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Computer Science and Engineering

A variety of data analytics systems are available as cloud services today, such as Amazon Elastic

MapReduce (EMR) [13] and Azure Data Lake Analytics [1]. To buy these services, users select

and pay for a given cluster configuration based on the number and type of service instances.

Today’s cloud service pricing models force users to translate their data management needs into

resource needs. It is well known, however, that users have difficulty selecting a configuration

that meets their need. For non-experts, being faced with decisions about the configuration is even

harder, especially when they seek to explore a new dataset.

This thesis focuses on the challenges and implementation details of building a system that helps

bridge the gap between the data analytics services users need and the way cloud providers offer

them.

The first challenge in closing the gap is finding a new type of abstraction that simplifies user

interactions with cloud services. We introduce the notion of a “Personalized Service Level Agree-

ment” (PSLA) and the PSLAManager system that implements it. Instead of asking users to specify

the exact resources they think they need or asking them for exact queries that must be executed,

PSLAManager shows them service options for a set price.

Second, providing PSLAs is challenging to service providers who seek to avoid paying for

SLA violations and over-provisioning their resources. To address these challenges, we present



SLAOrchestrator, a system that supports performance-centric (rather than availability-centric) SLAs

for data analytic services. SLAOrchestrator uses PSLAManager to generate SLAs; however, to re-

duce their resource and SLA violation costs, it introduces a new sub-system called PerfEnforce

that uses scaling algorithms and provisioning techniques to minimize the financial penalties to

providers.

Finally, SLAOrchestrator’s models rely, among others, on the cost estimates from the query

optimizer of the data analytics service. With more complex workloads, these estimates can be

inaccurate due to the cardinality estimation problem. In the DeepQuery project, we empirically

evaluate how deep learning can improve the accuracy of cardinality estimation.
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Chapter 1

INTRODUCTION

Many of today’s large enterprises collect massive amounts of data. Amazon, for example,

stores more than 50 petabytes of data and processes over 600 thousand user analytic jobs daily on

its analytics infrastructure [10]. Similarly, the Netflix data warehouse contains over 60 petabytes

of data and processes more than 500 billion events per day [103]. As data continues to accumulate,

large enterprises constantly seek new and efficient means to store and analyze it.

Data analytics refers to the science of analyzing data to uncover useful insights [90]. It com-

monly involves the handling and processing of large amounts of raw data, requiring computational

power substantially beyond the reach of a typical desktop environment [67]. In fact, a vast pool of

resources may be required and enterprises must choose between purchasing and maintaining them

on-premise or using public cloud resources.

Public clouds are computing services offered by cloud providers over the Internet. Cloud

providers make their compute infrastructure available to customers, who either rent basic virtual

machines per hour or purchase a higher level data analytics service [133]. Compared to having an

on-premise infrastructure, these options typically involve convenient, on-demand access to config-

urable computing resources [113]. Amazon Web Services [11], Microsoft Azure [134], and Google

Cloud [54] are some of the largest cloud computing providers today.

These cloud providers offer cloud storage services including Amazon S3 [15], Amazon Elastic

Block Store [9], Azure Blob Storage [19], and Google Cloud Storage [53]. They also offer general-

purpose compute services, such as Amazon EC2 [12], Azure Virtual Machines [20] and Google

Compute [54]. They also offer data analytics services including Amazon Elastic MapReduce

(EMR) [13], Google BigQuery [21] and Azure Data Lake Analytics [1]. Users can simply choose

this pre-packaged software to easily run queries and user-defined computations without having to



2

Figure 1.1: Amazon Elastic Map Reduce (EMR) Interface: Before using the service, users must

select the software configuration and hardware configuration.

write their own code to run these operations.

Today’s data analytic services require users to select the number of compute instances they want

to purchase to satisfy their processing needs. We show a portion of this interface in Figure 1.1,

where the user must select a software and hardware configuration. The number of choices is

large. For example, as of April 2019, there were 115 compute instance types from Amazon Elastic

MapReduce (EMR) [13] to select from. Each instance type is a machine that contains a specified

amount of RAM, a select number of CPU cores and a storage type (either local, remote, or both).

As shown in Figure 1.1, today’s cloud services force users to translate their data management

needs into resource needs (e.g., to answer such questions as: What type of instance should I use?

How many instances should I purchase?).

A disconnect, thus exists between the resource-centric approach offered by cloud providers and

the query-needs-based approach from users. Understanding the resources needed to process data

management workloads can be daunting – particularly when users do not clearly understand their
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Figure 1.2: Overview of thesis contributions: A system that provides performance-based SLAs for

data analytics in the cloud.

dataset or even know what results they seek, as is the case with exploratory analytics. Further, the

service configuration of choice dramatically impacts price [8] and performance [129], compound-

ing the pressure on users to choose correctly [60].

As a motivating example, assume a user decides to purchase an Amazon EMR cluster with 1

m3.xLarge master node and 2 m3.xLarge workers. At present, the cost would be $.99 per hour for

the cluster. As the user begins to run queries, the question of performance arises: although queries

return answers, some run faster than others. So, the user may begin to question whether purchasing

more machines could improve overall performance [95].

At present, users do not know how to answer this question. Most cloud providers offer service

level agreement (SLA) guarantees with respect to availability, but not with respect to performance.

Without performance guarantees, users cannot make well-informed decisions about optimizing for

cost and performance.

We posit that accessing a database management system (DBMS) as a cloud service opens the



4

opportunity to re-think the contract between users and resource suppliers. This would be especially

beneficial for data scientists with different skill levels (from data enthusiasts to statisticians) who

need to manage and analyze their data but lack the expertise to determine the resource configuration

they should use. How can they intelligently choose between even basic service instances, let alone

decide about advanced services, such as the use of Spot instances [11]? This limits how many

users can cost-effectively leverage a cloud DBMS service to manage and analyze their data.

This problem is difficult not only for data scientists but for database experts. Although exist-

ing benchmarks [79] measure performance on different cloud services, extrapolating from those

benchmarks to analyzing the performance of a specific database remains a complex undertaking.

More recently, some database services have started to change their mode of interaction with

users. Google BigQuery [21], for example, does not support the concept of service instances.

Users execute queries and are charged by the gigabyte of data processed. This interface, however,

poses different obstacles. It does not offer options to trade-off price and performance (only a

choice between “on demand” and “reserved” querying). Furthermore, users have no way to predict

performance and for “on demand” querying, the ultimate cost of an analysis.

Research into new SLAs with cloud services has also begun. However, recent proposals require

that users have a pre-defined workload [75, 99] or precise query-time constraints [126, 139]. They

feature occasionally surprising conditions, such as rejecting queries unless they can execute within

the SLA threshold [139].

We argue that no existing approach is satisfactory. Cloud providers should offer a new interface.

Instead of showing users the available resources they can lease, or asking users about specific per-

formance requirements for specific workloads, cloud services should show users possible options

given their data and let them choose from them. The options should have performance guarantees

to avoid unexpected behaviors. They should also let users change their price-performance options

over time.

This new type of interface raises several challenges. First, for a cloud service to provide

performance-based SLAs, it must be able to predict the performance of various queries from the

user’s dataset. Doing so is complex, especially when the query workload is not well-defined. Sec-



5

ond, once a user purchases a performance-based SLA, the system must be able to consolidate

resources to ensure that these performance guarantees are met. This presents a cost of the service,

not only in terms of instances and storage but for SLA violations. This is especially challenging if

there are multiple tenants in the service who have their own SLA.

This thesis explores ways that cloud services can provide interpretable performance-based

SLAs without having to pay heavily for SLA violations or over-provisioning to meet the guar-

antees. To this end, we propose a set of three systems: PSLAManager, SLAOrchestrator (which

introduces a new sub-system called PerfEnforce) and DeepQuery. Each focuses on a different

aspect of the problem.

1.1 Summary of Contributions and Thesis Outline

Figure 1.2 illustrates these components, which constitute our core contribution, and how they work

on top of an existing data analytics service.

First, the system offers a new interface through PSLAManager that balances price-performance

goals of users with resource configurations of services (Chapter 2). PSLAManager is an overlay

on top of an existing cloud data analytics service. Given a user database uploaded to the cloud,

the PSLAManager computes how different service configurations map onto price-performance

options for the user database. It provides several options to the user, each with different price and

performance trade-offs. Assuming the user has selected an SLA option, Figure 1.2 shows the path

of a query; after query q is submitted to the system, and based on the SLA purchased by the user,

PSLAManager labels the query with a performance-based SLA, qsla.

Second, to enforce SLAs purchased by multiple users, we present the SLAOrchestrator system

(Chapter 3). SLAOrchestrator uses PSLAManager to generate SLAs and introduces a new sub-

system, PerfEnforce. Given qsla, PerfEnforce schedules queries and provisions the underlying

system. In addition, as it learns more about users’ workloads and query execution runtimes for

different queries, it improves subsequent PSLAManager SLAs in future sessions.

Third, at the heart of the preceding techniques lies the ability to model and predict query execu-

tion times and other properties. These models heavily rely on cost estimates from query optimizers.
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Predicting query execution times or other query properties, like cardinality, is extremely difficult.

Recently, deep learning (DL) has emerged as a powerful machine learning tool with great success

in a variety of areas. In the DeepQuery project (Chapter 4), we empirically evaluate how to use DL

to improve the accuracy of cardinality estimation. We focus on the cardinality estimation problem

as this is known as the “Achilles Heel” of modern query optimizers [77].

We discuss related work in Chapter 5 and conclude our inquiry in Chapter 6.

We now describe each contribution in more detail.

1.2 PSLAManager: Generating Personalized SLAs in the Cloud

In Chapter 2, we address the fundamental challenge of rethinking the interface between users

and the cloud in the context of data analytics. As noted previously, users should be able to select

service tiers by thinking only in terms of query performance and query costs, not resource con-

figurations. To do so, we propose the notion of a Personalized Service Level Agreement (PSLA).

The key contribution of the PSLA is allowing users to specify the schema of their data and basic

statistics (base table cardinalities); the cloud service then shows what types of queries the user

can run and the performance of these queries with different levels of service, each with a defined

cost. Performance is captured with a maximum query runtime, and queries are represented with

templates.

Several challenges arise when generating a PSLA: How many service options should a PSLA

have? What types and how many queries should be shown for each option? To help answer

these questions, we define metrics to assess the quality of PSLAs. We then develop an approach

for generating quality PSLAs from user databases. The PSLAManager appeared at DanaC with

SIGMOD’13 [95] and CIDR’15 [96].

1.3 SLAOrchestrator: Reducing the Cost of Performance SLAs for Cloud Data Analytics

In Chapter 3, we address the problem of reducing the primary costs of performance-based SLAs:

the cost of resources and the cost of SLA violations. It is difficult for cloud providers to be able
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to offer affordable performance-based SLAs. They could provide each user with many resources

to minimize SLA violations, but doing so would increase the cost of infrastructure. Alternatively,

they could provide fewer resources per user, but this could impose costs related to higher risks for

SLA violations.

Previous research has addressed the challenge of enforcing SLAs in various ways. One line

of work assumes that the SLA is pre-defined [33, 32, 139]. For example, SLA runtimes are artifi-

cially generated by offering a performance guarantee 10x the query’s true latency [33], or by setting

SLAs to the performance of past executions [64]. Without well-defined SLAs, the best enforce-

ment does not help meet performance guarantees. If cloud providers overprovision the underlying

system, users have to bear unnecessarily high costs, cloud providers become less competitive, and

ultimately users take their business elsewhere. If cloud providers underprovision the system, they

must pay penalties for missed SLAs and thus either lose money in the long term or raise prices to

compensate.

We develop SLAOrchestrator, a system that enables cloud providers to offer query-level, per-

formance SLAs for data analytics. SLAOrchestrator uses the PSLAManager to show the user

options and associated price tags. It generates, updates over time, and enforces SLAs so as to bring

the provider’s cost down to (or even below) that of the original service without SLAs.

SLAOrchestrator achieves its goal using three key techniques. First, its design is based on the

core idea of a double-nested learning loop. In the outer loop, every time a tenant arrives, the system

generates a performance SLA given its current model of query execution times. That model learns

over time as more tenants use the system. The SLA is in effect for the duration of a query session,

which we define as the time from the moment users purchase an SLA and issue their first query

until they stop their data analysis and exit from the system. In the inner loop, SLAOrchestrator

continuously learns from user workloads to improve query scheduling and resource provisioning

decisions and reduce costs during query sessions. To drive this inner loop, we introduce a new

subsystem, which we call PerfEnforce.

