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A fundamental assumption of traditional database management systems is that the

database contains all information necessary to answer a query; i.e., the database contains the

entire population of data. However, with the increasing availability of public data samples

(e.g., government data) and easy-to-use scientific programming languages (e.g., Python),

data scientists are turning to samples to analyze and understand the population they rep-

resent. As databases do not treat stored data as samples, data scientists are forced to use

tools outside of the database for their data processing needs.

For database management systems to accommodate this growing group of users, they

need to adopt the open world assumption that tuples not in the database still exist. In this

dissertation, we answer two main research questions on how to build an open world database

system that approximately answers queries as if they were issued over the entire population.

The first question is: in an ideal setting where we can choose what statistics to gather

about a population, how can we build a probabilistic model of the population that assumes

all tuples have some nonzero probability of existing, i.e., the open world assumption. By

using the Principle of Maximum Entropy, we built a prototype database system called En-

tropyDB that builds a probabilistic model for approximate query processing.



The second question is: when the database just has access to a sample of the population

and some population aggregate information, how can we automatically remove arbitrary

selection bias to allow users to accurately answer population queries. We implement this

automatic debiasing in Themis, the first open world database system that uses a priori

population aggregate information to rebalance sample data.

While there is still important future work in the field of open world database system, this

dissertation presents the first step towards its realization.
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Chapter 1

INTRODUCTION

In fields ranging from sports to economics, discovery and decision making are being

increasingly driven by the analysis of large, diverse datasets. This shift encourages scientists

to continue to push the boundaries of what can be learned from data.

As the amount of data increases, data scientists need tools and systems to help them

store and analyze their data. Database management systems (DBMSs) should be the ideal

solution since they help users manage and process their data. However, a fundamental issue

prevents data scientists from taking advantage of the speed, structure, and ease a database

provides: data scientists analyze data samples, while databases answer queries as if they can

access the entire data population.

For example, suppose a data scientist wants to use a sample of flights landing in Florida

to pose queries about all flights in the United States. If the scientist ingests this sample

dataset into a database, the database will treat the data as if it represents all flights in

the United States. This assumption can lead to inaccurate analytical results. For example,

database queries will indicate that all flights in the United States land in Florida.

Even if the data scientist avoids asking about flight destinations, which is clearly inac-

curately represented in the sample, subtle biases in the sample will still lead to incorrect

results. For example, flights landing in Florida tend to be, on average, longer than flights

landing in other states. Scientists asking about flight time will consequently get incorrect

overestimates.

This difference between a sample and an entire population is problematic because sam-

ples are incomplete parts of complete information that can be arbitrarily biased. Without

correcting for this bias, results learned from sample analytics can be inaccurate. Database
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Figure 1.1: Three fundamental types of sampling.

systems process the data as if it were complete and do not correct for sample bias. Thus,

the task of debiasing data is left for users to manually perform. A database meant to help

users analyze data cannot help data scientists analyze their samples.

In this dissertation, we address the incompatibility between database data and sample

data by researching open world database systems, which assume that stored data is incom-

plete. We design and prototype two different open world database systems that automatically

correct for sample bias and help users pose questions over the population they seek to study.

The first system, EntropyDB, takes a probabilistic approach to population query answer-

ing by learning a probability distribution over the population. The second system, Themis,

merges a probabilistic technique and a sample rebalancing technique to answer queries. Both

systems take a critical first step towards building an open world database system.

We begin by introducing three high-level types of sampling (Figure 1.1) that motivate

sample analysis and explain the necessity of open world database systems. We then introduce

the two open world database systems developed in this thesis and layout the dissertation’s

structure.
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1.1 Statistical Sampling

In the paper The Rise of Survey Sampling [27], the author posits that using samples to

examine some population is “as old as mankind.” Over the last century, sampling has become

a widely accepted statistical method used by data scientists across numerous domains. At

its core, sampling lets scientists quickly analyze and pose questions about some population

using a representative subset of the data.

Building a sample requires information about both the population and how individuals

are selected. The latter is also referred to as the sampling mechanism (sampling inclusion

probability or propensity score [18, 27, 88]). An example population could be every individ-

ual living in the United States, or every graduate student enrolled in a Computer Science

program. Example sampling mechanisms are uniform random sampling (all individuals are

sampled with equal probability) or stratified sampling (each predefined subgroup is randomly

sampled).

Traditional sampling, i.e., statistical sampling, arises when scientists lack access to the

entire population of data they want to investigate but do know the sampling mechanism.

For example, take the population of all individuals living in the United States. To preserve

privacy, this dataset in its entirety is not publicly available; however, the US Census Bureau

releases samples to the public through The American Community Survey Public Use Micro-

data Sample (PUMS) [7]. These samples include information on the inclusion probability of

each individual, meaning the sampling mechanism is known to scientists who want to analyze

this dataset.

Now consider the alternative example population of all Computer Science graduate stu-

dents in the United States. This dataset does not exist, nor are samples publicly available.

However, a data scientist could design a sampling procedure to select random graduate stu-

dents from random universities. As the scientist designs the sample, the probability of certain

graduate students being included in the sample becomes known.

Knowing the sampling mechanism is critical for accurate sample analysis because the
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sample may contain bias that without statistical correction would make it unrepresentative

of the population. For example, suppose a data scientist has a sample of United States

population data that includes the commute time to work for each individual. The scientist

wants to know the average commute time across the United States. Further, suppose the

sample is biased towards individuals in New York, meaning NY residents are overrepresented

in the sample. If the data scientist calculates the average commute time of this sample and

reports it as the average commute time of the United States, the result will be an overestimate

because individuals living in NY have, on average, a longer commute than individuals in other

states [11].

By knowing the sampling mechanism, either by having a priori knowledge of the sam-

pling probability or by designing and building the sample, data scientists can use common

techniques like sample reweighting (weighting the points in a sample to better represent the

unbiased distribution) to accurately analyze the sample [88]. These techniques correct for

bias in the sample. In the NY commute time example, sample reweighting would assign

a smaller weight to individuals living in NY than to those living in other states. Using

this weight to compute a weighted average commute time lets data scientists receive more

accurate results.

1.2 Database Sampling

Statistical sampling is not the only tool invented in the last century to help data scientists

analyze data. Database management systems (DBMSs), invented in the 1960’s, help users

store, manage, and analyze their data. They specialize in letting users not only store entire

populations of data but also ask questions about this data using a straightforward declarative

query language. This language lets users declare what data they want without worrying

about how to retrieve it.

It is important to highlight a fundamental assumption of database systems, called the

closed world assumption. This assumption states that the entire population of data is con-

tained in the database. Any information not in the database is assumed to not exist. This
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assumption has led database systems to focus on answering queries efficiently because, as

long as the queries are answered using all the data, they are completely accurate.

Efficient query processing has become a challenge, however, as datasets enlarge. For

example, astronomers who analyze telescope images from sky surveys like LSST must manage

approximately twenty terabytes of data per night [9]. Processing this massive amount of data

efficiently is non-trivial, even for DBMSs. To support these big data analysts, databases have

been forced to adapt and evolve with a variety of new systems and techniques.

One such solution has been to utilize sampling for approximate query processing (AQP).

AQP systems answer population queries more efficiently than if they were run on the entire

data population in exchange for adding some error to the query result. In other words,

they answer population queries approximately but quickly. Despite the variety of AQP

systems [87, 37, 121, 96], the gold standard AQP technique is database sampling, also known

as closed world sampling.

For example, BlinkDB [16] uses a historical workload of queries to optimally select which

samples to precompute. At runtime, it selects a sample based on the user’s acceptable error

margin or maximum runtime. Sample+Seek [50] develops a measure-biased sampling scheme

to guarantee that answers to aggregate queries meet a user-specified error bound; it further

utilizes specialized index structures to answer queries over values not contained in the sample.

The AQUA system [15, 60] uses precomputed join samples and stratified samples to answer

queries.

Hence, database or closed world sampling is simply sampling from the database where

the population is known. These AQP systems design a sampling mechanism and then create

samples by accessing the entire population. Contrast this to statistical sampling, where the

entire population cannot be accessed. However, as both types of sampling know (or create)

the sampling mechanism, samples can be analyzed using existing debiasing techniques.
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1.3 Open World Sampling

While the closed world assumption is ideal for DBMSs and AQP, it is ill-suited to handle

a relatively new data source: samples from data repositories. Over the past decade, on-

line data repositories have become more popular and prevalent. For example, the website

Data.World [8], started in 2015, provides users with access to thousands of samples ranging

from the popularity of cats versus dogs in the US to public parking counts in New York. Al-

ternatively, social media websites like Twitter provide public APIs to download sample social

media data [12]. These repositories provide quick and easy access to population samples.

The challenge with using these samples is that they are open world samples, meaning

both the underlying population and the sampling mechanism are not known. Hence, the

samples contain arbitrary bias that cannot be corrected using standard statistical methods.

In the NY commute example, if the data scientist does not know that individuals in NY are

overrepresented, selection bias cannot be corrected.

Existing research on techniques for open world sample analysis fall into three high-level

categories. The first is to measure only quantities of interest that can filter out or remove

sample bias. For example, in [133], the authors explain how measuring a “difference in

differences” between quantities of interest can cancel out the bias. However, they caution

that no general approach to debiasing works, and each model and measurement must be

carefully examined to ensure accuracy.

The second and third techniques rely on another increasingly available data resource:

population aggregates (tabulations) [97]. Along with the increase in the number of publicly

available data samples, there has been a recent push for more data transparency and reporting

by corporations and governments, e.g., the United State’s OPEN Government Data Act

passed in 2018 [1] and the InFuse UK aggregate population statistics tool [2]. These reports

are often in the form of population aggregate queries. For example, the FBI’s 2017 Internet

Crime Report [3] presents a table showing an aggregate query over crime type, counting the

number of victims in each crime type group.
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The second technique, which uses these tabulation, focuses on learning the population

directly and ignoring any biased sample (called synthetic reconstruction in demography lit-

erature [72]). This method also arises when there is no biased sample to use (i.e., only

population aggregates exist). As these aggregates give partial knowledge of the probabil-

ity of various combinations of attributes, they can be used to probabilistically generate a

synthetic representative population sample [72, 113, 54].

The third technique treats these aggregates as constraints when modeling some popula-

tion quantity of interest or modeling sample bias [89, 120]. For example, in [134], the authors

manually add a bias factor when measuring the number of births for some geographical lo-

cations and demographic groups from biased sample data. They use population aggregates

to learn this bias factor. Alternatively, in [89], the authors use an iterative reweighting al-

gorithm to reweight a sample of individuals living in the UK with geographical aggregates

over UK administrative units.

All these techniques, however, suffer from one main bottleneck to analysis: they require

manual, error-prone solutions specialized for a specific problem and dataset. There is no

general, standardized system or solution that automatically performs data debiasing on ar-

bitrary samples and answers population queries.

1.4 Thesis Contributions

The fundamental problem addressed in this thesis is as follows. Data scientists wanting

to analyze arbitrarily biased samples without knowing the sampling mechanism

cannot utilize databases or existing research in database sampling. Databases

make the closed world assumption, which directly contradicts the open world

nature of these samples. For databases to address the needs of this growing user

base, they need to make an open world assumption and automatically correct

for sample bias.

We posit that data debiasing and approximate population query answering can be solved

by an open world database system that automatically corrects for sample bias and answers
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queries approximately as if they were asked over the entire population. No such system

yet exists because the open world assumption is at odds with the closed world assumption

currently adopted by DBMSs.

Building an open world database system, however, is challenging since all existing general

purpose sample debiasing techniques require knowledge of the sampling mechanism. While

theoretical work describes a probabilistic open world database system where tuples represent

facts that have a probability of being true [33, 62], no existing research addresses open world

database systems for debiasing samples.

In this dissertation, we research and build two prototype open world database systems

for approximate population query processing where each system answers a different research

question with respect to open world population analysis. These research questions take an

important first step towards building a fully realized open world database system.

Our first research question is: assuming you can optimally choose the population ag-

gregates, how can you build a probabilistic model of the population for approximate query

processing? We answer this question by building EntropyDB, the first database system

that builds a probabilistic model of a population dataset based on aggregates using the Prin-

ciple of Maximum Entropy (see below). We explore how to build such a model efficiently

with novel compression techniques and how to answer queries at interactive speeds. This

system was published in VLDB 2017 [104], and an extended version is under review for

VLDBJ 2019.

Our second research question is: given a biased sample and some population aggregates,

how can you automatically debias the sample? We answer this question by building Themis,

an open world database system that combines sample reweighting and probabilistic modeling

techniques to answer queries approximately. We consider Themis to be the first open world

database for automatic data debiasing.

Woven through our two systems is one unifying mathematical principle for open world

analysis: the Principle of Maximum Entropy (MaxEnt). The MaxEnt principle states that

the optimal probability distribution is the one with maximum entropy and consistent with
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the current state of knowledge. This principle is omnipresent both in theoretical domains,

such as mathematics and computer science, and in practical domains, such as image re-

construction, taxation policies, and species distribution modeling [69, 108]. The MaxEnt

principle is a natural fit for open world analysis since it learns the best choice population

probability distribution subject to known, testable information [30]. In open world analysis,

the biased sample gives testable information that is known to be true. This information

acts as constraints when learning the best true population distribution, making the principle

ideal for an open world database.

We now describe each system in more detail.

1.4.1 EntropyDB: A Probabilistic Approach to Approximate Query Processing

In Chapter 2 we address how to build an AQP system, called EntropyDB, that uses

population aggregate information to learn a probability distribution of the population. While

we frame this work as an AQP system, at its core it is an open world database system because

it uses only population aggregates to model the population and answer queries.

We address three main challenges in this work. The first is how to build a probabilistic

model given aggregates. To do this we adopt the possible world semantics and use MaxEnt to

learn a distribution subject to constraints learned from our given aggregates. This enforces

that the learned distribution must fit the true distribution.

The next challenge is how to learn this distribution efficiently. To make solving tractable,

we design a novel factorization technique that compresses our learned distribution and im-

proves performance. We also develop a factorization algorithm that efficiently computes this

compression.

The last challenge is how to answer queries efficiently. On top of our compression tech-

nique, we develop an algorithm for answering queries that involves taking the derivative of

the mathematical representation of our distribution. We further optimize this derivation by

showing how it can be replaced by setting certain terms in our mathematical representation

to zero.
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We conclude by experimentally showing how EntropyDB is comparable to state-of-

the-art AQP techniques in terms of accuracy and is more accurate than these techniques at

indicating whether tuples exist in the population.

1.4.2 Themis: Sample Debiasing in an Open World Database System

In Chapter 3 we answer how to build an open world database system using a biased sample

and incomplete aggregates, meaning the aggregates may not contain all attributes present

in the sample. The system we build, called Themis, merges two fundamental techniques to

answer population queries approximately: sample reweighting and population probabilistic

modeling.

For sample reweighting, we rebalance the sample by assuming each tuple has some asso-

ciated weight that indicates the number of tuples in the population it represents. We first

assume this weight is a linear combination of a tuple’s attributes and use linear regression

to learn the parameters of this linear function. We then compare this linear assumption to

assuming the weight is exponentially related to a tuple’s attributes. We learn the parameters

of this non-linear weight function using an existing technique called Iterative Proportional

Fitting (IPF) [89].

For probabilistic modeling, we use Bayesian networks to learn the population probability

distribution. We develop novel algorithms to learn the Bayesian network’s structure and

parameters since traditional Bayesian network learning algorithms assume access to the entire

population. We have access only to a biased sample and population aggregates.

Finally, we develop a simple heuristic for choosing which of these two methods to use

during query answering. We experimentally show how Themis achieves better accuracy

than existing sample debiasing technique and is robust to samples that do not have the same

support as the population, meaning that some tuples in the population will never be sampled

(i.e., their sampling probability is zero).

In summary, this thesis addresses how to use population aggregate information and biased

samples to build an open world probabilistic database. This database automatically debiases
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samples and lets users get approximate answers to population queries.

The rest of this dissertation is organized as follows. We first explore EntropyDB (Chap-

ter 2) and Themis (Chapter 3). Then, we review related work in Chapter 4 and conclude

and discuss possible directions for future work in Chapter 5.
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Chapter 2

ENTROPYDB: A PROBABILISTIC APPROACH TO
APPROXIMATE QUERY PROCESSING

As mentioned in Chapter 1, the research question addressed in this chapter is how to build

a probabilistic model of a population using an optimal set of aggregates. In other words, we

assume we have access to the population in order to choose our aggregates before using them

to build a probabilistic model. Although we frame this problem as one of approximate query

processing and interactive data exploration (defined below), we are performing population

synthesis from optimal aggregates.

Interactive data exploration allows a data analyst to browse, query, transform, and visu-

alize data at “human speed” [43]. It has been long recognized that general-purpose DBMSs

are ill suited for interactive exploration [96]. While users require interactive responses, they

do not necessarily require precise responses because either the response is used in some

visualization, which has limited resolution, or an approximate result is sufficient and can

be followed up with a more accurate, costly query if needed. Approximate query process-

ing (AQP) refers to a set of techniques designed to allow fast but approximate answers to

queries. All successful AQP systems to date rely on sampling or a combination of sampling

and indices. The sample can either be computed on-the-fly, e.g., in the highly influential

work on online aggregation [67] or systems like DBO [75] and Quickr [78], or precomputed

offline, like in BlinkDB [16] or Sample+Seek [50]. Samples have the advantage that they are

easy to compute, can accurately estimate aggregate values, and are good at detecting heavy

hitters. However, sampling may fail to return estimates for small populations; targeted strat-

ified samples can alleviate this shortcoming, but stratified samples need to be precomputed

to target a specific query, defeating the original purpose of AQP.
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In this chapter, we propose an alternative approach to interactive data exploration based

on the Maximum Entropy principle (MaxEnt). The MaxEnt model has been applied in

many settings beyond data exploration; e.g., the multiplicative weights mechanism [65] is

a MaxEnt model for both differentially private and, by [53], statistically valid answers to

queries, and it has been shown to be theoretically optimal. In our setting of the MaxEnt

model, the data is preprocessed to compute a probabilistic model. Then, queries are answered

by doing probabilistic inference on this model. The model is defined as the probabilistic

space that obeys some observed statistics on the data and makes no other assumptions

(Occam’s principle). The choice of statistics boils down to a precision/memory tradeoff: the

more statistics one includes, the more precise the model and the more space required. Once

computed, the MaxEnt model defines a probability distribution on possible worlds, and users

can interact with this model to obtain approximate query results. Unlike a sample, which

may miss rare items, the MaxEnt model can infer something about every query.

Despite its theoretical appeal, the computational challenges associated with the MaxEnt

model make it difficult to use in practice. In this chapter, we develop the first scalable

techniques to compute and use the MaxEnt model. As an application, we illustrate it with

interactive data exploration. Our first contribution is to simplify the standard MaxEnt model

to a form that is appropriate for data summarization (Section 2.2). We show how to simplify

the MaxEnt model to be a multi-linear polynomial that has one monomial for each possible

tuple (Section 2.2, Equation 2.6) rather than its naïve form that has one monomial for

each possible world (Section 2.1, Equation 2.2). Even with this simplification, the MaxEnt

model starts by being larger than the data. For example, our smaller experimental dataset

(introduced in Section 2.6) is 5 GB, but the number of possible tuples is approximately 1010,

which is 74 GB if each tuple is 8 bytes. Our first optimization consists of a compression

technique for the polynomial of the MaxEnt model (Section 2.3.1); for example, for our

smaller experimental dataset, the summary is below 200MB, while for our larger dataset of

210GB, it is less than 1GB. Our second optimization consists of a new technique for query

evaluation on the MaxEnt model (Section 2.3.2) that only requires setting some variables to
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0; this reduces the runtime to be on average below 500ms and always below 1 second.

As mentioned above, there is a precision/memory tradeoff when choosing which statistics

to use to define the model. To alleviate this problem, our third optimization develops a

statistic selection technique based on K-D trees that groups together individual statistics

of similar value and uses the single group statistic in the model rather than the individual

ones. We also explore optimal sorting techniques to encourage similar values to be clustered

together before building our K-D trees.

We find that the main bottleneck in using the MaxEnt model is computing the model

itself; in other words, computing the values of the variables of the polynomial such that

it matches the existing statistics over the data. Solving the MaxEnt model is difficult;

prior work for multi-dimensional histograms [94] uses an iterative scaling algorithm for this

purpose. To date, it is well understood that the MaxEnt model can be solved by reducing it

to a convex optimization problem [124] of a dual function (Section 2.1), which can be solved

using Gradient Descent. However, even this is difficult given the size of our model. We

managed to adapt a variant of Stochastic Gradient Descent called Mirror Descent [29], and

our optimized query evaluation technique can compute the MaxEnt model for large datasets

in under a day.

Lastly, to expand on how the MaxEnt model can be used in a full-fledged database system,

we discuss handing data updates and answering join queries using the MaxEnt model. We

also elaborate on the connection between the MaxEnt model and graphical models.

In summary, in this chapter, we develop the following new techniques:

• A closed-form representation of the probability space of possible worlds using the Prin-

ciple of Maximum Entropy, and a method to use the representation to answer queries

in expectation (Section 2.2).

• A compression technique and optimized implementation of the compression for the

MaxEnt summary (Section 2.3.1, Section 2.4.1).

• Optimized query processing techniques, including implementation details (Section 2.3.2,
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Section 2.4.2).

• A new method for selecting 2-dimensional statistics based on optimal matrix reorder-

ings and a modified K-D tree (Section 2.5)

• Detailed experiments comparing the accuracy of the MaxEnt summary versus various

sampling techniques (Section 2.6.3).

• Solving time and query runtime evaluations showing our interactive query speeds (Sec-

tion 2.6.4, Figure 2.6.4).

• A discussion on how the MaxEnt summary relates to probabilistic databases and graph-

ical models (Section 2.7).

• A description on how the MaxEnt summary can be extended to handle data updates

and joins (Section 2.7.2).

We implement the above techniques in a prototype system that we call Themis and eval-

uate it on the flights and astronomy datasets. We find that Themis can answer queries faster

than sampling while introducing no more error, on average, and does better at identifying

small populations.

2.1 Background

We summarize data by fitting a probability distribution over the active domain. The distri-

bution assumes that the domain values are distributed in a way that preserves given statistics

over the data but are otherwise uniform.

For example, consider a data scientist who analyzes a dataset of flights in the United

States for the month of December 2013. All she knows is that the dataset includes all flights

within the 50 possible states and that there are 500,000 flights in total. She wants to know

how many of those flights are from CA to NY. Without any extra information, our approach

would assume all flights are equally likely and estimate that there are 500, 000/502 = 200

flights.

Now suppose the data scientist finds out that flights leaving CA only go to NY, FL, or
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WA. This changes the estimate because instead of there being 500, 000/50 = 10, 000 flights

leaving CA and uniformly going to all 50 states, those flights are only going to 3 states.

Therefore, the estimate becomes 10, 000/3 = 3, 333 flights.

This example demonstrates how our summarization technique takes into account these

existing statistics over flights going to and from specific states to answer queries, and the

rest of this section covers its theoretical foundation.

2.1.1 Possible World Semantics

To model a probabilistic database, we use a slotted possible world semantics where rows have

an inherent unique identifier, meaning the order of the tuples matters. Our set of possible

worlds is generated from the active domain and size of each relation. Each database instance

is one possible world with an associated probability such that the probabilities of all possible

worlds sum to one.

In contrast to typical probabilistic databases where a relation is tuple-independent and

the probability of a relation is calculated from the product of the probability of each tuple,

we calculate a relation’s probability from a formula derived from the MaxEnt principle and

a set of constraints on the overall distribution1. This approach captures the idea that the

distribution should be uniform except where otherwise specified by the given constraints.

2.1.2 The Principle of Maximum Entropy

The Principle of Maximum Entropy (MaxEnt) states that subject to prior data, the proba-

bility distribution which best represents the state of knowledge is the one that has the largest

entropy. This means given our set of possible worlds, PWD, the probability distribution

1Using the MaxEnt principle will generate a probability distribution that is different from the tuple-
independent distribution because the MaxEnt principle does not guarantee tuple independence.
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Pr(I) is one that agrees with the prior information on the data and maximizes

−
∑

I∈PWD

Pr(I) log(Pr(I))

where I is a database instance, also called possible world. The above probability must be

normalized,
∑

I Pr(I) = 1, and must satisfy the prior information represented by a set of k

expected value constraints:

sj = E[φj(I)], j = 1, k (2.1)

where sj is a known value and φj is a function on I that returns a numerical value in R. One

example constraint is that the number of flights from CA to WI is 0.

Following prior work on the MaxEnt principle and solving constrained optimization prob-

lems [26, 124, 111], the MaxEnt probability distribution takes the form

Pr(I) =
1

Z
exp

(
k∑
j=1

θjφj(I)

)
(2.2)

where θj is a parameter and Z is the following normalization constant:

Z
def
=

∑
I∈PWD

(
exp

(
k∑
j=1

θjφj(I)

))
.

To compute the k parameters θj, we must solve the non-linear system of k equations, Equa-

tion 2.1, which is computationally difficult. However, it turns out [124] that Equation 2.1 is

equivalent to ∂Ψ/∂θj = 0 where the dual Ψ is defined as:

Ψ
def
=

k∑
j=1

sjθj − ln (Z) .

Furthermore, Ψ is concave, which means solving for the k parameters can be achieved by

maximizing Ψ. We note that Z is called the partition function, and its log, ln(Z), is called
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m # attrs
k # statistics
Di domain of Ai
Ni |Di|
q linear query
cj jth statistic query
πj jth statistic predicate
θj (cj, sj)
sj jth statistic constraint
ρij projection πj onto Ai

Ji ⊆ [k] 1-dim statistic indices
I ⊆ [m] attr indices
JI ⊆ [k] multi-dimensional statistic indices
Ba # multi-dimensional attr sets
Bs # stats per multi-dimensional attr set

Table 2.1: EntropyDB common notation.

the cumulant.

Lastly, we adopt a slightly different notation where instead of eθ, we use α. Equation 2.2

now becomes

Pr(I) =
1

Z

k∏
j=1

α
φj(I)
j . (2.3)

2.2 EntropyDB Approach

This section explains how we use the MaxEnt model for approximate query answering. We

first show how we use the MaxEnt framework to transform a single relation R into a proba-

bility distribution represented by P . We then explain how we use P to answer queries over R.

