier. Materialized query execution in contrast writes

the output of each operation to disk and the next operation starts by reading input data from disk.

For materialized query execution, we compare materializing intermediate results and processing

subsets of the input data at a time. Figure 2.10 shows the results for the Myria system on the

astronomy use case. As the figure shows, when data is small compared with the available memory,

the fastest way to execute the query is to pipeline intermediate results from one operator to the

next. This approach is 8-11% faster in this experiment than materialization, and 15-23% faster

than executing multiple queries. As the ratio of data-to-memory grows, pipelining may cause a

query to fail with an out-of-memory error. Intermediate result materialization then becomes the

fastest query execution method. With even more data, the system must cut the data analysis into

even smaller pieces for execution without failure.

In contrast to Myria, Spark automatically spills intermediate results to disk to avoid out-of-

memory failures. Additionally, Spark can partition data into smaller fragments than the number of

available nodes, and will process only as many fragments as there are available slots. Both tech-

niques help to avoid out-of-memory failures with Spark. However, the lack of pipelined execution

causes Spark to be slower than Myria when memory is plentiful (see also Figure 2.8g).
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Dask supports spilling to disk, but the current implementation of this feature is not multi-

process safe and thus not suitable for our use cases. To prevent running out of memory in Dask,

we increased the memory-to-CPU ratio by reducing the number of workers on each node. For the

32-node cluster, we reduced the number of workers to one worker per node in the astronomy use

case. On a 16-node cluster reducing the number of workers to one did not help and the use case

could not run to completion. This was due to skew rather than insufficient memory: 2 workers in

the astronomy use case ran out of memory and caused cascading failures.

2.5 Challenges and Opportunities

In this section, we summarize the lessons learned from three perspectives: system developers,

users, and researchers:

Developers. Engine developers can improve both the architecture and implementation of their

systems based on our observations, some of which are already known, but their importance is

re-emphasized by this study. Most importantly, we find that all evaluated systems would benefit

from automatically adjusting the degree of parallelism and gracefully spilling to disk, even when

individual data partitions do not fit in memory to avoid all sources of out-of-memory failures.

Image analytics differs from other analytics in three respects: the large size of individual

records (i.e., image fragments with metadata), heavy use of UDFs to execute complex, domain-

specific operations, and the multidimensional nature of the data. Some systems, such as SciDB,

have only limited support for UDFs/UDAs in languages other than C++. As we showed in Sec-

tion 2.4, this significantly affects performance and ease of use. In contrast, only SciDB reasons

about multidimensional array data. In all other systems, users must manually split images into

fragments along different dimensions in preparation for their analysis, which is non-trivial.

Finally, most systems are optimized for large numbers of small records rather than small num-

bers of large records. Myria, for example, processes tuples in large batches by default. We had to

change that default to reduce the number of tuples per batch and prevent out of memory failures.

We next discuss specific recommendations for each of the evaluated systems for running image

analytical workloads.
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Dask would further benefit from (1) a simpler API: e.g., reduce the number of ways to construct

the compute graph (2) better debuggability as noted in Section 2.3.1; and (3) spilling to disk for

multi-process workloads as noted in Section 2.4.3.

Myria would benefit from (1) automatically tuning the number of workers per machine and making

it easier to change the number of workers as noted in Section 2.4.3; (2) adding support for local

combiners before shuffles for user-defined aggregations: this would lead to fewer memory issues

in case of skew. We were able to materialize intermediate results and split queries into multiple

ones to achieve the same result, but it required better understanding of Myria and more effort.

Spark would benefit from (1) overlapping the shuffle phase with the map phase to increase perfor-

mance when memory is sufficient and (2) making parallel data ingest from S3 more efficient.

SciDB would benefit from (1) binary data format support for the aio input() interface; (2) sup-

port for more than TSV and stdin-stdout for the stream() interface; (3) more efficient methods

for concatenating arrays; (4) support for advanced control over the child process such as setting

environment variables; (5) simplified procedure for multi-node deployment; and (6) support for

UDAs in the stream interface.

TensorFlow would benefit from (1) removing the restriction on graph size; (2) better tooling for

cluster management and scheduling; (3) distributed data ingest; and (4) support for external li-

braries.

Users. For domain scientists wanting to utilize big data systems there are several considerations:

(1) Re-write or re-use: can the computation be expressed in native SQL or AQL? If the computation

is simple this may be the most performant solution. If not, systems such as Dask, Spark, and Myria

can efficiently execute legacy Python (or other) scripts with minimal additional code provided by

the user. (2) Data partitioning: turning a serial computation into a parallel one may pose the biggest

challenge to domain users. A reference implementation may or may not indicate how computation

can be parallelized. Understanding data dependency and the synchronization points in underlying

computation is crucial to ensuing correctness and performance in a big data system.

Researchers. Our study raises a number of research questions. Image processing involves complex

analytics, which include iterations and linear algebra operations that must be efficiently supported
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in big data systems. However, users typically have legacy code that performs sophisticated and

difficult to rewrite operations. Therefore, they need the ability to call existing libraries. They also

need an easy mechanism to parallelize the computation: they should be able to reason about multi-

dimensional array data directly rather than manually creating and processing collections of image

fragments. It should be easy to mix and match UDF/UDA computations and pre-defined (e.g.,

relational) operations on complex data such as image fragments.

Our study also re-iterates the general need to efficiently support pipelines with UDF/UDAs

both during query execution and query optimization. Image analytics implies large tuples and

larger tuples put pressure on memory management techniques, systems’ ability to shuffle data

efficiently, and efficient methods to pass large records back and forth between core computation

and UDFs/UDAs. This provides another research opportunity. Finally, making big data systems

usable for scientists requires systems to be self tuning, which is already an active research area [76].
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Subjects 1 2 4 8 12 25

Input 4.1 8.4 16.8 33.6 50.4 105
Largest inter. 8.4 16.8 33.6 67.2 100.8 210

(a) Neuroscience data sizes (GB)

Visits 2 4 8 12 24

Input 9.6 19.2 38.4 57.6 115.2
Largest inter. 24 48 96 144 288

(b) Astronomy data sizes (GB)

(c) Neuroscience: End-to-end
runtime

with varying data size

(d) Neuroscience: End-to-end
runtime

with varying cluster size

Subjects 1 2 4 8 12 25

SciDB 1 1.01 1.01 1.01 1.00 1.00
Spark 1 0.86 0.68 0.63 0.60 0.59
Myria 1 0.77 0.64 0.60 0.61 0.58
Dask 1 0.60 0.45 0.36 0.33 0.32
TensorFlow 1 0.95 0.90 0.88 0.89 0.89

(e) Neuroscience: Normalized runtime
per subject

(f) Astronomy: End-to-end
runtime

with varying data size

(g) Astronomy: End-to-end
runtime

with varying cluster size

Visits 2 4 8 12 24

SciDB 1 0.74 0.62 0.58 0.58
Spark 1 0.74 0.80 0.65 0.78
Myria 1 0.70 0.64 0.65 0.69
Dask 1 0.75 0.62 0.59 –

(h) Astronomy: Normalized runtime
per visit

Figure 2.8: Overall performance: results for end-to-end experiments for Neuroscience and As-
tronomy use cases.
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Figure 2.9: Data Ingest

Figure 2.10: Variance in execution
time, astronomy use case, Myria.

(a) Filter (Segmentation) (b) Mean (Segmentation)

(c) Denoise (d) Model fitting

Figure 2.11: Individual step performance for Neuroscience
use case (log scale on the y-axis). Experiments run on 16
nodes.

Figure 2.12: 25 subjects, 16
nodes.

Figure 2.13: Single subject,
16 nodes.

Figure 2.14: Multiple visits,
16 nodes.
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Chapter 3

AUTOMATED DETECTION OF GLAUCOMA WITH INTERPRETABLE
MACHINE LEARNING USING CLINICAL DATA AND MULTI-MODAL

RETINAL IMAGES

“Any sufficiently advanced technology is indistinguishable from magic.”

– Arthur C Clarke

“In the history of science and technology, the engineering artifacts have almost always preceded

the theoretical understanding: the lens and the telescope preceded optics theory, the steam engine

preceded thermodynamics, the airplane preceded flight aerodynamics, radio and data communi-

cation preceded information theory, the computer preceded computer science.”

–Yann LeCun

Early detection and treatment of glaucoma is essential for minimizing risk of progressive vision

loss and yet a number of challenges exist that prevent timely and accurate diagnosis. First, consid-

erable expertise is required to perform the appropriate clinical exam and to interpret a number of

specialized tests, such as visual field testing and retina and optic nerve imaging. The demand for

this expertise is outpacing the supply of experts available to interpret tests and make diagnoses [59].

Second, glaucoma is often asymptomatic until the advanced stages of the disease. In the United

States, approximately 50% of the estimated 3 million people with glaucoma are undiagnosed and

in other parts of the world, estimates are as high as 90% [2, 162, 60, 48, 172]. New diagnostic
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tools that improve the diagnostic efficiency of the existing clinical workforce are therefore vital for

enabling earlier detection of the disease to facilitate early intervention [74].

In this chapter, we built a new, multi-modal, feature-agnostic model that includes clinical data,

CFPs and macular OCT B-scans. Data for our model came from the UK Biobank, a multi-year,

large-scale effort to gather medical information and data, with the goal of characterizing the envi-

ronmental and genetic factors that influence health and disease [184]. About 65,000 UK Biobank

participants underwent ophthalmological imaging procedures, which provided both macular OCT

and CFP data that we matched with clinical diagnoses and with many other demographic, systemic

and ocular variables. Specifically cardiovascular and pulmonary variables were chosen as markers

of overall health. We used raw macular OCT and CFP data and did not rely on features extracted

from these images. The use of machine learning, and particularly deep learning (DL), methods to

analyze biomedical data has come under increased scrutiny because these methods can be difficult

to interpret and interrogate [195, 20]; therefore, we applied machine learning interpretability meth-

ods to demystify and explain specific data features that led to accurate model performance [125].

Finally, we validated our model by comparing it to expert clinicians’ interpretation of CFPs to

provide an additional benchmark for the performance of our machine learning model relative to

current clinical practice.

3.1 Results

We built multiple models using clinical data to establish a baseline for glaucoma detection. Glau-

coma is related to many biological features, the most important of which is age [65]. Thus, we built

our first baseline model (BM1) on basic demographic characteristics of the patient and control pop-

ulations. BM1 included age, gender and ethnicity. Using these features, a boosted gradient tree

based model predicted an occurrence of glaucoma well above chance (area under the ROC: 0.81,

95% CI 0.71- 0.90). In addition, we created two other models. The systemic data model (BM2)

added cardiovascular and pulmonary variables – including Body Mass Index (BMI), Forced Vital

Capacity (FVC), Peak Expiratory Flow (PEF), heart rate, diastolic and systolic blood pressure, and

the presence of diabetes – to the demographic variables from BM1. We also included transient
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factors, such as recent caffeine and nicotine intake, to account for any transient impact on blood

pressure and heart rate. BM2 outperformed BM1 (0.87 AUC, 95% CI: 0.79-0.96). In the third

model (BM3), we added ocular data to BM2, including IOP, corneal hysteresis, and corneal resis-

tance factor. BM3 outperformed both of the other baseline models, with a test set AUC of 0.92,

95% CI: 0.87 - 0.96; see Figure 3.1 A and D.
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Figure 3.1: Results of glaucoma detection models. Receiver operating characteristic (ROC)
curves are shown for (A) baseline models built with systemic and ocular data, (B) retinal imaging
and final models, and (C) glaucoma expert ratings based on interpretation of CFPs. The corre-
sponding area under the ROC curves (AUC) with (+/- 95% Confidence Interval) for models (D, E)
and for clinician scores (F). The gray dashed line and shaded area denote the AUC and 95% CI for
a base model (BM1) built on demographics (age, gender and ethnicity).

We used SHapley Additive exPlanations (SHAP) [110] to analyze the features that provide high

predictive power in BM3. SHAP allocates optimal credit with local explanations using the classic

Shapley values from game theory [155] and provides a quantitative estimate of the contribution

of different features to the predictive power of a model. A higher absolute SHAP value indicates

greater feature impact on the model prediction and greater feature importance. The five features
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with the highest mean absolute SHAP values for BM3 were age, IOP, BMI, FVC and PEF. Fig-

ures 3.2 and 3.3 show the most important features in BM3, as evaluated through SHAP, and the

interaction effect among the top features.
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Figure 3.2: Interpreting model built on demographic, systemic and ocular data. A) The ten
most important features from BM3 based on SHAP values. B-E) SHAP values vs feature values
for age, IOP, BMI, and FVC respectively. Each point represents an individual subject and the
color denotes whether or not they have been diagnosed with glaucoma. F-H) SHAP values vs
feature values for features IOP, BMI, and FVC respectively, with each point colored based on age
of subject.

We built a separate DL model on each retinal image modality. Glaucoma is characterized by

structural changes in the optic disc and other parts of the retina. Visual examination of CFP and

macular OCT images is therefore an important tool in current diagnostic practice [129]. Since

our data set included both CFP and OCT images, we built separate DL models for each image
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Figure 3.3: SHAP interaction values in BM3. Interactions between age and each of the other top
variables in model BM3: A SHAP interaction values for age and IOP. B SHAP interaction values
for age and BMI. C SHAP interaction values for.

modality (Section 3.2). The DL model built on CFP classified eyes diagnosed with glaucoma with

modest accuracy (AUC: 0.74, 95% CI: 0.64-0.84; Figure 3.1 B and E). The DL model built on

macular OCT images was more accurate than all of the baseline models and the model trained

on CFP images (AUC: 0.95, 95% CI: 0.90- 1.0). When we combined information from both the

DL models trained on CFP and OCT via an ensemble, the resulting model was marginally more

accurate than the DL model build on macular OCT images alone (AUC: 0.963, 95% CI:0.91- 1.0).