Second, the PerfEnforce subsystem represents a new type of query scheduler. Unlike tra-

ditional schedulers, which must arbitrate resource access and manage contention, PerfEnforce’s
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scheduler operates in the context of seemingly unbounded, elastic cloud resources. Its goal is cost-

effectiveness. It schedules queries so as to minimizes over- and under-provisioning overheads. We

develop and evaluate four variants of the scheduler. The first is based on a PI controller. Two vari-

ants model the problem as either a contextual or non-contextual multi-armed bandit (MAB) [123].

The last uses online learning to model the problem.

Third, PerfEnforce includes a new resource provisioning component. We evaluate two vari-

ants of resource provisioning. The first strives to maintain a desired resource utilization level.

The second observes tenant query patterns and adjusts both the size of the overall resource pool

and the query scheduler’s tuning parameters. We present the resource provisioning algorithms in

Section 3.3.

We demonstrate that PerfEnforce dramatically reduces service costs for per-query latency SLAs.

This work was demonstrated at SIGMOD’16 [97] and published in USENIX ATC ’18 [98].

1.4 DeepQuery: An Empirical Analysis of Deep Learning for Cardinality Estimation

In Chapter 4, we focus on using deep learning (DL) as an approach for estimating cardinalities.

The SLAOrchestrator system uses scaling techniques that rely heavily on cost estimates provided

by the optimizer. In general, inaccurate cost estimates heavily impacts query optimization. Many

current optimizers use histograms to estimate cardinalities. For complex queries, optimizers extract

information from these histograms in conjunction with “magic constants” to make predictions [78].

Since the estimates from these optimizers are not theoretically grounded, propagating them through

each intermediate result of a query plan can cause high cardinality errors, leading to sub-optimal

query plans. Although estimating the cost of a query plan is a well-researched problem [115],

it remains a challenging one today: existing DBMSs still choose poor execution plans for many

queries [78].

To support cardinality estimation, DBMSs collect statistics about the data, which typically

take the form of histograms or samples. Because databases contain many tables and columns,

these statistics rarely capture all existing correlations. The manual process of selecting the best
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statistics to collect can help, but it requires significant expertise both in database systems and in

the application domain.

Recently, as a result of declining hardware costs and growing datasets available for training, DL

has been successfully applied to solving computationally intensive learning tasks in other domains.

The advantage of these type of models comes from their ability to learn unique patterns and features

of the data [52] that would otherwise be difficult to identify and use for query optimization.

The database community has recently begun to consider the potential of DL techniques to

solve database problems [132]. However, there remains a limited understanding of the potential

and impact of these models for query optimization. Previous work has demonstrated the potential

of using DL as a critical tool for learning indexes [73], improving query plans [87], and learning

cardinalities, specifically through deep set models [69]. However, we argue that that the accuracy

should not be the only factor to consider when evaluating these models. We must also consider

their overheads, robustness, and impact on query plan selection. There is a need for the systematic

analysis of the benefits and limitations of various fundamental architectures.

In Chapter 4, we focus on the trade-offs among model size (measured by the number of train-

able parameters), the time it takes to train the model, and the accuracy of model predictions. We

study these trade-offs for several datasets with the goal of understanding the overheads of these

models compared to PostgreSQL’s optimizer. To do this, we build several simple neural net-

works and recurrent neural network models and vary complexity by modifying network widths

and depths. We train each model separately and compare model overheads to PostgreSQL and

random forest models (based on an off-the-shelf machine learning model).

We find that simple DL models can learn cardinality estimations across a variety of datasets,

reducing the error by 72%-98% on average compared to PostgreSQL. In addition, we empirically

evaluate the impact of injecting cardinality estimates produced by DL models into the PostgreSQL

optimizer. We find that estimates from these models lead to more better query plans across all

datasets, reducing runtimes by up to 49%.

A short version of this paper was published at DEEM with SIGMOD’18 [94].

In summary, this thesis addresses how a data analytics service in the cloud can minimize the
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cost of resources and SLA violations and improve user access to price/performance decision-

making. We develop the PSLAManager to generate performance-based SLAs for cloud analytics;

the SLAOrchestrator with PerfEnforce and the PSLAManager to drive down the costs of providing

performance SLAs; and DeepQuery to offer a new approach to cardinality estimation using deep

neural networks.
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Chapter 2

PSLAMANAGER: GENERATING PERSONALIZED SERVICE LEVEL
AGREEMENTS IN THE CLOUD

In this chapter, we focus on the problem of generating performance-based service level agree-

ments for data analytics in the cloud and present our PSLAManager system. This work was origi-

nally published at CIDR 2015 [96].

As we described in Section 1.2, our key idea is to introduce a new type of interface to help

bridge the gap between the resource-centric offerings shown by cloud providers and what users

actually wish to acquire from a cloud service, which is fast query execution performance at a good

price. To achieve this goal, we propose the notion of a Personalized Service Level Agreement

(PSLA), which is a performance SLA custom-generated for a given user database. We introduce

the PSLAManager system, which generates such PSLAs.

The key idea of the PSLA is for a user to specify the schema of her data and basic statistics

(base table cardinalities) and for the cloud service to show what types of queries the user can run

and the performance of these queries on the user database. Additionally, the PSLA shows query

performance for different service levels, each with a defined cost. The performance is captured

with a maximum query runtime while queries are represented with templates. Figure 2.1 shows

an example PSLA that our service generates (we describe the experimental setup in Section 2.3).

The example shows a PSLA with four tiers generated for the Myria shared-nothing DBMS ser-

vice [57, 2]. The database to analyze is a 10GB instance of the Star Schema Benchmark [93].

The PSLA makes cost and performance trade-offs obvious: If a user needs to execute just a few

simple selection queries, Tier 1 likely suffices. These queries will run in under 10sec at that tier.

Tier 2 significantly improves the runtimes of the most complex join queries compared with Tier 1.

Their runtimes go from below 600sec to below 300sec. Tier 3 provides only limited performance
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improvement compared with Tier 2. Finally, Tier 4 enables queries with small joins to become

interactive with runtimes below 10sec. Figure 2.2 shows a three-tier PSLA for the same dataset but

for a single-node SQL Server instance running on Amazon EC2 [12].

Figure 2.1: Example Personalized Service Level Agreement (PSLA) for a 10GB instance of the

Star Schema Benchmark on the shared-nothing Myria DBMS service. These four tiers correspond

to 4-node, 6-node, 8-node, and 16-node Myria deployments.
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Figure 2.2: Example Personalized Service Level Agreement (PSLA) for a 10GB instance of the

Star Schema Benchmark on a single-node Amazon EC2 instance with SQL Server. The three tiers

correspond to a small, medium, and large EC2 instance.
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In this chapter, we present the PSLAManager, a new system for the generation and management

of PSLAs. The challenge behind developing the PSLAManager lies in developing a model to

reason about PSLA quality and algorithms to generate high-quality PSLAs. We tackle those two

challenges in this chapter. More specifically, we make the following contributions:

• In Section 2.1, we define a model for PSLAs and metrics to assess PSLA quality. These

metrics include performance error (how accurately the displayed time-thresholds match the

actual query times), complexity (a measure of the PSLA size), and query capabilities (the

types of queries described in the PSLA).

• In Section 2.2, we develop a method to automatically generate a PSLA for a cloud service

and user database. The challenge is to generate PSLAs with low performance error and low

complexity at the same time while preserving a given set of query capabilities.

• In Section 2.3, we show experimentally, using both Amazon EC2 [12] and our Myria parallel

data management service [57], that our approach can generate PSLAs with low errors and

low complexity.

The PSLAManager generates a PSLA for a given database and cloud service. This system

can thus be layered on top of an existing cloud data management service such as Amazon RDS,

Amazon Elastic MapReduce, or equivalent. In this chapter, we assume such a cloud-specific de-

ployment that gives the PSLAManager access to the cloud service internals including the query

optimizer (which we use to collect features of query plans for runtime predictions). However,

since the PSLAManager takes as input only the user’s database schema and statistics, it could also

be a middleware service that spans multiple clouds and facilitates the comparison of each service’s

price-performance trade-offs through the common PSLA abstraction. The two PSLAs shown in

Figures 2.1 and 2.2, for example, facilitate the comparison of the Amazon EC2 with SQL Server

service and the Myria service given the user’s database.
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2.1 PSLA Model

We first define a Personalized Service Level Agreement (PSLA) more precisely together with qual-

ity metrics for PSLAs.

We start by defining the notion of a query template. The term “query template” has traditionally

been used to refer to parameterized queries. Rajaraman et al. [109] used the term query template to

designate parameterized queries that differ in their selection predicates. Agarwal et al. [6], on the

other hand, refer to queries with different projected attributes. We generalize the notion of a query

template to select-project-join (SPJ) queries that differ in the projected attributes, relations used in

joins (the joined tables are also parameters in our templates), and selection predicates.

Query Template: A query template M for a database D is a triple M = (F, S,W ) that

compactly represents several possible SPJ queries over D: F represents the maximum number

of tables in the FROM clause. S represents the maximum number of projected attributes in the

SELECT clause. W represents the maximum overall query selectivity (as a percent value), based

on the predicate in the WHERE clause. Joins are implicitly represented by PK/FK constraints. No

cartesian products are allowed.

For example, the template (4, 12, 10%), represents all queries that join up to four tables, project

up to 12 attributes, and select up to 10% of the base data in the four tables.

We can now define a Personalized Service Level Agreement:

Personalized Service Level Agreement: A PSLA for a cloud provider C and user database

D is a set of PSLA tiers for the user to choose from, , PSLA(C,D) = {R1, R2, . . . , Rk}, where

each tier, Ri is defined as:

Ri = (pi, di,
{
(thi1, {Mi11,Mi12, . . . ,Mi1qa}),

(thi2, {Mi21,Mi22, . . . ,Mi2qb}),

. . . ,

(thir, {Mir1,Mir2, . . . ,Mirqc})
}
)
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Each tier has a fixed hourly price, pi, and no two tiers have the same price. Each tier also has a set

of query templates Mi11 through Mirqc clustered into r groups. Each of these templates is unique

within each tier. Each template group, j, is associated with a time thresholds thij . Finally, di is the

penalty that the cloud agrees to pay the user if a query fails to complete within its corresponding

time threshold thij .

Figures 2.1 and 2.2 show two example PSLAs for the Star Schema Benchmark [93] dataset.

One PSLA is for the Myria shared-nothing cloud service [57] while the other is for the Amazon

EC2 service with SQL Server [12] (we describe the experimental setup in Section 2.3). The figures

shows screenshots of the PSLAs as they are shown in our PSLAManager system. To display each

template M = (F, S,W ), we convert it into a more easily readable SQL-like format as shown in

the figures.

Given a PSLA for a specific cloud service, the user will select a service tier Ri and will be

charged the corresponding price per time unit pi. The user can then execute queries that follow the

templates shown and is guaranteed that all queries complete within the specified time-thresholds

(or the cloud provider incurs a penalty di). Query runtimes across tiers either decrease or stay

approximately constant depending on whether the selected configurations (or tiers) improve per-

formance. If some queries take a similar amount of time to process at two tiers of service Rj and

Ri, j < i, the queries are shown only for the cheaper tier,Rj: a query that can be expressed through

a template from a lower tier, Rj , but has no representative template in the selected tier, Ri, will

execute with the expected runtime shown for the lower tier Rj .

There are several challenges related to generating a PSLA: How many tiers should a PSLA

have? How many clusters and time-thresholds should there be? How complex should the templates

get? To help guide the answers to these questions, we define three metrics to assess the quality of

a PSLA:

PSLA Complexity Metric: The complexity of a PSLA is measured by the number of query

templates that exist in the PSLA for all tiers.

The intuition for the complexity metric is that, ultimately, the size of the PSLA is determined

by the number of query templates shown to the user. The smaller the PSLA complexity, the easier
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it is for the user to understand what is being offered. Hence, we prefer PSLAs that have fewer

templates and thus, a lower complexity.

PSLA Performance Error Metric: The PSLA performance error is measured as the root mean

squared error (RMSE) between the estimated query runtimes for queries that can be expressed fol-

lowing the PSLA templates in a cluster and the time-thresholds associated with the corresponding

cluster. The RMSE is first computed for each cluster. The PSLA error is the average error across

all clusters in all tiers.

The RMSE computation associates each query with the template that has the lowest time thresh-

old and that can serve to express the query.