For reference, Table 2.1 lists common symbols and their definitions, and Table 2.2 lists var-

ious assumptions we incrementally make on our model and the section they are introduced.
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Queries are limited to linear queries. Section 2.2
Continuous attributes are discretized. Section 2.2

Summary includes all 1-dimensional statistics. Section 2.2
Statistics are collections of range predicates. Section 2.3.1

Each set of 2D statistics is disjoint. Section 2.3.1
Summary adds only 2D high order statistics. Section 2.5.1

Table 2.2: EntropyDB model assumptions, and the section they are introduced.

2.2.1 Maximum Entropy Model of Data

We consider a single relation with m attributes and schema R(A1, . . . , Am) where each at-

tribute, Ai, has an active domain Di, assumed to be discrete and ordered.2 Let Tup =

D1 ×D2 × · · · ×Dm = {t1, . . . , td} be the set of all possible tuples. Denoting Ni = |Di|, we

have d = |Tup| =
∏m

i=1Ni.

An instance for R is an ordered bag of n tuples, denoted I. For each I, we form a

frequency vector which is a d-dimensional vector3 nI = [nI1, . . . , n
I
d] ∈ Rd, where each number

nIi represents the count of the tuple ti ∈ Tup in I (Figure 2.1). The mapping from I to nI

is not one-to-one because the instance I is ordered, and two distinct instances may have the

same counts. Further, for any instance I of cardinality n, ||nI ||1 =
∑

i n
I
i = n. The frequency

vector of an instance consisting of a single tuple {ti} is denoted nti = [0, . . . , 0, 1, 0, . . . , 0]

with a single value 1 in the ith position; i.e., {nti : i = 1, d} forms a basis for Rd.

While the MaxEnt principle allows us, theoretically, to answer any query probabilistically

by averaging the query over all possible instances; in this chapter, we limit our main analysis

to linear queries but do discuss how to handle joins in Section 2.7.2. A linear query is a

d-dimensional vector q = [q1, . . . , qd] in Rd. The answer to q on instance I is the dot product

〈q,nI〉 =
∑d

i=1 qin
I
i . With some abuse of notation, we will write I when referring to nI and ti

when referring to nti . Notice that 〈q, ti〉 = qi, and, for any instance I, 〈q, I〉 =
∑

i n
I
i 〈q, ti〉.

2We support continuous data types by bucketizing their active domains.
3This is a standard data model in several applications, such as differential privacy [85].
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Domains:
D1 = {a1, a2} N1 = 2

D2 = {b1, b2} N2 = 2

Tup = {(a1, b1), (a1, b2), (a2, b1), (a2, b2)} d = 4

Database Instance:

I: A B
1 a1 b1
2 a1 b2
3 a2 b2
4 a1 b1
5 a2 b2

Query:

q: SELECT COUNT(*)
FROM R
WHERE A = a1

Modeling Data and Query: n = 5, m = 2

nI = (2, 1, 0, 2) q = (1, 1, 0, 0) 〈q,nI〉 = 3, also denoted 〈q, I〉

Figure 2.1: Illustration of the data and query model

Figure 2.1 illustrates the data and query model. Any counting query is a vector q

where all coordinates are 0 or 1 and can be equivalently defined by a predicate π such that

〈q, I〉 = |σπ(I)|; with more abuse, we will use π instead of q when referring to a counting

query. Other SQL queries can be modeled using linear queries, too. For example,

SELECT A, COUNT(*)

FROM R

GROUP BY A

ORDER BY COUNT(*) DESC LIMIT 10

corresponds to several linear queries, one for each group, where the outputs are sorted and

the top 10 returned.

Our goal is to compute a summary of the data that is small yet allows us to approxima-

tively compute the answer to any linear query. We assume that the cardinality n of R is fixed

and known. In addition, we know k statistics, Φ = {(cj, sj) : j = 1, k}, where cj is a linear
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query and sj ≥ 0 is a number. Intuitively, the statistic (cj, sj) asserts that 〈cj, I〉 = sj. For

example, we can write 1-dimensional and 2-dimensional (2D) statistics like |σA1=63(I)| = 20

and |σA1∈[50,99]∧A2∈[1,9](I)| = 300.

Next, we derive the MaxEnt distribution for the possible instances I of a fixed size n.

We replace the exponential parameters θj with ln(αj) so that Equation 2.3 becomes

Pr(I) =
1

Z

∏
j=1,k

α
〈cj ,I〉
j . (2.4)

We prove the following about the structure of the partition function Z:

Lemma 2.2.1. The partition function is given by

Z = P n (2.5)

where P is the multi-linear polynomial

P (α1, . . . , αk)
def
=
∑
i=1,d

∏
j=1,k

α
〈cj ,ti〉
j . (2.6)

Proof. Fix any n = [n1, . . . , nd] such that ||n||1 =
∑d

i=1 ni = n. The number of instances

I of cardinality n with I = n is n!/
∏

i ni!. Furthermore, for each such instance, 〈cj, I〉 =

〈cj,n〉 =
∑

i ni〈cj, ti〉. Therefore,

Z =
∑
I

Pr(I) =
∑

n:||n||1=n

n!∏
i ni!

∏
j=1,k

α
∑
i ni〈cj ,ti〉

j

=

(∑
i=1,d

∏
j=1,k

α
〈cj ,ti〉
j

)n

= P n.

This restructuring of the partition function is valid because we represent an instance as
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an ordered bag rather than an unordered one.

The data summary, denoted (P, {αj},Φ), consists of the polynomial P (Equation 2.6),

the values of its parameters αj, and the statistics Φ. The statistics must be included as the

polynomial parameters are defined by the linear queries cj in the statistics Φ.

Example 2.2.2. Consider a relation with three attributes R(A,B,C), and assume that the

domain of each attribute has 2 distinct elements. Assume n = 10 and the only statistics in

Φ are the following 1-dimensional statistics:

(A = a1, 3) (B = b1, 8) (C = c1, 6)

(A = a2, 7) (B = b2, 2) (C = c2, 4).

The first statistic asserts that |σA=a1(I)| = 3, etc. The polynomial P is

P =α1β1γ1 + α1β1γ2 + α1β2γ1 + α1β2γ2+

α2β1γ1 + α2β1γ2 + α2β2γ1 + α2β2γ2

where α1, α2 are variables associated with the statistics on A, β1, β2 are for B4, and γ1, γ2

are for C.

Consider the concrete instance that satisfies the above statistics

I = {(a1, b2, c2), (a1, b1, c2), (a1, b1, c2), (a2, b2, c1)

(a2, b1, c1), (a2, b1, c1), (a2, b1, c1), (a2, b1, c1), (a2, b1, c1)}.

Then, Pr(I) = α3
1α

7
2β

8
1β

2
2γ

6
1γ

4
2/P

10 where α3
1 represents α1 raised to the third power, α7

2

represents α2 to the seventh power, and so on.

Example 2.2.3. Continuing the previous example, we add the following multi-dimensional

4We abuse notation here for readability. Technically, αi = αai
, βi = αbi , and γi = αci .
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statistics to Φ:
(A = a1 ∧B = b1, 2) (B = b1 ∧ C = c1, 5)

(A = a2 ∧B = b2, 1) (B = b2 ∧ C = c1, 1).

P is now

P =α1β1γ1[αβ]1,1[βγ]1,1 + α1β1γ2[αβ]1,1+

α1β2γ1[βγ]2,1 + α1β2γ2+

α2β1γ1[βγ]1,1 + α2β1γ2+

α2β2γ1[αβ]2,2[βγ]2,1 + α2β2γ2[αβ]2,2. (2.7)

The red variables are the added 2-dimensional statistic variables; we use [αβ]1,1 to denote a

single variable corresponding to a 2-dimensional statistics on the attributes AB. Notice that

each red variable only occurs with its related 1-dimensional variables. [αβ]1,1, for example,

is only in the same term as α1 and β1.

Now consider the earlier instance I. Its probability becomes

Pr(I) = α3
1α

7
2β

8
1β

2
2γ

6
1γ

4
2 [αβ]21,1[αβ]12,2[βγ]51,1[βγ]12,1/P

10.

To facilitate analytical queries, we choose the set of statistics Φ as follows:

• Each statistic φj = (cj, sj) is associated with some predicate πj such that 〈cj, I〉 =

|σπj(I)|. It follows that for every tuple ti, 〈cj, ti〉 is either 0 or 1; therefore, each

variable αj has degree 1 in the polynomial P in Equation 2.6.

• For each domain Di, we include a complete set of 1-dimensional statistics in our sum-

mary. In other words, for each v ∈ Di, Φ contains one statistic with predicate Ai = v.

We denote Ji ⊆ [k] the set of indices of the 1-dimensional statistics associated with Di;

therefore, |Ji| = |Di| = Ni.

• We allow multi-dimensional statistics to be given by arbitrary predicates. They may

be overlapping and/or incomplete; e.g., one statistic may count the tuples satisfying

A1 ∈ [10, 30] ∧A2 = 5 and another count the tuples satisfying A2 ∈ [20, 40] ∧A4 = 20.
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• We assume the number of 1-dimensional statistics dominates the number of attribute

combinations; i.e.,
∑m

i=1Ni � 2m.

• If some domain Di is large, it is beneficial to reduce the size of the domain using equi-

width buckets. In that case, we assume the elements of Di represent buckets, and Ni

is the number of buckets.

• We enforce our MaxEnt distribution to be overcomplete [124, pp.40] (as opposed tomin-

imal). More precisely, for any attribute Ai and any instance I, we have
∑

j∈Ji〈cj, I〉 =

n, which means that some statistics are redundant since they can be computed from

the others and from the size of the instance n.

Note that as a consequence of overcompleteness, for any attribute Ai, one can write P as

a linear expression

P =
∑
j∈Ji

αjPj (2.8)

where each Pj, j ∈ Ji is a polynomial that does not contain the variables (αj)j∈Ji . In

Example 2.2.3, the 1-dimensional variables for A are α1, α2, and indeed, each monomial

in Equation 2.7 contains exactly one of these variables. One can write P as P = α1P1 +α2P2

where α1P1 represents the first two lines and α2P2 represents the last two lines in Equa-

tion 2.7. P is also linear in β1, β2 and in γ1, γ2.

2.2.2 Query Answering

In this section, we show how to use the data summary to approximately answer a linear query

q by returning its expected value E[〈q, I〉]. The summary (P, {αj},Φ) defines a probability

space on the possible worlds as it parameterizes Pr(I) (Equation 2.4 and 2.6). We start

with a well known result in the MaxEnt model. If c` is the linear query associated with the

variable α`, then
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E[〈c`, I〉] =
nα`
P

∂P

∂α`
. (2.9)

We review the proof here. The expected value of 〈c`, I〉 over the probability space (Equa-

tion 2.4) is

E[〈c`, I〉] =
1

P n

∑
I

〈c`, I〉
∏
j

α
〈cj ,I〉
j =

1

P n

∑
I

α`∂

∂α`

∏
j

α
〈cj ,I〉
j

=
1

P n

α`∂

∂α`

∑
I

∏
j

α
〈cj ,I〉
j =

1

P n

α`∂P
n

∂α`
=
n

P

α`∂P

∂α`
.

To compute a new linear query q, we add it to the statistical queries cj, associate it with

a fresh variable β, and denote Pq the extended polynomial:

Pq(α1, . . . , αk, β)
def
=
∑
i=1,d

∏
j=1,k

α
〈cj ,ti〉
j β〈q,ti〉 (2.10)

Notice that Pq[β = 1] ≡ P ; therefore, the extended data summary defines the same

probability space as P . With β = 1, we can apply Equation 2.9 to the query q to derive:

E[〈q, I〉] =
n

P

∂Pq

∂β
. (2.11)

This leads to the following naïve strategy for computing the expected value of q: extend

P to obtain Pq and apply formula Equation 2.11. One way to obtain Pq is to iterate over

all monomials in P and add β to the monomials corresponding to tuples counted by q. As

this iteration is inefficient, Section 2.3.2 describes how to avoid modifying the polynomial

altogether.
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2.2.3 Probabilistic Model Computation

We now describe how to compute the parameters of the summary. Given the statistics

Φ = {(cj, sj) : j = 1, k}, we need to find values of the variables {αj : j = 1, k} such that

E[〈cj, I〉] = sj for all j = 1, k. As explained in Section 2.1, this is equivalent to maximizing

the dual function Ψ:

Ψ
def
=

k∑
j=1

sj ln(αj)− n lnP. (2.12)

Indeed, maximizing P reduces to solving the equations ∂Ψ/∂αj = 0 for all j. Direct

calculation gives us ∂Ψ/∂αj =
sj
αj
− n

P
∂P
∂αj

= 0, which is equivalent to sj − E[〈cj, I〉] by

Equation 2.9. The dual function Ψ is concave, and hence it has a single maximum value that

can be obtained using convex optimization techniques such as Gradient Descent.

In particular, we achieve fastest convergence rates using a variant of Stochastic Gradient

Descent (SGD) called Mirror Descent [29], where each iteration chooses some j = 1, k and

updates αj by solving nαj
P

∂P
∂αj

= sj while keeping all other parameters fixed. In other words,

the step of SGD is chosen to solve ∂Ψ/∂αj = 0. Denoting Pαj
def
= ∂P

∂αj
and solving, we obtain:

αj =
sj(P − αjPαj)

(n− sj)Pαj
. (2.13)

Since P is linear in each α, neither P − αjPαj nor Pαj contain any αj variables.

We repeat this for all j, and continue this process until all differences |sj −
nαjPαj

P
|,

j = 1, k, are below some threshold. Alg. 1 shows pseudocode for the solving process.

2.3 Logical Optimizations

We now discuss two logical optimizations: (1) summary compression in Sec. 2.3.1 and (2)

optimized query processing in Sec. 2.3.2. In Section 2.4, we discuss the implementation of

these optimizations.
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Algorithm 1 EntropyDB solving for the αs

maxError = i n f i n i t y
whi l e maxError >= thre sho ld do

maxError = −1
f o r each αj do

value =
sj(P−αjPαj )
(n−sj)Pαj

αj = value
e r r o r = value−nαjPαj

P

maxError = max( er ro r , maxError )

2.3.1 Compression of the Data Summary

The summary consists of the polynomial P that, by definition, has |Tup| monomials where

|Tup| =
∏m

i=1Ni. We describe a technique that compresses the summary by factorizing the

polynomial to a size closer to O(
∑

iNi) than O(
∏

iNi).

Before walking through a more complex example describing the factorization process, we

show the factorized version of the polynomial from Example 2.2.3.

Example 2.3.1. Recall that our relation has three attributes A, B, and C with domain size

of 2, and our summary has four multidimensional statistics. The factorization of P is

P =(α1 + α2)(β1 + β2)(γ1 + γ2)+

(γ1 + γ2)(α1β1([αβ]1,1 − 1) + α2β2([αβ]2,2 − 1))+

(α1 + α2)(β1γ1([βγ]1,1 − 1) + β2γ1([βγ]2,1 − 1))+

α1β1γ1([αβ]1,1 − 1)([βγ]1,1 − 1)+

α2β2γ1([αβ]2,2 − 1)([βγ]2,1 − 1). (2.14)

As we will see, the factorization starts with a product of 1-dimensional statistics and uses

the inclusion/exclusion principle to include the multi-dimensional statistics. Note that for

this particular example, because the active domain is so small (eight possible tuples), the
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factorized polynomial is not smaller than the expanded one. We explain the polynomial size

in Theorem 2.3.3.

We now walk through a more complex example with three attributes, A, B, and C,

each with an active domain of size N1 = N2 = N3 = 1000. Suppose first that we have

only 1D statistics. Then, instead of representing P as a sum of 10003 monomials, i.e.,

P =
∑

i,j,k∈[1000] αiβjγk, we factorize it to P = (
∑
αi)(

∑
βj)(

∑
γk); the new representation

has size 3 · 1000.

Now, suppose we add a single 3D statistic on ABC: A = 3 ∧ B = 4 ∧ C = 5. The new

variable, call it δ, occurs in a single monomial of P , namely α3β4γ5δ. Thus, we can compress

P to (
∑
αi)(

∑
βj)(

∑
γk) + α3β4γ5(δ − 1).

Instead, suppose we add a single 2D range statistic on AB, say A ∈ [101, 200] ∧ B ∈

[501, 600] and call its associated variable δ1. This will affect 100 · 100 · 1000 monomials. We

can avoid enumerating them by noting that they, too, factorize. The polynomial compresses

to (
∑
αi)(

∑
βj)(

∑
γk) + (

∑200
i=101 αi)(

∑600
j=501 βj)(

∑
γk)(δ1 − 1).

Finally, suppose we have three 2D statistics and one 3D statistic: the previous one on AB

plus the statistics B ∈ [551, 650] ∧ C ∈ [801, 900] and B ∈ [651, 700] ∧ C ∈ [701, 800] on BC

and A ∈ [101, 150]∧B ∈ [551, 600]∧C ∈ [801, 850] on ABC. Their associated variables are δ1,

δ2, δ3, and δ4 (Figure 2.3 shows a table of the statistics). Now we need to account for the fact

that 100 ·50 ·100 monomials contain both δ1 and δ2 and that 50 ·50 ·50 monomials contain δ1,

δ2, and δ4. Applying the inclusion/exclusion principle, P compresses to the equation shown

in Figure 2.2 (the i, ii, and iii labels are referenced later). The size, counting only the αs, βs,

and γs for simplicity, is 3000 + 1200 + 1350 + 150 + 250 + 150 + 150 + 150 = 6400� 10003.

Before proving the general formula for P , note that this compression is related to stan-

dard algebraic factorization techniques involving kernel extraction and rectangle coverings

[70]; both techniques reduce the size of a polynomial by factoring out divisors. The stan-

dard techniques, however, are unsuitable for our use because they require enumeration of

the product terms in the sum-of-product (SOP) polynomial to extract kernels and form cube

matrices. Our polynomial in SOP form is too large to be materialized, making these tech-
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P =

(i)︷ ︸︸ ︷
(
∑

αi)(
∑

βj)(
∑

γk) +

(ii)︷ ︸︸ ︷
(
∑

γk)

(iii)︷ ︸︸ ︷
(
200∑
101

αi)(
600∑
501

βj)(δ1 − 1)

+

(ii)︷ ︸︸ ︷
(
∑

αi)

(iii)︷ ︸︸ ︷[
(
650∑
551

βj)(
900∑
801

γk)(δ2 − 1) + (
700∑
651

βj)(
800∑
701

γk)(δ3 − 1)

]

+

(iii)︷ ︸︸ ︷
(
150∑
101

αi)(
600∑
551

βj)(
850∑
801

γk)(δ4 − 1)

+

(iii)︷ ︸︸ ︷
(
200∑
101

αi)(
600∑
551

βj)(
900∑
801

γk)(δ1 − 1)(δ2 − 1)

+

(iii)︷ ︸︸ ︷
(
150∑
101

αi)(
600∑
551

βj)(
850∑
801

γk)(δ1 − 1)(δ4 − 1)

+

(iii)︷ ︸︸ ︷
(
150∑
101

αi)(
600∑
551

βj)(
850∑
801

γk)(δ2 − 1)(δ4 − 1)

+

(iii)︷ ︸︸ ︷
(
150∑
101

αi)(
600∑
551

βj)(
850∑
801

γk)(δ1 − 1)(δ2 − 1)(δ4 − 1) .

Figure 2.2: Example of a compressed polynomial P after applying the inclusion/exclusion
principle.
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niques infeasible. We leave it as future work to investigate other factorization techniques

geared towards massive polynomials.

We now make the following three assumptions for the rest of the chapter.

• Each predicate has the form πj =
∧m
i=1 ρij where m is the number of attributes, and ρij

is the projection of πj onto Ai. If j ∈ Ji (Ji is the set of indices of the 1-dimensional

statistics), then πj ≡ ρij. For any set of indices of multi-dimensional statistics S ⊂ [k],

we denote ρiS
def
=
∧
j∈S ρij, and πS

def
=
∧
i ρiS; as usual, when S = ∅, then ρi∅ ≡ true.

• Each ρij is a range predicate Ai ∈ [u, v].

• For each I ⊆ [m], the multi-dimensional statistics whose attributes are exactly those

in I are disjoint; i.e., for j1, j2 whose attributes are I, ρij1 , ρij2 6≡ true for i ∈ I

(i.e., there is a predicate on Ai), ρij1 , ρij2 ≡ true for i 6∈ I, and πj1 ∧ πj2 ≡ false.

Attributes for different I may overlap, but for a particular I, there is no overlap.

Using this, define JI ⊆ [k] for I ⊆ [m] to be the set of indices of multi-dimensional

statistics whose attributes are {Ai : i ∈ I}. This means for I such that |I| = 1, JI = ∅

because 1-dimensional statistics are not considered multi-dimensional statistics. Further, let

Ba = |{I : JI 6= ∅}| be the number of unique multi-dimensional attributes we have statistics

on and BIs = |JI | be the number of multi-dimensional statistics for the attribute set defined

by I. (These parameters are discussed further in Section 2.5).

Finally, define JI+ ⊆ P([k])5 for I+ ⊆ P([m]) to be the set of sets of the maximal number

of multi-dimensional statistic indices from
⋃
I∈I+ JI such that each set’s combined attributes

are {Ai : i ∈
⋃
I+} and each set’s intersection does not conflict (i.e., not false). In other

words, for each S ∈ JI+ , ρiS 6∈ {true,false} for i ∈
⋃
I+ and ρiS ≡ true for i /∈

⋃
I+.

For example, suppose we have the three 2D statistics and one 3D statistic from before:

πj1 = A ∈ [101, 200] ∧ B ∈ [501, 600], πj2 = B ∈ [551, 650] ∧ C ∈ [801, 900], πj3 = B ∈

[651, 700] ∧ C ∈ [701, 800], and πj4 = A ∈ [101, 150] ∧B ∈ [551, 600] ∧ C ∈ [801, 850]. Then,

some example JI+ are: J{{1,2}} = {{j1}}, J{{2,3}} = {{j2}, {j3}}, and J{{1,2,3}} = {{j4}}.

5P([k]) is the power set of {1, 2, . . . , k}
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{{j2, j3}} /∈ J{{2,3}} because ρ2j2 ∧ ρ2j3 ≡ false. Further, J{{1,2},{2,3}} = {{j1, j2}} because

ρ2j1∧ρ2j2 6≡ false. However, {j1, j3} /∈ J{{1,2},{2,3}} because ρ2j1∧ρ2j3 ≡ false, and {j4} /∈

J{{1,2},{2,3}} because j4 /∈ J{1,2} and j4 /∈ J{2,3}. Lastly, J{{1,2},{2,3},{1,2,3}} = {{j1, j2, j4}}

Using these definitions, we now get the compression shown in Theorem 2.3.2.

Theorem 2.3.2. The polynomial P is equivalent to:

P =

(i)︷ ︸︸ ︷∏
i∈[m]

∑
j∈Ji

αj

+


∑
I⊆[m]

(ii)︷ ︸︸ ︷(∏
i/∈I

∑
j∈Ji

αj

) (iii)︷ ︸︸ ︷
Ba∑
`=1

∑
I+⊆P([m]),
|I+|=`,⋃
I+=I

∑
S∈JI+

 ∏
i∈

⋃
I+

∑
j∈Ji,

πj∧ρiS 6≡false

αj


(∏
j∈S

(αj − 1)

)
︸ ︷︷ ︸

(iii)


The proof uses induction on the size of I.

To give intuition, the very first sum gives the sum over the 1D statistics, (i). The next

sum handles the multi-dimensional statistics. When I is empty, (iii) will be zero. When

there is no I+ matching the criteria or JI+ is empty, that portion of the summation will be

zero. When there exists some S ∈ JI+ , the summand sums up all 1-dimensional variables

αj, j ∈ Ji that are in the ith projection of the predicate πS (this is what the condition

(πj ∧ ρiS) 6≡ false checks) and multiplies with terms αj − 1 for j ∈ S.

Our algorithm to build the polynomial is non-trivial and is described in Section 2.4.1. The

algorithm can be used during query answering to compute the compressed representation of

Pq from P (Sec. 2.2.2) by rebuilding iii for the new q. However, as this is inefficient and
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may increase the size of our polynomial, our system performs query answering differently, as

explained in Section 2.3.2.

We now analyze the size of the compressed polynomial P . Since Ba < 2m and
∑m

i=1Ni �

2m, Ba is dominated by
∑m

i=1Ni. For some I, part (ii) of the compression is O(
∑m

i=1Ni).

Part (iii) of the compression is more complex. For some S ∈ JI+ , the innermost summand is

of size O(
∑m

i=1Ni + |S|). As |S| ≤ Ba �
∑m

i=1Ni, the summand is only O(
∑m

i=1Ni). This

innermost summand only occurs when JI+ is nonempty, which happens once for all possible

combinations of the Ba multi-dimensional attributes. Therefore, letting R = maxI+ |JI+|

(we discuss this next), part (iii) is of size O(2BaR
∑m

i=1Ni). Putting it together, since we

only are concerned with I such that
⋃
I+ = I for some I+ and we have 2Ba relevant I+,

the polynomial is of size O(
∑m

i=1Ni + 2Ba(
∑m

i=1Ni + 2BaR
∑m

i=1Ni)) = O(2BaR
∑m

i=1Ni).

Lastly, to discuss R. For a particular I+, |JI+ | is the number of sets of multi-dimensional

statistics whose combined attributes are {Ai : i ∈
⋃
I+} and whose intersection does not

conflict. In the worse case, there are no conflicts (e.g., if
⋂
I+ = ∅). Then, there will be

at most
∏
I∈I+ B

I
s statistics for a particular I+. Since the largest I+ has Ba elements, an

upper bound on R is B̂Ba
s where B̂s = maxI B

I
s . We assume B̂s ≥ 2, and therefore we get

the following theorem.

Theorem 2.3.3. The size of the polynomial is O(B̂Ba
s

∑m
i=1Ni) where Ba is the number of

unique multi-dimensional attribute sets and B̂s is the largest number of statistics over some

I.

In the worst case, if one gathers all possible multi-dimensional statistics, this compres-

sion will be worse than the uncompressed polynomial, which is of size O(
∏m

i=1Ni) which is

approximates equal to O((maxiNi)
m). However, in practice, Ba < m and Bs ≤ maxiNi

which results in a significant reduction of polynomial size to one closer to O(
∑m

i=1Ni) than

O(
∏m

i=1Ni).
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2.3.2 Optimized Query Answering

In this section, we assume that the query q is a counting query defined by a conjunction of

predicates, one over each attribute Ai; i.e., q = |σπ(I)|, where

π = ρ1 ∧ · · · ∧ ρm (2.15)

and ρi is a predicate over the attribute Ai. If q ignores Ai, then we simply set ρi ≡ true.