This suggests that most CFP information is redundant with information present in macular OCT

images.

We used several methods to interpret the DL models. DL models are notoriously inscrutable.

However, several methods for interrogating these models have recently emerged [175, 134, 135,

164, 171]. To assess the features that lead to high performance of the image-based models, we

first assessed which scan of the macular OCT provided the most information. We fit individual

models to each scan of the macular OCT. Recall that macular OCTs are volumetric images; in the

UK Biobank data set, each macular OCT consists of 128 scans. We found that models using scans

from the inferior and superior macula were more accurate than those using the central portion

of the macula ( Figure 3.4 A). Second, we built an ensemble model that used the results of the

DL models of the individual macular OCT scans to predict glaucoma occurrence per retina. This
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Figure 3.4: Interpretation of the ensemble model built on macular OCT images. (A) AUC for
single image per retina models, (B) mean absolute SHAP values per retinal image for predicting
glaucoma occurrence per retina, and (C) heat map of SHAP value per retinal image for predicting
glaucoma occurrence per retina. The images are ordered from top to bottom and from superior to
inferior retina. The dashed line indicates the central retinal image from the OCT volume.

model used each of the 128 macular OCT scans to make a prediction about the retina. Figure 3.4

B shows the feature importance attributed to each scan via SHAP; it shows that scans from the

inferior retina were deemed more important by this model. Large patient and control populations

are heterogeneous, and we do not generally expect that information will consistently come from

one particular part of the retina. Nevertheless, when considering the SHAP values of each macular

OCT scan, we found that the data set broke into two major clusters based on the SHAP values from

different retinal parts (Figure 3.4 C). One cluster mostly contained retinas from healthy subjects

and used scans from the inferior part of the retina as negative predictors of glaucoma. The second

cluster mostly contained glaucomatous retinas, and SHAP values of these same scans from inferior
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A.

B.

Figure 3.5: Saliency maps for macular OCT and CFP. Columns left to right: macular OCT image
overlaid with saliency map, cropped CFP input to the neural network, CFP saliency map. Each
macular OCT image is laid out with its temporal side to the left. (A) Retina of a subject with
glaucoma diagnosis. (B) Retina of healthy subject. The green outline on the OCT saliency map
indicates the areas the model deems most important. The darker pixels on the CFP saliency map
indicate the areas the model deems most important.

and superior macula were used as positive predictors of glaucoma. This also explains why models

fit only to scans from the inferior or the superior macula were more accurate.

In addition to the scan-by-scan analysis, image-based models can be evaluated pixel-by-pixel

to determine the importance of specific image features to the DL models’ decision making. Using

integrated gradients [171], we generated saliency maps of the pixels responsible for DL model

prediction. Figure 3.5 shows a macular OCT scan for an eye with glaucoma and a scan for a control

eye along with the CFP images and CFP saliency maps for each eye. The CFP saliency maps

typically highlight the optic nerve head in both normal and glaucomatous retinas. The saliency

maps for OCT image typically highlight the nasal side of the RNFL and outer retinal layers.
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Figure 3.6: Interpretation of the final model built on image, demographic, systemic and ocular
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(C) IOP , (D) FVC and (D) BMI. Each point denotes a subject, and the color denotes whether the
subject has been diagnosed with glaucoma.

We built the final model by combining both modalities of retinal imaging, demographic, sys-

temic and ocular features. This model was an ensemble, which combined information from raw

macular OCT B-scans and CFP images as well as all demographic, systemic and ocular data used

in BM3. This final model had an AUC of 0.967, (95% CI: 0.93 - 1.0). Figure 3.6 shows the ten

features with the highest mean absolute SHAP value over all observations in the data set. The most

important features for this final model, as determined by their SHAP values, include age, IOP and

FVC, in addition to the CFP and macular OCT scans from both inferior and superior macula. BMI

is less significant than FVC in this final model. Further, IOP had a higher importance than age. This

is a reversal in importance of features when compared to models built without information from

retinal imaging. Unsurprisingly, this confirms that the CFP and OCT scans contain information
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that supersedes in importance the information provided by BMI and age.
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Figure 3.7: Evaluation of various models on the PTG cohort. (A) Accuracy of the models on
the ”progress-to-glaucoma” (PTG) cohort. The gray dashed line and shaded area denote the AUC
and 95% CI for a base model built on demographics alone (age, gender and ethnicity; BM1). The
bottom row shows the distribution of Age(B), BMI(C), FVC(D) and IOP(E) for healthy, PTG, PTG
(after glaucoma diagnosis) and glaucoma. ***P ¡ 0.0001.

We compared the performance of our model with ratings from glaucoma experts to provide a

comparison to current clinical practice. To compare the performance of our final model to expert

clinicians, five glaucoma experts evaluated CFPs of the test set. Initially, experts were also given

access to OCT images for each subject. However, raw b-scans from macular OCTs are not an image

modality that experts usually examine during regular clinical practice for glaucoma diagnosis.

Since we did not have access to thickness maps, experts made the diagnoses using only the CFP

data. (Figure 3.1 C and D). The highest AUC for the expert rating was 0.84, and the lowest was

0.79. The average pairwise kappa for the five experts was 0.75, indicating a good level of agreement

between experts about the diagnosis.

We validated our model by evaluating it on patients that progress to glaucoma. The UK Biobank

data set contained several subjects who lacked a glaucoma diagnosis on their first study visit but



51

received a diagnosis before a subsequent visit. These ”progress-to-glaucoma” (PTG) subjects pro-

vide a unique opportunity to evaluate our model, which was built on data from glaucomatous and

healthy subjects. Detection of glaucoma in the PTG cohort was tested using all of our models ( Fig-

ure 3.7 A). Both BM1 (based on age, gender and ethnicity) and BM2 (added systemic variables)

were indistinguishable from chance performance (BM1: 51 % correct: 95% CI [36% - 64%]; BM2:

47% correct: 95% CI[33%-60%]). BM3, which included ocular variables, achieved substantially

higher accuracy at 75% correct (95% CI: [67%-83%]). The model trained on macular OCT images

achieved slightly lower accuracy at 65% correct (95% CI [55% - 74.5%]), and the model trained

on combined CFP and OCT achieved an accuracy of 69% (95% CI [60.2% -78.6%]). The final

model trained on OCT, CFP and all other available features achieved an accuracy of 75% correct

(95% CI [65% - 83%]).

Since PTG subjects did not undergo glaucoma treatment, this evaluation provides additional

insight into the biological features of the disease. For many of these features, including age and

BMI, the PTG group lie between the normal and glaucoma groups ( Figure 3.7 B to E). We identi-

fied two interesting deviations from this pattern. First, for the pulmonary capacity variables (FVC

and PEF), the PTG group was indistinguishable from the healthy subjects in our sample, and both

healthy and PTG subjects significantly differed from patients with glaucoma. This difference is

statistically significant even when controlling for age (ADD). However, on a subsequent visit, after

receiving a glaucoma diagnosis, the pulmonary capacity measurements of this group was indistin-

guishable from that of the glaucoma group. Second, the PTG group had a significantly higher IOP

than the group diagnosed with glaucoma ( Figure 3.7 D; Section 3.1.1. The post-diagnosis IOP

measurements of the PTG group shows similar trend with lower IOP values.

3.1.1 Statistical analysis of group differences

Statistical analysis of differences between glaucoma, healthy, PTG and PTG post-diagnosis demon-

strates that pulmonary capacity variables differ between the groups. This is true even when con-

trolling for age: an ANCOVA of FVC values for the three groups, using age as a covariate found

a statistically significant effect of group identity Table 3.1. To further confirm this, we followed
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this ANCOVA with a pairwise Dunn’s test (Tables: 3.2, 3.3, 3.4 3.5, 3.6). We found that FVC

in PTG significantly differed from FVC in patients with glaucoma (Table 3.2). Likewise, FVC in

normal vs. patients with glaucoma differed significantly, but we did not find a difference between

normal and PTG. Values for PEF were similar: the ANCOVA using age as a covariate showed a

statistically significant effect of group (Table 3.1). In addition, a pairwise Dunn’s test confirmed

that the IOP difference between glaucoma and PTG groups was statistically significant (Z=-10.74,

p¡0.05). Post-diagnosis, the difference between PTG and glaucoma in FVC and PEF was no longer

statistically significant. This was also true for IOP, but this is based on only a limited sample of

PTG (n=21 retinas), for which there is a measurement of IOP post-diagnosis ( Section 3.2).

3.2 Methods

Data access. Data was obtained through the UK Biobank health research program. Deidentified

color fundus photos, OCT scans, and health data were downloaded from the UK Biobank reposi-

tory and our study, which did not involve human subjects research, was exempt from IRB approval.

Data set and Cohort selection. The UK Biobank is an ongoing prospective study of human

health, for which data has been collected from over half a million individuals [170]. Participants

throughout the UK were recruited between 2006 and 2010 and were aged 40-69 years at the time

of recruitment. The data set contains information from questionnaires, multi-modal imaging mea-

surements, and a wide range of genotypic and phenotypic assessments. Data collection is ongoing,

allowing for longitudinal assessments. We analyzed a subset of the UK Biobank participants based

on a snapshot of the repository that was created in the fall of 2017. This subset consisted of data

from 96,020 subjects, 65,000 of which had retinal imaging data. This data set consisted of between

one to three visits for each of the subjects. Color Fundus Photographs (CFP) data was available

for only the first visit for these subjects. Retinal OCT data was available for first and second visits.

The participants were given questionnaires to report various eye conditions, to which they could

report healthy or chose one or more the following eye conditions: glaucoma, cataract, macular

degeneration, diabetic retinopathy and injury for each eye. We used the answers provided as the

labels for each eye. We did not examine the images to determine or alter the labels thus associated
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with the retinal image and clinical data.

Figure 3.8: Sample of OCT volumes eliminated due to alignment errors, this shows first two OCT
slices for four retinas where alignment failure occurred. All OCT slices were eliminated for such
retinas.

Cohort selection: We selected a cohort from this data for the following three classes: A) subjects

who in their first study visit report that they have been diagnosed with glaucoma and consistently

report a glaucoma diagnosis in follow-up visits (glaucoma); B) subjects who in their first study visit

report that they had no ocular conditions and consistently reported no ocular condition in follow-up

visits (healthy); C) subjects who in their first visit report no ocular conditions, but in a subsequent

visit report having received a diagnosis of glaucoma, labeled as the ”progress to glaucoma” group

(PTG). Ocular measurements were only available for the first two visits. The ocular data includes

retinal imaging (both CFPs and macular OCTs) as well as IOP, Corneal hysteresis and Corneal

resistance factor. However, a subset of the PTG group (n=21 retinas) received glaucoma diagnosis

between the first and second visit and we used this subset to conduct statistical analysis of IOP.

Systemic and pulmonary variables were available for the entire PTG group both pre- and post-

diagnosis, and we were able to analyze the impact of diagnosis on these variables for the entire

PTG group.
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Figure 3.9: Data distribution: Age and gender distributions as well as number of subjects in the
Normal (left), progress to glaucoma (middle) and glaucoma (right) subject groups.

Figure 3.10: Sample of CFP eliminated from test set due to bad quality.
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Figure 3.11: Data processing for CFP images. Top row shows original images, bottom row shows
cropped and pre-processed images.

Exclusion criteria: We excluded all subjects who preferred not to answer questions about their

ocular conditions, or did not know how to answer these questions. For glaucoma subjects, we

excluded any subjects who listed any ocular conditions in addition to glaucoma, such as age-

related macular degeneration, diabetic retinopathy, cataract, or injury. For the healthy subjects,

we excluded any subjects whose visual acuity was recorded as worse than 20/30 vision in either

eye. We also excluded any healthy subjects with any secondary health conditions (determined

by primary diagnosis codes record in their hospital inpatient records). Finally, we excluded any

retinal OCT scans from all three classes that could not be aligned using motion translation (x

and/or y shift) Figure 3.8. shows a sample of excluded retinal OCT images. The final number of

for the three groups was glaucoma ((s)ubjects=863,(e)yes=1193), healthy (s=771, e=1283), and

PTG (s=55,e=98). Figure 3.9 shows the age and gender distribution of subjects in each of these

groups. CFP images were available for only 56 of the 98 retinas in the PTG group (retinal OCT

images were available for all PTG subjects).
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Test set: At the outset, we randomly selected 100 eyes, 50 healthy and 50 with glaucoma. These

were set aside as the test set on which we evaluated each of the models. We set an additional

170 eyes as a validation set for parameter tuning and model selection. The data was separated

by subject such that both eyes of any subject belonged to either test, train or validation set. The

test set was also rated by five glaucoma experts. Glaucoma experts used the CFPs for providing

their scores. Glaucoma experts marked 13 CFPs from the test set as being such poor a quality to

preclude any assessment. All comparisons of clinician and model performance excludes these 13

retinas Figure 3.10 shows a sample of excluded CFPs.

Evaluating expert performance. Five glaucoma-fellowship trained ophthalmologists were re-

cruited for the study to evaluate CFP images from test set to provide an expert diagnoses. The

glaucoma experts identified the eye in each CFP as either healthy or glaucoma, and rated the confi-

dence in the diagnosis from 1 to 5. A higher number indicated higher confidence in their diagnosis.

This resulted in a 10-point scale for the diagnosis. We used this 10 point scale to create ROC curves

for each expert.