The intuition behind the above error metric is that we want the time thresholds shown in PSLAs

to be as close as possible to the actual query runtimes. Minimizing the RMSE means more compact

query template clusters, and a smaller difference between query runtime estimates and the time-

thresholds presented to the user in the PSLA.

Given a query-template cluster containing queries with expected runtimes {q1, . . . , qk}, and

time-threshold th, the RMSE of the cluster is given by the following equation. Notice that we use

relative runtimes because queries can differ in runtimes by multiple orders of magnitude.

RMSE({q1, . . . , qk}, th) =

√√√√1

k

k∑
i=1

(
qi − th
th

)2

Because the set of all possible queries that can be expressed following a template is large, in our

system, we measure the RMSE using only the queries in the workload that our approach generates.

PSLA Capability Coverage: The class of queries represented by the query templates: , se-

lection queries, selection queries with aggregation, full conjunctive queries, conjunctive queries

with projection (SPJ queries), conjunctive queries with aggregation, union of conjunctive queries,

queries with negations.

For this last metric, higher capability coverage is better since it provides users with performance

guarantees for more complex queries over their data.

Problem Statement: Given a database D and a cloud DBMS C, the problem is how to gen-
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Figure 2.3: PSLA generation process.

erate a PSLA comprising a set of PSLA tiers R that have low complexity, low performance error,

and high capability coverage. The challenge is that complexity, performance and capability cov-

erage are at odds with each other. For instance, the higher we extend the capability coverage for

the queries, the higher the PSLA complexity becomes and the likelihood of performance error in-

creases as well. Additionally, these PSLAs must be generated for a new database each time, or any

time the current database is updated. Hence, PSLA generation should be fast.

2.2 PSLA Generation

We present our approach for generating a PSLA given a database D and a cloud service C. We

keep the set of query capabilities fixed and equal to the set of SPJ queries. However, there is

no fundamental limitation that prevents extending the approach to more complex query shapes.

Figure 2.3 shows the overall workflow of the PSLA generation process. We present each step in

turn.

We focus on databases D that follow a star schema: a fact table f and a set of dimension tables

{d1, . . . , dk}. Queries join the fact table with one or more dimension tables. Star schemas are

common in traditional OLAP systems. They are also common in modern analytic applications: A

recent paper [6], which analyzed queries at Facebook, found that the most common type of join

queries were joins between a single large fact table and smaller dimension tables. It is possible to

extend our algorithms to other database schemas, as long as the PK/FK constraints are declared, so

that the system can infer the possible joins.
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2.2.1 Tier Definition

The first question that arises when generating a PSLA is what should constitute a service tier?

Our approach is to continue to tie service tiers to resource configurations because, ultimately,

resources are limited and must be shared across users. For example, for Amazon EC2, three natural

service tiers correspond to a small, medium, and large instance of that service. For Amazon Elastic

MapReduce, possible service tiers are different-size clusters (, cluster of size 2, 3, 4, . . ., 20).

We leave it to the cloud provider to set possible resource configurations. Importantly, the cloud

can define a large number of possible configurations. The PSLAManager filters-out uninteresting

configurations during the PSLA generation process as we describe in Section 2.2.4. For example,

in the case of a shared-nothing cluster, the provider can specify that each cluster size from 1 to 20

is a possible configuration. Our PSLAManager will pick a subset of these configurations to show

as service tiers.

The mapping from service tiers to resources is invisible to users. In recent work, it has been

shown that cloud providers can often choose different concrete resource configurations to achieve

the same application-level performance [62]. For now, we define each service tier to map onto a

specific resource configuration.

2.2.2 Workload Generation

The first step of PSLA generation is the production of a workload of queries based on the user’s

database. Recall that, in our approach, we do not assume that the user already has a workload.

Instead, we only require that the user provides as input a schema and basic statistics on their data.

The PSLAManager generates the PSLA from this schema and statistics.

The goal of the PSLA is to show a distribution of query runtimes on the user data. Hence,

fundamentally, we want to generate valid queries on the user schema and estimate their runtime

for different resource configurations. The key question is, what queries should be included in this

process? If we generate too many queries, PSLA generation will become slow and the PSLAs may

become complex. If we generate too few queries, they will not sufficiently illustrate performance
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trade-offs.

From experience working with different cloud DBMS services, we find [95] that, as can be

expected, some of the key performance differences revolve around join processing. Therefore, our

approach is to focus on generating queries that illustrate various possible joins based on the user’s

data. To avoid generating all possible permutations of tables, we apply the following heuristic:

For each pattern of table joins, we generate the query that will process the largest amount of data.

Hence, our algorithm starts from considering each table in isolation. It then considers the fact table

joined with the largest dimension table. Next, it generates queries that join the fact table with the

two largest dimension tables, and so on until all tables have been joined. The goal is to generate

one of the expensive queries among equivalent queries to compute time thresholds that the cloud

can more easily guarantee.

Of course, users typically need to look at subsets of the data. Changing the query selectivity

can significantly impact the size and thus performance of the joins. To show these trade-offs, we

add to each of the above queries selection predicates that retain different orders of magnitude of

data such as 0.1%, 1%, 10%, and 100%. To ensure that the predicates change the scales of the join

operations, we apply them on the primary key of the fact table.

Finally, since many systems are column-stores, we generate queries that project varying num-

bers of attributes.

Algorithm 1 shows the pseudocode for the query generation step. The input is the database

D =
{
{f} ∪ {d1, . . . , dk}

}
, each table ti ∈ D has a set of attributes A(ti). Function pk(ti) returns

the set of primary key attributes for ti. The fact table f has a foreign key for each dimension table,

that references the dimension table’s primary key. The algorithm generates the set of representative

queries Q given the database D. The result set Q consists of triples, (T q, Aq, eq), where T q is the

set of tables in the FROM clause, Aq is the set of projected attributes in the SELECT clause, and

eq is the desired selectivity value, which translates into a predicate on the PK of the fact table in

the WHERE clause (or predicate on the PK of a dimension table if there is no fact table in the

FROM clause). The algorithm keeps a list L with all representative sets of tables T q. Initially

every standalone table ti ∈ D is inserted as a singleton set into L (lines 4-6), then the fact table is
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Algorithm 1 Query generation algorithm
1: Input: D

2: Q← {}, L← {}
3: // Step 1: Generate combinations of tables for the FROM clause

4: for each ti ∈ D do

5: T q ← {ti}

6: L← L ∪ T q

7: // For the fact table add combinations of dimensions tables

8: if ti is the fact table, i.e. ti = f then

9: Sort {d1, . . . , dk} desc. on size(di), 1 ≤ i ≤ k

10: for each j, 1 ≤ j ≤ k do

11: Dq ← take the first j tables from D

12: T q ← T q ∪Dq

13: L← L ∪ T q

14: // Step 2: Add the projections and selections

15: for each T q ∈ L do

16: Sort A(T q) desc. on size(Aj(T
q)), 1 ≤ j ≤ |A(T q)|

17: for each k, 1 ≤ k ≤ |A(T q)| do

18: // Project the k largest attributes

19: Aq ← take the first k attributes from A(T q)

20: // Add a desired selectivity from a pre-defined set

21: for each eq ∈ ETq do

22: Q← Q ∪ {T q , Aq , eq}
return Q

expanded (line 8), when we generate the joins.

2.2.3 Query Time Prediction

Given the generated workload, a key building block for our PSLA approach is the ability to es-

timate query runtimes. Here, we build on extensive prior work [49, 48, 7] and adopt a method

based on machine learning: Given a query, we use the cloud service’s query optimizer to collect

query plan features including the estimated query result size and total query plan cost among other

features. We build a model offline using a separate star schema dataset. We use that model to

predict the runtime of each query in the generated workload given its feature vector and a resource

configuration. With this approach, to generate a PSLA, users only need to provide the schema of

their database and basic statistics such as the cardinality of each input relation.
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Bucket size EMD(1,2) EMD(2,3) EMD(3,4) EMD(2,4)

5 17.53 8.70 12.00 20.70

10 17.43 7.07 13.74 20.81

20 20.58 7.83 9.91 17.75

Figure 2.4: Distribution of query times across the four initially considered configurations of Myria.

The PSLAManager automatically identifies the tiers with the most different query runtime distri-

butions by computing the Earth Mover’s Distance (EMD) between tiers. EMD(i,j) is the EMD

between service tiers i and j.

2.2.4 Tier Selection

Once our system generates a workload and estimates query runtimes for each resource configu-

ration defined by the cloud provider, our approach is to select a small number of these resource

configurations to show as service tiers. Figure 2.4 illustrates the approach using real query runtime

distributions obtained for the 10GB SSB dataset and the Myria service. The figure shows the query

runtime distributions (plotted as a histogram with buckets of size 20 sec) for four cluster sizes (4,

6, 8, and 16 nodes). As the figure shows, and as expected, the query runtime distribution shifts to

the left with larger Myria clusters. The goal is to narrow down which service tiers to show to the

user.
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Because the goal of the PSLA is to show users different points in the space of price-performance

trade-offs, the PSLAManager selects the configurations that differ the most in the distributions of

estimated query runtimes for the given workload. To compute these distances, we use the Earth

Mover’s Distance [112], since this method effectively compares entire data distributions; in our

case, the distribution of query runtimes.

The tier selection algorithm proceeds as follows: Given a sequence of increasingly costly re-

source configurations: c1, c2, . . . , ck, we compute the distances EMD(ci, ci+1)∀i ∈ [1, k). We

then recursively select the smallest distance in the list and remove the more expensive configura-

tion ci+1, and recompute the distance between the new neighbors EMD(ci, ci+2), if ci+2 exists.

We terminate once we have a desired number k′ < k of tiers. Figure 2.4 shows the EMD values

for different histogram granularities for the Myria example. Assuming a distribution captured with

a fine-grained histogram with buckets of size 5sec or 10sec, and assuming the goal is to show only

two tiers, the algorithm first eliminates the third configuration because EMD(2,3) is the smallest

EMD value. It then re-computes EMD(2,4). At this point, EMD(1,2) is smaller than EMD(2,4).

As a result, the second configuration is discarded. The final two tiers selected are tier 1 and 4.

They correspond to the 4-node and 16-node configurations (we further discuss this figure in Sec-

tion 2.3). Observe that the granularity with which the query time distributions are captured can

affect the choice of service tiers. In this example, if we use buckets of size 20sec, the final two tiers

selected are Tiers 1 and 2.

2.2.5 Workload Compression into Clusters

Our workload-generation approach reduces the set of all possible queries down to a set of repre-

sentative queries, Q. This set may still easily range in the hundreds of queries as in the case of the

SSB schema, for which our approach produces 896 queries.

It would be overwhelming to show the entire list of queries from the generated workload to

the user. This would yield PSLAs with low error but high complexity as defined in Section 2.1.

Instead, our approach is to compress the representative workload. The compression should re-

duce the PSLA complexity, which is measured by the number of query templates, while keeping
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Figure 2.5: Clustering techniques illustration. Each X corresponds to a query. (a) Threshold-based

clustering (b) Density-based clustering.

the performance error low. These two optimization goals are subject to the constraint that the

compression should preserve capability coverage from the original workload: For example, if the

original workload includes a query that joins two specific tables, the final query templates should

allow the expression of such a query.

Our workload compression approach has three components as shown in Figure 2.3. The first

component is query clustering. We start with the cheapest tier and use a clustering technique to

group queries based on their runtimes in that tier. We consider two different types of clustering

algorithms: threshold-based and density-based. Figure 2.5 illustrates these two methods.

For threshold-based clustering, we pre-define a set of thresholds and partition queries using

these thresholds. The PSLAs shown in Figure 2.1 and Figure 2.2 result form this type of cluster-

ing. We use two approaches to set the thresholds: (i) we vary the thresholds in fixed steps of 10,

100, 300, 500, and 1000 seconds, which we call INTERVAL10, INTERVAL100, INTERVAL300,

INTERVAL500, and INTERVAL1000, respectively; and (ii) we vary the thresholds following dif-

ferent logarithmic scales. One of the scales is based on powers of 10, which we call LOG10. The

other one is based on human-oriented time thresholds of 10sec, 1min, 5min, 10min, 30min, and
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1hour, which we call LOGHUMAN. These intervals are represented by the dashed horizontal lines

as seen in Figure 2.5(a). The benefit of this approach is that the same time-thresholds can serve

for all tiers, making them more comparable. However, the drawback is that it imposes cluster

boundaries without considering the distribution of the query runtimes.