Our goal is to compute E[〈q, I〉]. In Sec. 2.2.2, we described a direct approach that consists

of constructing a new polynomial Pq and returning Equation 2.11. However, as described

in Sec. 2.2.2 and Sec. 2.3.1, this may be expensive.

We describe here an optimized approach to compute E[〈q, I〉] directly from P . The

advantage of this method is that it does not require any restructuring or rebuilding of the

polynomial. Instead, it can use any optimized oracle for evaluating P on given inputs. Our

optimization has two parts: a new formula E[〈q, I〉] and a new formula for derivatives.

New formula for E[〈q, I〉]: Let πj be the predicate associate to the jth statistical query.

In other words, 〈cj, I〉 = |σπj(I)|. The next lemma applies to any query q defined by some

predicate π. Recall that β is the new variable associated to q in Pq (Sec. 2.2.2).

Lemma 2.3.4. For any ` variables αj1 , . . . , αj` of Pq:

(1) If the logical implication πj1 ∧ · · · ∧ πj` ⇒ π holds, then

αj1 · · ·αj`∂`Pq

∂αj1 · · · ∂αj`
=
αj1 · · ·αj`β∂`+1Pq

∂αj1 · · · ∂αj`∂β
(2.16)

(2) If the logical equivalence πj1 ∧ · · · ∧ πj` ⇔ π holds, then

αj1 · · ·αj`∂`Pq

∂αj1 · · · ∂αj`
=
β∂Pq

∂β
(2.17)

Proof. (1) The proof is immediate by noting that every monomial of Pq that contains all

variables αj1 , . . . , αj` also contains β; therefore, all monomials on the LHS of Equation 2.16
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contain β and thus remain unaffected by applying the operator β∂/∂β.

(2) From item (1), we derive Equation 2.16; we prove now that the RHS of Equation 2.16

equals β∂Pq

∂β
. We apply item (1) again to the implication π ⇒ πj1 and obtain β∂Pq

∂β
=

βαj1∂
2Pq

∂β∂αj1

(the role of β in Equation 2.16 is now played by αj1). As P is linear, the order of partials

does not matter, and this allows us to remove the operator αj1∂/∂αj1 from the RHS of

Equation 2.16. By repeating the argument for π ⇒ πj2 , π ⇒ πj3 , etc, we remove αj2∂/∂αj2 ,

then αj3∂/∂αj3 , etc from the RHS.

Corollary 2.3.5. (1) Assume q is defined by a point predicate π = (A1 = v1∧ · · ·∧A` = v`)

for some ` ≤ m. For each i = 1, `, denote ji the index of the statistic associated to the value

vi. In other words, the predicate πji ≡ (Ai = vi). Then,

E[〈q, I〉] =
n

P

αj1 · · ·αj`∂`P
∂αj1 · · · ∂αj`

(2.18)

(2) Let q be the query defined by a predicate as in Equation 2.15. Then,

E[〈q, I〉] =
∑

j1∈J1:πj1⇒ρ1

· · ·
∑

jm∈Jm:πjm⇒ρm

n

P

αj1 · · ·αjm∂mP
∂αj1 · · · ∂αjm

(2.19)

Proof. (1) Equation 2.18 follows from Equation 2.11, Equation 2.17, and the fact that

Pq[β = 1] ≡ P . (2) Follows from (1) by expanding q as a sum of point queries as in

Lemma. 2.3.4 (1).

In order to compute a query using Equation 2.19, we would have to examine all m-

dimensional points that satisfy the query’s predicate, convert each point into the corre-

sponding 1D statistics, and use Equation 2.18 to estimate the count of the number of tuples

at this point. Clearly, this is inefficient when q contains any range predicate containing many

point queries.

New formula for derivatives Thus, to compute E[〈q, I〉], one has to evaluate several

partial derivatives of P . Recall that P is stored in a highly compressed format, and therefore,

computing the derivative may involve nontrivial manipulations. Instead, we use the fact that
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our polynomial is overcomplete, meaning that P =
∑

j∈Ji αjPj, where Pj, j ∈ Ji does not

depend on any variable in {αj : j ∈ Ji} (Equation 2.8). Let ρi be any predicate on the

attribute Ai. Then,

∑
ji∈Ji:πji⇒ρi

αji∂P

∂αji
=P [

∧
j∈Ji:πji 6⇒ρi

αj = 0] (2.20)

Thus, in order to compute the summation on the left, it suffices to compute P after setting

to 0 the values of all variables αj, j ∈ Ji that do not satisfy the predicate ρi (this is what

the condition πji 6⇒ ρi checks).

Finally, we combine this with Equation 2.19 and obtain the following, much simplified

formula for answering a query q, defined by a predicate of the form Equation 2.15:

E[〈q, I〉] =
n

P
P [
∧
i=1,m

∧
j∈Ji:πji 6⇒ρi

αj = 0] (2.21)

In other words, we set to 0 all 1D variables αj that correspond to values that do not satisfy

the query, evaluate the polynomial P , and multiply it by n
P
(which is a precomputed constant

independent of the query). For example, if the query ignores an attribute Ai, then we leave

the 1D variables for that attribute, αj, j ∈ Ji, unchanged. If the query checks a range

predicate, Ai ∈ [u, v], then we set αj = 0 for all 1D variables αj corresponding to values of

Ai outside that range.

Example 2.3.6. Consider three attributes A, B, and C each with domain 1000 and three

multi-dimensional statistics: one AB statistic A ∈ [101, 200] ∧ B ∈ [501, 600], two BC

statistics B ∈ [551, 650] ∧ C ∈ [801, 900] and B ∈ [651, 700] ∧ C ∈ [701, 800], and one ABC

statistic A ∈ [101, 150] ∧ B ∈ [551, 600] ∧ C ∈ [801, 850]. The polynomial P is shown in

Figure 2.2. Consider the query q:

SELECT COUNT(∗ ) FROM R

WHERE A in [ 36 , 150 ] AND C in [ 660 , 834 ]
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We estimate q using our formula n
P
P [α1:35 = 0, α151:1000 = 0, γ1:659 = 0, γ835:1000 = 0].

There is no need to compute a representation of a new polynomial.

2.4 System Optimizations

In Section 2.3, we discussed two main optimizations: polynomial compression and query

answering by setting certain 1D variables to zero. We now discuss how to implement these

optimizations efficiently and analyze the runtime.

2.4.1 Building the Polynomial

Recall from Theorem 2.3.2 that building our compressed polynomial starts with the product

of the sum of all 1D statistics and then uses the inclusion/exclusion principle to modify

the terms to include the correct multi-dimensional statistics. The terms that need to be

modified are those that satisfy the predicates associated with the sets of non-conflicting

multi-dimensional statistics. i.e., for some I+, the terms to be modified are the 1D terms

αj such that πj ∧ πS 6≡ false for S ∈ JI+ . The algorithmic challenge is how we find non-

conflicting statistics JI+ for some I+ and, once we know JI+ , how we find the 1D statistics

that need to be modified.

To solve the latter problem, assume we have some JI+ . Since each multi-dimensional

statistic is a range predicate over the elements in our domain and we have complete 1D

statistics over the elements in our domain, once we know the range predicate, πS for S ∈ JI+ ,

we can easily find the associated 1D statistics.

Take the example in Figure 2.2 which we will refer to throughout this section. If we know

that J{{1,2},{2,3},{1,2,3}} = {{j1, j2, j4}}, then, by examining the range predicates associated

with those three multi-dimensional statistics, we can determine that αi for i ∈ [101, 150], βj

for j ∈ [551, 600], and γk for k ∈ [801, 850] are the 1D statistics that need to be modified to

include δ1, δ2, and δ4.

The other problem is how we find the groups of multi-dimensional statistics that do not

conflict for some group of attribute sets (i.e., the JI+ 6= ∅). To solve this, we assume we
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are given four inputs: a list of attributes, a list of Ba multi-dimensional attribute sets (e.g.,

[AB, BC, ABC] for Figure 2.2), a dictionary of the 1D statistics with attributes Ai as keys

(denoted 1DStats), and a dictionary of multi-dimensional statistics with indices into the

list of Ba attributes sets as keys (denoted multiDStats).

A straightforward algorithm to build the polynomial is shown in Alg. 2 where the red

notations indicate the time complexity of each section of pseudo code. The function combina-

tions(k, Ba) generates a list of all possible length k index sets from [1, Ba]. Note that we abuse

the notation for dictionary selection slightly in that if idx is {1, 2}, multiDStats[idx]

would select both the multi-dimensional stats of 1 and 2, e.g., AB andBC, and 1DStats[not

idx] would select no 1D stats since all attributes are used in AB and BC. The function

buildTerm(group) builds the term shown in the last line of Theorem 2.3.2. It generates a

sum of the 1D statistics associated with the group and multiplies the sum by one minus the

multi-dimensional variables in the group.

The last function to discuss is findNoConflictGrps which returns a dictionary with keys

as sets of multi-dimensional attribute indices and values of groups of conflict free statistics.

For example, for k = 2, a key would be {1, 2} with value {δ1, δ2} indicating that δ1 and δ2

do not conflict. The algorithm works by treating each multi-dimensional index set in idx

as a relation with rows of the statistics associated with that index set. It then computes a

theta-join over these relations with the join condition being if the statistics are conflict free.

For example, δ1 and δ2 are conflict free but not δ1 and δ3. Further, statistics over disjoint

attributes sets are also conflict free. If we had a relation R(A,B,C,D) and some statistic

over AB and another over CD, all of those multi-dimensional statistics from AB would be

satisfiable with all other from CD.

To understand the runtime complexity of the algorithm, start with the function

buildTerm(group). For ease of notation, we will denote N = maxiNi. Recall thatmN is the

total number of distinct values across all attributes, Ba is the number of attribute sets, and

B̂s is the largest number of statistics per attribute set. The runtime of buildTerm(group)

for a single satGrps of size k is O(mN + B̂k
s ) because a single satGrps will only add each
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Algorithm 2 Unoptimized Building P

// add part i to P
P = 1DProdSum(1DStats)
f o r ( k in [ 1 :Ba ] ) do

f o r ( idx in combinations(k , Ba ) ) do
// add part ii to P
P. addTerms (1DProdSum(1DStats [ not idx ] ) )
satGrps = findNoConflictGrps(multiDStats [ idx ] )
// add part iii to P
f o r ( group in satGrps ) do

P. addTerms (buildTerm( group ) ) O(mN + B̂k
s )

O((k − 1)(mN)2B̂k
s )

O(mN)

1D statistic at most once and at most B̂k
s correction terms. This runtime also includes the

time for 1DProdSum because the 1D statistics that are not in satGrps will be added in

1DProdSum.

The runtime of findNoConflictGrps involves computing the cross product of the multi-

dimensional statistics and comparing the 1D statistics associated with each multi-dimensional

statistic to determine if there is a conflict. Specifically, it computes a right deep join tree of

the multi-dimensional statistics, and at each step in the tree, iterates over the 1D statistics in

each right child conflict free group to see if there is a conflict or not with one of the incoming

left child multi-dimensional statistics.

Figure 2.3 shows the findNoConflictGrps join algorithm for the attribute sets AB, BC,

and ABC with one added statistic δ5 on BC of B ∈ [401, 550]∧C ∈ [751, 850]. The function

to find and return a single conflict free group is CFG(δL, {δ}S) (stands for conflict free group)

where δL stands for the left multi-dimensional statistic and {δ}S stands for the right, current

conflict free group. The S subscript is because we are building a new set of multi-dimensional

statistics to add to some JI+ . We are abusing notation slightly because in Section 2.3, S

stood for the set of indices whereas here, it sands for the set of statistic variables.

CFG first determines which attributes are shared by δL and {δ}S. Then, for each such

attribute, it iterates over δL’s associated 1D statistics (at most mN of them) and checks if at
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least one of these statistics also exists in the 1D statistics associated with {δ}S (containment

has runtimemN). This ensures, for all attributes Ai, that ρiL∧ρiS 6≡ false. If Ai is shared,

then ρiL ∧ ρiS will contain the shared 1D statistic found earlier, and if Ai is not shared, then

ρiL∧ρiS ≡ true. Note that a conflict free group is not always found. Therefore, the runtime

of the join is O(2(mN)2B̂3
s ). For joins of arbitrary size, the runtime is O((mN)2(k − 1)B̂k

s ).

Putting it all together we get the runtime of

= mN +
Ba∑
k=1

(
Ba

k

)
[mN + (k − 1)(mN)2B̂k

s + B̂k
s ]

= mN + (2Ba − 1)mN + (B̂s + 1)Ba − 1 + (mN)2

[[
Ba∑
k=0

(
Ba

k

)
[kB̂k

s − B̂k
s ]

]
+ 1

]

= mN + (2Ba − 1)mN + (B̂s + 1)Ba − 1 + (mN)2+

(mN)2

[
Ba∑
k=0

(
Ba

k

)
kB̂k

s

]
− (mN)2(B̂s + 1)Ba

= mN + (2Ba − 1)mN + (B̂s + 1)Ba − 1 + (mN)2+

(mN)2BaB̂s(B̂s + 1)Ba−1 − (mN)2(B̂s + 1)Ba

This algorithm, however, is suboptimal because it must run findNoConflictGrps for all

2Ba attribute sets. It is better to run findNoConflictGrps once for the all multi-dimensional

statistics (i.e., compute the full theta-join of all Ba attribute sets) and reconstruct the smaller

groups without paying the cost of checking for conflicts (i.e., perform selections over the full

theta-join). Further, there are some statistics that will not appear in any other term besides

when k = 1 in the loop above. Take δ3, for example. It is handled in line 2 of Figure 2.2 but

does not appear later on. These insights lead to a more optimized algorithm in Alg. 3.

The function conflictReduce is like a semi-join reduction. It removes multi-dimensional
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ABBC

ABC
eliminated by 
conflictReduce

CFG (𝛿", {𝛿$})

CFG (𝛿&, {𝛿}')

𝛿&

conflictFreeGrp (CFG) 
runs in 𝑶( 𝒎𝑵 𝟐)

A B C

𝛿$ [100, 200] [501,600]

𝛿. [551, 650] [801, 900]

𝛿/ [651, 700] [701, 800]

𝛿& [100, 150] [551, 600] [801, 850]

𝛿0 [401, 550] [751, 850] 𝛿$
𝛿.

𝛿/
𝛿0

{𝛿$, 𝛿0}

only in 
findNoConflictGrps*

findNoConflictGrps { 𝛿$, 𝛿., 𝛿& }

findNoConflictGrps* { 𝛿$, 𝛿., 𝛿& , { 𝛿$, 𝛿0 }

{𝛿$, 𝛿.}

Figure 2.3: Figure of findNoConflictGrps and findNoConflictGrps* join algorithm for the
three attribute sets AB, BC, and ABC. The highlighted statistics of δ3 and {δ1, δ5} are the
difference between the unoptimized and optimized algorithms.

statistics that do not appear in any conflict free group later on. For example, redMDStats

would only contain δ1, δ2, and δ4. The function findNoConflictGrps* acts just as findNo-

ConflictGrps except instead of computing an inner theta join, it computes a full outer theta

join. The reason being that satGrps needs to keep track of all conflict free groups even

if they contain less that Ba statistics. For example, take the δ5 statistic of BC as shown

in Figure 2.3. δ1 and δ5 are conflict free, but δ1, δ5, and δ4 are not conflict free because δ5

conflicts with δ4 in attribute B. In this case, findNoConflictGrps* would return a dictionary

with the keys {1, 2, 3} and {1, 2} and values {δ1, δ2, δ4} and {δ1, δ5}, respectively. The outer

join ensures {δ1, δ5} is not lost. Note the time complexity of findNoConflictGrps and findNo-

ConflictGrps* is the same because they must compute the full cross product and then filter.

Lastly, the group[idx] index selection selects the statistics associated with the attribute

sets in idx.

We will now show that this algorithm’s time complexity is more optimal than Alg. 2

because although it loops through satGrps, selecting out a subterm is faster than rebuilding
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Algorithm 3 Optimized Building P

// add part i to P
P = 1DProdSum(1DStats)
// add terms when k = 1
f o r ( idx in [ 1 :Ba ] ) do

// add part ii to P
P. addTerms (1DProdSum(1DStats [ not idx ] ) )
// add part iii to P
f o r ( group in multiDStats [ idx ] ) do

P. addTerms (buildTerm( group ) )
redMDStats = conflictReduce(multiDStats)
satGrps = findNoConflictGrps*( redMDStats )
f o r ( k in [ 2 :Ba ] ) do

f o r ( idx in combinations(k , Ba ) ) do
// add part ii to P
P. addTerms (1DProdSum(1DStats [ not idx ] ) )
// add part iii to P
f o r ( group in satGrps ) do

P. addTerms (buildTerm( group [ idx ] ) )

O((2Ba −Ba − 1) ∗ (mN + B̂Ba
s ))

O(mNBa +BaB̂s)

O((Ba − 1)(mN)2B̂Ba
s )

O(
(
Ba
2

)
(BaB̂s)

2)

O(mN)

one, especially after semi-join reduction. Note that if group[idx] is has already been

added to the polynomial from a previous group, it is just ignored when addTerms is called.

As the red notation indicates, the runtime of the first for loop is O(mNBa +BaB̂s) because

for each idx, there are B̂s multi-dimensional statistics and mN 1D statistics to add the

term.

The runtime of conflictReduce involves comparing pairs of multi-dimensional statistics to

see if they will participate in any conflict free groups of size two or more. For each
(
Ba
2

)
B̂2
s

possible pairs of multi-dimensional statistics, the conflict checking requires examining the 1D

statistics of the pair, just like in CFG(δL, {δ}S). The next function, findNoConflictGrps*,

has the same runtime as before except instead of being run for all k, it is run only once for

k = Ba.

The last part to analyze is the for loop that iterates over all satGrps. In our runtime
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analysis, we add a percentage p ∈ [0, 1] to indicate that only a fraction of the possible B̂Ba
s

groups are used in the last loop. This decrease is because of conflictReduce and because,

in practice, there are drastically fewer than B̂Ba
s resulting conflict free groups. In practice,

p ≤ 0.1. As the inner most for loop is that same as in Alg. 2 except for k = Ba, the runtime

is O(B̂Ba
s + mN). As this happens for all combinations from k = 2, Ba, the overall runtime

is O((2Ba−Ba−1)(pB̂Ba
s +mN)) where the minus is because k starts at two instead of zero.

Adding up the different runtime components, we get the overall runtime of Alg. 3 is

= mN +Ba(mN + B̂s) +

(
Ba

2

)
(mNB̂s)

2+

(Ba − 1)(mN)2B̂Ba
s + (2Ba −Ba − 1)(mN + pB̂Ba

s )

To show the improvement of the optimized algorithm, Figure 2.4 shows the runtime

difference between Alg. 2 and Alg. 3 (i.e., Alg. 2 - Alg. 3) when mN = 5000 (the trends are

similar for other values of mN). The three columns are for Ba = 2, 3, 4, the colors represents

the different values of p, and B̂s varies from 100 to 2000. Note that the y-axis of the three

columns are on a different scale in order to show the variation between the different values

of p.

We see that p matters for Ba = 3, and when p falls between 0.3 and 0.1, the optimized

version is faster. As, in practice, p ≤ 0.1, the optimized version is best for Ba > 2. The

trend shown in Ba = 4 is the same for Ba > 4 and thus not included in the plot. This shows

that asymptotically, Alg. 3 is optimal.

2.4.2 Polynomial Evaluation

Recall from Section 2.3.2 and Example 2.3.6 that for a linear query q defined by some

predicate π, we can answer the query in expectation (i.e., E[〈q, I〉) by setting all 1D variables

αj that correspond to values that do not satisfy π to zero. This is more efficient than

taking multiple derivatives, but simply looping over all variables can still be too slow as the
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Figure 2.4: Algorithmic complexity improvement of the unoptimized algorithm over the
optimized algorithm (complexity difference) for mN = 5000 and varying Ba, B̂s, and p. A
positive number indicates the optimized algorithm is faster.

compressed polynomial can, at worst, have exponentially many variables (see Theorem 2.3.2).

To improve performance, we implement four main optimizations: (1) storing the com-

pressed polynomial in memory, (2) parallelizing the computation, (3) fast containment check

using bit vectors, (4) caching of subexpression evaluation. The first and second, storing in

memory and parallelization, are straightforward, standard techniques that improve looping

computations. Note, we can parallelize the computation because each polynomial term can

be evaluated independently.

The next optimization, using bit vectors, is to optimize both findNoConflictGrps and

determining if a variable needs to be set to zero or not during query evaluation. It is

important to understand that the polynomial is hierarchical with nested levels of sums of

products of sums. For each subterm (i.e., sum or product term in our polynomial), we store

(a) a map with variable keys and values of the nested subterms containing that variable, (b)

a bit vector of which attributes are contained in the subterm, and (c) a bit vector of which
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multi-dimensional attribute sets are contained in the subterm.

Take Example 2.3.6 which references Figure 2.2. Take the subterm referenced by i. This

subterm has a map of all variables pointing to one of three nested sum subterms. The

attribute bit vector has a 1 in all places, representing it contains all possible attributes, and

the multi-dimensional bit vector is all 0s. Now take the subterm (
∑650

551 βj)(
∑900

801 γk)(δ2− 1).

It has a map of only β variables from [551, 650], γ variables from [801, 900], and δ2 all

pointing to one of three nested subterms. The attribute bit vector would only have 1 in the

B and C dimensions, and the multi-dimensional bit vector would have a 1 in the dimension

representing the attribute set BC.

These objects allow us to quickly check if some 1-dimensional or multi-dimensional statis-

tic is contained in the term or if there are any variables that need to be set to zero (by using

the attribute bit vectors) and which subterms those variables are in. To further see the

benefit of this optimization, recall the runtime analysis from Section 2.4.1 where findNoCon-

flictGrps required (mN)2 steps to check if two statistics were conflict free as it iterates over

all 1D statistics. Using maps with variable keys allows us to quickly check if a 1D statistic is

contained in another, bringing the runtime down to mN for a single pair. The attribute bit

vectors can also allow us to skip iterating over subsets of 1D statistics by quickly checking

which attributes two statistics share. If some attribute is not shared between two statistics,

then that attribute can cause no conflicts and does not need to be iterated over.

This leads to the last technique of caching. Caching is used to avoid recomputing subterms

and takes advantage of the attribute bit vectors and variable hash maps described above.

Since we solve for all the variables αj of our model once and they remained fixed throughout

query answering, if there is a subterm of our model that does not contain any variable the

needs to be set to zero, we can reuse that subterm’s value. We store this value along with

the map and bit vectors.

By utilizing these techniques, we reduced the time to learn the model (solver runtime)

from 3 months to 1 day and saw a decrease in query answering runtime from around 10 sec

to 500 ms (95% decrease). More runtime results are in Section 2.6.
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2.5 Statistic Selection

In this section, we discuss how we choose the multi-dimensional statistics. We investigate

different heuristic techniques for both finding optimal statistic ranges and reordering the

data prior to statistic collection optimally. Recall that our summary always includes all 1D

statistics of the form Ai = v for all attributes Ai and all values v in the active domain Di.

We describe here how to tradeoff the size of the summary for the precision of the MaxEnt

model.

2.5.1 Optimal Ranges

The first choice we make is to include only 2D statistics. It has been shown that restricting to

pairwise correlations offers a reasonable compromise between the number of statistics needed

and the summary’s accuracy [122]. This means each multi-dimensional statistic predicate πj

is equivalent to a range predicate over two attributes Ai1 ∈ [u1, v1] ∧ Ai2 ∈ [u2, v2]. If Ai1
and Ai2 are two dimensions of a rectangle, πj defines a sub-rectangle in this space. As the

2D predicates are disjoint, if πj1 and πj2 both define rectangles over Ai1 and Ai2 , then these

rectangles do not overlap.

As mentioned in Section 2.3.1, we have two parameters to consider: Ba, the number of

distinct attribute pairs we gather statistics on, and Bs, the number of statistics to gather per

each attribute pair. We choose to make Bs be the same for all multi-dimensional statistics.

The problem is as follows: given Ba and Bs, which Ba attribute pairs Ai1Ai2 do we collect

statistics on and which Bs statistics do we collect for each attribute pair? This is a complex

problem, and we make the simplifying assumption that Bs, the number of statistics, is given,

but we explore different choices of Ba in Sec. 2.6. We leave it to future work to investigate

automatic techniques for determining the total budget, Ba ∗Bs.

Given Ba, we consider two different approaches when picking pairs: attribute correlation

and attribute cover. The first focuses only on correlation by picking the set of attribute pairs
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that have the highest combined correlation6 such that every pair has at least one attribute

not included in any previously chosen, more correlated pair. This is similar to computing a

Chow-Liu tree which is a maximum weight spanning tree over a graph where attributes are

nodes and edge weights are the mutual information between pairs of attributes [39]. The

difference is that we use the chi-squared metric rather than the mutual information as chi-

squared is a common independence test for categorical data. We leave it to future work to

evaluate different correlation metrics.

The second approach focuses on attribute cover by picking the set of pairs that cover the

most attributes with the highest combined correlation. For example, if Ba = 2 and we have

the attribute pairs BC, AB, CD, and AD in order of most to least correlated, if we only

consider correlation, we would choose AB and BC. However, if we consider attribute cover,

we would choose AB and CD. We experiment with both of these choices in Sec. 2.6.

Next, we assume for each attribute Ai, its domain Di is ordered and viewed as an array

such that Di[1] ≤ Di[2] ≤ .... This allows us to define a Di1 ×Di2 space (a Ni1 ×Ni2 matrix

denotedM) representing the frequency of attribute pairs. In particular, for some x ∈ [1, Ni1 ]

and y ∈ [1, Ni2 ], M[x, y] = |σAi1=Di1 [x]∧Ai2=Di2 [y](I)|. Our goal is to choose the best Bs 2D

range predicates [lx, ux]× [ly, uy] where lx and ux are lower and upper index bounds on the

x axis (likewise for the y axis). We consider three heuristics and show experimental results

to determine which technique yields, on average, the lowest error on query results.

LARGE SINGLE CELL In this heuristic, the range predicates are single point pred-

icates, Ai1 = Di1 [x] ∧ Ai2 = Di2 [y], and we choose the points (x, y) as the Bs most popular

values in the two dimensional space; i.e., the Bs largest values of |σAi1=Di1 [x]∧Ai2=Di2 [y](I)|.