Machine learning models and training protocols. We built separate DL models for each imaging

modality (retinal OCT and CFP). Retinal OCT model: the DL model built on the retinal OCT data

took a single retinal OCT image as input and output a probability that the input image was from

a subject with glaucoma. This model required individual B-scans. Each retinal OCT consisted of

128 B-scan images. This model was not provided any other additional information. This DL model

was based on the densenet architecture [80], with four blocks with 6, 12, 48 and 32 layers each. We

initialized model weights for this model with MSRA initialization [73]. Each retinal OCT B-scan

is a gray scale 512 x 650 image. We flipped each right eye images left to right, we did this so

that the optic nerve was on the same side for each scan. Additionally, we cropped each scan to an

aspect ratio of 1:1 and down sampled to 224x224 pixels. We used a per pixel cross-entropy as the

loss function with 0.1 label smoothing regularization [124]. We used Tensorflow [3] with Adam

optimizer [97] and an initial learning rate of 1-e3 and epsilon of 0.1. We trained for 60 epochs(

batch size 80) on one graphical processing unit (GPU)s. The hyper parameters for the training

protocol were chosen by tuning on the validation data set. To improve the generalization ability of
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our model, we augmented the data by applying affine, elastic and intensity transformation over the

input images.

CFP model: the DL model on the CFP took a single CPF image as input and outputs a probability

that the input image was from a subject with glaucoma. This model was built with transfer learning

[139, 9]. We chose transfer learning as (a) we had 128X fewer CFP images, and (b) CFP are

color images and transfer learning has been shown to be effective for detecting other pathology

in fundus images [105]. We used the InceptionResnetV4 [174] model, pre-trained on ImageNet

data [84]. We used the Adam optimizer with an initial learning rate of 1-e5. We trained the

model for 20 epochs, with a batch size of 400. During training, we kept the weights in 2/3 of the

network (750 layers) frozen. We pre-processed each fundus image by flipping left CFP image so

that optic nerve was on the same side of each image. We also subtracted local average color to

reduce differences in lighting, and cropped the images to contain the area around the optical nerve

(ADD). We augmented the CFP by applying affine, elastic and intensity transformations similar to

the retinal OCT images.

Baseline models: modern gradient boosted decision trees often provide state-of-the-art perfor-

mance on tabular style data sets where features are individually meaningful, as consistently demon-

strated by open data science competitions [62]. We used gradient-boosted decision trees, imple-

mented in XGBoost [36], to build all three baseline models (BM1, BM2, BM3) based on demo-

graphic features: age, gender, ethnicity; systemic features: Body Mass Index (BMI), Forced Vital

Capacity (FVC), Peak Expiratory Flow (PEF), heart rate, diastolic and systolic blood pressure,

presence of diabetes, recent caffeine and nicotine intake; and ocular features: Intraocular pres-

sure (IOP), corneal hysteresis, and corneal resistance factor. The systemic features were chosen

as markers of overall health. We used the following hyper parameters for training: learning rate

of 0.001, early stopping; `2 regularization of 1.0, no `1 regularization, no column sampling dur-

ing training, and bagging sub-sampling of 70%. Hyper parameters were chosen by tuning on the

validation data set.

Final model: we combined clinical data with results from image-based models to build the final

model. To combine data from image models we used the probability of glaucoma as estimated by



58

the respective image model as the feature value for each image. We combined these (128 OCT

slices and one fundus) to a 129 element vector as the results of the image-based models. This

vector was then combined with all of the features from BM3 for the final feature set. We used

gradient-boosted decision trees to build this final model. The hyper parameters were chosen by

tuning on the validation set and were as follows: learning rate 0.001, early stopping, bagging sub-

sampling of 70%, `2 regularization of 1.0, no `1 regularization and no column sampling during

training.

Interpretability Methods: for pixel-level importance in the image based DL models we used inte-

grated gradients [171] and SmoothGrad [166] to determine salient pixels for the input images. For

the tree-based models built using XGBoost, we used Tree explainer [109] to calculate the SHAP

values. The SHAP values were used to determine feature importance and feature interaction.

Dependent Variable dF F Value p value
FVC 1,2403 64.51 1.49e− 15
PEF 1,2403 50.8 1.35e− 12

Table 3.1: Analysis of covariance (ANCOVA) of pulmonary capacity variables (forced vital capac-
ity (FVC), peak expiratory capacity(PEF)) for group identity amongst the three groups ( Healthy,
Glaucoma and PTG), controlling for age.

Groups Kruskal-Wallis Z P (unadjusted) P (adjusted)
Healthy vs. Glaucoma 7.03 2.12e− 12 1.270017e− 11
Healthy vs. PTG −1.63 1.03e− 01 6.17e− 01
Glaucoma vs. PTG −4.36 1.28e− 05 7.66e− 05
Healthy vs.PTG (post-diagnosis) 2.48 1.32e− 02 7.93e− 02
Glaucoma vs.PTG (post-diagnosis) −0.26 7.99e− 01 1.0
PTG vs.PTG (post-diagnosis) 3.02 2.51e− 03 1.50e− 02

Table 3.2: Dunn’s test comparing FVC for Glaucoma, healthy, PTG and PTG (post-diagnosis)
groups, with Bonferroni correction for p-values.

Statistical analysis: We used bootstrapping [52] to determine confidence intervals for AUC and ac-
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Groups Kruskal-Wallis Z P (unadjusted) P (adjusted)
Healthy vs. Glaucoma 7.68 1.54e− 14 9.25e− 14
Healthy vs. PTG −2.17 3.02e− 02 1.81e− 01
Glaucoma vs. PTG −5.12 3.01e− 07 1.81e− 06
Healthy vs.PTG (post-diagnosis) 5.58 2.38e− 08 1.43e− 07
Glaucoma vs.PTG (post-diagnosis) 2.65 8.12e− 03 4.86e− 02
PTG vs.PTG (post-diagnosis) 5.70 1.19e− 08 7.17e− 08

Table 3.3: Dunn’s test comparing PEF for Glaucoma, healthy, PTG and PTG (post-diagnosis)
groups, with Bonferroni correction for p-values.

Groups Kruskal-Wallis Z P (unadjusted) P (adjusted)
Healthy vs. Glaucoma −19.26 1.10e− 82 6.61e− 82
Healthy vs. PTG −5.90 3.53e− 09 2.12e− 08
Glaucoma vs. PTG 1.47 1.41e− 01 8.46e− 01
Healthy vs. PTG (post-diagnosis) −11.51 1.16e− 30 6.96e− 30
Glaucoma vs. PTG (post-diagnosis) −4.15 3.33e− 05 2.00e− 04
PTG vs. PTG (post-diagnosis) −4.12 3.73e− 05 2.24e− 0

Table 3.4: Dunn’s test comparing Age for Glaucoma, healthy, PTG and PTG (post-diagnosis)
groups, with Bonferroni correction for p-values.

Groups Kruskal-Wallis Z P (unadjusted) P (adjusted)
Healthy vs. Glaucoma −6.09 1.09e− 09 6.57e− 09
Healthy vs. PTG 1.34 1.80e− 01 1.0
Glaucoma vs. PTG 3.69 2.26e− 04 1.36e− 03
Healthy vs. PTG (post-diagnosis) 1.70 8.84e− 02 5.30e− 01
Glaucoma vs. PTG (post-diagnosis) 4.05 5.07e− 05 3.04e− 04
PTG vs. PTG (post-diagnosis) 0.27 7.89e− 01 1.0

Table 3.5: Dunn’s test comparing BMI for Glaucoma, healthy, PTG and PTG (post-diagnosis)
groups groups, with Bonferroni correction for p-values.

curacy displayed in Figures 2 and 5. We performed analysis of variance(ANOVA) test to analyze

the differences in pulmonary function features (FVC and PEF) among the three groups: healthy,

glaucoma and PTG. We used the Dunn Test[51] with Bonferroni correction for pairwise compari-
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son to determine differences between the three groups.

Groups Kruskal-Wallis Z P (unadjusted) P (adjusted)
Healthy vs. Glaucoma −14.31 1.98e− 46 1.19e− 45
Healthy vs. PTG −10.74 6.32e− 27 3.79e− 26
Glaucoma vs. PTG −5.20 1.96e− 07 1.18e− 06
Healthy vs. PTG (post-diagnosis) −2.40 1.64e− 02 9.84e− 02
Glaucoma vs. PTG (post-diagnosis) 0.25 7.99e− 01 1.0
PTG vs. PTG (post-diagnosis) 2.50 1.23e− 02 7.38e− 02

Table 3.6: Dunn’s test comparing IOP for Glaucoma, healthy, PTG and PTG (post-diagnosis)
groups, with Bonferroni correction for p-values.
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3.3 Discussion

Automating glaucoma detection using imaging and clinical data may be an important and cost-

effective strategy for providing population-level screening. In this study, we used machine learn-

ing to construct an interpretable machine learning model that combined clinical information with

multi-modal retinal imaging to detect glaucoma. We created and compared several models based

on clinical data to establish a baseline: BM1 used demographic data (age, gender, ethnicity),

BM2 added systemic medical data (cardiovascular, pulmonary), and BM3 added ocular data (IOP,

corneal hysteresis, corneal resistance factor). Our final model was an ensemble, which combined

information from raw macular OCT B-scans and CFP images as well as all demographic, systemic

and ocular data used in BM3. This final model had an AUC of 0.97.

In interpreting this final model, we found that CFP, age, IOP, macular OCT images from the

inferior and superior macula, and FVC were the most important features (Figure 3.6). The sig-

nificance placed upon age and IOP by our final model reiterate previously known risk factors for

glaucoma. The positive SHAP values for IOP in our model rapidly increased above an IOP of

approximately 20, consistent with the fact that ocular hypertension is a key risk factor for the dis-

ease [93, 146, 71, 15, 151]. Age and IOP switched places in their relative importance in our final

model, which includes retinal imaging, in addition to BM3 features. This suggests that retinal

imaging includes information that supersedes or is redundant with information linked to age. This

finding is consistent with previous research, which demonstrated the ability of CFP to predict car-

diovascular risk factors including age [149]. We also observe two discontinuities in the age vs.

SHAP values for age (Figure 3.6B), at ages 57 and 65. At both of these ages the SHAP values

for age increase at a higher rate than before. This could be both due to biological, as well as

socio-economic factors (e.g., 65 is the age of retirement in the UK).

An important novel finding of our study was the correlation of pulmonary measures, especially

decreased FVC, with glaucoma. There are several possible explanations for this finding. First,

a recent study by Chua et al. found a correlation between glaucoma and atmospheric particulate

matter [40]. Chua et al.’s study did not include pulmonary function tests such as FVC and was
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correlational in nature but other studies have linked exposure to particulate matter with decreased

FVC [38, 192, 72], suggesting common causes for reduced FVC and for glaucoma. Second, it

may be that the treatment of glaucoma with topical beta blocker therapy has an impact on reducing

FVC [144]. This idea receives further support from the findings in the PTG group, who do not have

a diagnosis and have presumably not received any treatment. These individuals have FVC that is

higher than the glaucoma group and is indistinguishable from the healthy group before a diagnosis

is made. After a diagnosis is made, their FVC also decreases to levels indistinguishable from that

of the glaucoma group. Thus, lower FVC values could indicate a result of glaucoma treatment.

Examination of the pixel-by-pixel importance of both retinal image modalities provided addi-

tional insight into what our model focused on when predicting glaucoma ( Figure 3.5). For the

CFPs, the model focused on the optic disc, a known source of information in the clinical diagnosis

of glaucoma [14]. For the macular OCT B-scans, the model relied on previously validated retinal

areas, including the inferior and superior macula [143]. In addition, the algorithm points to the

nasal macular RNFL. The effect of glaucoma on RNFL integrity is well-understood, and RNFL

thickness maps are often used clinically to diagnose glaucoma. However, the automated algo-

rithms that are used clinically have a high segmentation error rate, resulting in variable thickness

estimates, which may in turn lead to errors in diagnosis [114]. By avoiding reliance on extracted

features such as thickness maps, our approach enabled the discovery of other possible biological

features of glaucoma. For example, consistent with recent results in the same data set [96], the

model also identified other (non-RNFL) parts of the inner retina as important (e.g., see Figure 3.5

B).

In addition to the RNFL and inner retina, the model relied on the outer layers of the retina for

glaucoma diagnosis. The involvement of the retinal outer layers in glaucoma is controversial. In a

typical analysis of OCT images that focuses on the thickness of different parts of the retinal layers,

glaucoma effects are usually not found in outer layers [185, 42, 98], but an association between age,

IOP and retinal pigment epithelium thickness is sometimes detected [99]. Some anatomical studies

do not find any differences in the outer retinal layer between healthy and glaucomatous eyes [94].

Other studies, using psychophysical methods in human subjects with glaucoma [78, 132], using
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histological methods in human eyes [140, 131] or examining animal models of glaucoma [29, 131]

have shown the involvement of the retinal outer layer in glaucoma. In addition, Choi et al. [39]

used high-resolution imaging techniques (ultrahigh-resolution Fourier-domain optical coherence

tomography, UHR-FD-OCT, and adaptive optics, AO) to image glaucomatous retinas. They found

a loss of retinal cone receptor cells that correspond to visual field loss. This loss of cones could

cause subtle changes in the appearance of this part of the retina, that are not reflected in changes in

thickness but are still captured by the DL model (e.g., changes in texture). The ability of DL models

to use visual cues that are not apparent to the human eye has been previously demonstrated in

another study in which retinal angiograms were generated from OCT images [104]. This finding is

also consistent with a recent study that used unsegmented OCT scans and reported the involvement

of outer retinal layers in a DL model that detects glaucoma [111, 181].