For density-based clustering, we discover clusters of queries within a span of a given amount

of seconds. We explore varying the parameter (ε) of the DBSCAN algorithm, in order to discover

clusters of queries within a span of 10, 100, 300, 500, and 1000 seconds, which we call DB-

SCAN10, DBSCAN100, DBSCAN300, DBSCAN500, and DBSCAN1000, respectively. Specifi-

cally, we begin with a small ε value that produces small clusters throughout a tier. We iterate and

slowly increment this value until clusters of the specified size are found. We evaluate and discuss

these different clustering algorithms in Section 2.3.

An example of clusters using the threshold-based and density-based approaches are shown in

Figure 2.5 (a) and (b), respectively. As the figure shows, the choice of the interval [0−10sec] breaks

an obvious cluster of queries into two. On the other hand, in the [1 − 5min] interval, DBSCAN,

given the density parameters used, creates two different singleton clusters for two queries inside

this interval, which could arguably be combined into one cluster.

For each tier, the generated clusters determine the time-thresholds, thi, that will be shown in

the resulting PSLA for the corresponding tier.

2.2.6 Template Extraction

Once we cluster queries, we compute the smallest set of templates that suffice to express all queries

in each cluster. We do so by computing the skyline of queries in each cluster that dominate others

in terms of query capabilities.

Since the queries that our approach generates vary in the tables they join, the attributes they

project, and their overall selectivity, we define the dominance relationship (w) between two queries

qi = (Ti, Ai, ei) and qj = (Tj, Aj, ej) as follows:

qi w qj ⇐⇒ Ti w Tj ∧ Ai w Aj ∧ ei ⊇ ej
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which can be read as qi dominates qj iff the set of tables of qi (Ti) dominates the set of tables of

qj (Tj), the set of attributes of qi (Ai) dominates the set of attributes of qj (Aj), and the selectivity

of qi (ei), dominates the selectivity of qj (ej). We say that the set of tables Ti dominates Tj iff the

number of tables in Ti is larger than in Tj . Similarly, a set of attributes Ai dominates another set Aj

iff the number of attributes in Ai is larger than in Aj . For selectivities, we simply check whether ei

is greater than ej .

We call each query on the skyline a root query. Given a cluster, for each root query q, we

generate a template M = (F, S,W ), where F is the number of tables in q’s FROM clause, S is

the number of attribute in q’s SELECT clause, and W is the percent value of q’ selectivity. For

single-table queries, we keep the table name in the template (no table dominance). We do this to

help distinguish between the facts table and a dimension table.

Tables 2.1 and 2.2 in Section 2.3 show the reduction in the number of queries shown in PSLAs

thanks to the query clustering and template extraction steps.

2.2.7 Cross-Tier Compression

Once we generate the PSLA for one tier, we move to the next, more expensive tier. We observe

that some queries have similar runtimes across tiers.

As we indicated in Section 2.1, by choosing one tier, a user gets the level of service of all lower

tiers, plus improvements. Hence, if some queries do not improve in performance across tiers, the

corresponding templates should only be shown in the cheapest tier. Recall that we measure PSLA

complexity by counting the total number of query templates. Hence showing fewer templates

improves that quality metric.

Hence, to reduce the complexity of PSLAs, we drop queries from the more expensive tier if

their runtimes do not improve compared with the previous, cheaper tier. We call this process cross-

tier compression. More precisely, query qj is removed from a tier Rj if there exists a query qi in

tier Ri with i < j such that qi w qj and qj’s runtime in Rj falls within the runtime of qi’s cluster

in Ri. We check for dominance instead of finding the exact same query because that query could

have previously been removed from the cheaper tier. Tables 2.1 and 2.2 in Section 2.3 show the
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benefit of this step in terms of reducing the PSLA complexity.

We run the clustering algorithm for the new tier only after the cross-tier compression step.

We also experimented with merging entire clusters between tiers. This approach first computes

the query clusters separately for each tier. It then removes clusters from more expensive tiers by

merging them with similar clusters in less expensive tiers. A cluster from a more expensive tier

is merged only when all of its containing queries are dominated by queries in the corresponding

cluster in the less expensive tier. This approach, however, resulted in a much smaller opportunity

for cross-tier compression than the per-query method and we abandoned it.

2.3 Evaluation

We implement the PSLAManager in C# and run it on a 64-bit Windows 7 machine with 8GB of

RAM and an Intel i7 3.40GHz CPU. We use the WEKA [56] implementation of the M5Rules [107]

technique for query runtime predictions.

We evaluate the PSLAManager approach using two cloud data management services: Amazon

EC2 [12] running an instance of SQL Server and our own Myria service [2], which is a shared-

nothing parallel data management system running in our private cluster. For Amazon, we use the

following EC2 instances as service tiers: Small (64-bit, 1 ECU, 1.7 GB Memory, Low Network),

Medium (64-bit, 2 ECU, 3.75 GB Memory, Moderate Network), and Large (64-bit, 4 ECU, 7.5

GB Memory, Moderate Network). We use the SQL Server Express Edition 2012 provided by each

of the machines through an Amazon Machine Image (AMI). For Myria, we use deployments of up

to 16 Myria worker processes (, nodes) spread across 16 physical machines (Ubuntu 13.04 with

4 disks, 64 GB of RAM and 4 Intel(R) Xeon(R) 2.00 GHz processors). We evaluate the PSLA

generation technique across 4 different configurations (4, 6, 8, and 16 nodes) for Myria.

To build the machine learning model to predict query runtimes, we first generate a synthetic

dataset using the Parallel Data Generation Framework tool [108]. We use this tool to generate a

10GB dataset that follows a star schema. We call it the PDGF dataset. It includes one fact table

and five dimensions tables of different degrees and cardinalities. The PDGF dataset contains a

total of 61 attributes. For our testing dataset, we use a 10GB database generated from the TPC-H
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Star Schema Benchmark (SSB) [93] with one fact table, four dimension tables and a total of 58

attributes. We choose this dataset size because multiple Hadoop measurement papers report 10GB

as a median input dataset analyzed by users today [110].

Since Myria is running in our private cloud, to price the service, we use the prices of the same

cluster sizes for the Amazon EMR service [13]. For Amazon, we use prices from single-node

Amazon EC2 instances that come with SQL Server installed.

2.3.1 Concrete PSLAs

We start by looking at the concrete PSLAs that the PSLAManager generates for the SSB dataset

and the Amazon and Myria cloud services. Figures 2.1 and 2.2 show these PSLAs. The PSLAs use

the LOGHUMAN threshold-based clustering method (Section 2.2.5). We use real query runtimes

when generating these PSLAs. We discuss query time prediction errors and their impact on PSLAs

in Sections 2.3.6 and 2.3.7, where we also show the PSLAs produced when using predicted times

(see Figures 2.9 and 2.10).

As Figure 2.1 shows, the PSLA generated for Myria has a low complexity. Each tier has

only between 3 and 13 templates grouped into four clusters or less. The PSLA has a total of 32

templates. These few templates represent all SPJ queries for this database (without self joins). The

PSLA also has a low average RMSE of 0.20. Most of the error stems from the query distribution in

the cheapest tier under threshold 600: All workload queries in that tier and cluster have runtimes

below 371sec.

Each service tier corresponds to one of the four Myria cluster configurations, but users need

not worry about these resource configurations. The price and performance trade-offs are clear: If

the user plans to run a few simple selection queries, then Tier 1 suffices. These queries will already

run in under 10sec at that tier. If the user plans to perform small joins (joining few tables or small

subsets of tables), Tier 4 can run such queries at interactive speed, below 10sec. In contrast, if the

user will mostly run complex join queries on the entire dataset, then Tier 2 is most cost effective.

Interestingly, the figure also shows that some tiers are more useful than others. For example, we

can see that Tier 3 improves performance only marginally compared with Tier 2. In Section 2.3.3,
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we show that the PSLAManager will drop that tier first if requested to generate a 3-tier PSLA.

Figure 2.2 shows the three-tier PSLA generated for the SSB dataset and the three single-node

Amazon instances. This PSLA has more clusters (time thresholds) than the Myria PSLA due to

the wider spread in query runtime distributions: 10, 300, 600, 1800, and 3600. Each tier ultimately

has between 6 and 17 templates, which is higher than in the Myria PSLA. The total number of

templates, however, is interestingly the same. The error for this PSLA is slightly higher with an

RMSE of 0.22. Similarly to the Myria PSLA, most of the error comes from the cheapest tier, where

more queries happen to fall toward the bottom of the clusters.

Interestingly, the PSLAs not only make the price-performance trade-offs clear for different

resource configurations of the same cloud service, they also make cloud services easier to compare.

In this example, the PSLAs clearly show that the Myria service is significantly more cost-effective

than the single-node Amazon service for this specific workload and database instance.

Next, we evaluate the different components of the PSLA-generation process individually. We

first evaluate the different steps using real query runtimes. We generate the query workload using

the algorithm from Section 2.2.2. For Amazon, we execute all queries from the SSB dataset three

times and use the median runtimes to represent the real runtimes. For Myria, we execute all queries

for the same dataset only once. In this case, the runtimes have little variance as we run each query

on a dedicated cluster and a cold cache. In Section 2.3.6, we study the query time variance and

query time predictions. We examine the impact of using predicted times on the generated PSLAs

compared to real runtimes in Section 2.3.7.

2.3.2 Workload Generation

Our workload-generation algorithm systematically enumerates specific combinations of SPJ queries

and, for each combination, outputs one representative query. With this approach, the workload re-

mains small: , we generate only 896 queries for the SSB benchmark. However, this approach

assumes that the selected query represents the runtime for other similar queries.

We evaluate the quality of the representative queries that our generator selects by randomly

generating 100 queries on the SSB benchmark and associating them with the workload query that
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Figure 2.6: Runtimes of queries in the generated workload Q compared with 100 random queries

on the medium Amazon instance.

is its representative. The representative query should be more expensive to process. We execute

the random queries on the Medium EC2 instance and find that he PSLAManager has either a

faster runtime or a similar runtime (within 20%) for 90% of the queries. We show these results in

Figure 2.6. This shows that the generated queries are indeed a good representative of the expected

upper-bound on the runtime for the user query. The remaining 10% of queries show a limitation

of our approach and the need for the cloud to have techniques in place to counteract unexpected

query runtimes.

2.3.3 Tier Selection

Given a workload of queries with associated query runtimes, the next step of PSLA generation is

tier selection. To select tiers, the PSLAManager takes the distribution of query runtimes for all

tiers and computes the earth mover’s distance (EMD) between them. It then eliminates the tiers

with the most similar EMD values.

We evaluate this approach for both services. In our experiments, the Myria service has four
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configurations that correspond to clusters of sizes 4, 6, 8, and 16. To capture the query time

distributions, we partition the runtimes into buckets of size 5, 10, or 20. We then compute the earth

mover’s distance between all consecutive pairs of tiers. Figure 2.4 shows the runtime distribution

with bucket size 20 and the EMD values for all three bucket sizes.

Using EMD identifies that the 6-node and 8-node configurations (Tiers 2 and 3) have the most

similar query runtime distributions. If one tier should be removed, our algorithm removes the 8-

node configuration (Tier 3). This choice is consistent with the PSLAs shown in Figure 2.1, where

Tier 3 shows only a marginal improvement in query runtimes compared with Tier 2.

Once the PSLAManager removes that configuration, the algorithm recomputes the EMD be-

tween Tier 2 and 4. Here, for bucket sizes 5 or 10, the algorithm removes Tier 2 (6-node con-

figuration) if a second tier should be removed because EMD(2,4) > EMD(1,2). If bucket sizes

are coarser-grained at 20 seconds, Tier 4 (the 16-node configuration) gets dropped instead. Using

smaller-size buckets better approximates the distributions and more accurately selects the tiers to

remove.

We similarly compute the EMD for the Amazon query runtime distributions using buckets of

size 10. We find that EMD(Small,Medium) = 169.10 while EMD(Medium,Large) = 23.67. EMD

computations with buckets of size 5 yield similar values: 168.27 and 23.75. Our algorithm removes

the most expensive tier if we limit the PSLA to only two tiers. This choice is, again, consistent

with the small performance gains shown for Tier 3 in Figure 2.2 compared with Tier 2.

2.3.4 Workload Clustering and Template Extraction

Once a set of k tiers has been selected, the next step of PSLA generation is workload compression:

transforming the distribution of query times into a set of query templates with associated query

time thresholds.

In this section, we study the behavior of the 12 different clustering techniques described in

Section 2.2.5 with respect to the PSLA complexity (number of query templates) and performance

error (measured as the average RMSE of the relative query times to cluster threshold times) metrics.