ZERO SINGLE CELL In this heuristic, we select the empty/zero/nonexistent cells;

i.e., we choose Bs points (x, y) s.t. σAi1=Di1 [x]∧Ai2=Di2 [y](I) = ∅. If there are fewer than Bs

such points, we choose the remaining points as in LARGE SINGLE CELL. The justification

for this heuristic is that, given only the 1D statistics, the MaxEnt model will produce false

6This can be found by calculating, for all attribute pairs, the chi-squared value on the contingency table
of Ai1 and Ai2 and sorting from highest to lowest chi-squared value.
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positives (“phantom” tuples) in empty cells; this is the opposite problem encountered by

sampling techniques, which return false negatives. This heuristic has another advantage

because the value of αj in P is always 0 and does not need to be updated during solving.

COMPOSITE This method partitionsM into a set of Bs disjoint rectangles and asso-

ciates one statistic with each rectangle. For example if πj1 is Ai1 ∈ [u1, v1] ∧ Ai2 ∈ [u2, v2]

and πj2 is Ai1 ∈ [u3, v3] ∧ Ai2 ∈ [u4, v4], then the composite statistic of πj1 and πj2 is

Ai1 ∈ ([u1, v1] ∨ [u3, v3]) ∧ Ai2 ∈ ([u2, v2] ∨ [u4, v4]). We choose to combine the statistics by

an attribute-wise union because our factorization algorithm requires it. Part (iii) of Theo-

rem 2.3.2 multiplies the multi-dimensional statistic correction term (i.e., (δ − 1)) by a sum

of the 1D statistics associated with it. In our example, we would multiply the composite

statistic correction term by (αu1 + . . .+αv1 +αu3 + . . .+αv3)(αu2 + . . .+αv2 +αu4 + . . .+αv4),

which can be represented by a rectangle or bounding box. As we must maintain that the

composite statistics can be represented by disjoint rectangles, we use an adaptation of K-D

trees to partition the data.

Recall that a K-D tree partitions a k-dimensional space by iterating over each axis i and

splitting the space at the median of the ith axis. Each child is then partitioned on the i+ 1

axis. The only difference between our K-D tree algorithm and the traditional one is our

splitting condition. Instead of splitting on the median, we split on the value that has the

lowest sum squared average value difference.

For a child partition with boundary [lx, ux]× [ly, uy], the split condition for the x axis is

shown in Equation 2.22 where s̄l is the average value of the left partition candidate; i.e.,

s̄l =

∑
(x,y)∈[lx,mx]×[ly ,uy ] (M[x, y])

(mx − lx + 1)(uy − ly + 1)
.

s̄r is for the right partition candidate which uses [mx + 1, ux] instead of [lx,mx].
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Figure 2.5: (a) Example K-D tree showing the traditional split on the median versus our
split minimizing average error. (b) Comparison of not sorting, using SUGI sort, or using
2D sort before running the K-D tree algorithm.

arg min
mx

 ∑
(x,y)∈[lx,mx]×[ly ,uy ]

(M[x, y]− s̄l)2 +
∑

(x,y)∈[mx+1,ux]×[ly ,uy ]

(M[x, y]− s̄r)2
1/2

. (2.22)

An equivalent expression is used for the y axis.

We choose this split because we want our K-D tree to best represent the true values.

Suppose we have cell counts on dimensions A and A′ as shown in 2.5a. For the next vertical

split, if we followed the standard K-D tree algorithm, we would choose the second split.

Instead, our method chooses the first split. Using the first split minimizes the sum squared

error.

Our COMPOSITE method repeatedly splits the attribute domains Di1 and Di2 (alter-

nating) by choosing the split value following Equation 2.22 until it exhausts the budget Bs.

Then, for each rectangle [lxj , u
x
j ]× [lyj , u

y
j ] in the resulting K-D tree, it creates a 2D statistic
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(cj, sj), where the query cj is associated with the number of tuples satisfying the 2D range

predicate and the numerical value

sj
def
= |σAi1∈[Di1 [lxj ],Di1 [uxj ]]∧Ai2∈[Di2 [lyj ],Di2 [uyj ]](I)|.

In Section 2.6.5 we evaluate the three different heuristic selection techniques.

2.5.2 Optimal Ordering

Here we describe how to improve the COMPOSITE method by reordering the domains of

the attributes, i.e., the values in the matrixM, because the split condition (Equation 2.22)

depends on the similarity of values within the bounds [lx, ux] × [ly, uy]. Since our K-D tree

relies on the sort order of the underlying matrix, we can permute the rows and columns

before building the K-D tree to achieve a lower error.

To show how data ordering can improve the average sum squared error across the leaves,

take the K-D tree plots in Figure 2.6. The K-D tree splits are shown in black lines on top

of frequency heatmaps. The average error is printed below the x-axis. The trees are built

on 12 by 12 data with individual cell frequencies ranging from 0 to 4,000,000. The data is

constructed such that there is an optimal ordering that achieves 0 average sum squared error.

The left plot is unordered while the right plot more optimally sorts the data (we describe the

sorting in Section 2.5.3). It can be seen that (b) has grouped together similar values which

means leaves have lower error. To formalize the problem, let the matrixM = Di1 ×Di2 of

size Ni1 ×Ni2 be the frequency of values in the domains of attributes Ai1 and Ai2 . For some

index point (x, y), M[x, y] = |σAi1=Di1 [x]∧Ai2=Di2 [y](I)|. Denote the set of K-D tree leaves

generated from running the K-D tree algorithm as KD(M) = {[lxj , uxj ]× [lyj , u
y
j ] : j = 1, Bs}.

The K-D tree error is

err(KD(M))
def
=

1

Bs

 ∑
(x,y)∈[lxj ,uxj ]×[l

y
j ,u

y
j ]

(M[x, y]− s̄j)2
1/2

(2.23)
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Figure 2.6: Plots showing the frequency heatmaps and the K-D trees built on data that is
unsorted (left) and sorted using the 2D sort algorithm (right). The average K-D tree leaf
error is shown below.

where s̄j is the average value per cell; i.e., s̄j = sj/(u
x
j − lxj + 1)(uyj − l

y
j + 1).

Our goal is to solve

arg min
πx,πy

err(KD(πxMπy)) (2.24)

where πx and πy are row and column permutation matrices, respectively.

To solve this, we rely on heuristic techniques.

2.5.3 Heuristic Sorts

Inspired by the work in finding optimal matrix reorderings for data visualization and Rect-

angle Rule List minimization [91, 24, 17], we experiment with two different heuristic sort

algorithms described in [91] to more optimally orderM and reduce Equation 2.23. At a high

level, these heuristic techniques aim to permute a matrix to group together similar values. In

doing so, this helps to mimimize our K-D tree error because a rectangle around these values

will have lower error.

Both of the sort heuristic algorithms alternate between reordering the rows and columns
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1*0 + 2*0 + 3*35 + 4*11 = 149

1*30 + 2*0 + 3*0 + 4*23 = 122

1 2 3 4

1 10 18 4 0

2 30 0 0 23

3 0 0 35 11

1 2 3 4

1 10 18 4 0

2 0 0 35 11

3 30 0 0 23

Sugi Sort

(4)/1 = 4

(1 + 2)/2 = 1.5

(2 + 3)/2 = 2.5

1 2 3 4

1 0 0 35 11
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Figure 2.7: Sorting a matrix’s rows by 2D sort (top) and SUGI sort (bottom).

until either a maximum iteration has been reached or there is no change to the sort order.

The first sort algorithm, Sugiyama sort (SUGI), is traditionally used on binary data and

sorts the rows (columns) by the average index of the one-valued columns (rows). We modify

the sort to sort by the average index of zero-valued columns (rows) instead to encourage

more zero-valued rectangles and lower the likelihood of having a zero-valued cell in a non-

zero rectangle. The second sort, 2D sort, sorts the rows (columns) by the sum of index times

the values in the columns (rows); i.e., a weighted column (row) sum weighted by the index

value. Note that the index starts at one, not zero.

For example, Figure 2.7 shows a matrix with index values in blue next to the rows and

columns. The top diagram shows how SUGI sort reorders the rows of the matrix by the

average index value of the zeros. As the rows are sorted in ascending order, the middle row

moves to the top, the third row to the middle, and the first row to the bottom.

The second diagram shows how 2D sort reorders the rows of the matrix by the index

weighted sum of the values. In this case, the result is that the second and third rows switch.

The sorts would then continue by reordering the columns by the same techniques and so on.

To evaluate the two different sort heuristics, we first generate a 12 x 12 matrixM that
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has an optimal permutation order such that err(KD(M)) = 0 when using 12 K-D tree leaves.

We randomly permute the rows and columns ofM ten times and compare running the K-D

tree algorithm directly on the unsorted matrix versus first doing SUGI or 2D sort with

various values for the number of K-D tree leaves.

2.5b shows the difference in average K-D tree error (Equation 2.23) and standard de-

viation for the three methods across ten trials with the number of leaves varying from 6 to

30. You can see that 2D sort greatly outperforms SUGI sort and has no standard deviation

because it always reaches the same sort order. It also very quickly converges to having zero

error, but it does not learn the optimal order because it does not get zero error with 12

leaves. 2D sort’s success is due to the fact that it takes values into account as well as the

index position, therefore grouping together cells with similar frequencies. SUGI sort, on the

other hand, merely tries to group together the zeros. We do see, however, that SUGI sort

is better than no sort.

We show in Section 2.6.5 how using 2D sort impacts the overall query error of our MaxEnt

technique.

2.6 Evaluation

In this section, we evaluate the performance of EntropyDB in terms of query accuracy

and query execution time. We compare our approach to uniform sampling and stratified

sampling.

2.6.1 Implementation

We implemented our polynomial solver and query evaluator in Java 1.8, in a prototype sys-

tem that we call EntropyDB. We created our own polynomial class and variable types to

implement our factorization. We parallelized our polynomial evaluator (see Section 2.4.2) us-

ing Java’s parallel streaming library. We also used Java to store the polynomial factorization

in memory.

Lastly, we stored the polynomial variables in a Postgres 9.5.5 database and stored the
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polynomial factorization in a text file. We perform all experiments on a 64bit Linux machine

running Ubuntu 5.4.0. The machine has 120 CPUs and 1 TB of memory7. For the timing

results, the Postgres database, which stores all the samples, also resides on this machine and

has a shared buffer size of 250 GB.

2.6.2 Experimental Setup

For all our summaries, we ran our solver for 30 iterations or until the error was below 1×10−6

using the method presented in Sec. 2.2.3. Our summaries took under 1 day to compute with

the majority of the time spent building the polynomial and solving for the parameters.

We evaluate EntropyDB on two real datasets as opposed to benchmark data to mea-

sure query accuracy in the presence of naturally occurring attribute correlations. The first

dataset comprises information on flights in the United States from January 1990 to July

2015 [4]. We load the data into PostgreSQL, remove null values, and bin all real-valued at-

tributes into equi-width buckets. We further reduce the size of the active domain to decrease

memory usage and solver execution time by binning cities such that the two most popular

cities in each state are separated and the remaining less popular cities are grouped into

a city called ‘Other’. We use equi-width buckets to facilitate transforming a user’s query

into our domain and to avoid hiding outliers, but it is future work to try different buck-

etization strategies. The resulting relation, FlightsFine(fl_date, origin_city,

dest_city, fl_time, distance), is 5 GB in size.

To vary the size of our active domain, we also create FlightsCoarse(fl_date,

origin_state, dest_state, fl_time, distance), where we use the origin state

and destination state as flight locations. The left table in Figure 2.8 shows the resulting

active domain sizes.

The second dataset is 210 GB in size. It comprises N-body particle simulation data [76],

which captures the state of astronomy simulation particles at different moments in time

7The maximum amount of memory used in experiments was approximately 40 GB, meaning a system
this large is not required.
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Flights
Coarse

Flights
Fine

fl_date(FD) 307 307
origin(OS/OC) 54 147
dest(DS/DC) 54 147
fl_time(ET) 62 62
distance(DT) 81 81
# possible tuples 4.5× 109 3.3× 1010

Particles
density 58
mass 52
x 21
y 21
z 21

grp 2
type 3

snapshot 3
# possible
tuples 5.0× 108

Figure 2.8: Active domain sizes. Each cell shows the number of distinct values after binning.
Abbreviations shown in brackets are used in figures to refer to attribute names: e.g., OS
stands for origin_state.

(snapshots). The relation Particles(density, mass, x, y, z, grp, type,

snapshot) contains attributes that capture particle properties and a binary attribute, grp,

indicating if a particle is in a cluster or not. We bucketize the continuous attributes (density,

mass, and position coordinates) into equi-width bins. The right table in Figure 2.8 shows

the resulting domain sizes.

2.6.3 Query Accuracy

We first compare EntropyDB using our best statistic selection techniques of COMPOS-

ITE and 2D sort (see Section 2.6.5) to uniform and stratified sampling on the flights dataset.

We use one percent samples, which require approximately 100 MB of space when stored in

PostgreSQL. To approximately match the sample size, our largest summary requires only

600 KB of space in PostgreSQL to store the polynomial variables and approximately 200

MB of space in a text file to store the polynomial factorization. This, however, could be

improved and compressed further beyond what we did in our prototype implementation.

We compute correlations on FlightsCoarse across all attribute pairs and identify the

following pairs as having the largest correlations (C stands for “coarse”): 1C = (origin_state,
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MaxEnt Method No2D 1&2 3&4 1&2&3
Pair 1 (origin, distance) X X
Pair 2 (dest, distance) X X
Pair 3 (time, distance) X X
Pair 4 (origin, dest) X

Figure 2.9: MaxEnt 2D statistics including in the summaries. The top row is the label of
the MaxEnt method used in the graphs.

distance), 2C = (destination_state, distance), 3CF = (fl_time, distance)8, and 4C = (ori-

gin_state, destination_state). We use the corresponding attributes, which are also the most

correlated, for the finer-grained relation and refer to those attribute pairs as 1F, 2F, and 4F.

Following the discussion in Section 2.5, we have two parameters to vary: Ba (“breadth”)

and Bs (“depth”). In order to keep the total number of statistics constant, we require that

Ba ∗ Bs = 3000. This threshold allows for the polynomial to be built and solved in under

a day. Using this threshold, we build four summaries to show the difference in choosing

statistics based solely on correlation (choosing statistics in order of most to least correlated)

versus attribute cover (choosing statistics that cover the attributes with the highest combined

correlation). The first summary, No2D, contains only 1D statistics. The next two, Ent1&2

and Ent3&4, use 1,500 statistics across the attribute pairs (1, 2) and (3, 4), respectively. The

final one, Ent1&2&3, uses 1,000 statistics for the three attribute pairs (1, 2, 3). We do not

include 2D statistics related to the flight date attribute because this attribute is relatively

uniformly distributed and does not need a 2D statistic to correct for the MaxEnt’s underlying

uniformity assumption. Figure 2.9 summarizes the summaries.

For sampling, we choose to compare with a uniform sample and four different stratified

samples. We choose the stratified samples to be along the same attribute pairs as the 2D

statistics in our summaries; i.e., pair 1 through pair 4.

To test query accuracy, we use the following query template:

8Pair 3 is the same for FlightsCoarse and FlightsFine
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SELECT A1,..., Am, COUNT(*)

FROM R WHERE A1=‘v1’ AND ... AND Am=‘vm’

GROUP BY A1,..., Am

We test the approaches on 400 unique (A1,.., Am) values. We choose the attributes

for the queries in a way that illustrates the strengths and weaknesses of EntropyDB. For

the selected attributes, 100 of the values used in the experiments have the largest count

(heavy hitters), 100 have the smallest count (light hitters), and 200 (to match the 200

existing values) have a zero true count (nonexistent/null values). To evaluate the accuracy

of EntropyDB, we compute a |true−est|/(true+est) (a measure of relative difference) on

the heavy and light hitters. To evaluate how well EntropyDB distinguishes between rare

and nonexistent values, we compute the F measure,

2 ∗ precision ∗ recall/(precision + recall)

with

precision =
|{estt > 0 : t ∈ light hitters}|

|{estt > 0 : t ∈ (light hitters ∪ null values)}|

and

recall =
|{estt > 0 : t ∈ light hitters}|

100
.

We do not compare the execution time of EntropyDB to sampling for the flights data

because the dataset is small, and the execution time of EntropyDB is, on average, below

0.5 seconds and at most 1 sec. Sec. 2.6.4 reports execution time for the larger data.

Figure 2.10 (top) shows query error differences between all methods and Ent1&2&3 (i.e.,

average error for method X minus average error for Ent1&2&3) for three different heavy hitter

queries over FlightsCoarse. Hence, bars above zero indicate that Ent1&2&3 performs

better and vice versa. Each of the three query templates uses a different set of attributes

that we manually select to illustrate different scenarios. The attributes of the query are

shown in the column header in the figure, and any 2D statistic attribute-pair contained in
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Figure 2.10: Query error difference between all methods and Ent1&2&3 over
FlightsCoarse. The pair in parenthesis in the column header corresponds to the 2D
statistic pair(s) used in the query template. For reference, pair 1 is (origin/OB, distance/DT),
pair 2 is (dest/DB, distance/DT), pair 3 is (time/ET, distance/DT), and pair 4 is (origin/OB,
dest/DB).
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the query attributes is in parentheses. Each bar shows the average of 100 query instances

selecting different values for each template.

As the figure shows, Ent1&2&3 is comparable or better than sampling on two of the

three queries and does worse than sampling on query 1. The reason it does worse on query

1 is that it does not have any 2D statistics over 4C, the attribute-pair used in the query,

and 4C is fairly correlated. Our lack of a 2D statistic over 4C means we cannot correct for

the MaxEnt’s uniformity assumption. On the other hand, all samples are able to capture

the correlation because the 100 heavy hitters for query 1 are responsible for approximately

25% of the data. This is further shown by Ent3&4, which has 4C as one of its 2D statistics,

doing better than Ent1&2&3 on query 1.

Ent1&2&3 is comparable to sampling on query 2 because two of its 2D statistics cover

the three attributes in the query. It is better than both Ent1&2 and Ent3&4 because each of

those methods has only one 2D statistic over the attributes in the query. Finally, Ent1&2&3 is

better than stratified sampling on query 3 because it not only contains a 2D statistic over 2C

but also correctly captures the uniformity of flight date. This uniformity is also why Ent1&2

and a uniform sample do well on query 3. Another reason stratified sampling performs

poorly on query 3 is because the result is highly skewed in the attributes of destination state

and distance but remains uniform in flight date. The top 100 heavy hitter tuples all have

the destination of ‘CA’ with a distance of 300. This means even a stratified sample over

destination state and distance will likely not be able to capture the uniformity of flight date

within the strata for ‘CA’ and 300 miles.

Figure 2.10 (bottom) shows results for three different light hitter queries over FlightsCoarse.

In this case, EntropyDB always does better than uniform sampling. Our performance

compared to stratified sampling depends on the stratification and query. Stratified sam-

pling outperforms Ent1&2&3 when the stratification is exactly along the attributes involved

in the query. For example, for query 1, the sample stratified on pair 3 outperforms En-

tropyDB by a significant amount because pair 3CF is computed along the attributes in

query 1. Interestingly, Ent3&4 and Ent1&2 do better than Ent1&2&3 on query 1 and query
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Figure 2.11: F measure for light hitters and null values over FlightsCoarse (left) and
FlightsFine (right).

2, respectively. Even though both of the query attributes for query 1 and query 2 are statis-

tics in Ent1&2&3, Ent1&2 and Ent3&4 have more statistics and are thus able to capture

more zero elements. Lastly, we see that for query 3, we are comparable to stratified sampling

because we have a 2D statistic over pair 2C, and the other attribute, flight date, is relatively

uniformly distributed in the query result.

We ran the same queries over the FlightsFine dataset and found identical trends in

error difference. We therefore omit the graph.

An important advantage of our approach is that it more accurately distinguishes between

rare values and nonexistent values compared with stratified sampling, which often does not

have samples for rare values when the stratification does not match the query attributes. To

assess how well our approach works on those rare values, Figure 2.11 shows the average F

measure over fifteen 2- and 3-dimensional queries selecting light hitters and null values.

We see that Ent1&2 and 3&4 have F measures close to 0.72, beating all stratified sam-

ples and also beating Ent1&2&3. The key reason why they beat Ent1&2&3 is that these

summaries have the largest numbers of statistics, which ensures they have more fine grained

information and can more easily identify regions without tuples. Ent1&2&3 has an F mea-

sure close to 0.69, which is slightly lower than the stratified sample over pair 3CF but better
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than all other samples. The reason the sample stratified over pair 3CF performs well is that

the flight time attribute has a more skewed distribution and has more rare values than other

dimensions. A stratified sample over that dimensions will be able to capture this. On the

other hand, Ent1&2&3 will estimate a small count for any tuple containing a rare flight time

value and will be rounded to 0.

2.6.4 Execution Times

Scalability

To measure the performance of EntropyDB on large-scale datasets, we use three subsets

of the 210 GB Particles table. We select data for one, two, or all three snapshots (each

snapshot is approximately 70 GB in size). We build a 1 GB uniform sample for each subset of

the table as well as a stratified sample over the pair density and group with the same sampling

percentage as the uniform sample. We then build two MaxEnt summaries; EntNo2D uses no

2D statistics, and EntAll contains 5 2D statistics with 100 statistics over each of the most

correlated attributes, not including snapshot. We do not use any presorting method for this

experiment. We run a variety of 4D selection queries such as the ones from Sec. 2.6.3, split

into heavy hitters and light hitters. We record the query accuracy and execution time.

Figure 2.12 shows the query accuracy and execution time for three different selection

queries as the number of snapshots increases. We see that EntropyDB consistently does

better than sampling on query execution time, although both EntropyDB and stratified

sampling execute queries in under one second. Stratified sampling outperforms uniform

sampling because the stratified samples are generally smaller than their equally selective

uniform sample.

In terms of query accuracy, sampling always does better than EntropyDB for the heavy

hitter queries. This is expected because the bucketization of Particles is relatively coarse

grained, and a 1 GB sample is sufficiently large to capture the heavy hitters. We do see that

EntAll does significantly better than EntNo2D for query 1 because three of its five statistics
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Figure 2.12: Query average error and execution time for three 4D selection queries on the
Particles table. The stratified sample (orange) is stratified on (den, grp).

are over the attributes of query 1 while only 1 statistic is over the attributes of queries 2

and 3. However, the query results of query 3 are more uniform, which is why EntNo2D and

EntAll do well.

For the light hitter queries, none of the methods do well except for the stratified sample

in query 1 because the query is over the attributes used in the stratification. EntAll does

slightly better than stratified sampling on queries 2 and 3.

Solving Time

To show the data loading and model solving time of EntropyDB, we use FlightsFine

and measure the time it takes for EntropyDB to read in a dataset from Postgres to collect

statistics, to build the polynomial, and to solve for the model parameters for various Ba and

Bs (see Figure 2.13). When Ba = 2, we gather statistics over pair 1 and pair 2 (MaxEnt1&2),



62

0
0

2
333

2
500

2
750

2
1000

2
1500

3
333

3
500

3
750

3
1000

Method

1

10
20

Ex
ec

ut
io

n 
Ti

m
e

Lo
g 

Sc
al

e 
(H

rs
)

Bs
Ba

Load
BuildP
Solve

Figure 2.13: EntropyDB log scale execution times for loading the data, building the
polynomial, and solving for the parameters for various configurations of Ba and Bs on
FlightsFine.

and when Ba = 3, we gather statistics over pair 1, 2, and 3 (MaxEnt3).)

We see that the overall polynomial building and solving execution time grows exponen-

tially as Ba and Bs increase while the data loading time remains constant. The smallest

model has a execution time of 10.5 minutes while largest model (MaxEnt3) has a execution

time of 15.4 hours. The experiment further demonstrates that Ba impacts execution time

more than Bs. The method with Ba = 2, Bs = 750 has a faster execution time than the

method with Ba = 3, Bs = 500 even though the total number of statistics, 1,500 in both, is

the same.

Note that the data loading time (yellow) will increase as the dataset gets larger, but once

all the histograms and statistics are computed, the time to build the polynomial and solver

time are independent of the original data size; they only depend on the model complexity.

Group By Queries

To further expand on execution time results, we measure the execution time to compute

eight various 2- and 3-dimensional group-by queries instead of single point queries (sixteen

group-by queries in total) to show how the execution time depends on the active domain. As
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EntropyDB can only issue a single point query at a time (the query evaluation is already

parallelized), the group-by queries are run as sequences of point queries over the domain of

the query attributes.

Figure 2.14 shows a scatter plot of the query domain size versus the execution time for

2- and 3-dimensional group-by queries for the same models as used in Figure 2.6.4 (i.e.,

Ba = 0, 2, 3 and Bs varying form 333 to 1500). If a model takes longer than 10 minutes

to compute a group-by query, we terminate its execution. Each color represents a different

combination of Ba and Bs. Note that running a 3-dimensional group-by query on Postgres

on the full FlightsFine can take up to 17 minutes.
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Figure 2.14: Log scale query execution times for 2- and 3-dimensional group-by queries
versus size of query’s active domain on FlightsFine for various configurations of Ba and
Bs. The dashed line demarcates queries with fl_date as a group-by attribute and those
that do not.
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The overall trend we see is that models with a larger Ba are slower to execute, and

for models with the same Ba, larger Bs is slower. For example, the average execution for 2-

dimensional group-by queries for Ba = 2 is 8 seconds while it is 87 seconds for Ba = 3. This is

not surprising and matches the results from Figure 2.13. We again see that Ba = 2, Bs = 750

is faster than Ba = 3, Bs = 500 even though the total number of statistics is the same.

Some of the large models had an execution time of longer than 10 minutes for some of

the 3-dimensional queries, which is why their scatter point is not shown on all queries. Even

though their execution time was more than 10 minutes, each individual point query still ran

in under a second.

The results also show a surprising trend in that the execution time dips after the black

dashed line and then starts slowing increasing again. This dashed black line demarcates

queries containing the fl_date attribute, the one attribute not included in any 2-dimensional

statistic. Note that because the active domain of FD is small, the smaller domain queries

happen to contain FD, but the size of the domain is independent of the dip in the execution

time.

This unintuitive result is explained by the optimizations in Section 2.4.2. By using bit

vectors and maps to indicate which attributes and variables are contained in a polynomial

subterm, we can quickly decide if that subterm needs to be set to zero or not for query

evaluation. This mainly improves evaluation of correction subterms (i.e., (δ − 1) times 1D

sums) because the 1D sums contain subsets of the active domain and are more likely overlap

with the variables that can be set to zero. The more quickly we can decide if a subterm is

zero, the faster the evaluation.