Our final model detected the occurrence of glaucoma with an accuracy of 75% on a cohort that

had not yet been clinically diagnosed at the time of their testing (”progress-to-glaucoma”, PTG).

This does not constitute early detection: even though the individuals were not clinically diagnosed,

they may already have significant disease progression, since many patients are undiagnosed even

in relatively late stages of the disease [172]. The median IOP value was higher for the PTG co-

hort than for the subjects diagnosed with glaucoma, possibly because treatments for glaucoma are

designed to decrease IOP. The PTG group also tended to be younger than those diagnosed with

glaucoma. Interestingly, FVC in the PTG group was higher than in the glaucoma group and was

indistinguishable from healthy subjects. This finding helps explain why BM2, which relied heav-

ily on PVC and PEF, performed relatively poorly on the PTG cohort, achieving an AUC of 47%

( Figure 3.7 A). It also provides possible evidence against a causal relationship between FVC and

glaucoma, as mentioned above. Furthermore, in a post-diagnosis visit, pulmonary factors (FVC

and PEF) in these individuals were lower and indistinguishable from that of the patients with glau-

coma, further supporting a possible treatment effect. This area warrants further investigation.

Before our model can be considered for use in a real-world setting, several limitations should

be considered and addressed. First, we included only subjects without other ocular disorders. In

the general population, glaucoma may coexist with other ocular comorbidities, and it is unclear



64

what effect this may have on the model’s ability to detect glaucoma accurately. However, selecting

subjects with only a glaucoma diagnosis and no other ocular morbidities instills confidence that the

model we built is glaucoma-specific, delineates the boundaries between these groups, and identifies

the features specific to glaucoma. Second, features of the optic disc are clinically important in

diagnosing glaucoma. The limited quantity and poor quality of the CFPs in the UK Biobank

data set likely contributed to the low AUC of both the CFP DL model and the expert clinician

grading. Finally, a major limitation of our study was the veracity of ground truth labels used to

train the model. Labels used were based on self-report. While we eliminated any subject who had

inconsistent answers or declined to answer, the generally high rate of undiagnosed glaucoma and

the potential for recollection error means that some participants may have been incorrectly labeled.

Our study combined information from multiple sources – including two different retinal imag-

ing modalities (CFP and OCT), demographic data, and systemic and ocular measurement – to build

a model that detects glaucoma. This approach yielded not only very accurate detection, but it also

enabled us to isolate and interpret critical variables that helped us draw clinical insights into the

pathogenesis of the disease.
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Chapter 4

SAMPLING FOR DEEP LEARNING MODEL DIAGNOSIS

“Sampling, statisticians have told us, is a much more effective way of getting a good census.”

– Rob Lowe

Deep learning (DL) models have enabled unprecedented breakthroughs in developing artificial

intelligence systems for analyzing dense, high-dimensional data, such as text, audio, and images.

Deep learning is a subset of machine learning methods that use multiple layers to progressively

extract higher level features from raw input. Deep learning models have become an indispensable

tool for a wide range of tasks, such as image classification, object recognition, speech analysis,

machine translation, and more. The task of diagnosis for these purportedly black-box models re-

quires additional artifacts, such as activations. These additional artifacts must be generated, stored,

and queried for each DL model being debugged. The addition of these artifacts, which can be up

to three orders of magnitude larger than the input data size for each model being diagnosed, turns

the process of building, diagnosing, and selecting DL models into a large-scale data management

challenge. Diagnosing DL models requires access to artifacts, such as model activations and gra-

dients. Activation values, or activations, are learned representations of input data. Gradients are

partial derivatives of the target output (e.g., the true label of the input data) with respect to the input

data. At a high level, activations and gradients are high dimensional vectors with sizes that depend

on input data dimensionality and DL model architecture. While activations depict what the deep

learning model sees, gradients depict areas of high model sensitivity.
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As previously noted, the naive solution of model diagnosis is pre-computing and storing all

artifacts required for model diagnosis scales as the product of the size of input data and number of

parameters of the deep learning model. Although the total number of artifacts for small datasets

and models is manageable, an overhead that is three orders of magnitude larger than the input data

per model is not scalable. On the other hand on the fly generation of these artifacts requires tens

of second to several minutes. This makes it difficult to efficiently perform diagnosis tasks, often

preventing interactive diagnosis. Thus, with hundreds of gigabytes of artifacts per model, building,

diagnosing, and selecting a DL model becomes a large-scale data management challenge.

Sampling is a fast and flexible database technique for approximate query processing, it works

well in high dimensions [8, 6, 19, 75] and is a potential candidate for this workload. Top-k maxi-

mally activated neurons and the distribution of maximally activated neurons form a large subset of

the DL model diagnosis queries (see Section 4.2 in addition to the average values of neurons. e.g.

What are the top-10 maximally activated neurons for layer conv2 for all incorrectly classified ob-

jects formodelA? The sample in this case would be a subset of data items from the test and training

data sets. The top-k queries are an important area of database research. The best known general-

purpose algorithm for identifying top-k items is the Threshold Algorithm [54], which operates on

sorted multi-dimensional data required to compute the top-k elements. Approximate algorithms

for top-k retrieval require building probabilistic models to fit the score distribution of the underly-

ing data as proposed in [180]. However, we wish to avoid computing and storing activations for

the entire dataset, which is three orders of magnitude larger than the input data set for each model

being diagnosed.The key challenge therefore is in computing a good sample. As we show in this

chapter uniform random sample and even a stratified sample do not perform well. Additionally,

we seek to avoid computing and storing and analyzing the distribution of activation values for the

entire dataset to create a sample. Instead, we leverage the lower dimensional representation of

data learned to select a sample for DL model diagnosis (see Section 4.3 for details). Our approach

not only reduces the storage footprint and speeds-up queries since we store less data, but it also

speeds-up the overall diagnosis process by saving the time it would otherwise take to generate all

artifacts for the entire dataset.
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Specifically, our contributions include:

• Characterizing requirements of DL model diagnosis by studying debugging queries in the

literature. We further develop a simple benchmark for this novel workload by generalizing

individual queries used in model debugging papers into query sets that cover families of

queries (Section 4.2).

• Presenting a new technique for creating samples for DL model diagnosis (Section 4.3).

• Evaluating our approach on two datasets and demonstrating its performance compared with

a variety of state-of-the-art alternatives.

Our sampling technique can be used to debug any deep learning model where a lower dimen-

sional representation of the input data is learned in a supervised, semi-supervised or unsupervised

manner.

4.1 Preliminaries

We now summarize current approaches for DL model diagnosis and their associated data manage-

ment challenges, which we address in this paper.

A DL model takes as input a vector x = [x1, . . . , xN ],∈ RN and produces as output another

vector S(x) = [S1(x), . . . , SC(x)], where C is the total number of output neurons. DL models

are constructed in layers, intermediate layers are called hidden layers, and each hidden layer of

the model is vector-valued. The dimensionality of these hidden layers determines the width of the

model, and the number of hidden layers determines its depth. These layers often perform different

operations such as convolutions, pooling, dropout, etc. - and are named accordingly. When the

model is evaluated over an input data instance, such as an image, it produces a value for each

of the C neurons. The raw values thus produced are activations, and derivatives of these values

with respect to a target, such as class label, are gradients. Diagnosis of DL models relies on these

artifacts. The ML community has a variety of techniques to diagnose these models, which we

discuss below.
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dataset name Image size (KB) No. model params Ratio artifacts:input data

MNIST 0.78 107,786 53 ×
Galaxy Zoo2 1.3 1,095,842 2905.5 ×

Table 4.1: Data size and model sizes for standard ML dataset (MNIST) and scientific image dataset
(Galaxy Zoo2).

4.1.1 Visualization

Manual visual inspection, is a popular diagnosis technique for DL models [64, 92, 91, 90, 106].

Standalone tools for visual inspection of DL models built on image data (Cnnvis [106]) and text

data (Activis [90], LSTMvis [169]) have been proposed. Some visualization capability is also

integrated with deep learning libraries (e.g. Tensorboard [177], etc.). These tools provide static

and interactive visualizations of DL model activations and on occasion, gradients. They let ML

practitioners view activation or gradient patterns for various layers as well as view aggregates

(e.g., average activation) over sets of input data instances belonging to each class, which may

be classified correctly or incorrectly. This lets ML practitioners identify specific neuron pattern

anomalies and neuron groups and data instances that require further investigation.

Challenge: The size of the artifacts required for these visualizations depends on the size of the

input data, and the complexity of the model. It can easily be 3 orders of magnitude larger than the

input dataset as shown in Table 4.1. To support interactive visualization for arbitrary queries, these

artifacts must be pre-computed since real-time computation is too slow to be interactive. To deal

with the associated data explosion, tools such as Activis [90] limit the number of layers that can be

visualized in the tool.

4.1.2 Examining learned representation

A DL model simultaneously learns a lower level representation of the data and a classifier (in

the case of supervised learning). The learned representation (activations of neurons over an input

dataset) is used for a variety of goals, such as understanding how a model discriminates between
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different classes, comparing different model architectures or hyper-parameters, and examining how

learning progresses over time by analyzing representations at various checkpoints in the learning

process [113, 122, 101].

Challenge: One such analysis [113], takes as input the activations of neurons in two layers

from the deep learning model, performs singular value decomposition(SVD) on them, projects ac-

tivations into the subspace identified by SVD, and computes canonical correlation to find directions

in these subspaces that are most aligned. These category of analyses require activations for the en-

tire model(s) over the entire input dataset. If the training process is being examined, the activations

for multiple checkpoints must be generated and stored. As above, the required artifacts, especially

if diagnosing multiple models or multiple checkpoints, can result in a data explosion.

4.1.3 Feature visualization and saliency analysis

The feature visualization techniques answer questions about what a DL model or parts thereof

are looking for by generating examples from the learned model [133]. Feature visualization uses

derivatives to iteratively modify an input, such as random noise, with the goal of finding the input

that maximally activates a particular neuron(s). Saliency analysis identifies parts of the input that

have the largest effect on the output. This consists of a number of approaches that propagate

gradients through the model to identify areas of highest activation and highest sensitivity [165,

201, 112, 160, 171].

Challenge: Even simple DL models consist of hundreds of thousands of neurons (e.g. Ta-

ble 4.1). Finding the appropriate set of neurons to visualize can be beyond the powers of hu-

man cognition. Saliency analysis works on a per-input-data-item basis; ML practitioners would

need specific input data points, such as images, for these methods. DL datasets consist of tens of

thousands of instances, picking appropriate data instances from these large datasets is imprecise,

especially if the dataset is new, large and contains unexplored scientific data.
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4.1.4 Statistical analysis

Many datasets are annotated. Language models are annotated with parts of speech or linguistic fea-

tures and image datasets are annotated with object information. For instance, Broden dataset [22],

has pixel-level annotations that indicate the object to which each pixel belongs. These annotations

are used to pose hypotheses and conduct statistical analyses between neuron(s) activations and

annotation to evaluate these hypotheses [159]. We include statistical analysis as it is important

technique for model diagnosis and interpretability.

Challenge: Statistical analyses require such annotations to formulate hypotheses. The two

datasets we utilize do not have any annotations. Indeed, most scientific image datasets do not,

which makes statistical analysis impossible,

4.2 Workload Characterization

We now develop a summary workload that captures the requirements of a large set of DL model

diagnosis queries. Model diagnosis techniques, such as visualization and examination of learned

representation, bring the number of neurons and data instances to be examined to a smaller and

manageable number. This section focuses on queries from these two categories, as these queries

helps make downstream analysis, such as feature visualization, attribution and saliency analysis

tractable over massive datasets. We do not include queries from statistical analysis as it requires

annotations on the dataset.

ML practitioners typically start model diagnosis with techniques utilized by visualization tools

from Section 4.1. A common practice is to create data subsets that are incorrectly classified, gener-

ating aggregates (such as average activations, top-k highest activations etc.), and compare them to

similar aggregates for data instances that were correctly classified for each class. ML practitioners

start the analysis from sets [90, 106], such as all incorrectly labeled instances of classa, rather than

specific instances to find such patterns. This analysis helps them identify important patterns for

the various subsets and reduce to a manageable number both data instances and parts of the model

(layers and neurons) to be examined [90, 106]. Based on this analysis ML practitioner can now
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QN. Queries

Q1. What is the average value for all neurons for layer Conv2 in modelA across all
classes? [90, 64, 113]

Q2. What are the top k maximally activated neurons for layer Conv2 for all incorrectly
classified objects for modelA? [90, 106, 92]

Q3. What is the average neuron activation pattern for the last hidden layer in modelA
for incorrectly classified classa vs. correctly classified classa? [90, 92, 166]

Q4. Compute the similarity between the logits of classa and the representation learned
by the last convolution layer by modelA? [113, 100]

Q5. For images of classa classified as classb, what are all of the maximally activated
neurons in the last convolutional layer? [106, 90]

Q6. DoesmodelC learn a representation for classe faster than it learns the representation
for classf? [101, 113]

Q7. How similar are the representations learnt by two different model architectures,
modelA and modelB, on the same dataset? [113, 100, 122]

Table 4.2: Representative queries for deep learning diagnosis workload.

start correlating input data and parts of the model, conducting attribution and saliency analyses.

Similarly, the common practice when comparing two different models trained on the same data

leverage techniques listed in examining learned representation from Section 4.1. For instance, ML

practitioners generate neuron activation values for each data item for both models for each layer

and then compare these to the logits for each class learned by the respective model to decipher

each model’s rate of learning to understand the impact of additional layers and their sizes and thus

diagnose how complex the model must be to complete this task.