Recall from Section 2.1 that in order to calculate the error for the PSLA as a whole, we first
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Figure 2.7: PSLA performance error (average RMSE) against complexity (# root queries) on Myria

considering all four tiers.

Technique
Intra-cluster compression only Intra-cluster and cross-tier compression

# of clus-

ters

# of query

roots

RMSE # of clus-

ters

# of query

roots

RMSE

INTERVAL1000 4 4 0.93 1 1 0.90

INTERVAL500 4 4 0.88 1 1 0.82

INTERVAL300 5 7 0.70 3 5 0.33

INTERVAL100 10 23 0.31 10 21 0.10

INTERVAL10 92 233 0.03 90 221 0.01

LOG10 11 37 0.64 9 33 0.46

LOGHUMAN 13 47 0.47 9 32 0.20

DBSCAN10 511 686 0.004 448 605 0.002

DBSCAN100 34 60 0.12 24 50 0.08

DBSCAN300 6 11 0.59 5 10 0.41

DBSCAN500 4 4 0.77 2 2 0.38

DBSCAN1000 4 4 0.77 2 2 0.38

Table 2.1: Effect of workload compression on Myria. Initial workload comprises 3584 queries

(896 queries in 4 tiers).
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Figure 2.8: PSLA performance error (average RMSE) against complexity (# root queries) on Ama-

zon considering all three tiers.

Technique
Intra-cluster compression only Intra-cluster and cross-tier compression

# of clus-

ters

# of query

roots

RMSE # of clus-

ters

# of query

roots

RMSE

INTERVAL1000 7 13 0.39 7 12 0.19

INTERVAL500 12 31 0.21 12 29 0.09

INTERVAL300 19 54 0.31 18 49 0.06

INTERVAL100 53 146 0.03 53 135 0.01

INTERVAL10 310 593 0.008 307 579 0.003

LOG10 11 35 0.52 10 34 0.41

LOGHUMAN 13 42 0.40 10 32 0.22

DBSCAN10 824 1016 0.003 748 941 0.001

DBSCAN100 340 514 0.008 266 429 0.003

DBSCAN300 120 209 0.03 87 142 0.02

DBSCAN500 43 78 0.09 35 64 0.06

DBSCAN1000 13 26 0.29 12 26 0.19

Table 2.2: Effect of workload compression on Amazon. Initial workload comprises of 2688 queries

(896 queries in 3 tiers).
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calculate the RMSE for each individual cluster. Then, we take the average of all these RMSEs

across all clusters in all tiers. Again, we use real query runtimes in this section. Additionally, we

disable cross-tier compression. We defer the evaluation of that step to Section 2.3.5.

Figure 2.7 and Figure 2.1 show the results for Myria for all four service tiers. As the fig-

ure shows, small fine-grained clusters (INTERVAL10 and DBSCAN10) give the lowest error on

runtime (average RMSE of 0.03 or less), but yield a high complexity based on the number of clus-

ters (92 or more) and templates (233 or more). On the other hand, coarse-grained clusters generate

few clusters and templates (only 4 for both INTERVAL1000 and DBSCAN1000) but lead to higher

RMSEs (0.93 for INTERVAL1000 and 0.77 for DBSCAN1000). With both methods, interval sizes

must thus be tuned to yield a good trade-off. For example, INTERVAL100 yields a small number

of clusters and templates (10 clusters and 23 templates) with still achieving a good RMSE value of

0.31. DBSCAN can similarly produce PSLAs with few clusters and templates and a low RMSE,

as seen with DBSCAN100. In contrast, LOG10 and LOGHUMAN produce good results similar to

the tuned INTERVAL100 and DBSCAN300 configurations, though with somewhat worse RMSE

values, but with no tuning required.

Figure 2.8 and Table 2.2 show the results for Amazon. We observe similar trends as for Myria.

In general, most of the clustering algorithms for the Amazon service have higher complexity but

lower RMSE values than the same algorithms for Myria primarily because the query runtimes are

more widely spread with the Amazon service. Importantly, the optimal settings for the INTER-

VAL and DBSCAN methods are different for this service. The best choices are INTERVAL300

or INTERVAL500 and DBSCAN500 or DBSCAN1000. In contrast, LOG10 and LOGHUMAN

still yield a good trade-off between complexity (only 35 and 42 templates respectively) and perfor-

mance error (0.52 and 0.40 respectively).

The key finding is thus that all these clustering techniques have potential to produce clusters

with a good performance error and a low complexity. INTERVAL-based and DBSCAN-based

techniques require tuning. The LOG-based methods yield somewhat worse RMSE metrics but do

not require tuning, which makes them somewhat preferable. Additionally, root queries and the

associated query templates effectively compress the workload in all but the finest clusters. For
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example, for the LOG10 clustering methods, the 896 queries are captured with only 35-37 root

queries with both services, which correspond to only 4% of the original workload.

2.3.5 Benefits of Cross-tier Compression

During workload compression, once a tier is compressed into a set of clusters and templates, the

PSLAManager moves on to the next tier. Before clustering the data at that tier, it drops the queries

whose runtimes do not improve, , all queries that fall in the same cluster as in the cheaper tier. In

this section, we examine the impact of this cross-tier compression step. Tables 2.1 and 2.2 show

the result for all 12 clustering methods.

In the case of Myria, we find that cross-tier compression can reduce the number of query

templates by up to 75%, as seen for INTERVAL1000. In general, most of the merging occurs from

Tier 2 to Tier 1 and from Tier 3 to Tier 1, which confirms the tier selection results, where EMD

values cause Tier 3 to be dropped first, followed by Tier 2.

In the three-tier Amazon configuration, we find that cross-tier compression can reduce the

number of queries by up to 32%. All of the merging occurs between the medium and large tiers

only and nothing is merged between the medium and small tiers. This confirms the fact that

queries between large and medium tiers have similar runtimes, as computed by the EMD metric in

Section 2.3.3.

As the PSLAManager drops queries whose runtime does not improve, the clusters that are

created for the higher tiers also have lower RMSE values as shown in Tables 2.1. and 2.2

Cross-tier compression is thus an effective tool to reduce PSLA complexity and possibly also

PSLA error.

2.3.6 Query Time Predictions

We now consider the problem of query runtime predictions. We study the implications of errors in

query runtime estimates on the generated PSLAs in the next section (Section 2.3.7).

Accurate query time prediction is a known and difficult problem. This step is not a contribution
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of this chapter. However, we need to evaluate how errors in query time predictions affect the

generated PSLA.

Based on prior work [49], we build a machine-learning model (M5Rules) that uses query fea-

tures from the query optimizer to predict the runtime for each query in our generated workload. We

learn the model on the synthetic database generated using the Parallel Data Generation Framework

tool [108], which we call the PDGF dataset. We then test the learned model on the SSB benchmark

database. Both are 10GB in size. We build separate models for Amazon and for Myria.

In the case of Amazon, we learn a model based on features extracted from the SQL Server query

optimizer. We use the following features: estimated number of rows in query result, estimated total

IO, estimated total CPU, average row size for query output, estimated total cost. We also add the

following features as we found them to improve query time estimates: the number of tables joined

in the query, the total size of the input tables, and the selectivity of the predicate that we apply to

the fact table.

To build the model, we first use our workload generator to generate 1223 queries for the PDGF

database. We then use the SQL Server query optimizer to extract the features for these queries. We

finally execute each of these queries on each of the three Amazon configurations (small, medium,

and large). We execute each query one time.

In the case of the Amazon cloud, a complicating factor for accurate query time prediction is

simply the high variance in query runtimes in this service. To estimate how much query times vary

across executions, we run all queries from the SSB benchmark three times on each of the three

configurations in Amazon. For each query, we compute the (max(time)−min(time))
max(time)

over the three runs.

Table 2.3 shows the average result for all queries. As the table shows, query runtimes can easily

vary on average by 15% (small instance) and even 48% (large instance).

This high variance in query times de-emphasizes the need for an accurate query time predictor

and emphasizes the need for the cloud service to handle potentially large differences between

predicted and actual query times.

We now evaluate the quality of the query time predictions. Given the large differences in

query times across executions, we evaluate the model on each run separately. We also evaluate
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Configuration Average Runtime Variation

Small 0.149

Medium 0.181

Large 0.481

Table 2.3: Average variation in query runtimes across three executions of all SSB queries for

each of the three Amazon instances. We compute the runtime variation for each query as
max(time)−min(time)

max(time)
across three executions of the query.

the predictions on the median runtime across the three executions (separately computed for each

query). Table 2.4 shows the results. We plot both the correlation coefficient and the relative

absolute error of the model. The correlation coefficient is high for all runs, ranging from 0.864

to 0.999. The relative absolute error represents how much the predictions improve compared to

simply predicting the average. In this case, the lower the percentage, the better. This error ranges

from 4% to 24%, with the medium-size instance having the largest prediction errors.

These results show that, for simple queries and without indexes, a simple model can yield good

query time predictions. Accurate query time predictions are difficult and, in the cloud, are further

complicated by large variations in query times across executions.

We next evaluate query time predictions for the Myria service. Here, the problem is simpler be-

cause we measure the runtimes in an isolated setting, where there are no other processes competing

for resources on the cluster. Additionally, we measure all query times on a cold cache.

To build the model, we execute each query from the PDGF database once. To test the model,

we execute each query from the SSB database once as well. In the case of the Myria service, we

partition the fact table across workers and replicate all dimensions tables. As a result, all joins

become local joins that get pushed to the PostgreSQL instances, which Myria uses as per-node

storage. For the feature vector, we use the same set of features as for Amazon plus the estimated

query cost from the PostgreSQL optimizer. Table 2.5 shows the results. Interestingly, while the

correlation coefficients are high, the relative absolute errors are no better than for Amazon. They

range between 17% and 24%. These results could likely be significantly improved. For example,
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Correlation Coefficient Relative Absolute Error

Small

Run 1 0.999 4.09%

Run 2 0.999 7.19%

Run 3 0.980 15.27%

Median 0.955 20.13%

Medium

Run 1 0.864 24.28%

Run 2 0.874 23.87%

Run 3 0.882 24.63%

Median 0.868 24.16%

Large

Trial 1 0.933 14.90%

Trial 2 0.928 13.65%

Trial 3 0.932 16.14%

Median 0.953 24.14%

Table 2.4: Error on predicted runtimes for each of three runs on Amazon and for the median

runtime across the runs.

our current model does not take into account possible skew in workload across workers.

2.3.7 Effect of Query Time Prediction Inaccuracies

Finally, we generate the full PSLAs (all tiers) for both Amazon and Myria using the predicted

query times instead of the real runtimes. Figures 2.9 and 2.10 show the result.

For Myria, the PSLA using predicted times has fewer templates than the PSLA with real run-

times (Figure 2.1). A closer look at the templates from Figure 2.9 shows that the query runtimes

appear to be underestimated in many cases: Several templates appear with lower time thresholds.

Since query runtimes are underestimated, more merging from the more expensive tiers to the

cheaper tiers also occur, resulting in a PSLA with lower complexity. In fact, between these two

PSLAs, the number of query templates drops from 32 down to 14.

We observe a similar trend for Amazon with several templates appearing with lower time

thresholds and more cross-tier compression in the PSLA based on predicted runtimes. Addition-
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Correlation Relative Absolute Error

4 Workers 0.909 24.05%

6 Workers 0.921 21.79%

8 Workers 0.951 17.24%

16 Workers 0.951 17.24%

Table 2.5: Error on predicted runtimes for the Myria service.

ally, for Amazon, the PSLA generally shows more grouping in the query times. Complexity de-

creases from 32 templates down to 11 between the PSLA that uses real runtimes and the one with

predicted runtimes.

Given these results, it is worthwhile to consider the trade-offs between overestimating and

underestimating the runtimes for a particular service. If runtimes are slightly overestimated, there

are no surprises for the user in terms of queries not meeting their deadlines. On the other hand,

this might hurt the cloud provider since the PSLA will portray runtimes that are slower than what

the service can actually deliver. In contrast, underestimated query times might disappoint the user

if queries end up being slower than what the PSLA indicated.

2.3.8 PSLA Generation Time

The PSLAManager can generate the concrete PSLAs shown in Figures 2.9 and 2.10 in a short

amount of time. For Myria, it takes approximately 27sec to generate a PSLA for the SSB dataset.

In the Amazon case, it takes an even short amount of time. Only approximately 12sec.