For example, take the polynomial in Figure 2.2. If we are evaluating a query for A =

155 ∧B = 700 ∧ C = 700, then all other α, β, and γ variables need to be set to zero except

α155, β700, and γ700. This means the polynomial sums on lines 3, 5, 6, and 7 can all be set to

zero without having to evaluate each individual subterm on those lines because α155, β700,

and γ700 are not contained in any of those subterms and A, B, and C attributes are meant

to be zero.
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The FD attribute being one of the group-by attributes indicates that all variables rep-

resenting FD except for the one being selected can be set to zero. However, as FD is not

part of a statistic, there are no correction terms being multiplied by subsets of the FD active

domain. Therefore, there are fewer chances to set a subterm to zero, meaning the overall

query execution is slower.

This evaluation presents and interesting tradeoff between model size, statistic attributes,

and query execution. One the one hand, a larger model will take longer to run, in general. On

the other hand, more statistics allow for more zero setting optimizations in query evaluation.

We also see that while EntropyDB can handle 2-dimensional group-by queries, especially

if Ba = 2, it struggles to perform for 3-dimensional ones. However, as the strength of

EntropyDB is in querying for light hitters, EntropyDB will miss fewer groups than

sampling techniques which are more impacted by heavy hitters. We leave it as future work

further optimize large domain group-by queries.

2.6.5 Statistic Selection

Selection Technique

We evaluate the three different statistic selection heuristics, described in Section 2.5.1, on

FlightsCoarse restricted to the attributes (date, time, distance). We gather statistics

using the three different techniques and using different budgets on the attribute pair (time,

distance). There are 5,022 possible 2D statistics, 1,334 of which exist in FlightsCoarse.

We evaluate the accuracy of the resultant count of the query

SELECT time, dist, COUNT(*)

FROM Flights WHERE time = x AND dist = y

GROUP BY time, dist

for 100 heavy hitter (x, y) values, 100 light hitter (x, y) values, and 200 random (x, y)

nonexistent/zero values. We choose 200 zero values to match the 100+100 heavy and light

hitters.
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Figure 2.15: Illustration of query accuracy versus budget for the three different heuristics and
three different selections: (i) selecting 100 heavy hitter values, (ii) selecting 200 nonexistent
values, and (iii) selecting 100 light hitter values.

Figure 2.15 (i) plots the query accuracy versus method and budget for 100 heavy hitter

values. Both LARGE and COMPOSITE achieve almost zero error for the larger budgets

while ZERO gets around 60 percent error no matter the budget.

(ii) plots the same for nonexistent values, and clearly ZERO does best because it captures

the zero values first. COMPOSITE, however, gets a low error with a budget of 1,000 and

outperforms LARGE. Interestingly, LARGE does slightly worse with a budget of 1,000

than 500. This is a result of the final value of P being larger with a larger budget, and this

makes our estimates slightly higher than 0.5, which we round up to 1. With a budget of 500,

our estimates are slightly lower than 0.5, which we round down to 0.

Lastly, (iii) plots the same for 100 light hitter values, and while LARGE eventually

outperforms COMPOSITE, COMPOSITE gets similar error for all budgets. In fact,

COMPOSITE outperforms LARGE for a budget of 1,000 because LARGE predicts that
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more of the light hitter values are nonexistent than it does with a smaller budget as less

weight is distributed to the light hitter values.

Unsurprisingly, we see that COMPOSITE is the best method to use across all queries.

However, the COMPOSITE method is more complex and takes more time to compute. We

do learn that if heavy hitter queries are the only relevant queries in a particular workload, it is

unnecessary to use the COMPOSITE method as LARGE does just as well. Also, ZERO

is the best if existence queries are the most important (e.g., if determining set containment).

So while COMPOSITE is best for a handling a variety of queries, it may not be necessary,

depending on the query workload.

Statistic Accuracy

We now investigate, in more detail, how the different 2D statistic attribute choices and how

presorting the matrix impacts query accuracy. We look at the query accuracy of the four

different MaxEnt methods used in Figure 2.10 using both 2D sort and no sort. We also

include the MaxEnt method No2D for comparison although it does not use any sorting. The

no sort technique maintains the natural ordering of the domains. We use FlightsCoarse

and FlightsFine and the query templates from Section 2.6.3. We run six different two-

attribute selection queries over all possible pairs of the attributes covered by pair 1 through

4; i.e., origin, destination, time, and distance. We select 100 heavy hitters, 100 light hitters,

and 200 null values.

Figure 2.16 shows the average error for the heavy hitters and the light hitters and

shows the average F measure across the six queries. The left side shows the error when no

presorting is used, and the right side shows the error when 2D sort is used. We first consider

the different attribute selections. We see that the summary with more attribute pairs but

fewer buckets (more “breadth”), Ent1&2&3, does best on the heavy hitters. On the other

hand, for the light hitters, we see that the summary with fewer attribute pairs but more

buckets (more “depth”) and still covers the attributes, Ent3&4, does best. Ent3&4 doing

better than Ent1&2 implies that choosing the attribute pairs that cover the attributes yields
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Figure 2.16: (a, b) Error over 2D heavy hitter queries, (c, d) error over 2D light hitter
queries, and (e, f) F measure over 2D light hitter and null value queries across different
MaxEnt methods over FlightsCoarse and FlightsFine using no sort (left side) and
2D sort (right side).
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better accuracy than choosing the most correlated pairs because even though Ent1&2 has

the most correlated attribute pairs, it does not have a statistic containing flight time. Lastly,

Ent1&2&3 does best on the heavy hitter queries yet slightly worse on the light hitter queries

because it does not have as many buckets as Ent1&2 and Ent3&4 and can thus not capture

as many regions in the active domains with no tuples.

When considering presorting the data, we see that 2D sort does not have any significant

impact on heavy hitter accuracy, with an improvement on the order of 0.001. For light

hitters, we see a slight average error improvement using 2D sort, and for the F measure, we

see a slight decrease in measure. Ent2&3 has the largest improvement in light hitter query

error because of the improvement in resorting pair 3 (distance and time) along with its large

K-D tree leaf budget. Ent2&3 has 1,500 K-D tree leaves which is enough to capture the

1,334 nonzero values of pair 3.

The decrease in F measure and limited improvement for query accuracy is best explained

by looking at the sorted and unsorted frequency heatmaps and K-D trees of the pair 2C

for Ent1&2&3 on FlightsCoarse, shown in Figure 2.17. We see that the average K-D

tree error does, in fact, decrease, which should indicate an improvement in accuracy and F

measure. However, upon closer inspection of the K-D tree leaves, we see that the sorted tree

actually has put more zeros in leaves with some small, nonzero values. This, in turn, causes

MaxEnt1&2&3 to believe those zeros actually exist, therefore decreasing the F measure.

This result implies that improving K-D tree error is not always enough to guarantee a high

F measure because every zero that is in a leaf with some nonzero value will be misclassified

as existing.

2.7 Discussion

2.7.1 Future Work

The above evaluation shows that EntropyDB is competitive with stratified sampling overall

and better at distinguishing between infrequent and absent values. Importantly, unlike
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Figure 2.17: Plots showing the frequency heatmap of the pair 2 attributes of MaxEnt1&3&4
of FlightsCoarse that is unsorted (left) and sorted using the 2D sort algorithm (right).
The average K-D tree error is shown below.
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stratified sampling, EntropyDB’s summaries permit multiple 2D statistics. Further, as

EntropyDB is based on modeling the data, it does not actually need access to the original,

underlying data. If a data scientist only has access to, for example, various 2-dimensional

histogram queries of the entire dataset, EntropyDB would still be able to build a model of

the data and answer queries. Sampling would only be able to handle queries that are directly

over one of the histograms. The main limitations of EntropyDB are the dependence on

the size of the active domain, correlation-based 2D statistic selection, manual bucketization,

and limited query support.

To address the first problem, our future work is to investigate using standard algebraic

factorization techniques on non-materializable polynomials. By further reducing the polyno-

mial size, we will be able to handle larger domain sizes. We also will explore using statistical

model techniques to more effectively decompose the attributes into 2D pairs, similar to [48].

To no longer require bucketizing categorical variables (like city), we will research hierarchi-

cal polynomials. These polynomials will start with coarse buckets (like states), and build

separate polynomials for buckets that require more detail. This may require the user to wait

while a new polynomial is being loaded but would allow for different levels of query accuracy

without sacrificing polynomial size.

Addressing our queries not reporting error is non-trivial and requires combining the errors

in the statistics with the errors in the model parameters with the errors in making the

uniformity assumption for the attributes not covered by a statistic. Our future work will

be to understand how the error depends on the each of these facets and developing an error

equation that propagates these errors through polynomial evaluation.

2.7.2 Handling Joins and Data Updates

When building our MaxEnt summary, we assume there was only a single relation being

summarized and the underlying data is not updated. We now discuss two extensions of our

summarization technique to address both of these assumptions.
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Joins

In Section 2.2, we introduce the MaxEnt model over a single, universal (pre-joined) re-

lation R and an instance I of R. Now, suppose the data we want to summarize con-

sists of r relations, R1, . . . , Rr, each with an associated instance I1, . . . , Ir. To describe

our approach, we assume each Ri joins with Ri+1 by an equi-join on attribute Aji,i+1
; i.e.,

R = R1 ./R1.Aj1,2=R2.Aj1,2
R2 ./ . . . ./ Rr. Our technique can easily be extended to work for

multiple equi-join attributes, but for simplicity, we describe the approach for a single join

attribute. Let R(A1, . . . , Am) be the global schema of R1 ./ R2 ./ . . . ./ Rr with active

domains as described in Section 2.2.

The simplest approach to handle joins is to join all relations and build a summary over

the universal relation. Once the summary is built, the universal relation can be removed.

While this summary can now handle queries over R, it requires R to be computed once,

which can be an expensive procedure.

Our approach is to build a separate MaxEnt data summary for each instance:

{(P1, {αj}1,Φ1), . . . , (Pr, {αj}r,Φr)}. A linear query q with associated predicate πq over R

is answered by iteration over the distinct values in the join attributes; i.e.

E[〈q, I〉] =
∑

d1∈Dj1,2

. . .
∑

dr−1∈Djr−1,r

E[〈q′, I1〉] . . .E[〈q′, Ir〉]

s.t. πq′ = πq ∧ (R1.Aj1,2 = d1) ∧ (R2.Aj1,2 = d1) ∧ . . . ∧ (Rr.Ajr−1,r = dr−1).

where q′ is the linear query associated with πq′ and Ri.Aj denotes attribute Aj in relation

Ri. We abuse notation slightly in that E[〈q′, Ii〉] is the answer to q′ projected on to the

attributes of Ri (i.e., setting ρ ≡ true for attributes not in Ri). Note that if q is only over a

subset of relations, then the summation only needs to be over the distinct join values of the

relations in the query.

While this method will return an approximate answer, it does rely on iteration over the

active domain of the join attributes, which, as we shown in Figure 2.14, can be expensive
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for larger domain sizes. However, for each relation Ri, if we modify the statistic constraints

associated with the 1D statistics of the join attribute Aji,i+1
, we can improve runtime by

decreasing the number of iterations in the summation.

At a high level, before learning multi-dimensional statistics, for each ` ∈ Jji,i+1
(i.e., each

1D statistic index for attribute Aji,i+1
), we replace (c`, s`) by (c`, s̄) where s̄ is the average s`

value of a group of statistics in Jji,i+1
. This is similar to building a COMPOSITE statistic

over Aji,i+1
except instead of replacing each individual statistic by the composite, we are

modifying the constraint for each statistic. We do do not replace the 1D statistics because

we still want to be able to query at the level of an individual tuple. As our querying technique

is equivalent to derivation, if we remove the fine-grained 1D statistics, there is nothing to

derivate by if a query is issued over a 1D statistic.

Specifically, with B′s ≤ Bs as the budget for the 1D statistic, suppose we learn that

{gi,i+1
k = [lik, u

i
k] : k = 1, B′s} is the optimal set of boundaries for join attribute Aji,i+1

from

relation Ri to Ri+1. These can be learned with the K-D tree method in Section 2.5 by sorting

and then repeatedly splitting on the single axis until the budget B′s is reached. We then

apply the same bounds of {[lik, uik] : k = 1, B′s} on any multi-dimensional statistic covering

Aji,i+1
in Ri and Ri+1 and the 1D statistic covering Aji,i+1

in Ri+1 (see Example 2.7.1).

As this boundary is learned before multi-dimensional statistics are built, when we build a

2-dimensional statistic covering Aji,i+1
, we seed the K-D tree with the Aji,i+1

axis splits of

{gi,i+1
k : k = 1, B′s} and repeatedly split on the other axis until reaching our budget Bs.

Using this transfer boundary technique and rewriting the summation, we can answer

queries over joins by iterating over a single point in each range boundary rather than all

individual values. The following example gives intuition as to how this boundary transfer

works.

Example 2.7.1. Suppose we have two relations R(A,B) and S(B,C) with instances IR and

IS where each attribute has an active domain size of 3. We also have a query q with predicate

πq = (A = a1 ∧ C = c1) over R ./ S. Let each relation build a data summary (P, {αj},Φ)
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using a 1D composite statistic over B and a 2D statistic over their two attributes with Bs = 4

and B′s = 2. Lastly, for the composite statistic, suppose we learn that the optimal boundaries

for B are [b1, b2] and [b3], meaning the statistics over B will be

(B = b1, (sb1 + sb2)/2)

(B = b2, (sb1 + sb2)/2)

(B = b3, sb3)

where sbi is the number of tuples where B = bi. Note that the constraint for b1 and b2 is the

same which implies nβ1∂P/P∂β1 = nβ2∂P/P∂β2 by Equation 2.1.

By our naïve strategy, the answer to q is

E[〈q, IR ./ IS〉] =
∑

b∈[b1,b3]

E[〈q′, IR〉]E[〈q′, IS〉]

s.t. πq′ = (A = a1 ∧ C = c1 ∧B = b).

This can be rewritten in terms of polynomial derivation as

=
nRα1β1
PR

∂PR
∂α1∂β1

nSβ1γ1
PS

∂PS
∂β1∂γ1

+
nRα1β2
PR

∂PR
∂α1∂β2

nSβ2γ1
PS

∂PS
∂β2∂γ1

+
nRα1β3
PR

∂PR
∂α1∂β3

nSβ3γ1
PS

∂PS
∂β3∂γ1

.

Consider two cases: when the other 2-dimensional statistics have the same boundaries on

B and when they do not. For the first case, let the 2D statistics over R and S be as shown

by the rectangles all in black with the red line for S.
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R S

δ3

δ1
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δ2

δ8

δ6

δ7

δ5

b1 c1b2 c2b3 c3

a3 b3

a2 b2

a1 b1

Using these statistics, E[〈q, IR ./ IS〉] now becomes

=
nRα1β1
PR

δ1
nSβ1γ1
PS

δ5 +
nRα1β2
PR

δ1
nSβ2γ1
PS

δ5 +
nRα1β3
PR

δ2
nSβ3γ1
PS

δ7

= 2
nRα1β1
PR

δ1
nSβ1γ1
PS

δ5 +
nRα1β3
PR

δ2
nSβ3γ1
PS

δ7

where the second line follows because nβ1∂P/P∂β1 = nβ2∂P/P∂β2. Notice how instead of

summing over all distinct values in B, we are summing over B′s values.

In we had statistics over S that were the rectangles in black with the green line (the

boundaries on B do not match those of the composite 1D statistic), E[〈q, IR ./ IS〉] would be

=
nRα1β1
PR

δ1
nSβ1γ1
PS

δ5 +
nRα1β2
PR

δ1
nSβ2γ1
PS

δ6 +
nRα1β3
PR

δ2
nSβ3γ1
PS

δ7

which does not simplify.

Formally, suppose we only use the transfer boundary technique for Ajr−1,r , the last join

attribute; i.e., we make the 1D composite statistic boundaries of Ajr−1,r the same in Rr−1
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and Rr. Using |gi,i+1
k | = uik − lik + 1 (the size of the range), we can rewrite E[〈q, I〉] as

E[〈q, I〉] =
∑

d1∈Dj1,2

. . .
∑

dr−1∈Djr−1,r

r∏
i=1

E[〈q′, Ii〉]

=
∑

d1∈Dj1,2

. . .
∑
gr−1,r
k

∑
dr−1∈gr−1,r

k

r∏
i=1

E[〈q′, Ii〉]

=
∑

d1∈Dj1,2

. . .
∑
gr−1,r
k

E[〈q′r, Ir〉]
∑

dr−1∈gr−1,r
k

r−1∏
i=1

E[〈q′, Ii〉]

=
∑

d1∈Dj1,2

. . .
∑
gr−1,r
k

[
|gr−1,rk | ∗ E[〈q′r−1, Ir−1〉] ∗ E[〈q′r, Ir〉] ∗

r−2∏
i=1

E[〈q′, Ii〉]
]

s.t. πq′r−1
= π ∧ (R1.Aj1,2 = d1) ∧ . . . ∧ (Rr.Ajr−1,r = true) ∧ (Rr−1.Ajr−1,r = Djr−1,r [l

i
k])

πq′r = π ∧ (R1.Aj1,2 = d1) ∧ . . . ∧ (Rr−1.Ajr−1,r = true) ∧ (Rr.Ajr−1,r = Djr−1,r [l
i
k]).

The step from line one to line two is replacing the sum over dr−1 ∈ Djr−1,r to a sum over

boundaries {gr−1,rk } and a sum over distinct values in the boundary. In line three, we pull

out the query over Ir because the answer for E[〈q′, Ir〉] is the same for each dr−1 ∈ gr−1,rk

as they use the same composite statistic. Therefore, we pull out the query and modify the

query’s predicate to be over the lower boundary value (any value in the boundary would

produce equivalent results).

In line four, we perform the same trick and pull out the query over Ir−1 because E[〈q′, Ir−1〉]

will also be the same for each dr−1 ∈ gr−1,rk . Lastly, because
∏r−2

i=1 E[〈q′, Ii〉] is independent

of Rr−1 as it does not contain Ir−1, we can also pull it out of the sum. At the end, we get

a summation over the value one that repeats |gr−1,rk | times. This sum rewriting trick can be

applied to all attributes with shared boundaries on all statistics covering the join attributes.

By performing this boundary transfer trick, we have replaced the sum for distinct values

of Ajr−1,r with the sum over lower boundary points of {gi,i+1
k }. We can repeat this boundary

transfer for any of the dense distinct join values to make the final join algorithm efficient.



77

Algorithm 4 Update Model

f o r (∆t) do
Φ = updateStats(Φ , ∆t)
i f ( not {αj} being updated ) do

i f timeToRebuild do
(P, {αj},Φ) = rebuildModel(R)

e l s e
{αj} = updateParams(Φ , {αj})

Note that this technique does lose accuracy as we are no longer building building fine-grained

1D statistics over the join attributes and are using potentially suboptimal boundaries for

other multi-dimensional statistics.

Updates

Another key assumption made in Section 2.2 is that the data being summarized is read only

and not updated. If we relax that assumption and let the underlying data change, our model

needs to be updated, too. We make the assumption that data updates are represented as

single tuple additions or deletions. For example, a value change can be represented as a tuple

deletion followed by a tuple addition. Alg. 4 describes our update technique.

The intuition behind our algorithm is that as updates come in, it is satisfactory to initially

only update the polynomial parameters {αj} while keeping the statistic predicates the same.

However, as the data continues to be updated, the underlying correlations and relationships

of the attributes may change, meaning the statistic predicates are no longer optimal. When

this occurs, the entire summary needs to be rebuilt. Ideally, the rebuilding would happen

overnight or when the summary is not in high demand.

Out algorithm works as follows. For each tuple update, updateStats modifies sj for each

predicate πj that t satisfies. sj increases or decreases by one depending of it t is being added

or removed. It is important to realize that updateStats does not update the predicates

defining the statistics, just the predicate values.
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After the statistics are updated, we check if either updateParams or rebuildModel is

currently running or in progress. If it is, we move on to the next update, effectively batching

our changes. If no update is in progress, we update or rebuild our model. updateParams

simply updates the polynomial parameters {αj} by running Alg. 1 initialized by the last

solved for parameters. By initializing our model at the last know solution, we decrease

convergence time because many of the parameters are already solved for and do not need

to change. In contrast to simply updating our parameters, rebuildModel starts from scratch

and regenerates the statistics, polynomial, and parameters.

The final method to discuss, timeToRebuild, decides whether to update or rebuild the

model. There are numerous different ways to defining timeToRebuild, and we give three

such possibilities below.

• When the number of tuple updates reaches some predefined threshold B.

• When the system does not have many users, meaning there is more compute power to

rebuild the summary.

• When attribute correlations are not accurately represented in Φ. i.e., when some at-

tribute pair in Φ is uniformly distributed or when some attribute pair in R is correlated

but not included in Φ.

2.7.3 Connection to Probabilistic Databases

At a high level, EntropyDB learned a probability distribution of the data so that each

possible instance has some associated probability of existing. Since this possible world se-

mantics is the same semantics as used by probabilistic databases, how does EntropyDB

relate to probabilistic databases [116, 45]?

Recall that probabilistic databases store uncertain data, and, like EntropyDB, represent

the probability of a tuple as Pr(t) =
∑

I∈PWD|t∈I Pr(I). The uncertainty in the data arises

from the application such as data extraction, data integration, or data cleaning. Probabilistic

databases are commonly stored as tuple independent (TI) databases where each tuple has
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an associated marginal probability and is an independent probabilistic event.

EntropyDB, on the other hand, does not store the marginal probabilities. Recall that

for EntropyDB, if we let q = t` for some tuple t`, then, from Equation 2.11, we can

calculate the expected number of times tuple t` appears in an instance. If we divide by n,

we calculate the expected percent of times tuple t` appears in an instance. This, in general,

is not the same as the marginal probability. It turns out that when n = 1, the two are

equivalent.

Lemma 2.7.2. For some tuple t` and associated linear query t` (query with 1 in the place

of tuple t` and 0 elsewhere), when n = 1, E[〈t`, I〉] is the marginal probability of a tuple; i.e.,

Pr(t` ∈ I).

Proof. We will use the same trick as in Section 2.2.2 by extending the polynomial with a

new variable β = 1 representing the query t`. Denote this extended polynomial as Pt` .

Following Equation 2.10, we get

(Pt`)
n =

(∑
i=1,d

∏
j=1,k

α
〈cj ,ti〉
j β〈t`,ti〉

)n

=

∏
j=1,k

α
〈cj ,t`〉
j β +

∑
i=1,d
i 6=`

∏
j=1,k

α
〈cj ,ti〉
j β〈t`,ti〉


n

=

((
β
∂Pt`

∂β

)
+

(
Pt` − β

∂Pt`

∂β

))n
. (2.25)
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Note that β〈t`,ti〉 = 0 when ` 6= i. We use this rewriting in finding the marginal probability.

Pr(t` ∈ I) = 1− Pr(t` /∈ I)

= 1− 1

(Pt`)
n

∑
I:t` /∈I

∏
j=1,k

α
〈cj ,I〉
j β〈t`,I〉

= 1− 1

(Pt`)
n

∑
i=1,d
i 6=`

∏
j=1,k

α
〈cj ,ti〉
j β〈t`,ti〉


n

= 1− 1

(Pt`)
n

(
Pt` − β

∂Pt`

∂β

)n
= 1−

(
1− β

Pt`

∂Pt`

∂β

)n

The third line follows a similar proof as Equation 2.6. From Equation 2.11 and since β = 1

and n = 1, we get

Pr(t` ∈ I) =
1

Pt`

∂Pt`

∂β

= E[〈t`, I〉]

It is important to note that although we can calculate the marginal probability, the

probabilities are not independent; i.e., we do not have a TI probabilistic database.

2.7.4 Connection to Graphical Models

The Principle of Maximum Entropy is well studied, and it is known that the maximum

entropy solution with marginal constraints (i.e., COUNT(*) constraints) is equivalent to the

maximum likelihood solution for exponential family models [100, 120, 124, 77]. This can be
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seen by transforming Equation 2.2 into exponential form

Pr(I) = exp

((
k∑
j=1

θjφj(I)

)

− log
∑

I∈PWD

(
exp

(
k∑
j=1

θjφj(I)

)))
.

Further, this exponential form is equivalent to the probability distribution defined over an

exponential family Markov Network or, more generally, factor graph [131]. Markov networks

are factor graphs where the factors representing the parameterization of the probability

distribution are defined solely on maximal cliques in the graph.

This connection implies that we can use MLE techniques to solve for the parameters θj,

and, in fact, the modified gradient descent technique we use in Section 2.2.3 is the same as

the iterative proportional fitting (also called iterative scaling algorithm) used to solve the

parameters in exponential family graphical models.

It is important to note that because we use the slotted possible world semantics, we are

able to factorize our partition function Z to a multi-linear polynomial raised to the power n

(see Equation 2.5). This simplification allows for drastic performance benefits in terms of

solving and query answering (Section 2.3).

2.8 Conclusion

We presented, EntropyDB, a new approach to generate probabilistic database summaries

for interactive data exploration using the Principle of Maximum Entropy. Our approach

is complementary to sampling. Unlike sampling, EntropyDB’s summaries strive to be

independent of user queries and capture correlations between multiple different attributes at

the same time. Results from our prototype implementation on two real-world datasets up

to 210 GB in size demonstrate that this approach is competitive with sampling for queries

over frequent items while outperforming sampling on queries over less common items.
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Chapter 3

THEMIS: SAMPLE DEBIASING IN AN OPEN WORLD
DATABASE SYSTEM

The research question addressed in this chapter is how to develop a system that automat-

ically debiases a sample of data using population aggregates for population query answering.

As mentioned in Chapter 1, data samples are increasingly easy to access and analyze with

the help of websites and data repositories. Additionally, data analytic toolkits, like Python,

are becoming more mainstream. These two factors have lead to data science becoming tightly

coupled with sample analysis.

Modern data scientists, however, face the added challenge that the data samples they seek

to analyze are not always an accurate representation of the population they are sampled from.

For example, social scientists today study migration patterns from Twitter samples [133], but

Twitter users are not a uniform random sample of all people. This phenomenon is known as

sample selection bias [42] and is problematic because it can lead to inaccurate analyses.

Correcting this bias, however, is difficult because the sampling mechanism in today’s

data sources, i.e., the probability of some population tuple being included in the sample,

is typically not known. This means common techniques such as the Horvitz-Thompson

estimator [22] (see Section 3.3.1) are not applicable.

Population aggregates can facilitate data debiasing by providing information on what the

true distribution of the population is, but the debiasing process remains tedious and error

prone. There is no general, automatic technique or system for debiasing using aggregates.