Table 4.2 lists representative queries from the literature used to diagnose DL models. We make

two observations from this list of queries. First, DL model diagnosis queries require one of three

quantities: the top-k maximally activated neurons, the distribution of maximally activated neurons

or the average activation values. The focus on maximal and top-k values as opposed to minimal

values is due to activation functions [7] used in DL models. Without such functions DL models are

just complicated linear regression models. ReLU is the most commonly used activation function

today [153]. It removes negative values and propagates positive values. Mathematically, ReLU is



72

defined as max(0, val). Therefore, in the DL literature sample queries often focus on average or

maximal values but not minimum values. Thus, to characterize an ML diagnosis workload instead

of focusing on all aggregates we focus on three aggregates (1)Top-k maximally activated neurons,

(2) Average activation values for neurons and (3) distribution of maximally activated neurons.

Second, each query in Table 4.2 is part of a family of queries. For instance, the answer to

Q1 requires average values of all neurons for a specific layer (conv2) for all classes. A family of

queries for Q1 would include average values of neurons for any layer and any class where data

instances could be correctly or incorrectly classified. We can see that queries Q3 and Q1 belong

to the same family. Similarly, Q2 belongs to a family of queries that require top-N neurons, across

classes, layers, incorrect, and correct classification. Thus, to characterize this workload we utilize

the entire family of queries. We call these families of queries query sets.

We now introduce some notation and define query sets formally.

A DL model M is a vector of N units or neurons. M is learned and tested over data D.

Artifacts, such as activations A, are vectors of the same dimensionality as M , computed over data

D. aid is the activation value(s) of a set of i neurons, where i ⊆ N , on dth data item(s), where

d ⊆ D. A query computes a measure φ, such as the mean, top-K, count, or count of maximum

values for aid. A query set S is a set of queries that enumerate over all vectors of activation values

aid that correspond to all layers, all classes and both correct and incorrect classifications. Given

the preceding notation we can define a DL model diagnosis query set:

Definition 1. A query set S(aid, φ) is a set of queries, where i ⊆ N, d ⊆ D, and φ is a measure.

Instead of evaluating our techniques on specific queries from Table 4.2, we utilize the three

query sets shown in Table 4.3 to characterize DL model diagnosis workload. These query sets

include all queries of a specific family. We leverage these query sets to measure effectiveness of

sampling techniques to ensure these techniques do well on the entire family of queries represented

by the query set, not just on individual queries.

Query Q2 and all queries of this family are represented by query set S1, which computes the

top-K maximally activated neurons. Queries Q1, Q3, and others of this family are represented by
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Query Sets

S1. Set of top-K maximally activated neurons.
S2. Average activation values of neurons.
S3. Distribution of maximally activated neurons.

Table 4.3: Query sets for deep learning model diagnosis workload.

query set S2, which computes the average activation for neurons. Queries Q4, Q5, Q6 and Q7, and

others of their family are jointly represented by query sets S2 and S3, because finding similarity

depends on the average neuron values and the maximally activated neuron distribution.

Query sets can consist of any combination of neurons and data items. Instead of considering

this immense set of combinations, we limit our evaluation to all combinations of layer, class and

classification (correct or incorrect). Thus, to measure accuracy of a query set for a sample, we first

compute the query results for each of these combinations (layer, class and classification). Next, we

compute a metric comparing the results from the sample with the results for the same combination

on the entire dataset. Our comparison utilizes metrics specific to each query set, e.g., precision

for S1, cosine distance for S2 and, Jensen-Shannon distance for S3 (we describe these metrics and

the rationale for picking them in more detail in Section 4.4). Finally, we calculate the over-all

query set accuracy for each query set by averaging the value of the corresponding metric over the

combinations.

4.3 Approach

To enable interactive model diagnosis, our approach creates a sample. We compute the results of

a query set on this sample instead of the entire data. In this section we describe our approach and

present other baseline techniques for selecting these samples.

The key insight we utilize to avoid generating and storing activation values is that DL models

learn a lower dimension representation of the data, and a classifier. DL training transforms the

input data, creating a new representation with each layer. Training criteria encourage training set
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Figure 4.1: T-SNE representation of test data or Galaxy Zoo2 (left) and MNIST (right) from the
last hidden layer. Each data point represents an input image from the test set. Data point colors
represent the true labels.

neighbors, such as data points from the same class, to have similar representations. Leveraging

this lower dimensional representation learned by the model has the dual benefit of reducing dimen-

sionality of the data and focusing on the representation learned by the model. Since the objective

of the workload is to diagnose this model, we hypothesize that leveraging the learned latent space

to select a sample will be key to understanding what the model has learned. For model diagnosis

we view the training, and test data points in the latent space, i.e., instead of viewing the data in

the high dimensional original format of images, audio or text, we utilize this lower dimensional

representation of the data learned by the model’s last hidden layer to create samples.

Our goal is to diagnose the model, which implies that a subset of the queries will focus on what

the model got wrong, as shown in Table 4.2. In a classification problem with multiple classes,

the decision boundaries partitions the underlying vector space into multiple regions, one for each

class. Decision boundaries are where the output label of a classifier is ambiguous, i.e., where errors

and mis-classifications occur. The diagnosis of a DL model requires exploration of the decision

boundary for a model [66, 197].

For instance, Figure 4.1 depicts this lower dimensional representation for two datasets we use

for evaluation, MNIST [121] and Galaxy Zoo2 [67]. We use a dimensionality reduction technique,

t-Distributed Stochastic Neighbor Embedding (t-SNE) [186], to reduce dimensions of this data to
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visualize it in two dimensions. In Figure 4.1, each point represents an image from the test set, and

colors indicate the true class labels. We make two observations from this visualization: (1) the data

representations in latent space show separation for each class, and (2) most mis-classified instances

are on the edges of data points groupings.

Thus, it is at the decision boundary, we find most of the incorrectly classified data points ex-

amples and the diverse correctly classified data items. Farthest from the boundary we find the

correctly classified data instances, where their learned lower dimensional representation are very

similar.

Our approach is based on utilizing the lower dimensional representation when selecting data

items for our sample, and focusing on decision boundaries in the latent space when selecting the

data points to include in our sample.

4.3.1 Baselines

In the AQP literature the two most popular sampling techniques are uniform sampling and stratified

sampling. We consider both of these sampling techniques as baselines. Uniform sampling can

directly be applied to our problem without changes. Stratified sampling partitions data into groups

called strata and computes a separate sample for each stratum.

In database systems such as BlinkDB[8], strata are defined over a subset of columns that typ-

ically correspond to categorical valued attributes, e.g. city. For DL model diagnosis, the under-

lying data can be considered a relation, with each row representing a data item (e.g., one image)

and each column a value of interest, such as the activation value for a neuron in the model. Each

row can be extended with metadata, such as the predicted class and the class label. To implement

stratified sampling for our use case we propose stratified by CM as a baseline technique. Because

of the large dimensionality of the data, we cannot create a stratum for each possible value in each

column, instead we use the classification result or the metadata associate with each data item to

create the strata. Each data point is classified by the model as belonging to a class. This result is

encapsulated in a confusion matrix (a.k.a. the error matrix), which tabulates the performance of

a classification algorithm. For a binary classifier, the confusion matrix counts the number of true
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positives, false positives, true negatives, and false negatives. For multiple labels, the confusion

matrix generalizes this concept. Each row of the matrix represents a predicted class, while each

column represents a true class. In this technique, we sample based on cells in the confusion matrix.

We call this technique stratified by confusion matrix (CM).

Additionally, since we utilize the latent space for creating the sample we also consider a base-

line which selects a sample based on naively sampling from the latent space. This baseline covers

the n-dimensional latent space by creating grid in this space and then sample from each each par-

tition. Our goal for this baseline is to ensure our sample contains instances of data that lay in

different regions of that latent space. However, the latent space we choose is high dimensional,

e.g., for the MNIST dataset, the latent space is 84D. Even if we divide each dimension into two

buckets, we get a total of 284 ∼ 1.93e+ 25 buckets. Instead, we reduce the dimensionality of data

in the latent space for this analysis using PCA. We call this naive technique simple latent space

sampling. For this sampling technique, we collect equal number of instances at random from each

underlying grid.

In addition, we use two other techniques from the literature as baselines. First, we use visualiza-

tion aware sampling (VAS) for large scale data visualization, such as scatter and map-plots. VAS

is based on the interchange algorithm [141], which selects tuples that minimize a visualization-

inspired loss function. Visualization-inspired loss is based on three common visualization goals:

regression, density estimation and clustering. The interchange algorithm creates a sample that

maximizes visual fidelity of the data at arbitrary zoom levels.

Second, we use explicable boundary (EB) trees [196] to create a single sample from input

data. This method constructs a boundary tree to approximate the complicated deep neural network

models with high fidelity. EB trees provide a single sample for a dataset and a model which

explains the boundary between each class learned by the DL model.

We describe details of sample selection from baselines in Section 4.4.3.
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4.3.2 Clustering in Latent Space

An important part of our approach to selecting a sample for DL model diagnosis is to ensure that

model decision boundaries are represented in the sample. As described earlier, model decision

boundaries are where the model makes mistakes and when diagnosing the model, we want to focus

on this area of the latent space. To determine boundaries in latent space, we cluster data in latent

space and fit a model to estimate the parameters for each class in that space. We do this in both

supervised and unsupervised manner. When fitting a supervised model, we use the class labels. In

the unsupervised case, we use parameterized models so we utilize the number of unique classes

present.

In both supervised and unsupervised cases the models fitted to the latent space provide us with

the likelihood that and object belongs to a class or cluster. For binary classification to determine

whether an object belongs to class A or class B, let P (A|xi) be the likelihood that a data instance

xi belongs to class A. In this case, the points on the decision boundary of class A and class B

are those for which the ratio P (A|xi)
P (B|xi)

is ≈ 1. A lower value of likelihood ratio would imply that

P (B|xi) > P (A|xi) in which case xi would be assigned to cluster or class B. The higher the

likelihood that an object belongs to class A, the higher the ratio P (A|xi)
P (B|xi)

will be.

For a multi-class classifier, where a data point xi may belong to classes ⊂ a, b, c, . . . , this ratio

would be, P (A|xi)∑
z⊂b,c,d,... P (Z|xi)

, or
P (A|xi)
P (¬A|xi)

Our sampling technique clusters the data in the latent space, then sorts data in each cluster or

class by the ratio of likelihood of belonging to that particular class. This sorted list thus consists of

exemplars on the higher end and outliers on the lower end of the list. We utilize a tuning parameter

j to determine the proportion of exemplars and outliers in our sample. We select j% from the

outliers and 1− j% from the exemplars. Algorithm 1 describes this approach in further detail.

For the unsupervised technique, we utilize a parameterized clustering technique, the Gaussian

Mixture Model (GMM). These models offer a probabilistic way to represent normally distributed

sub-populations within an overall population. We set the number of clusters in GMM to be equal
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Algorithm 1: Algorithm for selecting sample.
Data: input data in latent space, f ,k, j
// k num class labels, f is sample size

1 Clusters← None
2 sample← None
3 Clusters = ClusterAndSortData(data,k)
4 foreach clusteri in Clusters do
5 s1← data.head(f ∗ j)
6 s2← data.tail(f ∗ (1− j))
7 sample← s1 + s2 + sample

8 end
9 return sample

to the number of unique classes in the dataset.

For the supervised technique, we use max-margin classifiers to classify the data in the latent

space. Margin classifiers are a class of supervised classification algorithms that utilize distance

from the decision boundary to bound the classifier’s generalization of error. Support vector ma-

chine (SVM) [173] is an example of this category of classifiers, which learns boundaries based

on labels so that the examples of the separate classes are divided by a clear gap that is as wide

as possible. SVMs utilize kernel functions [95]; these help to projecting data to a higher dimen-

sional space where points can be linearly separated. DL models do not have non-linear activation

functions after the last hidden layer, so the latent representation from last the hidden layer should

enable discovery of linear boundaries. Thus, we utilize a linear kernel for SVM [56], which has the

dual advantage of being faster than non-linear kernels and less prone to over-fitting. Results of the

classifier are turned into a probability distribution over classes by using Platt scaling [148, 198].

These probabilities are used to sort the data items in each cluster or predicted class and then select

a sample.
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4.4 Evaluation

In this section we empirically evaluate our sampling techniques which is based on the hypothesis

that sampling evenly from the latent space is not sufficient; model decision boundaries are the most

important region of this latent space for answering model diagnosis queries; and they must be well

represented in a reliable sample.

We evaluated our sampling techniques from Section 4.3 on two different datasets. We first

describe metrics we used to evaluate query sets defined in Section 4.2 and datasets and DL models

we used for experimental evaluation. We then describe the experiments we conducted and results of

these experiments in Section 4.4.3, finally we present the analysis of these results in Section 4.4.4.

4.4.1 Metrics

In this section we define metrics for evaluating the three query sets defined in Section 4.2. Query

set S1 retrieves the set of top-K maximally activated neurons. To measure how well our sample

performs we use precision as the metric. Precision is the fraction of top-k results from the sample

that belong to the true top-k result. Precision lies between [0, 1]. A precision value of 0 implies

that the sample top-k does not contain any of the full data top-k neurons.