Table 2.6 shows the runtime for each step involved in generating the PSLA for the Myria ser-

vice. The most expensive step in the PSLA generation is the cross-tier compression step, which

takes approximately 19.7sec for the Myria PSLA, or approximately 73% of the total PSLA gen-

eration time. Predicting runtimes takes approximately 2sec per tier. In this example, we consider

only four tiers. For some services, we could consider many more tiers. For example, all clusters

of size 1 through 20, in which case query time prediction could become a significant overhead.

We observe, however, that this step is easy to parallelize, which would keep the runtime at 2sec
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Figure 2.9: Example Personalized Service Level Agreement (PSLA) for a 10GB instance of the

Star Schema Benchmark and the shared-nothing Myria DBMS service based on predicted runtimes.

if we simply process all tiers in parallel and lower for an even higher degree of parallelism. For

tier selection, it takes less than 2msec to compute each EMD distance using bucket sizes of either

10sec or 5sec. The runtime of this step depends on the total number of buckets, which is small

in this scenario. Finally, clustering and template extraction is fast when using a threshold-based

method such as LOGHUMAN. It only takes 100msec for the most expensive Tier 1. Tier 1 is most

expensive because subsequent tiers benefit from cross-tier compression before clustering. Query

generation also takes a negligible amount of time compared to the other steps. Only 2msec in total.

We see a similar trend in the Amazon case. Table 2.7, shows the runtimes for each step in the

PSLA process. Query generation takes approximately the same amount of time as in the Myria

case, as expected. For predictions, it takes less than 1sec to predict the runtimes for each tier.

Amazon is faster since it uses fewer features to predict the runtimes per query compared with

Myria. On the other hand, it takes slightly longer to compute the EMDs for Amazon since the
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Figure 2.10: Example Personalized Service Level Agreement (PSLA) for a 10GB instance of the

Star Schema Benchmark and the single-node Amazon SQL Server instance based on predicted

runtimes.

distributions of runtimes per tier are much more widely spread, leading to histograms with larger

numbers of buckets. Again, the most expensive step is the cross-tier compression. Although it is

faster than for the Myria PSLA due to the smaller number of tiers, this step takes approximately

7.5sec or 62% of the PSLA generation time.

2.4 Summary

In this chapter, we developed an approach to generate Personalized Service Level Agreements that

shows users a selection of service tiers with different price-performance options to analyze their

data using a cloud service. We consider the PSLA an important direction for making cloud DMBSs

easier to use in a cost-effective manner.
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Average Runtime (Milliseconds) Standard Deviation

Query Generation

1 Table 0.21 0.40

2 Tables 0.45 0.59

3 Tables 0.98 0.87

4 Tables 1.34 0.58

5 Tables 2.07 0.84

Predictions

Tier 1 1313.36 21.01

Tier 1 & 2 2562.98 29.68

Tier 1, 2 & 3 5894.43 69.10

Tier 1, 2, 3 & 4 7501.20 74.72

EMD 38 Buckets (10 sec) 1.5 .002

76 Buckets (5 sec) 0.4 .004

Log-Human Intra-Cluster Compression

Tier 1 102.51 2.68

Tier 2 11.77 0.14

Tier 3 0.006 .0003

Tier 4 1.73 0.02

Log-Human Cross-Tier Compression

Tier 2 to Tier 1 9665.69 69.92

Tier 3 to Tier 1 6733.89 99.00

Tier 4 to Tier 1 3386.46 62.57

Tier 3 to Tier 2 0.87 0.07

Tier 4 to Tier 2 0.91 0.14

Tier 4 to Tier 3 0.46 0.23

Table 2.6: PSLAManager runtime broken into its main components. The runtimes shown are for

the Myria PSLA.
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Runtime (Milliseconds) Standard Deviation

Query Generation

1 Table 0.23 0.44

2 Tables 0.53 0.53

3 Tables 0.71 0.59

4 Tables 1.37 1.10

5 Tables 1.97 0.94

Predictions

Tier 1 859.86 13.720

Tier 1 & 2 1834.76 20.032

Tier 1, 2 & 3 2990.18 34.288

EMD 315 Buckets (10 sec) 68.1 7.3

629 Buckets (5 sec) 527.5 23.2

Log-Human Intra-Cluster Compression

Tier 1 151.60 2.98

Tier 2 61.78 0.83

Tier 3 0.004 0.007

Log-Human Cross-Tier Compression

Tier 2 to Tier 1 3978.60 43.87

Tier 3 to Tier 1 3297.08 70.37

Tier 3 to Tier 2 277.76 4.52

Table 2.7: PSLAManager runtime broken into its main components. The runtimes shown are for

the Amazon PSLA .
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Chapter 3

SLAORCHESTRATOR: REDUCING THE COST OF PERFORMANCE
SLAS FOR CLOUD DATA ANALYTICS

The performance-based SLAs provided by PSLAManager are convenient for users, but they

risk increasing the service costs for the cloud provider. The increase in cost comes from either

SLA violations, or over-provisioning of resources to avoid these SLA violations. In this chapter,

we seek to develop techniques to lower those costs. This work originally appeared at USENIX

ATC’18 [98].

As we introduced in Chapter 2, users are provided with a performance-centric SLA based on

their data. From the cloud’s perspective, these SLAs potentially increase operational costs to the

provider due to SLA violations and over-provisioning. In this chapter, we address the problem of

reducing these costs. We develop SLAOrchestrator, a system that enables a cloud provider to offer

query-level, performance SLAs for ad-hoc data analytics. Instead of relying on outside-generated

SLAs [33, 32, 139], SLAOrchestrator uses our PSLAManager from Chapter 2 to show the user

what is possible and the price tag associated with various options. In this chapter, we introduce

a new sub-system called PerfEnforce that schedules queries and provisions resources all in a way

that successfully brings down the cost, close to (or even below) that of the original service without

SLAs. Overall, SLAOrchestrator dramatically reduces service costs for the cloud given per-query

performance-based guarantees.

Figure 3.1 shows our system in action given a set of random tenants and EC2 prices.1 The

x-axis shows time and the y-axis shows the ratio of the service cost with SLAs to the service cost

without SLAs. When we add performance SLAs to Amazon EMR and let the cloud provision

the number of Virtual Machines (VMs) purchased under the covers, costs grow dramatically either

1We present the detailed experimental setup in Section 3.4 and the exact SLA function in subsection 3.2.1.
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Figure 3.1: A time-changing set of tenants executes ad-hoc, analytical queries subject to per-

formance SLAs. Static resource allocation (EMR+SLAs), even with a buffer (EMR+SLA+Buffer)

leads to large cost increases. Our improving SLAs (EMR+Improving SLAs), especially with multi-

tenancy and our other optimizations (SLAOrchestrator), bring costs down dramatically.

due to SLA violations (EMR+SLAs) or over-provisioning (EMR+SLAs+Buffer). Since guarantees

depend on the quality of the SLAs (measured by how close runtime estimates are to the real run-

times on the purchased resources), a key component of our approach is to improve SLAs over time

(EMR+Improving SLAs). We complement these improving SLAs with novel resource schedul-

ing and provisioning algorithms that minimize costs due to over- or under-provisioning given a

per-query SLA (SLAOrchestrator).

SLAOrchestrator minimizes the cost of resources and violations through three key techniques

that form the core contributions of this work.

First, SLAOrchestrator is designed on the core idea of a double nested, learning loop. In the
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outer loop, every time a tenant arrives, the system generates a performance SLA given its current

model of query execution times. That model improves over time as more tenants use the system.

The SLA is in effect for the duration of a query session, which is the time from the moment a user

purchases an SLA and issues their first query until the user stops their data analysis and leaves the

system. In the inner loop, SLAOrchestrator continuously learns from user workloads to improve

query scheduling and resource provisioning decisions and reduce costs during query sessions. To

drive this inner loop, we introduce a new subsystem, that we call PerfEnforce. We present the

overall system architecture in Section 3.1.

Second, the PerfEnforce subsystem comprises a new type of query scheduler. Unlike tradi-

tional schedulers, which must arbitrate resource access and manage contention, PerfEnforce’s

scheduler operates in the context of seemingly unbounded, elastic cloud resources. Its goal is

cost-effectiveness. It schedules queries in a manner that minimizes over- and under-provisioning

overheads. We develop and evaluate four variants of the scheduler. The first variant is based on

a PI controller. Two variants model the problem as either a contextual or non-contextual multi-

armed bandit (MAB) [123]. The last variant models the problem as an online learning problem.

We present the query scheduler in Section 3.2.

Third, PerfEnforce also includes a new resource provisioning component. We evaluate two

variants of resource provisioning: The first one strives to maintain a desired resource utilization

level. The other one observes tenant query patterns and adjusts, accordingly, both the size of the

overall resource pool and the tuning parameters of the query scheduler above. We present the

resource provisioning algorithms in Section 3.3.

We evaluate all techniques in Section 3.4. As Figure 3.1 shows, SLAOrchestrator is able

to eliminate any surcharge associated with performance guarantees, and even beats the original

prices, of systems such as Amazon EMR that isolate tenants in different VMs. We also find that

SLAOrchestrator outperforms various, simpler, multi-tenant deployments (Figure 3.10).



47

Service Front-End

PSLAManager

System Model

PerfEnforce
Query 

Scheduling
Cluster 

Provisioning
Data Ingest & 

Placement

Analytics Service with Shared Resources
Compute

Storage

Tenant Info

Query Log

SLAOrchestrator

1

2

3

4

5

6

7

!

Figure 3.2: SLAOrchestrator Architecture.

3.1 System Architecture

We begin with an overview of the SLAOrchestrator architecture and a description of how all its

components fit together. Figure 3.2 shows SLAOrchestrator’s system architecture. In this section,

we present the details of that architecture and SLAOrchestrator’s double nested learning loop.

3.1.1 System Components

SLAOrchestrator runs on top of a distributed, shared-nothing, data management and analytics en-

gine (Analytics Service) such as Spark [17] or Hive [18]. We use our own Myria system [131]

in the evaluation. Similar to how tenants use Amazon EMR today, in SLAOrchestrator, tenants

upload their data to the service and analyze it by issuing declarative queries. While modern sys-

tems support complex queries, in this chapter, we focus on relational select-project-join queries as

proof-of-concept. However, there is nothing in our approach that precludes more complex queries

in principal. On top of the Analytics Service, SLAOrchestrator includes an SLA generator (PSLA-

Manager [96]), which generates performance SLAs for tenants. It also contains a dynamic scaling

engine (PerfEnforce), which drives the scheduling and provisioning decisions for the underlying
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Figure 3.3: Runtimes Compared to Local Storage.

Analytics Service.

Analytics Service The back-end Analytics Service executes on a dynamically resizable pool

of virtual machines (VMs) running a resource manager such as YARN [16]. PerfEnforce uses that

engine in a multi-tenant fashion and takes over all query scheduling decisions. When a tenant

executes a query, PerfEnforce’s query scheduling algorithm determines the number of containers

needed to run the query. It then allocates that number of containers from the shared VM pool.

Additionally, PerfEnforce’s resource provisioning determines when to grow or shrink the pool.

Analytics Service: Tenant Isolation As is common in today’s big data systems, each parallel

partition of each query is a task that executes in a separate container. Each query submitted by

each tenant thus gets allocated its own set of containers across the VMs. Furthermore, our design

partitions each tenant’s dataset and attaches individual data partitions to containers, allowing for

a more isolated environment. In our experiments, we use YARN containers. We schedule one

container per VM and thus use the terms interchangeably.

Analytics Service: Storage Once a user purchases an SLA and before they can query their

data, PerfEnforce prepares their data by ingesting it into fast networked storage, EBS volumes in
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our prototype. Figure 3.3 motivates our choice. The figure shows the median query execution times

across three runs for a variety of storage options available on Amazon Web Services (AWS). The

y-axis shows the runtime relative to local storage. Queries on the x-axis are sorted by local storage

runtimes in ascending order. The 70 queries shown are based on a 100SF TPC-H SSB dataset on

Myria [131] running on 32 i2.xlarge instances. As the figure shows, fast networked storage, such as

EBS-HighIOPS, provides performance competitive with ephemeral storage, even on a cold cache

query, without the need to dynamically migrate (or replicate) data fragments as VMs are added and

removed from the shared pool. This type of storage is also affordable at less than 20% of the cost

of a VM. Because we seek dynamism and must support data-intensive processing, fast networked

storage is appealing.

During query execution, PerfEnforce attaches EBS volumes to different VMs and detaches

them as needed. Each EBS volume holds a partition of the data, resulting in a standard shared-

nothing configuration. To avoid data shuffling overheads due to scaling, PerfEnforce ingests mul-

tiple copies of each table. Each copy is partitioned across a subset of EBS volumes such that,

when a query executes over a set of k containers, it uses the version of its data spread across k

EBS volumes. We refer to our technical report for further details on EBS data placement and its

negligible impact on performance [102].