With the ultimate goal of answering queries approximately over the population, data scien-

tists are forced to manually implement one-off, specialized solutions [134] tailored towards

specific datasets, such as census reports [97].
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In this chapter, we present Themis, which is, to our knowledge, the first open world

database management system (DMBS) that automates and encapsulates the debiasing pro-

cess. The data scientist simply inserts a sample and aggregates and then asks queries, getting

approximate results as if the queries were issued on the population. Themis is an open world

DBMS as it inherently treats relations as samples and assumes tuples not in the sample could

still exist.

To achieve our goal, at the heart of our system, we develop and combine two different

debiasing techniques: reweighting the sample and learning the probability distribution of the

population. The former allows us to more accurately answer heavy hitter queries while the

later ensures we can answer queries about tuples that may not exist in the sample.

For sample reweighting, we investigate two different approaches: modifying linear re-

gression and applying an existing aggregate fitting procedure. For learning the probability

distribution, we utilize Bayesian networks to build an approximate population probability

distribution. The novelty of our system is in not only building two separate debiasing tech-

niques but also combining them into one unified system for query answering. Depending on

the query issued, we automatically choose which approach is best using a simple, effective

heuristic.

We build a prototype database system called Themis, named after the Greek titan for

balance and order who is often seen holding a set of scales and accurately represents our

goal of rebalancing data. Themis treats relations as samples and automatically corrects

for sample selection bias using population-level aggregates. We evaluate Themis on three

datasets to show that Themis is more accurate at answering point queries and top-k queries

than standard uniform reweighting, linear regression reweighting (Figure 3.17), and a variety

of Bayesian network probabilistic approaches (Figure 3.16).

In summary, the contributions of this chapter are as follows:

• The first open world database system that takes a sample and population aggregates

and automatically debiases the data for approximate population query answering (Sec-
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tion 3.2).

• The development and application of debiasing techniques and a novel hybrid approach

integrating them (Section 3.3).

• Two optimization techniques for faster preprocessing time: population aggregate prun-

ing and model simplification (Section 3.4).

• Detailed experiments on three datasets showing that Themis achieves a 70 percent

improvement in the median error when compared to a naïve scaling approach when

asking about heavy hitter tuples (Table 3.7, Section 3.5). We further show Themis is

robust to differences in the support of the sample and the population.

The chapter is organized as follows. Section 3.1 gives a motivating example for Themis,

Section 3.2 gives the high level model of Themis, Section 3.3 describes our technique in

detail, and Section 3.4 discusses our optimization. Finally, Section 3.5 provides experimental

results.

3.1 Motivating Example

A data scientist is trying to estimate the number of flights under 30 min in different states

of the United States in a year. She has a sample of all flights in the United States skewed

towards four major states, but she does not know how badly it is skewed. Further, she has

access to how many flights in total leave from each state. She decides to analyze this data

and focus only on short flights on either the East or West Coast of the country.

Being a database user, she ingests the data into a SQL database and prepares to analyze

it. As this dataset is a sample, she has three choices for how to prepare her data for analysis:

do nothing, ignore skew and uniformly rebalance, or use state information to reweight flights

based on the number of flights leaving each state. For the second option, she knows there

are 7 million flights in the United States per year but only 700,000 in her sample. Therefore,

she adds a weight attribute to the dataset and gives each tuple a weight of 10, indicating

the each tuple in her sample represents 10 tuples in the real world. For the third option, if
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Query True Raw Unif US State Themis
CA 7855 2846 28460 7843 7843
FL 2 1 10 3 3
OH 119 1 10 70 70
ME 2 0 0 0 3

Table 3.1: Query results of the data scientists using the raw sample, a uniformly scaled
sample, a state-scaled sample, and Themis.

she knows there are N flights leaving from some state per year but only n leaving that state

in her sample, she sets the weight of each flight from that state to be N/n.

Having done preprocessing work, she is ready to ask for the number of quick flights from

various states. She starts issuing point queries of the form

SELECT SUM(weight) AS num_flights

FROM flights WHERE flight_time <= 30 min

AND origin_state = ‘<state>’;

The results of a few state queries are shown in Table 3.1 where Raw represents option one,

Unif represents option two, US State represents option three, and Themis represents our

system’s answer. Themis and US State use the single aggregate to produces more accurate

answers than Raw and Unif because they are correcting for the fact that some flights leaving

the four major states are overrepresented in the samples. More importantly, Themis does

the rebalancing automatically, which will become time consuming to do manually for more

complex aggregates. Themis is also able to answer queries about tuples not in the sample,

like ME.

3.2 Themis Model

We now describe our data debiasing setup and give an overview of Themis (see Figure 3.1).

At a high level, Themis uses a sample and population aggregate data to build a model which

approximately answers population queries. We use the term model because it encapsulates

that we use both a reweighted sample and a probabilistic model to answer queries. Both
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Symbol Definition
P population
S sample
n population size
m number attributes
nS sample size
Ni size of domain of Ai
B |Γ|, aggregate budget
di dimensionality of aggregate i
Mi |Γi|
Γ {Gγi,COUNT(*)(P )}
Γi {(ai,k, ci,k) : k = 1, . . . ,Mi}
Γ
A
i [ai,k], k = 1, . . . ,Mi matrix

Γ
C
i [ci,k], k = 1, . . . ,Mi vector

Table 3.2: Themis common notation.

techniques treat the aggregates as constraints to be satisfied.

Note that the population aggregates do not need to be exact. They may contain errors,

be computed at different times, or be purposely perturbed. For example, the 2020 US census

will add random noise to their reports to be differentially private [52]. Themis will still treat

these aggregates as marginal constraints to be satisfied.

We assume there is a well defined, but unavailable population P of (approximate) size n

with m attributes A = {A1, . . . , Am} (attributes listed in Table 3.2. P is unavailable because

either it does not exist (e.g., a dataset of all graduate students in the US) or is not released

to the public (e.g., a hospital’s private medical data). The active domain of each attribute

Ai, of size Ni, is assumed to be discrete and ordered1.

We assume there is a sample S drawn independently but not uniformly from P of size nS

such that for each tuple t ∈ P , t has probability PrS(t) of being included in S. The subscript

S indicates the sampling probability (also called sampling mechanism or propensity score).

This probability, however, is not known a priori.

1We support continuous data types by bucketizing their active domains.



87

Model Learner

Sample 𝐵 Aggregates

Query Interface

learn probability 
distributions

Attributes W

sample reweight

Reweighted Sample Bayesian Network

Pr 𝑡 ∈ 𝑃

Query Evaluator

Figure 3.1: Themis architecture.

Lastly, we have Γ, a set of results of B aggregate COUNT(*) queries of various dimensions

computed over the population denoted

Γ = {Gγi,COUNT(*)(P ) : i = 1, B}

whereGγi,COUNT(*)(P ) is an aggregate query of dimension di; i.e., γi ⊆ A (see Example 3.2.1).

Each aggregate query Γi returns a set of Mi attribute value-count pairs denoted

Γi = {(ai,k, ci,k) : k = 1, . . . ,Mi}

where ai,k is the vector of di attribute values associated with group k of aggregate i, and ci,k

is the group’s count.

If the aggregates are exact, for all i,
∑

k ci,k = n. Otherwise,
∑

k ci,k approximates n.

Further, Nj, the number of distinct values of attribute Aj, can be calculated from any Γi if

Aj ∈ γi or, if there is no such i, S.
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We do not require the aggregates to cover the attributes, meaning
⋃
i=1,B γi ⊆ A; i.e., we

do not assume that
⋃
i=1,B γi = A.

When we wish to refer to all the group values and counts of aggregate i separately, we

will use Γ
A

i and Γ
C

i , respectively.

Example 3.2.1. Following the example from Section 3.1, assume the population P and

sample S are the following sets of domestic flights in the United States. date is the month

and o_st and d_st are origin and destination states, respectively.

P =

date o_st d_st

01 FL FL

01 FL FL

02 FL NY

01 NC FL

02 NC NY

02 NC NY

02 NC NY

01 NY FL

01 NY NC

02 NY NY

S =

date o_st d_st

01 FL FL

01 FL FL

02 NC NY

01 NY NC

Let Γ = {Γ1,Γ2} with d1 = 1 and d2 = 2 be the following two aggregate queries.

Γ1 = Gdate,COUNT(*)(P ) = {([01], 5), ([02], 5)}

Γ2 = Go_st,d_st,COUNT(*)(P ) =

{([FL,FL], 2), ([FL,NY], 1), ([NC,FL], 1),

([NC,NY], 3), ([NY,FL], 1), ([NY,NC], 1), ([NY,NY], 1)}.
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In this case, n = 10, B = 2, and the Γs are set as

Γ
A

1 =

01
02

 Γ
C

1 =

5

5



Γ
A

2 =



FL FL

FL NY

NC FL

NC NC

NY FL

NY NC

NY NY


Γ
C

2 =



2

1

1

3

1

1

1


.

The ordering of the rows Γ
A

i and Γ
C

i does not matter, as long as it is consistent.

We are given a user query Q over the population. While Q can be any SQL query, to

study the improvement in accuracy by using Themis, we only focus on two types of queries:

simple point and top-k queries.

A point query is of the form

SELECT COUNT(*)

FROM P

WHERE Ai1 = vi1 AND . . . AND Ai` = vi`;

where the query is asking for the tuple of tuples satisfying selection conditions of ` attributes.

A top-k query is of the form

SELECT Ai1, . . ., Ai`

FROM P

GROUP BY Ai1, . . ., Ai`

ORDER BY COUNT(*) DESC;

where the query is asking for the k largest ` attribute values in terms of count.
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As we do not have P , we need to estimate Q(P ) given S and Γ. To do so, we build a

modelM(Γ, S) such that Q(M(Γ, S)) is an approximate answer to Q(P ).

3.3 Data Debiasing

We are now ready to present how Themis buildsM(Γ, S). Themis has two components: a

reweighted sample and a probabilistic model. We present each technique and then describe

how Themis merges them into a unique hybrid approach to answer Q(P ) approximately.

3.3.1 Sample Reweighting

In sample reweighting, each tuple t ∈ S gets assigned a weight w(t) representing the number

of tuples t represents in P . For example, if S is a ten percent uniform random sample, each

tuple in S will get w(t) = 10 because each tuple represents ten tuples from P .

Queries on P get transformed to run on weighted tuples by, for example, translating

COUNT(*) to be SUM(weight). If the sampling mechanism, PrS(t), is known, we can use

the Horvitz-Thompson estimator which reweights each tuple by w(t) = 1/PrS(t) [42, 96].

The challenge is that we do not have the sampling mechanism. A simple approach is

to perform uniform reweighting by setting w(t) to be |P |/|S|. As we show in Section 3.5,

when the sample is biased, this achieves low accuracy. To correct for the bias, we present

two solutions for learning w(t) using the sample S and aggregate information Γ. The first

technique is to adapt linear regression, and the second is to apply Iterative Proportional

Fitting (IPF) [73, 89].

Linear Regression Reweighting

Our linear regression reweighting technique is inspired by propensity score analysis, a tech-

nique commonly used to evaluate the effect of a medical treatment on an observational

(nonrandomized) study [112, 95, 18]. The propensity score is the probability of a patient

being assigned to a particular treatment group given patient characteristics (attributes).
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This score can be used to rebalance the data to make the treatment assignment become

independent of the patient characteristics.

We make the same assumption as propensity score analysis that a tuple’s weight lin-

early depends on the attributes of t; i.e., the weight of a tuple is a linear combination of

its attributes. In other words, let t0/1 represents the one-hot encoded tuple t where each

categorical variable Ai is replaced by Ni binary indicator variables for each value in the active

domain (see Example 3.3.1). Then w(t) = t0/1 · β where β is a vector of weights. Note that

for the rest of this section, we use m to refer to the number of attributes covered by the

aggregates and only use those attributes for learning the weight.

Example 3.3.1. Continue with Example 3.2.1. The one-hot encoded version of the first

tuple in S, (01, FL, FL), is

d01 d02 oFL oNC oNY dFL dNC dNY[ ]
1 0 1 0 0 1 0 0

.

To solve for β, S gets represented by a nS ×m0/1 matrix, XS, where m0/1 =
∑m

i=1Ni + 1

(the plus one is because we use the standard formulation of adding a column of ones to

represent the intercept). y is Γ
C

1 ⊕ . . . ⊕ Γ
C

B where ⊕ represents row-wise concatenation

(equivalent to vertically stacking the vectors). In this case, y is a column vector of size∑B
i=1Mi containing all the aggregate queries’ count values; i.e.

y =
[
c1,1 · · · c1,M1 · · · cB,1 · · · cB,MB

]T
.

Let X be the matrix product of G0/1XS where G0/1 is a 0/1 matrix with
∑B

i=1Mi rows and

nS columns (see Example 3.3.2). G0/1 is an incidence matrix where row r and column c is

1 if row c of XS participates in the rth group by result; i.e., if the rth attribute value from
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Γ
A

1 ⊕ . . .⊕ Γ
A

B is in row c of S. We then solve

[G0/1XS]β = y. (3.1)

In the case an entire row of G0/1XS is all zeros, which happens with missing values in S, we

drop that row and its associated value in y.

Departing from standard linear regression solving techniques, we solve Equation 3.1 using

a constrained least squares formulation to constrain β to be strictly positive. This enforces

that each tuple in the sample gets w(t) ≥ 0 and is represented in the population.

Further, as we want to avoid w(t) = 0, we add an additional row of [nS, 0, . . . , 0] with∑m
i=1Ni zeros to the matrixG0/1XS and add the associated value of nS to y. This encourages

the intercept value to be positive, which will force every tuple to get some positive weight

(since the β parameters are already positive). Note, as we just want to influence the intercept

value, we cannot achieve this by adding a row of ones to G0/1 because this will result in an

additional row of nS followed
∑m

i=1Ni non-zero values added to G0/1XS.

Lastly, if a w(t) does get set to 0, we set w(t) = 1.

Example 3.3.2. Continuing with Example 3.2.1. The one-hot encoded version of S, XS, is

1s d01 d02 oFL oNC oNY dFL dNC dNY


1 1 0 1 0 0 1 0 0

1 1 0 1 0 0 1 0 0

1 0 1 0 1 0 0 0 1

1 1 0 0 0 1 0 1 0

.
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Our aggregate matrix is

G0/1 =





1 1 0 1 date = 01

0 0 1 0 date = 02

1 1 0 0 o_st = FL & d_st = FL

0 0 0 0 o_st = FL & d_st = NY

0 0 0 0 o_st = NC & d_st = FL

0 0 1 0 o_st = NC & d_st = NY

0 0 0 0 o_st = NY & d_st = FL

0 0 0 1 o_st = NY & d_st = NC

0 0 0 0 o_st = NY & d_st = NY

where the right-most column shows the group attributes corresponding to the row in the

matrix. After G0/1XS is calculated, we add the row of [4, 0, . . . , 0] at the bottom. Finally,

our solution vector is

y =
[
5 5 2 1 1 3 1 1 1 4

]T
where the final 4 is from adding the nS constraint to y.

With these two changes, we solve for β and w(t) = t0/1 · β. The final processing step is

to modify w(t) so that
∑

t∈S w(t) = n. This is a simple multiplicative update to each w(t)

so that w(t) = n∑
t∈S w(t)

w(t). We do this to sum-normalize the weights to correctly reflect to

true size of the population after learning w(t). Note that uniform reweighting is equivalent

to setting w(t) ≡ 1 before sum-normalizing.

Iterative Proportional Fitting

An alternative approach to finding w(t) is to assume every w(t) is independent and can be

solved for directly; i.e., w(t) is not a function of its attributes. Inspired by the technique

of population synthesis in demography, we apply a technique called Iterative Proportional
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Fitting (IPF) [89, 23, 97, 117, 54, 47] to solve for w(t). While IPF is not new, our approach

of using IPF for arbitrary data debiasing is novel.

To briefly review IPF, IPF is a simple iterative procedure for calibrating sample weights

to match given population aggregates and is traditionally used to reweight representative

microsamples of some population to aggregate census reports. For each individual aggre-

gate, if that aggregate is not satisfied in the sample, the weights of the participating tuples

are rescaled to satisfy the selected aggregate. The procedure continues to iterative over

aggregates until all aggregates are satisfied. It converges to a satisfactory scaling if such a

scaling exists2. If no scaling exists, the algorithm may not converge and can only give an

approximate reweighting.

The iterative algorithm begins by building the same incidence matrix, G0/1, as before,

where each row represents a single constraint and each column represents a tuple in S. y

is the vector of all aggregate queries’ count values. With IPF, however, we have no XS.

Instead, we have a nS sized vector w of the weights of each tuple; i.e., G0/1w = y. At each

iteration, a value in w is updated so that its associated aggregate constraint is satisfied (see

Example 3.3.3).

The pseudocode for IPF is shown in Algorithm 5 where [j] represents getting row j for

matrices and element j for vectors. At each iteration, if the dot product of the jth row

of G0/1 with w does not equal the jth element in y, the weights are scaled so that the

constraint is satisfied. Note that only the weights participating in the aggregate, i.e., with

nonzero G0/1[j] values, are updated.

Example 3.3.3 gives an example of the IPF algorithm and further demonstrates how

missing values in S can prevent IPF from converging.

2IFP is the same algorithm as in matrix scaling, the RAS algorithm, and biproportional fitting [114, 89].
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Algorithm 5 IPF [97]
iter ← 1

while not converged or iter < maxIter do

for j = 1 to
∑B

i=1Mi do

if G0/1[j] ·w 6= y[j] then

s← y[j]

G0/1[j]·w

for i = 1 to nS do

if G0/1[j][i] = 1 then

w[i]← s ∗w[i]

end if

end for

end if

end for

iter ← iter + 1

end while

Example 3.3.3. Take S, G0/1, and y as shown in Example 3.3.2. w is size 4, one weight

per row of S. We show S with w after each iteration as an additional column below. IPF

iterates over the aggregates in the same order as the rows of G0/1.

Following the pseudo code, we start with j = 1. G0/1[1] =
[
1 1 0 1

]
and y[1] = 5.

These represent the aggregate date = 01 having a count of 5. As G0/1[1] ·w = 3, we update

w so the first, second, and fourth elements are 5/3. This is shown in the weight column for

j = 1 below.

When j = 2, G0/1[2] =
[
0 0 1 0

]
and y[1] = 5. As G0/1[2] ·w = 1, we set the third

element of w to be 5/1, as shown in the column for j = 2.
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Weight Values After Iteration

iter = 0 1 1 1 . . . 1

j = 0 1 2 3 . . . 9

date o_st d_st w w w w . . . w

01 FL FL 1 1.67 1.67 1 . . . 1

01 FL FL 1 1.67 1.67 1 . . . 1

02 NC NY 1 1 5 5 . . . 3

01 NY NC 1 1.67 1.67 1.67 . . . 1

The process continues for all 9 rows of G0/1 until we get the weights after j = 9 and

iter = 1, shown in the last column. We see that at the end , the weights for the tuples with

date = 01 are back to their original value of one. When we go through the process again

for j = 1 and iter = 2, those weights will be scaled back to 5/3. In this case, IPF will not

converge because the sample is missing tuples that fly to and from FL, but IPF does give us

an approximate reweighting.

We show in Section 3.5 that even when IPF does not converge, the approximate weights

still achieve high accuracy for queries asking about tuples in S.

Lastly, while both the reweighting techniques solve for w(t), that linear regression has

m0/1 parameters while IPF has nS parameters. Typically, m0/1 < nS. Further, since both

methods have
∑

i=1,BMi constraints, typically, linear regression is over constrained while

IPF is under constrained.

3.3.2 Probabilistic Model Learning

We just presented two different reweighting schemes to debias S using the aggregates Γ. It is

important to understand when sample reweighting will fail. For one, the Horvitz-Thompson

estimator, which we are approximating by w(t), assumes the support of the sample is the

same as the population, i.e., PrS(t) > 0 ∀t. When this does not hold, e.g., when the sampling

design is flawed, sample reweighting is inaccurate. Secondly, even if the support is the same,
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sample reweighting will fail when tuples exist in P but not in S because the sample will

always say those tuples do not exist. This occurs with rare groups and small sample sizes.

While we could impute missing rows to S, this risks losing important structural information

(S gives us partial information about the manifold P lives on) and slowing down queries.

This section presents our solution to this problem: build a probabilistic model of P using

S and Γ and answer queries directly over this model [49, 104]. In order to reason about the

population probability distribution, we use the possible world semantics. As existing model

learning techniques assume access to P , we present unique modifications and enhancements

to adapt these techniques to use Γ and S.

When building a probabilistic model, the first consideration is what class of distributions

to use. For example, if the population is believed to be Gaussian in nature, learning a mixture

of Gaussians will likely be optimal. As we have no prior knowledge on the population, our

main concern is choosing a distribution that can be learned from aggregate data. Similar

to [117], we use a Bayesian network (BN) to model the population distribution as a Bayesian

network is parameterized by aggregate queries and can scale to many attributes and large

data [56]. Unlike [117], which builds the BN from the sample only, the novelty of our BN

framework is that is merges S and Γ into BN learning.

BN learning can be broken into two components: structure learning and parameter learn-

ing. As we have a biased sample S and aggregates Γ, we need to determine whether to use

the sample only (S), the aggregates only (A), or both simultaneously (B) during learning.

Intuitively, we will need to use both pieces of information (B) for the best results because

while the sample will have more structural information than a set of lower dimensional ag-

gregates, the sample will be missing active domain knowledge (i.e., missing values). Note

that while we are specifically interested in the BN structure and parameters, these principle

decisions of using samples or aggregates to do structure learning and parameter learning for

a probability distribution are essential for any chosen distribution.

Table 3.3 breaks down the various combinations of learning techniques (these acronyms

are used in Section 3.5). As the aggregates may not cover all the attributes, we cannot use
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Structure S S B B
Parameter S B S B
Method SS SB BS BB

Table 3.3: Break down of Bayesian network learning techniques and the associated method
abbreviation used. S stands for using the sample S only, A for using aggregates only, and B
for using both.

E DT O

DE

F

Figure 3.2: Example Bayesian network of flights in the United States (see Table 3.4 for
abbreviations).

A for parameter learning. We could use A for structure learning by assuming attributes not

covered by the aggregates are uniformly distributed. This uniformity assumption, however,

is not optimal. Therefore, we only examine the four methods that do not use just the

aggregates for either learning.

Bayesian Networks Overview

We will briefly review Bayesian networks before discussing our learning framework. A

Bayesian network is a probabilistic graphical model representing a set of random variables

and their conditional dependencies through a directed, acyclic graph. Each edge represents

a conditional dependency of the form Pr(Xi|Pa(Xi)) where Pa(Xi) are the parents of node

Xi. The example in Figure 3.2 represents a Bayesian network modeling flights in the United

States3. The joint distribution is

Pr(E,DT , O,DE , F ) = Pr(DT |E) Pr(O|DT ) Pr(DE |O,DT ) Pr(F |DE ) Pr(E).

3F (flights date), O (origin), DE (destination), E (elapsed time), DT (distance)
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Assuming access to P , there are numerous techniques for learning the BN’s structure [32,

92, 56]. Once the Bayesian network structure is known, the parameters θi,j,k, where Pr(Xi =

j|Pa(Xi) = k) = θi,j,k, are calculated by minimizing the negative log likelihood of the joint

probability subject to constraints enforcing each factor is a (conditional) probability; i.e., for

some Pa(Xi) = k,
∑

j Pr(Xi = j|Pa(Xi) = k) = 1 and Pr(Xi = j|Pa(Xi) = k) ≥ 0. With

full access to P , a closed from solution exists that sets the parameters to be the fraction

of times each possible state of Xi occurs given the possible states of Pa(Xi) (an aggregate

query).

Our challenge is how to do structure learning and parameter learning without access to

P . We now discuss structure and parameter learning for using both S and Γ (method B).

Method S uses the same techniques but assumes Γ is empty.

Learning Network Structure

To exclusively use S and Γ to learn the structure, we adapt the greedy hill-climbing algo-

rithm [59, 92]. The traditional hill-climbing algorithm’s goal is to find the structure that

maximizes some score. At each step of the algorithm, it makes the “move” the improves the

score the most. A “move” is either adding, removing, or reversing a directed edge. If the

score cannot be further improved, the algorithm terminates.

We modify the algorithm as follows. To focus on learning from the population before

the sample, our algorithm runs in two phases: building from Γ and building from S. As Γ

represents ground truth information, we want to build as many edges from Γ before adding

edges from S. In the first phase, we make “moves” using Γ until all attributes from Γ are

added to the network. Then, if there are any remaining attributes in S not in Γ, we use S

to continue building.

In the Γ building phase, we further modify the move selection algorithm to ensure we

can score a candidate edge from Xi to Xj. As scoring requires computing a group by query

over Xi, Xj, and Pa(Xi), we only consider candidate edges that have the necessary support

in Γ; i.e., the attributes Xi, Xj, and Pa(Xi) appear together in some aggregate. In the S
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building phase, all edges are allowed.

Our last modification is to “lock in” edges that are added from the Γ phase, meaning we

cannot remove them, because we want to keep all structural knowledge from Γ intact. This

also prevents overfitting to the sample.

The pseudocode for our greedy hill-climbing algorithm is shown in Algorithm 6. We use

the BIC score because it discourages overly complicated structures that could overfit and

does not depend on any prior over the parameters [92]. E is the set of directed edges, T is the

set of conditional probability tables needed to parameterize the network, P ∈ {1, 2} is the

phase of the algorithm, and s represents the BIC score. The functions CondProbTables

and BIC are the same as in the standard algorithm. The function BuildEdges, shown

in Algorithm 7, determines which moves are allowed; i.e., if an edge has the necessary

support.

Note that when the structure learning method is S, we set P = 2 at the beginning.

Learning Network Parameters

We must adapt the standard parameter learning optimization framework to use Γ and

S. Inspired by [46, 103] adding parameter sharing and value equality constraints, we

add constraints enforcing each aggregate is satisfied. Specifically, let Ji = {ji,1, . . . , ji,di}

be the attribute index set of aggregate i; i.e., ai,k = [ak,ji,1 , . . . , ak,ji,di ]. Then, for some

(ai′,k′ , ci′,k′) ∈ Γi′ (we use i′ and k′ to differentiate from the Bayesian network i and k vari-

ables), we add the constraint

∑
v∈×j′∈¬Ji′ dom(Aj′ )

Pr(XJi′ = ai′,k′ , X¬Ji′ = v) =
ci′,k′

n

where dom is the active domain of an attribute,×is the cross product, ¬Ji′ = {1, . . . ,m}−

Ji′ , XJi′ = ai′,k′ stands for Xji′,1
= ak′,ji′,1 , · · · , Xji′,di′

= ak′,ji′,di′
, and similarly for X¬Ji′ = v.