Query set S2 retrieves the average value of neurons. This is a high dimension vector of float-

ing points, where dimension is the number of neurons in a layer. Additionally, this is a sparse

vector, i.e., many neurons may have zero average activation because of non-linear activation like

ReLU. We used cosine distance [43] to measure the distance between the average vector for the

entire dataset and the average vector from sample due to the properties of high dimensionality and

sparseness of the average neuron vectors, which lies between [0, 1]. Cosine distance between two

vectors A and B is defined as:

1− A.B

‖A‖‖B‖

Query set S3 retrieves the distribution of maximally activated neurons. As this is a true distribution

an obvious metric would be Kullback-Leibler (KL) divergence [102]. However, we encounter

two issues with using this metric. First, KL divergence is unbounded, which means it is not a
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true metric, and it is difficult to assess how close two distributions were. Second, KL divergence

is defined only on distributions with non-zero entries. This is not true for maximally activated

neuron distribution, which may have neurons with zero counts. Thus, we used Jensen-Shannon

divergence [89] instead, which is based on KL divergence. Jensen-shannon divergence is both

symmetric and finite valued. Jensen-Shannon distance is squareroot of Jensen-Shannon divergence

which is defined as: √
D(p‖m) +D(q‖m)

2

where p and q are the two distributions being measured, operator D represents KL divergence, and

m is there mixture distribution. It is a true metric and lies in [0, 1] .

4.4.2 Datasets and Models

We evaluated our sampling techniques on two datasets, Galaxy Zoo2 [67] and MNIST [121]. For

each dataset, we built and evaluated one deep learning model. The MNIST dataset consists of

28× 28 pixel gray-scale images of handwritten numerical digits with a training and test set of 60K

and 10K images, respectively. We trained the six layer neural network depicted in Figure 4.2. This

model is a based on LeNet-5 [103] for classifying MNIST dataset with added batch-normalization

after every layer.

Galaxy Zoo2 [67] is a public catalog of ∼ 240, 000 galaxies from the Sloan Digital Sky Sur-

vey [158] with classifications from citizen scientists. The Galaxy Zoo decision tree [47] lists the

questions answered by citizen scientists. We took a subset of this dataset to classify images that

appear edge-on vs face-on, i.e. which of the telescope images show the celestial object facing the

telescope or ’face-on’ vs. as seen from a side or ’edge-on’ (question T01 in [47]). The training

and test datasets consist of 54, 333 and 2118 images, respectively, each a 69× 69 color image. We

trained a model depicted in Figure 4.3, which is a variation of the model from [50]. In our variation

of this model, we reduced the number of dropout layers and added batch normalization after every

convolutional layer. We achieved 99% accuracy on the test set and an overall weighted F1 score of

0.99.
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Figure 4.2: Deep learning model for MNIST dataset.

Figure 4.3: Deep learning model for galaxy Zoo2 dataset.

We trained the models and extracted activations from them using the TensorFlow [177] library.

For both models, we used the representation from the last hidden layer to drive our sampling tech-

nique, and the last hidden layer was a fully connected (FC) layer. The MNIST data representation

is from layer FC-2 (Figure 4.2) with 84 neurons. The Galaxy Zoo2 data representation is from

layer FC-1 (Figure 4.3) with 64 neurons.
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Figure 4.4: Performance of query set S1, S2 and, S3 for increasing sample size for various sampling
strategies. Top row MNIST, bottom row Galazy Zoo2. From left to right columns, S1, S2, and S3.
The X-axis shows the sample size as a fraction of the entire dataset.

4.4.3 Experiments

For our first experiment, we evaluated the three query sets on the two datasets using the metrics

described above. For each dataset, we created samples of size 5%, 10%, 20%, 40% and 80% for

the eight sampling techniques we are evaluating. Our rationale for choosing sampling techniques

is described in Section 4.3, here, we provide a brief description of each technique:

(1) Random sampling draws a sample from the dataset uniformly at random without replace-

ment. (2) Stratified by CM sampling contains a sample with data items drawn from each cell of

the confusion matrix in proportion to the number of data items in the cell. For instance a 5%

sample select uniformly at random, 5% of the data items from each cell in the CM. (3 and 4) Vi-

sually aware sampling (VAS) and Explicable Boundary (EB) tree sampling utilize the techniques
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Figure 4.5: Performance of query set S1, S2 and, S3 for increasing sample size for various sampling
strategies for MNIST dataset. Top row shows the results for correctly classified data items and the
bottom row shows results for incorrectly classified items. From left to right columns, S1, S2, and
S3. The X-axis shows the sample size as a fraction of the entire dataset.

presented in [141] and [197] respectively. (5) Simple latent space sampling divides the latent space

into a grid and then samples equally from each cell in the grid. (6 and 7) GMM sampling fits a

GMM to the data points in latent space. For each of the resulting clusters, data points belonging

to each cluster are sorted by the likelihood ratio P (A|x)
P (¬A|x) of belonging to that cluster. The sample

is then created by selecting data points from the two ends of this list for each cluster, with a tun-

ing factor j determining what fraction is selected from either end. We have two GMM samples

since we evaluated impact of two types of co-variance matrices, spherical and full. Finally, (8)

MaxMargin classification sampling classifies the data points in the latent space with a max margin

classifier, sorting points in each class by the ratio of their likelihood belonging to that class, and
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choosing from the two ends of this list with a tuning factor of j, like the GMM samples.

For the first experiment, we fixed the tuning factor j to 0.7 for GMM and MaxMargin samples.

We studied the impact of this tuning factor in the third experiment. The EB tree technique creates a

single sample since there is a single boundary tree for a model and corresponding data. Figure 4.4

shows the results of this experiment for both datasets. As we increased sample size the query set

results got increasingly more accurate until, at fraction 1.0 or on the full dataset, the metrics for all

sampling techniques were coincident at 1.0 for S1 and 0 for S2 and S3.

For simple latent space sampling we reduced the dimensionality of latent space from 84 and 64

to five for both MNIST and Galaxy Zoo2 and then divided each dimension into 2 bins, resulting

in 25 or 32 bins. We then sampled equally from each bin. This is the only technique where we

sampled equally rather than sample in proportion to the number of items in the bin. We did this in

order to evaluate the impact of sampling from the latent space. Interestingly, this technique did not

do well on all three query sets. To minimize the impact of randomness, we selected each sample ten

times and evaluated it and average results from these ten iterations. As we can see from Figure 4.4,

the simple latent space sample behaved as well as the random sample. While this sample provided

adequate results on S2, giving on average less than 10% error, its performance on S1 and S3 was

not adequate. The knee seen for this sample (at 80% of the dataset) occurred because at this point

the sample had the fewest number of data items compared to other samples: data were unevenly

distributed in the latent space, and we sampled equally from each bin rather than in proportion to

the size of the bin.

The stratified by CM sample performed much better than both the random and simple latent

space samples for S1 and S3. VAS did as well as stratified by CM, this is of note because the

VAS sample had no knowledge of classification of each data points and was trying to minimize

a visualization-based loss function, which is trying to ensure that that the sample replicated the

data density of the original distribution. All three clustering-based samples GMM (full), GMM

(spherical) and MaxMargin classification based samples did better than the baseline samples on

all three query sets in most cases. GMM (full) did better than GMM (spherical) for both datasets.

GMM (full) fit the data better, as expected, and thus did better on selecting exemplars and outliers
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when compared to GMM (spherical). The goodness of fit is dependent on the dataset. GMM

(spherical) does better than stratified by CM for the MNIST dataset but worse for the Galaxy

Zoo2 dataset. From the two dimensional representation of the data in latent space for the two

datasets in Figure 4.1 we can see a separation between the ten clusters in MNIST, while the two

clusters in the Galaxy Zoo2 dataset were not clearly separated. Additionally, for MNIST each

cluster appeared to be somewhat symmetrical, but the two clusters for the Galaxy Zoo2 dataset

did not have a clear separation, and one of the clusters is highly asymmetrical. GMM (spherical)

with a isotropic co-variance matrix has difficulty fitting the Galaxy Zoo2 dataset. GMM (full) fit

a more complex gaussian to each cluster, and this, in turn, provided a much better estimation of

outliers vs exemplars. This difference can be seen in two datasets. While GMM (full) sample did

better than GMM (spherical) sample for both datasets, the difference in performance was higher for

when the underlying data distribution assumptions were not met for GMM (spherical). MaxMargin

classifier based sampling performed the best on all three query sets. Additionally, Figure 4.5 shows

the results for all from this experiment on the three query sets separated by correctly(top row) and

incorrectly(bottom row) classified items, here we can see that while MaxMargin classifier performs

well on correctly classified data items, it performs exceptionally well on the incorrrectly classified

data items. We delve into this further in Section 4.4.4.

Finally, EB tree technique provided a single sample since there was only one boundary for

model. As expected, it did well picking the outliers and therefore performed well on both S1 and

S3. For both datasets, EB-tree based sample was the smallest and performed second best on these

two query sets. However, as the EB tree sample focused inordinately on the outliers, it did not

perform as well on S2. On the well-separated latent space for the MNIST dataset the EB tree

performed on par with other sampling techniques. However, for the Galaxy Zoo2 dataset, it did

not perform as well. The MaxMargin classification based sampling performs better than EB-tree

sample for all three queries for both datasets.

We analyze further analyze the results for this experiment in Section 4.4.4 and delve into why

MaxMargin classification based sampling outperforms stratified by CM and other baselines.

In the second experiment, we examined the impact of varying the number of top-k neurons in
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Figure 4.6: Precision for query set S1, number of top-k neurons (x-axis) in the 5% sample. Left
panel MNIST, right panel Galaxy Zoo2.

S1 and measured the precision achieved by each of the eight sampling techniques. We show the

results for a 5% sample, with k equal to 5, 10, 20, 50, 100. Results for this experiment are shown

in Figure 4.6.

For the MNIST dataset, a 5% sample had a precision 0.98 for the top-100 neurons. However

for the Galaxy Zoo2 dataset this number was much lower, at 0.70 for the top-100 neurons. This

is due to two factors: (1) the test dataset, over which we evaluated this query for MNIST was 10k

while for the Galaxy Zoo2 dataset it is 2k. A 5% sample was 500 data items for MNIST and 105

items for Galaxy Zoo2 dataset. (2) the model for MNIST had 107,786 parameters or neurons, and

Galaxy Zoo2 had an order more parameters at 1,095,842. Thus, a 5% sample for the Galaxy Zoo2

dataset was both smaller and trying to capture a more complex model. This is confirmed by an

additional experiment, where we increase the Galaxy Zoo2 sample size to 500 elements, we get

85% coverage on the top-100 neurons.

For both datasets MaxMargin classification sampling had the highest precision. EB tree was

next for both datasets. This is not surprising because EB tree focuses on decision boundaries.

This reinforces our hypothesis that decision boundaries need to be well represented for a sample

to perform well on model diagnosis queries.

In the third experiment, we evaluated the impact of tuning factor j for three clustering samples

GMM (full), GMM (spherical), MaxMargin. Tuning factor j is a number between 0 and 1 and is
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Figure 4.7: Impact of tuning factor j (x-axis) on metrics for MaxMargin and GMM based sampling
strategies. From top row MNIST, bottom row Galazy Zoo2, from left to right columns S1, S2, and
S3.

used to determine how many data points in the samples come from the lowest values of likelihood

ratio or outliers. We evaluated the impact of this tuning factor on a 5% sample for all three sampling

strategies. We evaluate query sets S1, S2 and S3 on tuning factor values of 0, 0.25, 0.50, 0.75 and

1.00. In all three sampling strategies, we picked data items in order from the sorted list for each

cluster. Our sample is selected by selecting items from both ends of the sorted list and picking

frac ∗ j items from the head or outlier end of the list and, frac ∗ (1 − j) from the exemplar end

of the list. Thus, for the tuning factor value of 0, all data instances in the sample are picked from

the exemplar end of the list and for a tuning factor value of 1 all data instances were picked from

the outlier end of the list. In this experiment, we additionally created a weighted sample, where

the weight was simply the reciprocal of the likelihood ratio. Likelihood ratio can be unbounded

for exemplars, therefore for purposes of numerical stability we selected a threshold. To reduce
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the impact of random selection, we selected a weighted sample ten times and reported the average

value. Figure 4.7 shows the results of this experiment. For S1, when the dataset contained only

exemplars at tuning factor 0, precision was the lowest for the sample. Precision grew as the value

of tuning factor increased and plateaued at tuning factor ∼ 0.7. The max top-10 precision for

the MNIST dataset was 0.8 and galaxy Zoo2 is 0.57. This was the max value for top-10 that can

be achieved on a 5% sample with the three sampling techniques for either dataset. For S2, the

average activation value was not impacted as much by the tuning factor. The difference was small

enough not to significantly impact the value of this metric. For S3, we saw results similar to S1.

The highest values were at j = 0, because at this point there was the least amount of diversity

in the data points; each cluster only contributed exemplar data points. As the number of outliers

increased, the distance between the distribution became lower, the lowest point around j ∼ 0.5,

as the tuning factor increased further and the sample contains an increasing number of outliers this

value became lower at a slower rate. Weighted sample values are indicated by dashed lines on the

Figure 4.7. The weighted samples did not achieve the best value for any of the queries for either

dataset. This indicates that picking the data items based on the likelihood ratio directly provides

better results on rather than relying on selecting a sample weighted by the likelihood ratio.

Sampling Technique MNIST GZoo2

Entire Test set 9893(107) 2097(21)
Uniform 494(4) 105(1)
Latent space sample 487(9) 108(0)
Stratified by CM 494(11) 105(1)
Stratified Weighted 397(107) 85(21)
GMM (full) sample 464(48) 104(4)
GMM (sph) sample 500(11) 108(0)
Max margin sample 427(85) 89(18)
Visually Aware Sample 492(8) 92(4)
EB Tree sample 198(72) 44(8)

Table 4.4: Number of data points in samples for each sampling strategy with correctly classified
(incorrectly classified) data points for 5% of the sample from the test set in both data sets.
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4.4.4 Performance Analysis

Figure 4.8: Precision for query set S1 for MNIST. From left: precision on the query set, metrics
for a single query for correctly, and incorrectly classified data items.