SLA Generation To generate SLAs, we use a system from our prior work, the PSLAMan-

ager [96], but our system could work with others. PSLAManager takes as input a database schema

and statistics associated with a database instance for a tenant (we use the term user and tenant

interchangeably). It generates a performance-based SLA specific to a database instance as shown

in Figure 3.4 for the TPC-H Star Schema Benchmark [92]. Each tier has a fixed hourly price,

which maps to a pre-defined set of storage and compute resources, along with sets of grouped

queries where each group contains a time threshold (“Runtime” in the figure). The time threshold

represents the performance guarantee for its respective group of queries and corresponds to query

time estimates made by the SLA generator for the corresponding resource configuration. For each

resource configuration, we only consider varying the number of instances, but consistently use a

standard network, and EBS-HighIOPS for storage across all configurations.
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Figure 3.4: Example performance SLA provided by PSLAManager with one service tier. Addi-

tional service tiers would show similar query templates but with different prices and performance

thresholds.

Each tier represents a performance summary for a specific set of containers the service can

use for tenant queries, which we call a configuration. Tiers can correspond to different types

and numbers of containers, but we use a single type in our experiments. We refer to all possi-

ble configurations that the system can use to execute a query as the set configs. For example,

config = {2, 4, . . . , 64}, represents all even numbers of containers up to a maximum of 64. The

system shows tiers for a pre-defined subset of these configurations. Later, it can schedule queries

using the full set of configurations. The price of each tier is at least the sum of the hourly cost of

the containers and network storage.

When a tenant purchases a performance SLA, she unknowingly purchases a configuration. The

system starts a query session for the tenant and the latter starts paying the corresponding fixed

hourly price. During the session, the tenant issues queries. The queries get queued up and execute

one after the other, each one running in the entire set of containers in the purchased configuration.

As we present in Section 3.2, PerfEnforce changes these allocations over time based on how fast

they execute compared with the initial SLA time.
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3.1.2 Double Nested Learning

To drive the SLA generation, SLAOrchestrator maintains a log of all past queries executed in

the system. Initially, it executes queries from a 100GB dataset generated by the Parallel Data

Generation Framework(PDGF) [108]. The system runs queries on all configurations that it will

sell to populate the query log. With this information, SLAOrchestrator builds a model of query

execution times. Each query is represented by a feature vector. Features correspond to query plan

properties including the number of tables being joined, their sizes, the query cost estimates from

the query optimizer, the number of containers in the configuration, etc. SLAOrchestrator learns a

function from that feature vector to a query execution time. In our work, we use a simple linear

model as in prior work [96, 129]. More complex models are possible but we find a simple linear

model to yield good results for the select-project-join queries that we focus on in this chapter. With

this model, predictions are made by learning the coefficients (a weight vector, w) [22] given the

query features, xq: y(xq, w) =
∑D

d=1wd · xqd .

With our previous PSLAManager work [96], we observed that when a new tenant joins the

system, estimates for that tenant’s queries are likely to be inaccurate because the system has limited

information about the tenant data and queries (only statistics on base data). However, as the tenant

starts to execute queries, the system can quickly learn the properties of the data and can specialize

its model to that data. PerfEnforce uses this information to dynamically adjust query scheduling

and resource provisioning decisions in the context of an existing SLA. We call this the Inner

Learning Loop. The effect of this learning is also that the system updates the SLA that it offers

after each query session. This is SLAOrchestrator’s Outer Learning Loop. The benefit of more

precise SLAs to tenants is the overall reduction in the service cost. We use TensorFlow [4] to build

this model and train on the PDGF dataset. We generate 4000 queries (500 per configuration) and

record the features as well as runtimes into the System Model.

Figure 3.2 shows in more detail how SLAOrchestrator components interact with one another.

Steps 1 through 6 denote the Inner Learning Loop: (1) Each tenant query, q is issued through

the service front-end. (2) PSLAManager determines q’s promised SLA time based on the ser-

vice tier that the user previously purchased. (3) PerfEnforce uses query scheduling algorithms in
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conjunction with the System Model to determine the number of containers to schedule for q. (4)

PerfEnforce schedules q on the Analytics Service. (5) The Analytics Service sends metadata about

the query to the Query Log. (6) The System Model parses the Query Log metadata and stores

features for the learning models. Once a tenant completes their session, SLAOrchestrator initiates

the Outer Learning Loop. In Step 7, the PSLAManager system takes the information from the

System Model and generates an improved SLA.

In the next two sections, we focus on the PerfEnforce subsystem and its query scheduling (Sec-

tion 3.2) and resource provisioning (Section 3.3) algorithms, which are part of SLAOrchestrator’s

inner learning loop.

3.2 Dynamic Query Scheduling

Every time a new tenant purchases a service tier, PerfEnforce begins a query session for that ten-

ant. The initial state of the query session indicates the configuration (i.e., number of containers)

that corresponds to the purchased service tier. Many sessions are active at the same time and Per-

fEnforce receives streams of queries from these active tenants. Each query is associated with a

possibly imperfect SLA. That is, the query may run significantly faster or slower than the SLA

time if scheduled on the purchased set of containers. PerfEnforce’s goal is to determine how many

containers to actually use for each query with the goal to minimize operation costs. In this section,

we present PerfEnforce’s query scheduling algorithm.

3.2.1 Optimization Function

Consider a cloud service operation interval T = [tstart, tend]. The total operating cost to the cloud

during that interval is the cost of the resources used for the service and the cost associated with

SLA violations for tenants active during that interval. Thus, PerfEnforce’s goal is to minimize the

following cost function :

cost(T ) = costR(T ) +
∑

u∈U(T )

(penalty(u)) (3.1)

where U(T ) is the set of all tenants active during time interval, T , and costR(T ), is given by:
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Figure 3.5: Examples of Distributions of Query Performance Ratios

costR(T ) =
tend−1∑
t=tstart

costt(resources) (3.2)

where costt(resources) represents the cost of resources for time interval [t, t + 1], which de-

pends on the size and the price of individual compute instances.

The SLA penalty, penalty(u), is the amount of money to refund to user u in case there are any

SLA violations. In this chapter, we use the following formulation:

S
( 1

|Wu|
∑
q∈Wu

max(0,
treal(q)− tsla(q)

tsla(q)
)
)
∗ α ∗ pu (3.3)

where Wu is the sequence of queries executed by user u, treal(q) is the real query execution

time of query q, tsla(q) is the SLA time of q, pu is the session price paid by user u in the absence

of SLA violations, and α is a configurable parameter that we vary in our experiments to adjust the

cost of SLA penalties compared with container resource costs. S is a step function that rounds

up and truncates values. This step function is inspired by real SLAs in cloud services that incur

penalties based on availability outages [134, 120, 124].

3.2.2 Query Scheduling Algorithms

For each query q ∈ Wu and for each user u, PerfEnforce’s query scheduling algorithm must deter-

mine the number of containers from the shared pool to allocate to the query. PerfEnforce begins

with using the number of containers that corresponds to the purchased service tier. It observes the
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resulting query runtimes and dynamically adjusts the number of containers for subsequent queries

by using a scaling algorithm. It runs a scaling algorithm separately for each tenant.

To minimize resource costs, the scaling algorithm should schedule queries on the smallest

possible number of containers. To avoid SLA penalties, however, it must schedule queries on

sufficiently large numbers of containers to ensure that the real query execution time, treal(q), is

below the SLA time, tsla(q). We define the query performance ratio as treal(q)
tsla(q)

and the goal of

the query scheduling algorithm is thus to execute each query in the configuration that yields a

performance ratio of 1.0. In practice, if the query scheduling algorithm aims for query performance

ratios ofX , it will yield a query performance ratio distribution aroundX as illustrated in Figure 3.5.

To illustrate our point, we plot synthetic Gaussians. Real distributions are noisier. Since we can

adjust the mean of the distribution (a.k.a. setpoint), X , the quality of the scheduling algorithm

is determined by the tightness of the distribution around X . In other words, if the distribution is

wide (large standard deviation σ), then the system is either wasting resources for many queries

(Figure 3.5a) or causing a large number of SLA violations. A good query scheduling algorithm

should yield a tight distribution as in Figure 3.5b).

Reactive Scaling Algorithms

A reactive algorithm observes errors between the real and SLA runtimes and adjusts the number

of containers accordingly for each subsequent query. We implement a Proportional Integral (PI)

controller and a Multi-Armed-Bandit (MAB) as our reactive methods. Both of these techniques

have successfully been used in other resource allocation contexts [70, 80, 83, 86].

A limitation of the these techniques is that the configuration size chosen for a new query de-

pends only on the rewards or errors of previous queries ignoring the features of the current query.

We use the reactive methods as baseline.

Proportional Integral Control (PI). Feedback control [63] in general, and PI controllers in

particular, are commonly used to regulate a system in order to ensure that it operates at a given

reference point. With a PI controller, at each time step, t, the controller produces an actuator value

u(t). In our scenario, this is the number of containers to use for the current query. The actuator
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value, causes the system to produce an output y(t+1) at the next time step. We compute y(t) as the

average query performance ratio over some time window of queries w: y(t) = 1
|w|
∑

q∈w
treal(qj)

tsla(qj)

where |w| is the number of queries in w. The goal is for the output, y(t), to be equal to some

desired reference output r(t), 1.0 in our setting.

The error e(t) = y(t) − r(t) captures a percent error between the current and desired average

runtime ratios. Since the number of containers to spin up and remove given such a percent error

depends on the configuration size, we add that size to the error computation as follows: e(t) =

(y(t)− r(t))u(t).

The PI controller, chooses the next number of containers as a combination of the initial con-

figuration size u(0), the most recently observed error, e(t), and the sum of all accumulated errors∑t
x=0 e(x). kp and ki are tunable controller parameters, which determine how strongly the con-

troller reacts to recent errors and how much it weighs history: u(t + 1) = u(0) +
∑t

x=0 kie(x) +

kpe(t)

Multi-Armed Bandits (MAB). In a MAB problem, the system must repeatedly choose among

k different options, or arms. At each timestep t, the system makes a decision by selecting one of

k arms, at, and receives a reward, rt [123]. In our setting, each arm is a configuration from the

set configs. The arm choice is the decision to schedule the next query using a given configuration

size.

The goal is to maximize the total reward across many timesteps. In the bandit setting, the algo-

rithm must learn the reward distributions for different arms through a process of trial and error [22].

At each timestep, the system must thus choose to either select the arm with the highest estimated

reward (exploitation) or try another arm (exploration) in order to acquire more information and

maximizing the reward across all timesteps [123].

To help balance between exploration and exploitation, we use a heuristic known as Thompson

Sampling [28]. During initialization, we define priors describing the expected reward of each arm.

In our setting, we do not make assumptions for each configuration. Instead, we initialize the model

for each arm using a uniform distribution, a noninformative prior. At timestep t, the system con-

structs a posterior distribution for each arm based on observed rewards, P (θ|a, r0, ..., rt−1), where
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θ represents the model parameters. For each query submitted, the system samples from a candidate

posterior distribution, defined as θ̂. Given that our prior is based on a uniform distribution, we

use a t-distribution to represent our posterior. This t-distribution takes the reward mean, variance,

and count as input. As the system samples from this posterior, we select the arm with the highest

expected reward, arg maxaE[P (rt|θ̂α)].

Proactive Scaling Algorithms

To address the limitations of the reactive techniques, we consider two other scaling algorithms that

both include additional context, xq, for each incoming query, where xq is a D−dimensional vector

of features describing the query, xq = (xq1 , ..., xqD)
T . To generate the feature vector, we use the

query optimizer of the back-end query execution engine and include information from the query

plans (e.g. number of columns, estimated costs, estimated rows, estimated width, and the number

of workers scheduled to run the query).

Contextual Multi-Arm Bandit (CMAB). This approach is a variant of the multi-armed ban-

dit problem that includes contextual information. In a CMAB problem, at each timestep t, the

algorithm receives a feature vector, xq, as input, and uses it to determine the best arm, at. CMAB

does this by building a model for each configuration that predicts the reward in that configuration

given a query feature vector. The expected value of the reward for each arm and feature vector thus

becomes: q?(a) = E[rt|at, xq, θ].