Intuitively, we are summing over all possible values of the attributes, X¬Ji′ , that do not par-

ticipate in the aggregate.
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Algorithm 6 GreedyHC
E ← ∅, N ← all nodes

s ← −∞, s ′ ← −∞, P = 1

do

if P = 1 then D ← Γ

else D ← S

end if

for (Xi, Xj) ∈ N ×N do

for E ′ ∈ BuildEdges((Xi, Xj), E , D,P) do

T ′ ← CondProbTables(D, E ′)

t ← BIC(T ′, E ′)

if t > s ′ then s ′ ← t

end if

end for

end for

if attrs(Γ) ∈ E and |s − s ′| ≤ 0 then P ← 2

end if

while |s − s ′| > 0

return E , T

Following Figure 3.2, suppose we know that one aggregate attribute-value pair is that 0.2

percent of flights have O = KA, DE = NM, and ET = 60. The added constraint from that

aggregate is

∑
dt∈dom(DT )

∑
f ∈dom(F )

θDT ,dt ,{60} ∗ θO ,KA,{dt} ∗ θDE ,NM,{KA,dt} ∗ θF ,f ,{NM} ∗ θE ,60,∅ = 0.2

We now get the constrained optimization problem in Equation 3.2. θi,j,k for a particular

i and tuple t means j = t.Ai and k = {t.Ai′ : Xi′ ∈ Pa(Xi)}. v is the same as before in the
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Algorithm 7 BuildEdges
if P = 2 and (Xi, Xj) added when P = 1 then

S ← {E − (Xi, Xj)}

end if

if {Xj, Xi,Pa(Xj)} ∈ attrs(D) then

S ← S ∪ E ∪ (Xi, Xj)

end if

if {Xj, Xi,Pa(Xi)} ∈ attrs(D) then

S ← S ∪ E − (Xi, Xj) ∪ (Xj, Xi)

end if

return S

sum over all possible values of the attributes that do not participate in the aggregates. vj′

stands for the individual value of attribute Aj′ . The ∗ stands for the value of the parent,

and it will be set to a value in ai′,k′ or v, depending on if it participates in the aggregate or

not.

minimize: −
∑
t∈S

m∑
i=1

log θi,j,k (3.2)

subject to: θi,j,k ≥ 0 ∀i, j, k∑
j

θi,j,k = 1 ∀i, k

∑
v

∏
j′∈¬Ji′

θAj′ ,vj′ ,∗
∏
j∈Ji′

θAj ,ak′,j ,∗ =
ci′,k′

n
∀(ai′,k′ , ci′,k′)

Note, when our method for parameter learning is just S, we do not add the aggregate con-

straints and can use the closed form solution for learning BN parameters.
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Query Answering

Once we have learned the probability distribution of our population, we can answer selection

(point) queries probabilistically by calculating n ∗ Pr(X1 = x1, . . . , Xm = xm). To answer

non-selection queries, such as top-k or group by, we use the BN to generate a sample of data

that is representative of the population via forward/logic sampling [117, 81, 68]. Once the

sample S ′ is generated (this is not the original sample S), tuples are uniformly scaled up

(i.e., the weight of each tuple is |P |/|S ′|), and queries are answered as they are for reweighted

samples.

3.3.3 Hybrid Query Evaluator

Our hybrid approach integrates the previous two methods into a unified technique for query

answering. A naïve approach is to use the BN to reweight the sample. However, this

approach does not solve the fact that tuples in the population do not exist in the sample.

Our hybrid approach needs to rely on the sample only when a tuple exists in the sample.

Our hybrid approach is straightforward. When a point query gets issued, if the tuple

being queried is in the sample, it uses the reweighted sample. Otherwise, it uses the BN. If

the user issues a top-k query, it gets sent to the reweighted sample as the sample is more

likely to contain heavy hitters, i.e., top-k values. In both cases, if the support of the sample

is known to be different from the support of the population, the BN should always be used.

It is future work to detect if the support is sufficient to use the reweighted sample.

The motivation of this demarcation between using the sample versus the Bayesian network

is due to the inherent problems with sample reweighting. If the tuple does not exist or the

support is not sufficient, the sample achieves poor accuracy. We are simply capturing this

failure in our query evaluator by only using the sample when we believe it will achieve the

lowest error.
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3.4 Optimization

We showed how to incorporate aggregates into sample reweighting and BN learning. The

main challenges to efficient implementation are that every individual aggregate (ai,k, ci,k)

adds complexity to the optimization, e.g., each new aggregate is one more iteration of weight

rescaling in IPF, and more importantly, the constrained optimization in Equation 3.2 is a

nonlinear optimization with O(
∏

j∈¬Ji Nj) variables for each (ai,k, ci,k). The large number of

variables along with the added complexity of using nonlinear constraints [115] makes solving

computationally expensive. Further, our constraints prevent us from optimizing each BN

factor independently, a benefit of using traditional BNs.

To solve these problems, we present two optimization techniques: pruning the least in-

formative aggregates and simplifying our constraint optimization.

3.4.1 Aggregate Selection

Our goal is to reduce the number of aggregates, i.e., |Γ|, before using them in reweighting

and Bayesian network learning. The natural choice is to choose the B most informative

aggregates; i.e., the B aggregates that minimize the distance between the true distribution

and some distribution parametrized by the aggregates (more on this later). We chose to

minimize the Kullback-Leibler (KL) divergence, which measures the amount of information

lost between two distributions, because of the existing work on minimizing the KL divergence

(e.g., Chow-Liu trees [39] and VAEs [51]).

To minimize the KL divergence, we assume, like BNs, that our approximate distribution

is a product distribution because there is a known product distribution that minimizes the

KL divergence from the true distribution: a Chow-Liu tree [39] (a second-order product

approximate) and its higher-order extension, a k-order t-cherry junction tree [31, 118].

Before defining a k-order t-cherry junction tree, recall that a junction tree [124, 109] is

a tree structure where a node (cluster) is defined by a subset of random variables, denoted

XC , and is associated with the distribution Pr(XC). Every tree edge is called a separator
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and defined by the subset of random variables, denoted XS, contained in the intersection

of the two clusters being linked. A junction tree must also satisfy the running intersection

property that all tree nodes containing the variable X must form a connected region and

have every random variable contained in some cluster.

A k-order t-cherry junction tree is a junction tree with the added properties that (1)

every cluster (tree node) consists of exactly k random variables, and (2) every separator

consists of exactly k − 1 random variables. Assuming access to P , the greedy algorithm for

building a t-cherry tree is to score all possible cluster-separator pairs by I(XC) − I(XS)

where I(XC) =
∑

i∈C H(Xi)−H(XC) is information content and H is entropy. It greedily

adds new cluster-separator pairs with the highest scores as long as, at each iteration, a new

random variable is being covered and the separator to be added is contained in an already

added cluster. The algorithm terminates once all random variables are covered.

As we do not have P , we must modify the k-order t-cherry junction tree algorithm. Our

pseudocode is shown in Algorithm 8 (detailed algorithm is shown in Appendix A) where C is

the set of potential clusters to add and C ′ is the set of chosen clusters. As our algorithm does

not have access to P , our first modification is that the GenClusterSeparatorPairs

function only initializes cluster-separator pairs that have support in Γ; i.e., the attributes of

the cluster are contained in some aggregate. This allows us to calculate the cluster-separate

pair score from Γ alone.

For our second modification, as our aggregate budget B may larger than the number of

attributes, once the algorithm terminates, we restart it, building a new tree from scratch.

To avoid creating duplicate clusters, we disallow previous cluster-separator pairs from being

added. This is shown in line 8 by subtracting C ′ from the initial set of clusters. Once our

algorithm generates B clusters, we filter Γ so that each γi must be equal to the attributes

associated with one of the clusters.
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Algorithm 8 Modified t-cherry tree.
C ← sorted(GenClusterSeparatorPairs)

C ′ ← { highest scored cluster-separator in C }

while |C ′| < B do

for c ∈ C do

if c’s separator contained in some cluster ∈ C ′

and new attribute covered by c then

add c to C ′

end if

end for

if all attributes covered then

start new tree

C ← sorted(GenClusterSeparatorPairs - C ′)

end if

end while

return C ′

3.4.2 Bayesian Network Simplification

To optimize our constrained optimization, we want each BN factor Pr(Xi|Pa(Xi)) to be

optimized independently with linear constraints. To do this, we enforce a topological solving

order and limit the aggregates added to our model.

To understand how to do this, we first need to discuss what a topological solving order

is. For now, assume we can solve each BN factor independently. A topological solving order

is simply solving for the factors in topological order, meaning every parent node is optimized

before its child node. For example, if Xi′ is a parent of Xi, then we solve for θi′,j,k before

solving for θi,j,k. Once θi′,j,k is solved, denote it θi′,j,k.

To enforce linear constraints and independent solving, we restrict our model to only add
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aggregate constraints that act on single factors, i.e., aggregate constraints over a child node

Xi and its parents if the parents are in the aggregates 4. This means for child node Xi, the

constraints in Equation 3.2 will only contain the the product of the child parameter θi,j,k with

its ancestors because the other factors have marginalized out. By itself, this has only reduced

the number of product factors. The key is topological solving order. By insuring that the

parents are solved for before the children, at the time of solving for θi,j,k for a particular Xi,

the ancestor terms are already known and become a constant in the constraint, meaning the

θi,j,k for Xi are the only parameters. By removing aggregate constraints that act on multiple

different BN factors, we can turn our nonlinear constraints into linear ones.

This linearity of constraints for a particular factor allows us solve for factors indepen-

dently. As we only include constraints on single factors and only those factor’s parameters

are unknown, we can solve factors independently.

Example 3.4.1. Take the example network from Figure 3.2. Suppose we have two aggregates

over E and (O,DE ). A topological ordering of all nodes is E, DT , O, DE , F . To simplify

indexing, instead of using i′, k′ to index the aggregates, we will use the associated values as in-

dexes for the counts. For example, if one aggregate of (O,DE ) is (a2,k′ , c2,k′) = ([WI,MN], 10),

we write this as c2,{WI,MN} = 10 (2 representing the second aggregate).5

We solve for E first by solving

minimize: −
∑
t∈S

log θE,j,∅

subject to: θE,j,∅ ≥ 0 ∀j∑
j

θE,j,∅ = 1

θE,j,∅ = c1,j/n ∀j ∈ dom(E ).

4If we have an aggregate over Xi and some other Xi′ , we can turn that aggregate into one over just Xi

by grouping by Xi, Pa(Xi) and summing the counts.
5Even though both values are US States, the set construction is valid because they are really origin state
WI and destination state MN.
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Note that because of marginalization of the BN factors, the aggregate constraints do not sum

over all possible values of (DT , O,DE , F ). Once this optimization is solved, we have θE,j,∅.

We solve our next node, DT , in closed form because we have no constraints over DT . We

solve O next by

minimize: −
∑
t∈S

log θO ,j,k

subject to: θO ,j,k ≥ 0 ∀j, k∑
j

θO ,j,k = 1 ∀k

∑
k∈dom(DT )

θO ,j,k

∑
`∈dom(E)

θE,`,∅θDT,k,` =
∑

v∈dom(DE)

c2,{j,v}
n

∀j ∈ dom(O).

Note we turn the constraint over (O,DE ) to be one just over O by aggregation. We use

(O,DE ) again when solving for DE. F is solved in closed form.

We can further improve efficiency in two ways. First, as we can solve factors indepen-

dently, if there is a factor without any aggregate constraint, we can directly solve for the

parameters in the traditional manner through an aggregate query over the sample. Second,

we can limit the number of parent nodes each child can have in Bayesian network structure

learning by modifying the hill-climbing algorithm to prevent adding/reversing edges if a child

already has enough parents. By limiting this number, we are making the summation in the

constraint solver smaller and thus improving efficiency.

3.5 Evaluation

In this section, we evaluate the query accuracy and query execution time of Themis. We

compare Themis’s hybrid approach to always using the optimal sample reweighting tech-

nique and always using the best Bayesian network technique. We further investigate the

performance of the two different sample reweighting techniques (linear regression and IPF)
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and of Bayesian network learning technique variations. Lastly, we demonstrate the benefits

of using our pruning technique. We do not plot results for our constraint solver optimiza-

tion from Section 3.4.2 as experiments did not finish in under 10 hours without using the

optimization.

3.5.1 Implementation

We implemented Themis in three parts: the sample reweighter, the BN learner, and the

query evaluator. The linear regression, IPF, and BN constraint solving were implemented in

Python 3.7 using Numpy, Scipy, and Pandas. Linear regression was solved using Scipy’s nnls

solver to enforce the linear regression weights being positive. IPF was custom implemented

using Pandas. The BN constraint solving was handled in Python version 3.7 using Scipy’s

optimize package, specifically the minimize function with the “trust-const” method. We used

the default tolerances of 1 ∗ 10−8 and ran the algorithm for at most 100 iterations. Since

the constraint solving is approximate, occasionally a model parameter would be set to some

very small negative number. We set these parameters to zero.

The BN structure learning and inference were implemented in R 3.2 using the BNLearn

and gRain package (gRain for exact inference). For top-k queries, we created samples that

were the same size as input sample. Lastly, we limited our Bayesian networks to have at most

two parents because population aggregates are rarely more than three-dimensional. Further,

to avoid the summation over active domain values for the BN constraint solver to become too

large and slow down solving time for methods BB and SB (see Table 3.3 and Section 3.4.2),

we restrict our network for methods BB and SB so that if a child node is contained in some

aggregate and has more than one parent, then the child node and its parents must be all

contained in one aggregate (meaning we get direct equality constraints). This implies we

will only be summing over at most one active domain.

After learning, the samples with weights stored as an additional column were stored and

queried in a Postgres 9.5 database. We performed all experiments on a 64bit Linux machine

running Ubuntu 16.04.5. The machine has 120 CPUs and 1 TB of memory. The Postgres
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Attribute Shorthand Ni

fl_date FD 12
origin_state OS 51
dest_state DS 51
elapsed_time ET 32

distance DT 75

Table 3.4: Flights data attributes and active domain size.

Attribute Shorthand Ni

movie_title MT 62445
movie_year MY 13

movie_country MC 3
name N 48395
gender G 2
rating RG 10

top_250_rank TR 251
runtime RT 91

Table 3.5: IMDB data attributes and active domain size.

database also resides on this machine with a shared buffer size of 250 GB.

3.5.2 Datasets

We use a flights dataset [5] (all United States flights in 2005 with n = 6, 992, 839), an IMDB

dataset [83] (actor-movie pairs released in the United States, Great Britain, and Canada with

n = 846, 380), and a synthetic CHILD Bayesian network dataset generated using BNLearn [6]

with n = 20, 000. We preprocess the datasets to remove null values and bucketize the real-

valued attributes into equi-width buckets. For the two real-world datasets, the attributes

and attribute abbreviates are shown in Table 3.4 and Table 3.5.

We take three samples from Flights: uniform (Unif), flight month of June (June), and

flights leaving from a four corner state of CA, NY, FL, WA (SCorners). The S stands for the

supported Corners sample. Each are 10 percent samples with a 90 percent bias, meaning 90
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d B Flights IMDB

2

1 E & DT MY & RT
2 DE & DT RG & RT
3 O & DT MY & MC
4 F & DE MY & G

3

1 O & DE & DT MY & RG & RT
2 O & E & DT MY & MC & RT
3 F & E & DT MY & G & RT
4 DE & E & DT MC & RG & RT

Table 3.6: The 4 2D and 3D Flights and 4 2D and 3D IMDB data aggregate attributes
chosen by the pruning technique.

percent of the rows are from the selection criteria. We also take a corner states 10 percent

sample with 100 percent bias (Corners).

We likewise take three samples from IMDB: uniform (Unif), movie country of Great

Britain (GB), and movies with ratings 1, 5, or 9 (SR159). We similarly give these 10 percent

samples a 90 percent bias and take a 10 percent sample with 100 percent bias of the ratings

sample (R159).

As the CHILD data is used to examine our pruning technique, we just use a 10 percent

uniform sample.

3.5.3 Experimental Setup

As real population reports typically have aggregates of one, two, or three dimensions (e.g.,

Excel tables), we use d = 1, 2, or 3. We prune all possible aggregates by our pruning

technique to produce from B = 1 to 4 aggregates. Table 3.6 shows the aggregates chosen.

For IMDB, we only consider aggregates from the attributes MY, MC, G, RG, RT to investigate

the impact of having aggregates that do no cover all attributes.

To measure accuracy, we run top-k queries for K = 30 and point queries where the point

query selection values are selected from the population’s light hitters (smallest values), heavy

hitters, and randomly. We run 100 point queries for each of the three selections, for a total

of 300 point queries per attribute set.
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For Flights, we issue point queries over all possible attribute sets of size two to five

(total of 26). We run top-k queries for all possible two and three attribute set combinations

(total of 20). For IMDB, as there are too many attributes to run all possible point queries,

we randomly choose 20 three dimensional attribute sets to run our point and top-k queries

over. Note we look at all attributes for queries, not just those we have aggregates over.

Following [129], we measure precision and recall of the top-k queries and report the F

measure. For point queries, we use the error metric of percent difference, 2 ∗ |true value −

est value|/|true value + est value|. We use percent difference rather than percent error to

avoid over emphasizing errors where the true value is small and to ensure missed groups get

the maximum error of 200 percent.

Lastly, when measuring runtime (Section 3.5.9), as all reweighted samples are stored and

accessed the same, we only look at the runtime for one reweighted sample.

3.5.4 Overall Accuracy

We first evaluate which method is optimal for answering queries over different biased samples.

Using d = 2 and B = 4, we compare Themis’s hybrid approach (pink) to the best linear

reweighting technique of IPF (orange) and to the best Bayesian network technique of BB

(blue) (BB means it uses both Γ and S to learn the BN). We further compare against

standard uniform reweighting as a baseline (red).

Figure 3.3 and Figure 3.4 show boxplots of the percent difference of 100 heavy and

100 light hitter point queries across the samples. The median value is the black line and

the average is the black X. For reference, Table 3.7 shows the percent improvement of the

25th, 50th, and 75th percentiles of Themis’s hybrid approach to uniform reweighting for

Flights.

We see that for the samples that have the same support as the population (first three),

Themis’s hybrid technique achieves the lowest error. For the Flights sample without

support (Corners), the BN technique (BB) performs best, but hybrid performs better that

IPF, indicating that hybrid mitigates the problem of mismatching support. BB does not
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Hitters Percentile Unif June SCorners Corners

Heavy
25 4.2 13.6 168.3 6.1
50 1.8 69.7 61.9 2.7
75 1.4 29.6 34.4 2.2

Light
25 ∞ ∞ ∞ 45
50 1.7 1.7 1.7 1.4
75 1.0 1.0 1.0 1.0

Table 3.7: Percent improvement of percentiles for hybrid compared to Unif for the queries
from Figure 3.3. The infinite value represents that hybrid has zero error.

perform optimally for the IMDB sample without support (R159) because of queries over the

very dense attribute N (48,000 distinct values). BB learns that N is uniformly distributed and

underestimates queries over N because all values are equally likely. This makes BB perform

worse than IPF. Further, as three attributes are not covered by aggregates, one of them (top

250 rank/TR) being highly correlated with the attribute biasing the sample, BB and IPF

overfit to the sample and receive high error for queries over TR.
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Figure 3.3: 100 heavy and light hitter point query percent difference for Flights biased
samples (d = 2, B = 4).
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Figure 3.4: 100 heavy and light hitter point query percent difference for IMDB biased samples
(d = 2, B = 4).

Figure 3.5 shows the error of 100 random point queries for Flights grouped by if the

query was in the sample or not and Figure 3.6 shows the same for IMDB. The separation

mimics Themis’s hybrid query evaluator decision, which is why hybrid receives the same

error as IPF for queries in the sample and as BB for queries not in the sample. We see the

same trend that IPF only performs well when the support is the same and that BB performs

best when the support is not the same (Corners and R159). Unlike heavy hitter queries, we

see that BB achieves lower error than IPF for IMDB because random point queries with the

attribute N that are in the sample have smaller count values. BB still underestimates queries

over N, but the underestimation is less severe for random point queries than heavy hitter.

Therefore, its error is lower.

We now evaluate which method is optimal for answering top-k queries using Flights

and IMDB. We dive more deeply into top-k performance by varying the number of 2D

aggregates after adding 5 1D aggregates, one for each attribute. We do not show results for

other K values as the trends are similar.
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Figure 3.5: 100 random point query percent difference for Flights biased samples (d = 2,
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B = 4).
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Figure 3.7 (Flights) shows a dramatic improvement in the IPF/hybrid approach (they

are the same for top-k) for SCorners compared to Corners, which supports the results shown

for point queries. A similar trend is shown in Figure 3.8 (IMDB) for SR159 and R159. Further,

BB improves the most from adding more 2D aggregates as it is learning more structural and

parameter information from the population.

Lastly, all methods for the IMDB top-k queries score on average 17 percent lower on F

measure than Flights top-k queries. This is due to both the larger number of attributes

and larger active domain size compared to sample size (fewer top-k tuples are going to be

included in the sample) and the fact that all attributes are not covered by aggregates.
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Figure 3.7: F measure of top 30 for 5 1D aggregates and varying numbers of 2D aggregates
for Flights.

Overall, we see that Themis’s hybrid technique outperforms the alternatives for point

queries and top-k queries and mitigates the problem of the sample and population having

different support.
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Figure 3.8: F measure of top 30 for 5 1D aggregates and varying numbers of 2D aggregates
for IMDB.

3.5.5 Changing Aggregate Knowledge

To examine how varying our aggregates impacts accuracy, we run 100 random point queries

on two Flights samples and two IMDB samples as we add 1D, 2D, and 3D aggregates. To

show the impact of attribute coverage, we add the 1D aggregates in two different orders. For

Flights, we add the 1D aggregates in order A—F, O, DE, E, DT—and order B, the reverse

of order A. For IMDB, we add the 1D aggregates in order A—MY, MC, G, RG, RT—and order

B, the reverse of order A. For both datasets, after adding the 1D aggregates, the 2D and 3D

aggregates are added as in Table 3.6.

Figure 3.9 shows a line plot (to better show trends) of the average percent difference for

SCorners (top row) and June (bottom row) for order A (left column) and order B (right

column). For SCorners, the largest improvement in all Themis methods (IPF, BB, and

hybrid) is when adding the second attribute in order A (fourth attribute in order B). This

is O (the attribute SCorners is biased on) which indicates that Themis is correctly learning

which attribute is causing bias. The result is replicated with the June sample and attribute
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F, with the IMDB sample of SR159 with attribute RG, and with the IMDB sample of GB with

attribute MC. Although, the improvement is less pronounced with IMDB as we do not have

covering aggregates and the active domain is larger. Figure 3.11 shows the average percent
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Figure 3.9: Average percent difference of 100 random point queries for SCorners and June
for Flights as more 1D aggregates are added.

difference for the same two samples as 2D aggregates are added for Flights. Figure 3.12

shows the same for IMDB. We see that BB improves the most with more aggregates. However,

we see diminishing returns after adding 2 aggregates. As more aggregates are added, BB

gets closer to hybrid while IPF does not significantly improve with more 2D aggregates.

This indicates that when enough population data is added, knowledge from the sample is

overridden by the population data.

Figure 3.13 shows the average percent difference for the samples SCorners and Corners

as 3D aggregates are added after adding 5 1D aggregates for Flights. Figure 3.14 shows

the same for IMDB with the samples R159 and SR159. A horizontal green line is added
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Figure 3.10: Average percent difference of 100 random point queries for SR159 and GB for
IMDB as more 1D aggregates are added.
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Figure 3.11: Average percent difference of 100 random point queries for SCorners and June for
Flights as more 2D aggregates are added after adding the 5 1D aggregates from Figure 3.9.

indicating the average percent difference for hybrid after 4 2D aggregates were added.

We see the same trend that aggregates improve BB more than sample reweighting. We
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Figure 3.12: Average percent difference of 100 random point queries for SR159 and GB for
IMDB as more 2D aggregates are added after adding the 5 1D aggregates from Figure 3.10.

further see that adding 3D aggregates causes faster convergence. After adding just a single

3D aggregate are we able to achieve the same error as adding 4 2D aggregates for SCorners.

When looking at IMDB, we notice that adding aggregates does not significantly improve

any method. This is due do lacking attribute coverage in the aggregates, especially over

dense attributes like N that cause significant error in query answers.

Flights, on the other hand, does have attribute coverage. This means adding 3D

aggregates can cause BB and hybrid to have lower error than having 4 2D aggregates, as is

shown with June have slightly lower error with 4 3D aggregates than 4 2D aggregates. This

trend does not hold with SCorners due to BB learning a less optimal network structure after

adding 2 3D aggregates (shown by the dip in the blue line at 1 3D aggregate). With one 3D

aggregate only, BB learns that O (origin) should be conditioned on DE (destination) and DT

(distance). This makes sense because where a flights starts and how far it goes determines

the possible destinations. With more aggregates, however, the relationship learned is that

DE is conditioned on DT and O is conditioned on DT. While similar, this relationship does

not accurately represent the underlying distribution as much as the former structure. As our

structure learning algorithm is approximate, it will not always learn the optimal structure.

The overall trend is that adding 3D aggregates can improve convergence rates, but does
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not significantly improve the error for hybrid over just using 2D aggregates.
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Figure 3.13: Average percent difference of 100 random point queries for SCorners and Corners
for Flights as more 3D aggregates are added after adding the 5 1D aggregates from
Figure 3.9.
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Figure 3.14: Average percent difference of 100 random point queries for SR159 and R159 for
IMDB as more 3D aggregates are added after adding the 5 1D aggregates from Figure 3.10.

Lastly, to examine how the amount of sample bias impacts accuracy, we measure the aver-

age percent difference for 100 random point queries using 4 2D aggregates on the Flights
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sample of Corners as we decrease the percent bias from 100 percent (Corners sample) to

90 percent (SCorners sample), shown in Figure 3.15. As soon as the support is the same

(bias < 100), sample reweighting techniques start performing significantly better. Themis’s

hybrid approach is able to mitigate this difference and performs better than IPF for 100

percent bias.
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Figure 3.15: Average percent difference of 100 random point queries for the SCorners using
4 2D aggregates as we decrease the percent bias.

3.5.6 Bayesian Network Performance

We now dive into the different BN approaches for structure and parameter learning. Recall

that when learning a BN, we can use only the sample (S) or both the sample and aggregates

(B) (see Table 3.3). Since the aggregate information (A) is not always covering, we cannot use

it exclusively to learn the parameters. Further, is it suboptimal to learn the structure using

A because we must assume non-covered attributes are uniformly distributed. However, for

comparison, we do examine using just A for structure learning and B for parameter learning.