As the three experiments in the previous section show, max-margin based sample performs

better than the unsupervised clustering (GMM) based technique, which in turn performs better

than the other baseline techniques. In this section we investigate why the MaxMargin classification

based technique outperforms other sampling techniques.

Our first hypothesis is based on the observation that MaxMargin classification based sample

consists of higher number of incorrectly classified data items when compared to all other sampling

techniques. Table 4.4 shows the number of correctly and incorrectly classified data items in a 5%

sample on for both datasets. A 5% sample, MaxMargin classification based sample has 79% and

85% of the incorrectly classified data items for the MNIST and GZoo2 datasets respectively. In

comparison, stratified by CM sample has 10% of the incorrectly classified data items. We hypoth-

esize that a sample with larger number of incorrectly classified data items outperforms samples

with fewer incorrectly classified data items. To evaluate this hypothesis we create another sample

stratified weighted, where we over-sample incorrectly classified data items. Stratified weighted

sample is based on stratified by CM sample with one difference, instead of sampling uniformly

from correctly and incorrectly classified data instances for each class, we pick 50% of the data

items from incorrectly classified data instances and rest of the data items from the correctly classi-

fied data instances for each class. Stratified weighted and MaxMargin classification based samples
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now have comparable number of incorrectly classified data items, while stratified by cm sample

always exceeds the number of correctly classified data items when compared to MaxMargin clas-

sification based sample. Figure 4.8 illustrates the performance of stratified weighted, stratified by

CM and MaxMargin classification based samples on query set S1 on MNIST dataset.

Examining results of this new sampling technique, we observe that MaxMargin classification

based sample outperforms stratified weighted sample on the query set S1 (first column, Figure 4.8)

despite having the same number of incorrectly classified data items. To understand this further we

examine the performance of the three sampling techniques on a specific query for correctly and

incorrectly classified data items (second and third column of Figure 4.8 respectively). Figure 4.8

shows results for correctly and incorrectly classified data items for MNIST dataset. This shows

that while the stratified weighted and MaxMargin classification based samples have similar per-

formance for incorrectly classified data items, for correctly classified data MaxMargin classifica-

tion based sample outperforms stratified weighted sample. Additionally MaxMargin classification

based sample outperforms stratified by CM, which has more correctly classified data items in the

sample. This implies that compared to other sampling techniques MaxMargin classification based

sample is able to capture the diversity of activation values for neurons, and overall outperforms

both stratified by CM and stratified weighted samples. This is notable, because the MaxMargin

classification sampling technique only utilizes the distance from the decision boundary to pick the

sample rather than the actual classification result (whether the data item was correctly or incorrectly

classified). Both of the models we examine are highly accurate, thus selecting 50% of the incorrect

instances results in selecting all of the incorrectly classified data items. If the underlying models

were not highly accurate, simply selecting a larger number of incorrectly classified data instances

at random would perform similar to the graphs of correctly classified data items, where MaxMargin

classification based sample outperforms the stratified weighted sample. It is possible that by care-

fully selecting a sample such that it consists of specific number of correct and incorrectly classified

items for each class for models where the model accuracy was low, we could create a sample that

performs at par with the MaxMargin classification based sample. However such a sample would

need careful parameter selection for every DL model being diagnosed, the advantage of MaxMar-
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gin classification based sample creation is that it enables the selection of sample automatically in

a principled manner without tuning requirement for every DL model being diagnosed.

However, MaxMargin classification has a parameter, the tuning factor. We examine the impact

of tuning factor on the performance on query sets in order to validate that selecting a larger propor-

tion of the sample from the decision boundary results in superior performance of the MaxMargin

classification based sample and determine if there is a suitable default value of this tunign factor.

This analysis will enable selection of a default value of the tuning factor. We examine the impact

of tuning factor on all three query sets. As previously described, MaxMargin classification based

sample is created by selecting items from the two ends of the list of data items sorted by distance

from the decision boundary. Tuning factor of 0.0 implies all of the items in the sample are from the

largest distance to decision boundary end of the list and, tuning factor of 1.0 implies all of the items

in the sample are from the smallest distance to the boundary end of the list. Finally, tuning factor

0.5 implies half of the items in the sample are farthest from the boundary and half from closest to

the boundary. Figure 4.7 shows the impact of tuning factor on all three query sets on both datasets,

and Figure 4.10 shows the impact of tuning factor on single query (on a single layer and single

class) for correctly (top row) and incorrectly (bottom row) classified data items.

Figure 4.7 shows that sample based on items closest to the boundary (tuning factor:1.0), out-

perform the sample based on items farthest (tuning factor:0.0) from the boundary for all the query

sets on both datasets. Notably, this is true for all three query sets. The detailed query results in Fig-

ure 4.10 show the impact of tuning factor on a single query (on one layer, for one class) from each

of the three query sets on the MNIST dataset. Figure 4.10 shows that a tuning factor of 0.0 results

in very poor performance on incorrectly classified data items (bottom row), and tuning factors 1.0

and 0.5 perform similarly for incorrectly classified data items. Additionally, all three queries for

correctly classified data items (top row, Figure 4.10) also show lower performance of sample with

tuning factor 0.0. For the correctly classified data items top-k query tuning factor of 1.0 provides

the best performance. However, for the average neuron activation values query with tuning factor

of 0.75 demonstrates a performance improvement between 22% -68% over tuning factor:0.0 and an

improvement between 20% and 63.3% over tuning factor:1.0. Similarly, the maximally activated
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Figure 4.9: Impact of tuning factor j on metrics for Max-Margin sample for S1, S2 and S3, by
increasing sample size for both datasets. MNIST:top row; Galaxy Zoo2: bottom row.

neuron distribution query with a tuning factor of 0.75 demonstrates a performance improvements

between 2% to 45% over tuning factor:0 and, an improvement of between 5% to 14% over tuning

factor:1.0.

This supports the hypothesis that selecting the sample from data items closest to the decision

boundary captures the diversity of the neuron activation values better than selecting the sample

with data items farthest from the decision boundary. We can also see that choice of tuning fac-

tor would be influenced by distribution of data items in the latent space. In the two dimensional

(t-SNE) projection of the data in Figure 4.1 we can see that data items from each class are form

compact clusters with clear separation between different clusters for MNIST when compared to

galaxy zoo2 data. Thus, the sample farthest from the decision boundary would be a lot more ho-

mogeneous, i.e.have data items with similar important neurons for MNIST dataset rather than for

the Galaxy Zoo2 dataset. Figure 4.7 supports this, the difference in the sample performance for

tuning factor 0.0 and 1.0 is smaller for galaxy zoo2 dataset when compared to MNIST. Addition-
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ally, the performance of samples with tuning factor 0.0 and 1.0 converge at lower sample sizes for

the galaxy zoo2 dataset when compared to MNIST. An overall of tuning factor between 0.5 and

1.0 performs best, an 0.7 is a suitable default value.

Figure 4.10: Impact of tuning factor j on metrics for Max-Margin sample for single query from
query sets S1, S2 and S3 for on specific correct (top row) and incorrect (bottom row) classified
data items on MNIST dataset.

4.4.5 Query timing and Sample Creation Overhead

In this section we evaluate the query execution time (from python) as well as the time to create the

sample. We measure query execution time for a subset of queries from Table 4.2. Specifically we

evaluate queries Q1 through Q5.

In Figure 4.11 we show the execution time in seconds for these queries on all both data sets

for 5%, 20% sample, and the full training dataset. While the query runtime trends seem very

disparate, the improvements in runtime for both models are consistent. In the 20% sample we see

3.36− 6.8× improvement in query runtime, and for the 5% sample we see 10− 30× improvement
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in runtime. Q1 and Q2 have the longest runtimes on the full data set, as conv2, the layer for these

two queries is the second convolutional layer in the models. The size of activations for the layer

conv2, is 752.6MB for MNIST and 62GB for Galaxy Zoo2 on the full training data. While Q1 is

looking for average activation for each neuron, Q2 is looking for average activation for incorrectly

classified data points. To compute the results for Q2, we first join class label and predicted values

with conv2 activations, filter to retrieve the incorrectly classified data points, and then compute the

average for this group. For Q1, we need to load the activations for conv2 and compute average

activations. Thus, when the data is large, join and filter operations required for Q2 make it take

longer than Q1. This can be seen in the longer runtime for Q2 when compared Q1 for Galaxy Zoo2.

Q4 computes the similarity between the logits. Logits are the un-normalized activations from the

last layer in the model. For both data sets the time for the similarity computation is similar, ∼ 0.05

seconds, rest of the time for the query is spend in loading activations. This time is proportional to

size of the data, which is 752.6MB for MNIST and 8.GB for Galaxy Zoo2 for the entire training

set.

Q5 is the fastest running query for MNIST and CIFAR-10 datasets. Q5 operates on the activa-

tions of last convolutional layer. Q3 operates on the activations last hidden layer which is smaller

in size than the last convolutional layer, but Q3 takes longer to run than Q5 for these two datasets.

This is because in addition to reading the data in Q3, we need to join the activations with class

labels and predicted values, filter the result, and aggregate.

Q3 takes similar time for all three datasets. This is because the size of last hidden layer for the

Galaxy Zoo2 data set is in similar range to MNIST as the size of this layer depends on the number

of neurons and number of data points. Predictably, Q5 takes longer for Galaxy Zoo2 as the size

of activations from the last convolutional layer is 10× for MNIST. Above results demonstrate that

running queries on a sample instead of the full data set results a savings of 3× to 6.8× for the 20%

sample and between 10× to 30× on a 5% sample.

The queries above required all of the activations to be pre-generated. Thus, next we examine

storage cost associated with storing and querying samples instead of the full data set. Unlike other

sampling databases such as BlinkDB, our sampling technique offers storage savings in addition to
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(a) MNIST (b) Galaxy Zoo2

Figure 4.11: Query timing for Q1 - Q5 from Table 4.2 for the 5% sample, 20% sample and entire
dataset for both datasets (y-axis uses log scale).

query execution time savings. This is because creation of samples requires the activation values

from the last hidden layer. Each of the sampling techniques requires as input the entire data sets

representation in model space and as output returns the IDs of the data points in sample. Thus,

creating a sample does not need all of the activations for all of the layers in the model to be

generated. We only need to generate activation values for the last hidden layer. Figure 4.12 shows

the storage saving for entire data from the three data sets. As expected the saving from a 5% sample

are ∼ 20×, and from 20% sample are ∼ 5×. As seen in Section 4.4 depending upon the tolerance

for error a 5% sample may be adequate, thus ML practitioners can expect upto 20× reduction in

storage footprint with our sampling technique.

Finally, we examine the time it took to create these samples for baselines as well as for our

sampling techniques. Figure 4.13 depicts the time required to generate a 5% sample for all sam-

pling techniques on the Galaxy Zoo2 test dataset; note the log scale on the y-axis. Results for

the MNIST dataset were similar and are not shown. The Galaxy Zoo2 test set had 2118 points,

each point is a vector of size [1, 64]. Generating the uniform sample was the fastest as expected.
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Figure 4.12: Data size for full, 20%, 5% samples for both data sets.

Generating, stratified by CM sample, and GMM samples, required similar time, taking less than a

second. Generating MaxMargin classification based sample required 1.5 seconds. Both VAS and

EB-tree samples took three orders of magnitude more time. VAS is created with the interchange

algorithm [141], each point in the dataset has to be added and one point evicted, by comparing

proximity of the added point with each element of the existing sample. This is O(K2N) where K

is the sample size and N is number of points in the dataset. For large datasets as in cases of ML, the

time to create this sample was unacceptably long. Boundary stitching algorithm [197] is O(NK).

This was faster than the VAS but still took longer than our sampling technique.

4.5 Summary

Deep learning models have become an indispensable tool for a wide range of image analysis. The

task of diagnosis for deep learning models requires additional artifacts, such as activations. These

additional artifacts must be generated, stored, and queried for each deep learning model being

debugged. The addition of these artifacts, which can be up to three orders of magnitude larger than

the input data size for each model being diagnosed, turns the process of building, diagnosing, and

selecting DL models in to a large-scale data management challenge. Our sampling technique relies
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Figure 4.13: Time to create a 5% sample for Galaxy Zoo2 dataset for all sampling techniques.

on the lower dimensional representation of the data learned by the deep learning model and can be

used to debug any deep learning model where a lower dimensional representation of the input data

is learned in a supervised, semi-supervised or unsupervised manner. We demonstrate up to 20×

reduction in storage footprint and query time speed-up of up to 30×.
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Chapter 5

RELATED WORK

Choice of sources can shield extreme bias behind a facade of objectivity.

–Noam Chomsky

In this chapter, we cover related work for the three previous chapters. We cover the literature

in the following areas: image analytics benchmarks, automated glaucoma detection using machine

learning, sampling, approximate query processing and deep learning model diagnosis.

5.1 Related Work on Comparative Evaluation of Big-Data Systems on Scientific Image An-
alytics Workloads

In comparative evaluation of Big-Data systems we evaluate the suitability of large-scale data sys-

tems and frameworks for scientific data analysis using two real-world scientific image data pro-

cessing use cases. We evaluate five representative systems (SciDB, Myria, Spark, Dask, and Ten-

sorFlow) and find that each of them has shortcomings that complicate implementation or hurt

performance. To evaluate these systems, we implement two representative end-to-end image ana-

lytics pipelines from astronomy and neuroscience. For the neuroscience use case we take as input

diffusion MRI (dMRI) images of a human brain, which are cleaned, segmented and then used to

build a model of brain connectivity. For the astronomy use case we take as input telescope im-

ages of the sky over multiple observations, which are cleaned, aligned and combined to create a

comprehensive sky map.
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Big-data systems

Several big data systems ([58, 86, 68, 152]) with similar capabilities to the ones we evaluated are

available for large scale data analysis. We chose five big data systems for parallel data process-

ing: a domain-specific DBMS for multidimensional array data (SciDB [156]); a general-purpose

cluster computing library with persistence capabilities (Spark [167]); a traditional parallel general-

purpose DBMS (Myria [70, 193]); and a general-purpose (Dask [154]) and domain-specific (Ten-

sorFlow [4]) parallel-programming library. We selected these systems because they have open-

source implementations, can be deployed on commodity hardware, support complex analytics

(such as linear algebra and user-defined functions), use the scientifically popular Python language

for APIs [136], and have different internal architectures so we could evaluate the performance of

different implementation paradigms. We considered Rasdaman [152], which is an array database

with capabilities similar to SciDB, but were unable to make much progress as the community

version does not support UDFs.

Image processing and DBMS benchmarks

Traditionally, image processing research has focused on effective indexing and querying of multi-

media content [55, 32, 35]. These systems focus on utilizing image content to create indices using

attributes like color, texture, shape of image objects, and regions and then specifying similarity

measures for querying, joining, etc.

There have been many benchmarks proposed by the DBMS community over the years such

as the Wisconsin Benchmark [25], Bucky [30], Linear Road [13], as well as the TPC bench-

marks [182]. These benchmarks focus on traditional Business Intelligence computations, as epito-

mized by TPC-H and TPC-DS benchmarks, over structured data. The GenBase benchmark [176]

takes this forward to focus on complex analytics besides data management tasks, but did not ex-

amine image data. Several recent papers [145, 115, 24, 163] evaluate the performance of Big Data

systems, but the workload does not include image analysis. While prior work on raw files and

scientific formats [10, 26] focuses on techniques for working with them directly, it does not offer
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mechanisms to work with them in big data systems like the ones evaluated in this paper.

5.2 Related Work on Automated Glaucoma detection in multi-modal Images

In automated glaucoma detection, we present a new, comprehensive, and more accurate ML-based

approach for population level glaucoma screening. In this work we build a multi-modal model on

large data set that includes demographic systemic and ocular data as well as raw image data taken

from color fundus photos (CFPs)macular Optical Coherence Tomography (OCT) scans. Although

glaucoma is asymptomatic in its early stages, structural changes in the macula and RNFL precede

the onset of clinically detectable vision loss [79]. Many studies have therefore attempted to auto-

matically diagnose glaucoma using retinal imaging data. Most of these studies used either CFPs

or features extracted from CFPs [27, 31, 161, 127, 37, 137, 147]. Other studies [126, 123] used

features extracted from retinal B-scans obtained via OCT, a three-dimensional volumetric medical

imaging technique used to image the retina. Macular OCT images are used to extract features

such as thickness of the RNFL, ganglion cell-inner plexiform layer (GCIPL), or full macular thick-

ness. Models evaluating changes in thickness of various retinal layers are promising since such

changes, a direct result of tissue loss, are highly accurate disease predictors. However, thickness

maps are derived automatically and, despite advances in OCT hardware and software, errors in

segmenting retinal OCT images remain relatively common, with error estimates between 19.9%

and 46.3% [114, 118, 16]. A study comparing a model built on raw macular OCT images with

one built on thickness maps demonstrated that the former was significantly more accurate than the

latter in detecting glaucoma [111].

5.3 Related Work on Sampling for Deep Learning Model Diagnosis

In sampling for deep learning model diagnosis we focus on the data management challenges facing

ML practitioners who build deep learning models. Specifically, we present a new sampling-based

approach for deep learning model diagnosis. The related work for sampling for model diagnosis

is split in to three categories of research; (1) approximate query processing, (2) model diagnosis

systems, and (3) model lifecycle management and tuning systems. We review work from each of



101

these categories below.

Approximate query processing (APQ) and top-K queries

([8, 6, 19, 75]) APQ is a well-studied area in databases and is an effective technique to deal with

large-scale data. Algorithms for exact top-k queries are defined by the seminal work on the thresh-

old algorithm (TA) [54], which require access to the indexed attribute(s) for a data set. Efficient

processing of the top-k queries over samples is a challenging task [81]. Related work in this cate-

gory includes top-k processing techniques that operate on deterministic data but report approximate

answers in favor of performance. The approximate answers are usually associated with probabilis-

tic guarantees; indicating how far they are from the exact answer. Algorithms presented in [180]

are an approximate adaptation of TA where the approximate answers to the top-k query is asso-

ciated with probabilistic guarantees. However, like TA this algorithm requires access to sorted

attributes for the underlying data. Another approach to approximate top-k answers is considered

in similarity search for multi-media databases [11]. This method uses a proximity measure to

determine if a data region should be inspected. This utilizes the underlying data distribution rather

than individual column value and in that sense is closer to our approach (i.e., instead of examining

the underlying data, we utilize the latent space to create a sample).

Model diagnosis systems

([189, 117, 90, 12, 91]) Model tracker[12] is one of the earliest systems for model diagnosis. It

diagnoses models by tracking its performance using statistical measures, such as accuracy, AUC,

etc. and does not support model diagnosis for DL models. MLCube [91], one of the earlier

visualization tool for model diagnosis visualizes data from pre-computed data cubes based on fea-

tures from data and model results. The data-cubes utilized by this tool are based on less than 100

features and like Model tracker, it pre-dates the large scale of data that must be supported for DL

model diagnosis. MISTIQUE [189] supports DL model diagnosis via examination of model activa-

tions, their primary approach is to reduce the storage footprint required by activations. MISTIQUE
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shares our goals of reducing query runtime for model diagnosis, but it uses a different approach,

quantization and de-duplication to reduce the storage. Modelhub [117] supports model diagno-

sis by storing learned models and training logs with an approach that reduces storage footprint.

Modelhub focuses on different artifacts, learned models and training logs, which they store and

retrieve efficiently by introducing a model versioning system and a domain-specific language for

searching through model space, solving a very different problem. DeepBase [159] supports model

interpretabiltiy and diagnosis by providing a declarative abstraction to express and execute the

generation and comparison of these artifacts. DeepBase relies on the ability to encapsulate model

interpretbility questions as hypothesis functions (e.g., parts of speech tags and image captions).

DeepBase, ModelHub and MISTIQUE could benefit by leveraging our sampling techniques for

their systems. Finally, a variety of visualization tools [90, 106, 169, 177, 199] utilize activations

and gradients to interpret and diagnose DL models. All of these tools would benefit from our

sampling techniques, as sampling would help reduce the scale of data required to support model

diagnosis. Activis [90], for instance selectively pre-computes values for nodes of interest to save

computation and storage. Sampling techniques such as ours will enable ML practitioners using

tools such as Activis to avoid making such compromises.

Model lifecycle management and model tuning

([188, 120, 168, 53]) ModelDB [188] is a system for managing of ML models and pipelines. It

provides versioning and metadata-based search and validation on models, simplifying the model

building pipeline. MLflow [120] tracks experiments, packages the code to create reusable deploy-

ments and operationalizes the chosen models, addressing a very different aspect of model lifecycle

management compared to ModelDB. However, neither of these systems help manage, store, or

query any DL model diagnosis artifacts. While MLflow supports storing and tracking arbitrary

artifacts in a framework and implementation agnostic manner, it does not utilize information such

as representation learned by the models to help with the selection of appropriate model. In addition

custom code has to be provided for generating and querying these artifacts in MLflow. These tools

do not support model diagnosis or interpretability as a primary goal, if they were to adopt model
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diagnosis as a goal our sampling technique could help with managing the size of data required.
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Chapter 6

CONCLUSION AND FUTURE DIRECTIONS

Paradigm shifts arise when the dominant paradigm under which normal science operates is

rendered incompatible with new phenomena, facilitating the adoption of a new theory or paradigm.

–Thomas Kuhn, The structure of scientific revolution

Scientific discoveries are driven by analyzing large volumes of data. Increasingly this data is

in the form of images. Analytics over these images involves operations such as slicing, dicing,

roll-ups, spatial joins and complex operations often expressed in higher language such as Python.

Scientist utilize scripts written in Python, R, julia, bash scripts while the data is stored on local file

system. Often this analysis is limited to what can fit in the local machine memory and systems

support for large scale image analytics is still scarce.

In Comparative evaluation of big data systems for large scale image analytics, we evaluate

existing big data systems for their suitability in supporting image analytics. In evaluating the big

data systems we select two real life scientific use cases from neuroscience and astronomy and

implement them in five (SciDB, Dask, Myria, Spark and tenserflow) existing large-scale data sys-

tems and frameworks. We evaluate these systems for ease of use, performance and scalability.

All the experiments are run in public cloud environment with open source tools. We find the to

better support image analytics in domain sciences, these systems need to simultaneously provide

comprehensive support for multidimensional data and high performance for UDFs/UDAs writ-

ten in popular languages (e.g., Python). Additionally, they need to completely automate data and

compute distribution across a cluster and memory management to eliminate all possible sources
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of out-of-memory failures. Our study raises a number of research questions. Image processing

involves complex analytics, which include iterations and linear algebra operations that must be

efficiently supported in big data systems. However, users typically have legacy code that performs

sophisticated and difficult to rewrite operations. Therefore, they need the ability to call existing

libraries. They also need an easy mechanism to parallelize the computation: they should be able

to reason about multidimensional array data directly rather than manually creating and processing

collections of image fragments. It should be easy to mix and match UDF/UDA computations and

pre-defined (e.g., relational) operations on complex data such as image fragments.

Our study also re-iterates the general need to efficiently support pipelines with UDF/UDAs

both during query execution and query optimization. Image analytics implies large tuples and

larger tuples put pressure on memory management techniques, systems’ ability to shuffle data

efficiently, and efficient methods to pass large records back and forth between core computation

and UDFs/UDAs. This provides another research opportunity. Finally, making big data systems

usable for scientists requires systems to be self tuning, which is already an active research area [76].

Deep learning has enabled unprecedented breakthroughs in developing artificial intelligence

systems which can analyze pixel data from images directly. Availability of large scale data, im-

provements in hardware like emergence of GPU based computing, availability of cloud compute

resources, better algorithms and open-source deep learning libraries that are get easy to started

with, have made deep learning powerful tool [45, 46] for data scientists and domain scientist work-

ing with image data.

In Automated detection of glaucoma with interpretable machine learning using clinical data

and multi-modal retinal images we propose a new, comprehensive, and more accurate ML-based

approach for population-level glaucoma screening. We use a publicly available data set [184] and

build and evaluate multiple models on clinical and image data to detect glaucoma. Our final model

is an ensemble tree based model that uses output from the image based deep learning models and

clinical data. We compare the results of our model with assessments from five expert clinicians on

a test set and on a cohort of subjects that have not yet been diagnosed with glaucoma ( but go on
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to develop glaucoma). These results show that our final model is highly accurate (AUC 0.97) and

interpretable. Our model validates biological features known to be related to the glaucoma, such

as age, intraocular pressure and optic disc morphology. It also points to previously unknown or

disputed features,such as pulmonary capacity and retinal outer layers. Our approach of combining

image and clinical data for the final results yielded not only very accurate detection, but it also

enabled us to isolate and interpret critical variables that helped us draw clinical insights into the

pathogenesis of the disease.

The process of developing the glaucoma detection model provided us with first hand experi-

ence of the data management challenges associated with developing and debugging interpretable

deep learning models. Traditional methods of building machine learning models can be iterative

and arduous. Scientists typically build from tens to hundreds of models before selecting one. This

problem is exacerbated for deep learning models by large input data size and interpretability arti-

facts that need to be generated to build, diagnose, and interpret these models.

In Sampling for deep learning model diagnosis we propose a novel sampling technique to re-

duce the data management burden associated with building and diagnosing deep learning models.

Existing sampling techniques, such as uniform random sampling and stratified sampling do not

yield good results for deep learning model diagnosis. Our sampling technique relies on the insight

that supervised deep learning models simultaneously learn a classifier and a low dimensional repre-

sentation of the input data. The key idea underpinning our approach is to identify and target model

decision boundaries to provide effective and efficient samples which can be utilized to debug and

interpret these models. The sampling technique we present here focuses on sampling input data

points, e.g. rows from the relation of data points. ML literature supports the notion of reducing

the number of neurons for which activations need to be calculated [106, 113] and queried. We

would like to explore this avenue in future work. The sampling technique described here works

well with supervised learning models, i.e. deep learning models built with labeled data. In future

work, we would like to explore our sampling technique and their efficacy for unsupervised DL

models, such as generative models, auto regressive models, etc. [49] A large body of scientific data

is unlabeled and requires unsupervised learning techniques, and extending our sampling technique
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in this direction could be beneficial to the scientific community working on newer data sets.

The overall takeaway from this dissertation is that image analytics on scientific data is an im-

portant workload and presents unique data management challenges. Providing support for image

data management and machine learning workloads will help domain scientist focus on scientific

discovery.
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[27] R. Bock, J. Meier, L. G. Nyúl, J. Hornegger, and G. Michelson. Glaucoma risk index: auto-
mated glaucoma detection from color fundus images. Medical image analysis, 14(3):471–
481, 2010.

https://www.arvo.org/
https://aws.amazon.com/
https://bazel.build/


110

[28] P. G. Brown. Overview of scidb: Large scale array storage, processing and analysis. In
SIGMOD, 2010.
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