Therefore, the approaches we compare are SS (light green), BS (dark green), SB (light blue),

BB (dark blue), and AB (grey).



123

Using these methods, we measure average percent difference on 100 heavy and light hitter

point queries on SCorners while increasing the number of 2D aggregates after adding 5 1D

aggregates. The results are in Figure 3.16. We see that all approaches perform better for

heavy hitters than light hitters and that BB performs best overall. The only time this does

not hold is for heavy hitter queries on SCorners once three 2D aggregates have been added.

Note that BB is optimal for light hitter queries once three 2D aggregates have been added.

This is due to BB learning a different network structure after adding the aggregate over DT

and OS. It adds an edge from DT to OS with three aggregates when is had an edge from DE

to OS with only two aggregates. However, the error improvement for light hitter queries for

BB after adding three 2D aggregates outweighs the error decrease for heavy hitter queries.

We also see that as the number of aggregates increases, AB converges to BB because the

population information overrides any sample information given for Flights.

Another important trend is that using the sample versus both the aggregates and the

sample is more important for parameter learning than for structure learning. We see little

difference in accuracy between SS and BS, but SB and BB outperform them both. BB is

only slightly more accurate than SB for light hitter queries after adding three aggregates.

3.5.7 Sample Reweighting Performance

We now compare the two different sample reweighting techniques of linear regression (Lin-

Reg) and IPF. As we do not see a drastic improvement in adding 2D aggregates when doing

sample reweighting, we focus on comparing how they perform on the different Flights

samples by measuring error on 100 random point queries using 4 2D aggregates.

Figure 3.17 shows boxplots of the percent difference of LinReg, IPF, and Unif. We see

clearly that IPF outperforms LinReg on all cases. While LinReg does outperform Unif in all

biased samples (not the uniform sample), it does not outperform IPF due to the correlations

that exist in the data. For example, to satisfy aggregates on the DT attribute, LinReg will

add weight to the highly correlated attribute values of E. This will help satisfy aggregates on

DT but will overall hurt performance because any other tuple with the correlated attribute
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Figure 3.16: Average percent difference of 100 heavy hitter and light hitter queries over
SCorners for the 5 different Bayesian techniques as more 2D aggregates are added with 5 1D
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Figure 3.17: Percent difference of 100 random point queries over four different Flights
samples with 4 2D aggregates.
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3.5.8 Pruning Effectiveness

We use the BNLearn CHILD dataset to examine our pruning technique for choosing aggre-

gates. We use the two Bayesian approaches of BB and AB and measure average percent

difference for 100 random point queries for 10 randomly chosen attribute sets of size 2, 4,

6, 8, and 10 for a total of 50 attributes sets and 5,000 total point queries. We compare

the techniques as we add from 5 to 65 2D aggregates using our pruning technique (Prune)

and randomly (Rand) after adding full 1D aggregates. In addition to comparing the error,

we also plot the average percent difference if the true Bayesian network is known (optimal

error).

Figure 3.18 shows the average percent difference where the dark colors are for Prune

while the light colors are for Rand. The red line shows the median optimal error. We see,

again, that BB performs better the AB, especially when fewer aggregates are added. Further,

the error with Rand improves more slowly than using Prune to add aggregates. If enough

aggregates are added, however, the techniques eventually converge.
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Figure 3.18: Average percent difference of 100 random point queries using a 10 percent
uniform sample of the CHILD dataset with full 1D aggregates as more 2D aggregates are
added using Prune and Rand.
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Method RW SB AB SS BS BB
Runtime (10−3 s) 25.3 2.49 1.97 2.45 2.26 2.07

Table 3.8: Average query execution time of 100 random point queries over SR159 with 4 2D
aggregates .

3.5.9 Execution Time

Lastly, we examine the query execution time and solving time of the different approaches.

We run all timing experiments on the IMDB SR159 sample as IMDB has the larger active

query domain (query times are approximately the same for Flights SCorners). For the

query execution time, we run 100 random points queries.

Table 3.8 shoes the average query execution time of the six methods. As the query

execution time does not noticeably change as we add more 2D aggregates, we only show

results for 4 2D aggregates.

As the main bottle neck to using these methods is the solving time, we plot the time

it takes to learn the structure for BB (the solving times of the other Bayesian methods are

comparable or faster) and the time it takes to learn the parameters of LinReg, IPF, and

BB in Figure 3.19 and Figure 3.20 as we increase the number of aggregates for Flights

SCorners and IMDB SR159. The solving time is shown as a solid line while the structure

learning time for BB is a dashed line.

The general trend is that LinReg is the fastest, followed closely by IPF, and then by BB.

This is unsurprising as performing constrained optimization over our BN is more computa-

tionally complex than IPF, a simple multiplicative reweight procedure.

We further see that overall the times for parameter learning for SCorners is slower than

for SR159. This is because the active domain of the attributes covered by the aggregates is

larger for Flights than IMDB (see Table 3.4 and Table 3.5 for active domain information).

A larger active domain means there are more aggregate values used to constrain the models

and larger summations in our BN constrained optimization. Recall that BN parameters over

nodes not in any aggregate are directly set from an aggregate query over the sample, which
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Figure 3.19: Log scale learning times in seconds for LinReg, IPF, and BB using SCorners
sample as 1D and 2D aggregates are added.
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Figure 3.20: Log scale learning times in seconds for LinReg, IPF, and BB using SR159
sample as 1D and 2D aggregates are added.

is very efficient. Therefore, even if the active domain of some attributes are large, e.g., the

active domain of MT and N in IMDB, as they are not included in any aggregates, they do not

slow down solving time.

This is not true of structure learning. In structure learning, the most expensive operation

is scoring a possible edge, which requires an aggregate, group by query over some set of
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attributes in the aggregates or sample. As the aggregates over the attributes with the largest

active domain is going to be the slowest computation, structure learning of IMDB is slower

than for Flights. However, structure learning is independent of the number of aggregates

and does not increase significantly as more aggregates are added because all edges are still

considered in phase 2, the sample learning phase.

While the structure learning time for BB is constant across datasets, the solver time for

BB varies drastically as we change aggregates. The solver time increases as we increase the

number of 1D aggregates because we are adding more constraints to our model. Surprisingly,

as we add more 2D aggregates, the solving time of BB decreases. This is because as we add

more 2D constraints to our model, the constraint solver has more direct equality constraints

which are instantaneous to solve for.

To show this trend more directly, Figure 3.21 and Figure 3.22 show the average percent

difference for 100 random point queries compared to total solver time (structure learning

plus parameter learning) for BB and IPF on SCorners and SR159 while using different

combinations of 1D and 2D aggregates. Specifically, we use our pruning technique to add

one to four 2D aggregates that cover from one up to five attributes6.

For SCorners, we see that there is a cluster of BB methods that are as fast as IPF and

can achieve low error. This corresponds to when the most 2D aggregates are added to the

model. For SR159, IPF is always faster than BB to solve, but BB is capable of achieving

lower error. This is because the IMDB sample is going to contain fewer distinct values of

the population than the Flights sample. The samples are all ten percent samples but the

active domain of the IMDB data is larger. Therefore, for random point queries, a tuple is less

likely to be in the IMDB sample than Flights sample. Further, there is an optimal spot

around 150 seconds of solving time for BB which achieves the lowest error. This is when the

6If we use a numeric index from 1 to 5 into the 5 covered attributes,
we choose different aggregates that cover the following sets of attributes:
{{1},{2},{3},{4},{5},{1,2},{4,5},{1,2,3},{3,4,5},{1,2,3,4},{2,3,4,5},{1,2,3,4,5}}. For each attribute
set, we run our pruning technique to choose one, two, three, and four 2D aggregates, if applicable (we
can’t add 4 unique 2D aggregates for only two attributes). If any of the attributes are not covered by a
2D aggregates, we add 1D aggregates so all attributes are covered.
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Figure 3.21: Average percent difference versus total solver time in seconds for IPF and BB
on SCorners for various 1D and 2D aggregates.

most 2D aggregates are added to the model.

3.6 Discussion

As explained in Chapter 1, the Principle of Maximum Entropy is underlying both our sample

reweighting and our Bayesian network technique. We address why this is true for each

technique separately.

3.6.1 Maximum Entropy in IPF

The truly surprising connection is that the IPF algorithm is the same algorithm as the

maximum entropy algorithm because IPF maximizes entropy [89, 20]. While we leave the

detailed proof to [44], we are going to show how the IPF reweighted sample can be formulated

as a MaxEnt problem and how the MaxEnt distribution can be solved for using IPF.

Recall from Section 2.1 that the distribution learned from maximizing entropy subject
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Figure 3.22: Average percent difference versus total solver time in seconds for IPF and BB
on SR159 for various 1D and 2D aggregates.

to a set of expected value constraints over the set of possible worlds, PWD , takes the form

shown in Equation 2.2, which is

Pr(I) =
1

Z
exp

(
k∑
j=1

θjφj(I)

)

where φj is a function on I, θj is a parameter to be learned, and Z is the normalization

constant.

It turns out that if we have some known distribution q that we want our learned proba-

bility to be “close” to in terms of KL divergence, instead of maximizing the entropy, we can

minimize the KL divergence to q subject to the same expected value constraints [13]. The

solution takes the following form

Pr(I) =
q(I)

Z
exp

(
k∑
j=1

θjφj(I)

)
(3.3)
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where Z is still the normalization constant equivalent to
∑

I Pr(I). The only difference

between this and Equation 2.2 is the q(I).

Equation 2.2 and Equation 3.3 together show that maximizing entropy is equivalent to

minimizing the KL divergence to the uniform distribution where qunif (I) = 1
|PWD| .

We are going to define q(I) is as follows. For each possible tuple t, assign a weight to t,

denoted w(t). q(I) is then defined as

q(I) =

∏
t∈I w(t)∑

I∈PWD

∏
t∈I w(t)

. (3.4)

As an example, to get qunif , we assign a weight of 1 to each possible tuple, i.e., wunif (t) = 1.

Using this formulation, we can solve for the IPF weights by setting the weight of each

possible tuple to the number of times it appears in our sample S, i.e., w(t) = |σt(S)|. Then

we minimize the KL divergence with respect to the q defined in Equation 3.4 with the

population aggregates as expected value constraints (like we do for EntropyDB) and get

the MaxEnt solution. This MaxEnt solution gives us a probability distribution. The last

step to set the final IPF weight of each tuple t in S to be wfinal(t) = E[〈t, I〉] where t is the

associated linear query of tuple t.

The intuition behind why this works is that when we update the weights for a particular

constraint in IPF, we are really updating a single parameter α in our MaxEnt model by the

same multiplicative update. In IPF, a tuple’s final weight is the product of its initial weight

by all the weight updates it receives over the course of the algorithm. This is equivalent to

its initial weight times to the product of the α parameters associate with it from the MaxEnt

algorithm, i.e., E[〈t, I〉].

We just showed how IPF can be solved with the MaxEnt framework. We will now show

how the MaxEnt distribution parameters (the set of αs) can be solved with IPF. First, the

same aggregate constraints are used as the expected value constraints. Second, we need to

define our starting dataset. In this case, the initial dataset that starts IPF is a dataset of

all possible tuples where each tuple has a weight of 1 (just like when defining qunif ). IPF
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then proceeds as normal. The only difference being that instead of just updating the weights

of each tuple, we keep track of the multiplicative updates associated with each aggregate

constraint. This is equivalent to keeping track of the values of α. At the end, we get the

final set of parameters to our MaxEnt model.

It’s important to realize the major limitation to using IPF for the problem posed in

Chapter 2. To build a probability distribution with just aggregate constraints using IPF,

the starting IPF dataset is the dataset of all possible tuples. This is exponentially large

because no tuples receive a weight of zero. They all have a weight of one. In traditional IPF

starting with a sample, many tuples that could exist in the active domain have a weight of

zero and do not exist. IPF cannot alter a weight of zero, meaning it can ignore those tuples.

This fundamental issue makes solving tractable and efficient when there is an initial sample.

Without an initial sample, we need to use more advanced optimization methods, like those

presented in Chapter 2.

3.6.2 Maximum Entropy in Bayesian Networks

As explained in Section 2.7.4, there is a connection between the MaxEnt principle and

maximum likelihood over graphical models. It can be shown that the MaxEnt distribution

given expected value constraints is the dual of the maximum likelihood model of the expo-

nential family given sufficient statistics [124]. Further, as graphical models are equivalent

to certain exponential families [58], we get that the MaxEnt distribution given expected

value constraints is the dual of the maximum likelihood given graphical model structural

constraints [10]. Note, in this case, the duality gap is zero (meaning they are equivalent

problems) as both MaxEnt and maximum likelihood are convex.

This implies, as further proven in [128], that Bayesian networks are really MaxEnt dis-

tributions given Bayesian network structural constraints.
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3.7 Conclusion

We present Themis, the first prototype open world database system that uses a biased sam-

ple and population-level aggregate information to answer queries approximately as if asked

over the population. More importantly, our data debiasing is automatic. Themis’s hybrid

approach merges sample reweighting with population probabilistic modeling to achieve a 70

percent improvement in the median error when compared to uniform reweighting for heavy

hitter queries. Further, as shown in Figure 3.15, Themis is robust to differences in the

support between the sample and population.
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Chapter 4

RELATED WORK

4.1 Related Work on Approximate Query Processing Using a Probabilistic
Model

Although there has been work in the theoretical aspects of probabilistic databases [116], as

far as we could find, there is not existing work on using a probabilistic database for data

summarization. However, there has been work by Markl [94] on using the maximum entropy

principle to estimate the selectivity of predicates. This is similar to our approach except we

are allowing for multiple predicates on an attribute and are using the results to estimate the

likelihood of a tuple being in the result of a query rather than the likelihood of a tuple being

in the database.

Although not aimed at data summarization, the work in [25] builds a probabilistic graph-

ical model that is guaranteed to have efficient query answering for certain classes of queries,

i.e., a tractable model. They propose a greedy search algorithm that simultaneously learns

a Markov network and its underlying sentential decision diagram which gives a tractable

representation of the network. While Themis also learns a Markov network, our features

are count queries over instances while in [25], they only use boolean valued features.

Our work is also similar to that by Suciu and Ré [111] except their goal was to estimate

the size of the result of a query rather than tuple likelihood. Their method also relied on

statistics on the number of distinct values of an attribute whereas our statistics are based

on the selectivity of each value of an attribute.

Even though approximate query processing has been a major area of research in the

database community for decades, there is still no widely accepted solution [87, 37, 96]. One

main AQP technique is to use precomputed samples [15, 87, 37, 14]. In the work by Chaudhiri
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et al. [35], they precompute samples that minimize the errors due to variance in the data

for a specific set of queries they predict. The work by [19] chooses multiple samples to

use in query execution but only considers single column stratifications. VerdictDB [106]

introduces variational subsamples as an alternative to bootstrapping and subsampling to

provide efficient probabilistic guarantees. The core idea of variational subsampling is to

loosen the restrictions on standard subsampling while still providing the same probabilistic

guarantees. The work by [50] builds a measure-biased sample for each measure dimension

to handle sum queries and uniform samples to handle count queries in order to provide a

priori accuracy guarantees. Depending on if the query is highly selective or not, they choose

an appropriate sample. Along a similar vein is the work of [86] which generates a unified

synopses from a set of samples to answer queries approximately within a predefined error

bound. The later work of BlinkDB [16] removes any assumptions on the queries. BlinkDB

only assumes that there is a set of columns that are queried, but the values for these columns

can be anything among the possible set of values. BlinkDB then computes samples for each

possible value of the predicate column in an online fashion and chooses the single best sample

to run when a user executes a query.

A main drawback for many systems relying on precomputed samples is that they require

an existing workload to train on. Instead of using precomputed samples and needing a

workload, the Quickr system in [78] injects sampling operators into query plans to generate

samples on the fly for ad-hoc AQP in big data clusters. By using a variety of different

samplers, they are able to handle distinct value queries as well as joins.

As Themis does not use any samples nor does it require any existing workload, our

approach is more closely related to the non-sample based AQP techniques of [34]. Much

like Themis answers queries directly on a probability distribution, the system in [34] builds

multi-dimensional wavelets from a dataset and answers queries directly over the wavelet

coefficient domain.

There are some AQP hybrid approaches such as the work in [121] which builds a deep

learning model in order to draw better samples for AQP. They first build a collection varia-
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tional autoencoders to learn the data distribution, and then, during run time, they use the

model with rejection sampling to generate samples from the learned distribution. The system

AQP++ [107] combines samples with precomputed aggregates, such as data cubes, to build

a unified AQP system. For an input query, it uses samples to generate an estimate of the

error between the true answer and the answer run on the closest precomputed aggregate and

adds the error to the answer from the precomputed aggregate. IDEA [57] is a system that

combines random sampling with indices targeted at rare populations to answer aggregate

queries for interactive data exploration. The system also leverages results from previous

aggregate queries and probabilistic query rewrite rules to approximately answer new queries

using the old results, if possible.

The last main AQP technique is to use data sketches (e.g., count-min or KMV [21])[41,

87]. Sketches have the benefit of being able to handle streaming data but are usually built to

handle a limited number of queries. For example, a KMV sketch answers how many distinct

values there are but doesn’t answer other aggregates.

Although not built for AQP specifically, the work in [130] uses Bayesian statistics and

a few random samples to approximately answer what the extreme values are in the entire

dataset. Using a historical query workload and Monte Carlo sampling, they generate a

correction factor based on the shape of the query result and its associated error distribution.

Then, they use the samples to generate a preliminary estimate and their learned correction

factor to update their estimate. While this technique is probabilistic in nature, it is geared

towards specifically answering extreme value queries rather than linear queries, like Themis.

[105] and [80] both use deep learning networks to predict cardinalities for better query

optimization. While Themis can be used to estimate cardinalities for queries, we do not

use deep networks and split our feature vector learning from optimization in that we decide

which attributes to use for statistics before running our model learner. The deep network

in [105] combines learning cardinalities with learning the best representation of a subquery.
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4.2 Related Work on Automatic Debiasing

Our technique is primarily related to population synthesis. Population synthesis’ goal is

to directly generate a population dataset from a sample and either historical population

data [90] or aggregate data (typically geographical aggregates) using techniques such as IPF,

Bayesian networks, constrained optimization, or MCMC and Gibb’s sampling [89, 23, 97,

117, 54, 82]. Themis, however, combines two different techniques, does not assume the

sample is representative of the population, and more accurately answers queries over tuples

not in the sample.

Themis is similar to bootstrapping, which is a resampling technique for understanding

sample bias for approximate query processing [37, 96, 87], but Themis does not suffer from

the large overhead of doing bootstrapping and does not assume the sample is representative

of the population.

The papers from Van den Broeck and Martin Grohe [33, 62], extend probabilistic databases

to assume an open world and allow unknown values to exist. While Themis also assumes

an open world, we are not a probabilistic database.

From a data integration standpoint, Themis is closely related to answering queries over

views (samples) [84, 64] where the views do not contain complete information. However,

we attempt to model the data missing from the data sources whereas data integration deals

with knowing when answers are certain or not.

In regards to data cleaning [74, 36, 126], while Themis is trying to infer missing values

from the sample, we are missing entire rows, not just attribute values.

There has also been a lot of research in the machine learning community in two related

areas: one class classification [79, 61] and learning from aggregate labels [101, 28, 38]. The

main difference is that Themis is trying to learn a classifier with aggregate data and does

not have aggregate labels of both classes, i.e., in the sample and not in the sample.

Our method, in essence, calculates a propensity score for a record [95, 112]. However,

standard propensity score techniques require data that is not in the sample to be given,
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which we do not have. A possible solution is to generate the data outside of the sample [66].

We leave this possible technique as future work.

The work of [40] is a particular subset of our problem. That work tries to take into

account unknown unknown values when estimating aggregate queries. Our goal is similar,

but we take a machine learning approach to re-weight samples rather than estimating missing

values.

Themis is similar to [55, 135] which tries to remove bias from machine learning algo-

rithms, i.e. make socially fair classifiers. Our research, however, does not have protected

attributes nor does it have access to the entire population, but our methods could be used

to help achieve fairness by, for example, forcing the aggregates over protected attributes to

be uniform.

Considering selection bias and machine learning is the work of [71, 132]. Themis, how-

ever, only has access to the biased test set, i.e., sample, and does not have sample probabilities

to use.

Although not concerned with debiasing data, the work of unioning tables [102] aims to

find attributes among various tables that are unionable. The key similarity to Themis is

that the tables are from different sources with different biases. Our research takes the output

of [102], a set of unionable tables, and debiases them.

Also using aggregates as constraints is [123]. They use aggregates to constraint query

answers; e.g., select tuples such that the average of the selection is below some value. The

work in [93] discusses using Bayesian networks to approximate a data cube. Our work is

similar to both of these except our goal is not to merely answer queries but to also debias a

sample.

Similar to how Themis treats the biased samples as first class citizens, FactorBase [110]

and BayesStore [125, 127] do the same with graphical models and probabilistic inference.

While they both utilize Bayesian networks to model data, their goal is not data debiasing.

The work of [59] uses Bayesian networks over relations to do selectivity estimation for

queries. Themis also uses Bayesian networks but is not concerned with multiple relations
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or selectivity estimation.

[99] performs conjunctive query selectivity estimation using both samples and synopses.

Themis also uses samples and synopses where our synopses are of the form of population

histograms. Our overall goal, however, is to debias the data. This is different than selectivity

estimation, and unlike selectivity estimation, we do not control how we sample.
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Chapter 5

CONCLUSION AND FUTURE DIRECTIONS

In this modern age of easily accessible data samples and aggregate reports, data scientists

are able to use these sources to ask questions over a population of data they do not have

access to. While there are specialized, one-off techniques for merging samples and aggregates

to model and approximately query the population, there is yet to be a general, automatic

system for doing so. As traditional database management systems assumed a closed world,

they are incapable of helping data scientists analyze an unknown population.

In this dissertation, we posit that an open world database system can provide the much

needed support for data scientists by automating this population modeling. Data scientist

simply insert a biased sample and population aggregates and then can issue queries over the

population, receiving approximate answers.

We take the first step towards building an open world database system by answering two

main research questions. The first is how to build a probabilistic model of the population

using optimal aggregates. Framing the problem as one of building a probabilistic approximate

query processing system, we develop and build a prototype system call EntropyDB. Using

the Principle of Maximum Entropy and two-dimensional aggregate constraints, we solve for a

probabilistic model and answer queries over this model directly. We show that EntropyDB

performs as well as sampling on heavy hitter queries and can more accurately than sampling

detect if a tuple exists or not. Further, EntropyDB maintains interactive query response

times.

The second question we answer is how to automatically debias an arbitrary sample using

population aggregates. We develop a system, Themis, that combines sample reweighting

and probabilistic modeling to answer arbitrary queries over the population approximately
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at interactive speeds. We demonstrate that Themis is more accurate at answering queries

than uniform reweighting, iterative proportional fitting, and a variety of Bayesian network

modeling techniques. Further, Themis is robust to samples that do not have the same

support as the population; i.e., some tuples have no chance of being sampled. This robustness

is lacking in the gold standard population synthesis technique of iterative proportional fitting.

The main, high-level open question that remains from this work is how to build a full-

functioning, end-to-end open world database system. This system not only needs to be

scalable and interactive but also needs to handle multiple different biased samples at once,

to answer a large variety of queries beyond point queries, and to incorporate hierarchical

aggregates.

To build a population model from multiple different samples, we will turn to the research

in propensity score estimation for inspiration [95, 18]. Typically used to understand the

differences in medical treatment groups, propensity score estimation aims to estimate the

probability of an individual being included in a sample from comparing it to matching

individuals in other samples. We will extend this idea to match tuples in one sample to

tuples in other samples to learn the sampling probability. The challenges are how to extend

this work to handle arbitrary samples where individuals may not match.

To answer a larger variety of queries, we will research and develop techniques to answer

queries over probabilistic models that do not involve materializing a sample. While the work

in [122, 119] discusses how to handle joins over probabilistic graphical models, it is still an

open question how to handle top-k and generic group by queries.

Lastly, as hierarchical aggregates are common in demography research (e.g., aggregates

over county and city and state), we need to extend our model to handle these nested aggre-

gates. Iterative proportional fitting has been extended to hierarchical aggregates [98], and

there has been work on hierarchical Bayesian networks [63]. However, it is still an open

research question as how these two techniques can be merged into a unified framework.

Beyond building an open world database system, the other future directions for this work

are to extend bias correction into bias detection. Can we help a user explain how their data
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is bias? Further, can we use the debiasing work to improve fairness in datasets or help

machine learning models learn about misrepresented or underrepresented subpopulations in

a training set.

The overall takeaway from this dissertation is that building an open world database

system is not only a relevant problem but a challenging one for the database community.

Such a system will help automate the data analytics pipeline so that data scientists can more

efficiently answer questions over their data.
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Appendix A

T-CHERRY JUNCTION TREE

Algorithm 10 gives the detailed pseudo code of our modified t-cherry junction tree build-

ing algorithm. Given a dimension k to use as our max cluster size, budget of B aggregates

to keep in Γ, attribute set A = {A1, . . . , Am}, and Γ, we output a set of clusters C ′. The

attributes associated with each cluster are the attributes of the aggregates to keep in Γ.

Therefore, we filter Γ so that each γi must be equal to the set of attributes associated with

a cluster in C ′.

Algorithm 9 GenClusterSeparatorPairs
C = ∅

for c ∈ combinations(A, k) where attrs(c) ∈ Γ do

for v ∈ c do

S = c− v . Separator

w = I(Γc)− I(ΓS) . Weight

P = None . Parent

C = C ∪ (c, S, P, v, w)

return C
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Algorithm 10 Modified t-cherry tree.
C ′ = ∅
C ← sorted(GenClusterSeparatorPairs)
c← C[0]

A′ ← attrs(C[0])

idx ← 1

i← 0 . Number clusters seen since update
t← False . New tree
while |c| < B do

d← C[idx]
if d.v /∈ A′ then

P ← FindParent(d, c) . Find P containing d.S, d’s separator
if P 6= None or t then

d.P ← P

A′ ← A′ ∪ attrs(d)

c← c ∪ d
i← 0

t←False
idx← (idx + 1)%|C|
i← i+ 1

if i = |C| then . Check if need to make new tree
t← True

idx← 0

if A′ ← A then . Check if need to reset attributes
C ′ ← C ′ ∪ c
C ← PruneClusters(C, c) . Prune clusters to have no duplicates
A ← attrs(C)
A′ ← ∅
c← ∅
t← True

idx← 0

C ′ ← C ′ ∪ C ′

end while
return C ′
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