Where θ represents the parameters of the generated model [28]. As with MAB, PerfEnforce

uses the Thomson sampling heuristic to balance exploration and exploitation. At each timestep

t, PerfEnforce builds a predictive model for each state by computing a bootstrap sample over

all previous observations. PerfEnforce selects the action that corresponds to the state with the

best predicted reward (i.e., reward closest to 1.0). In our prototype implementation, we use the

REPTree model from Weka [56] as used in BanditDB [86]. For the first N queries in a tenant’s

session, we begin with a “warm-up” phase where we execute queries a small number of times

in each configuration to initialize the observations for that configuration. PerfEnforce runs the

“warm-up” session at the start of the query session, which could impact performance for some
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queries.

Online Learning The CMAB technique described above presents two practical challenges.

First, it is difficult to determine the number of queries that should be used to initialize the dis-

tributions for each state. At least one query must be executed in each state, which can be either

unnecessarily expensive or undesirably slow. The overhead especially penalizes short query ses-

sions as early queries undergo larger amounts of exploration. Second, the observations collected

are independent for each state. If one configuration suddenly results in slower or faster runtimes,

this knowledge does not propagate to other states.

Because of the above limitations, we propose a different algorithm for our setting. We build

a single model of query execution times with the configuration size as a feature. As a user exe-

cutes queries, we always schedule those queries in configuration sizes expected to yield the best

performance ratio and use the resulting query execution times to update our global model.

As described in the previous section, SLAOrchestrator maintains a model of query execution

time that it uses for SLA generation. The idea here is for PerfEnforce to continuously update

that model, during a tenant’s query session, based on the measured query execution times. To

update the model, PerfEnforce uses stochastic gradient descent. For each data point, it slowly

updates the weight vector based on the gradient of a loss function, E: w(τ+1) = w(τ) − η∇E [22].

Where τ represents the nth data point and η represents the learning rate. Importantly, PerfEnforce

maintains a separate model of query execution time for each dataset so as to specialize its model

to the properties of that dataset. If the underlying data significantly changes, the model could take

time to adjust to changes, depending on the learning rate. Since we primarily focus on analytic

sessions, we do not evaluate how this model adapts to updates. Training this model is relatively

cheap, taking approximately 2.38s for a single epoch. Each prediction takes ∼10ms.

Setpoint Adjustment With all algorithms above, PerfEnforce strives to schedule queries such

that their performance ratios form a tight distribution around a desired setpoint. An important

question is how to tune the value of that setpoint. If the setpoint is 1.0 and the mean of the

distribution falls on that setpoint, 50% of all queries will miss their SLA times. The setpoint

can be lowered such that more, perhaps 90% of all queries, meet their SLA time. Lowering the
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setpoint, however, will increase the number of containers used for those queries and will thus raise

resource costs. In SLAOrchestrator, we adjust the setpoint dynamically. We do so at the same time

as we make cluster provisioning decisions as described next.

3.3 Dynamic Provisioning

With the above query scheduler, the total number of containers needed to service the active set of

tenants varies over time. To reduce operation costs, PerfEnforce includes a resource provisioning

component that determines when to grow and shrink the shared pool of compute resources. Provi-

sioning is particularly challenging as it can take time to spin up new virtual machines. We observe

that it takes approximately 12 seconds to spin up a virtual machine with a pre-loaded image on

Amazon. We consider this start up time throughout our evaluation.

Utilization Provisioning: The most common approach to resource provisioning is to maintain

a desired resource utilization level. Typically, this means adding (or removing) resources when

CPU, I/O, network and memory usage move beyond (or below) set thresholds [14, 134, 51, 118].

We posit, however, that measuring resource utilization levels directly is not the right approach

for PerfEnforce because tenants are allocated resource containers. As such, some tenants might

execute I/O intensive workloads while others may run CPU intensive workloads, leading to very

different resource utilization levels for various containers. In general, high resource utilization

does not imply a higher demand for resources [37].

Instead of aiming for a given CPU or I/O utilization goal, we aim for an average VM utilization

target, Z. The utilization of each machine is measured by the percentage of time it is actively

running queries (wall clock time). For our target Z, we aim for an average utilization across all

shared VMs, AvgUtilization.To determine the number of machines the system should provision

to meet Z, we implement a PI controller where the set point is Z. Besides wall clock time, we note

that other metrics for system state could be used as well. For example, the system could target a

desired percentage of idle machines or a desired tenant query queue length.

Simulation-based Provisioning: For a more proactive approach to provisioning, we propose

to explicitly consider tenant recent workloads rather than only measure resource utilization. Specif-
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ically, we propose to build models of tenant workloads and estimate the smallest number of shared

resources to support these modeled workloads. This approach should be more effective than sim-

ply looking at utilization, since the latter is tightly coupled with the specific set of executed queries

and the query scheduler’s resource allocation decisions, which are themselves constrained by the

amount of shared resources. To estimate the best number of shared resources to support tenant

modeled workloads, we use simulations. This approach is not new and has been recently used in

the “What-If” engine from Tempo [125], where the goal is to simulate the performance of many

configurations of the MapReduce Resource Manager. We aim to understand how such a provision-

ing algorithm in combination with a learning query scheduler can help make profitable decisions

in a multi-tenant service.

In this provisioning approach, we model each tenant, u, with a tuple (Qu, λu), whereQu is a set

of queries that the tenant may issue and λu is the tenant’s average think time between consecutive

queries. PerfEnforce learns both values from a recent window of each tenant’s query session. Based

on these models, PerfEnforce then generates random sessions for each active tenant. To generate a

random session, PerfEnforce samples queries from the recent query workload and also samples the

think time based on a Poisson distribution. During these simulations, we also evaluate the costs of

dynamically shifting the setpoint. In general, these simulations help PerfEnforce discover whether

setpoint adjustments are necessary for active tenants or whether nodes should be added or removed

to further save on costs.

3.4 Evaluation

We run SLAOrchestrator and execute all queries on Amazon EC2 using i2.xlarge (4 ECU, 30 GB

Memory) instance types priced at $0.12/hr. We consider eight types of query scheduling configura-

tions, each with a different number of compute instances: configs= {4, 8, 12, 16, 20, 24, 28, 32}.

For multi-tenant experiments, we run simulations with up to thousands of servers and use the query

times measured on EC2. For our underlying shared-nothing, database management system, we use

Myria [131]. Myria uses PostgreSQL as its storage subsystem.

To generate each tenant’s query sequence, Wu, we alternate between different patterns of
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Figure 3.6: SLA improvements across query sessions

queries. For example, one tenant might run small, lightweight queries for a majority of the ses-

sion before switching to queries with larger joins and higher latencies. Thus, for some random

number of queries, k, we define the following three discrete distributions: (1) number of joins, (2)

number of projected attributes, and (3) selectivity factor. For the next k queries, we sample from

each of these distributions and generate a query that meets all the sampled characteristics. Once k

queries are generated, we define new distributions for the next random interval of queries. We use

both uniform and skewed (zipfian) distributions. Unless stated otherwise, all the query workloads

throughout the evaluation are generated in this fashion.

3.4.1 Evaluation of SLA Predictions

A key tenet of SLAOrchestrator is the idea that the system should update SLAs because they

rapidly improve as a tenant queries a database. We validate this hypothesis in this section. Fig-

ure 3.6 shows the error of the SLA predictions for four tenants, each with a different, random

star schema [108] and database instance: T1 = 10GB, T2 = 25GB, T3 = 50GB, T4= 100GB. We

generate a set of SPJ queries with random selection predicates for each tenant. As tenants execute

queries, SLAOrchestrator updates the query time model separately for each database. After each

query batch, PSLAManager re-generates an updated SLA. As the figure shows, in all cases, the

RRMSEs (relative root mean squared errors) between the real runtimes and the predicted SLA
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SLA Description

Small Gaussian Error

(SG SLA)

SLA assumes a good prediction model and tests sensitivity to small errors (or variance) in query times. Generated by

taking the real query execution times at the purchased tier and adding a small Gaussian error:

N = (σ = 0.1 ∗ treal(q), µ = 0).

Positive/Negative Gaussian

Errors for Large Joins

(PLJ/NLJ SLA)

We skew SLA runtimes for some query types. We introduce large positive/negative errors to the real runtimes on

queries with a large number of joins (> 3 joins) and with a runtime >100 seconds. We update the runtime to

treal(q) + |e| (or −|e|), where e is sampled from a Gaussian distribution,

N = (σ = 0.3 ∗ treal(q), µ = 0). For other queries, we still inject small errors as in SG SLA.

Initial SLA This is the least accurate SLA, where runtimes are generated by an initial offline-trained model.

Table 3.1: SLAs used in experiments.

runtimes decreases rapidly after the first batch and then improves more slowly. We compute the

error on a sample of queries generated by the PSLAManager for the tenant SLA. We measure the

RRMSE as:
√

1
|W|
∑

q∈W(
(treal(q)−tsla(q))

tsla(q)
)2. The prediction errors observed before running an ini-

tial batch of queries (Query Batch 0), are highly dependent on the similarity between the tenant’s

database and the synthetic database used to train our offline base model. In our experiments, while

databases differ in their schemas and table sizes, we find that table sizes have the greatest impact on

prediction errors. Our offline model is trained on a generated 100GB PDGF dataset. We observe a

higher initial RRMSE error (approx. 2.4-2.5) for tenants T1 and T2 with the smaller databases.

3.4.2 Evaluation of Query Schedulers

The goal of each query scheduler is to ensure a tight distribution (small σ) of query performance ra-

tios around a µ close to 1.0 (later in subsection 3.4.4, we consider dynamic setpoint tuning). In this

section, we evaluate how the different scheduling algorithms perform in the face of different tenant

workloads. All tenant workloads are based on the 100GB TPC-H SSB benchmark [92]. We eval-

uate the algorithms using different-quality SLAs as shown in Table 3.1, which could correspond,

for example, to different model qualities as shown in subsection 3.4.1.

We first evaluate the PI-Control scheduling algorithm on four different SLA types and, in each

case, on 10 different, randomly generated, tenant query sessions. We execute the PI controller on

each tenant’s query session independently and measure the resulting query performance distribu-
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Figure 3.7: Evaluation of PI-Controller, MAB, CMAB and online learning scheduling algorithms

tion for that tenant. We then compute the average µ and σ across these 10 distributions and plot

them in the first row of Figure 3.7. The y-axis represents the distance between µ and 1.0, while

the x-axis displays the standard deviation of the query performance distributions. Because the PI

controller has three tunable parameters (kp, ki and w), each point in the figure corresponds to one

such parameter combination. For each graph, we also plot the average distribution of an Oracle,

which always selects the best configuration size for each query. The best parameter combinations

are those closest to the Oracle. If any technique’s parameters result in a distribution with a higher σ

or a µ farther from 1.0, this error impacts cost, which ultimately depends on the cost function. As

the figure shows, for all SLAs, the PI-Control algorithm results in average distributions that are far

from the average distribution of the Oracle. There are no best set of parameters that work across

all workloads.

In the second row of Figure 3.7, we show the average distributions for MAB, CMAB, and

online learning across the same set of SLA types and tenant query sessions. Note, the ranges for

the axes are much smaller for these graphs compared to the PI-Controller, which shows that these

techniques result in average distributions much closer to the Oracle. For both bandit techniques,

we execute each tenant’s query session 20 times due to their variance when sampling. For online
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learning, we vary the learning parameter, η. In the first 4 columns of the figure, we omit the

performance ratios for the first 20 queries for all scaling techniques, since the bandits require an

initial “warm-up” phase, where they need to try each configuration at least two times.

For the SG SLA, the bandit techniques result in average distributions nearly identical to the

Oracle. Since both techniques rely on learning a distribution of query performance ratios per

configuration, they quickly find the optimal configuration during the warm-up phase and select

this configuration for a majority of the queries. Since the online learning technique is directly

predicting the runtimes for each query, the prediction errors result in average distributions that are

slightly farther away from the Oracle. For the PLJ SLA, all techniques perform similarly as most

of the runtimes are meet at configurations that are close to the purchased tier. In contrast, online

learning outperforms both bandit-based methods for the NLJ and Initial SLAs. The NLJ SLA

underestimates runtimes, which requires the schedulers to accurately choose across a wider set of

configuration options. For these more difficult cases, context is critical as the scheduling algorithm

must make different decisions for different queries. There is no single best configuration. As

a result, CMAB and the online learning approach both outperform the simpler MAB scheduler.

Online learning further outperforms CMAB because this technique is able to quickly learn the

performance correlations between configurations, which is crucial for the initial SLA as it requires

scaling for each query.

The final column shows the average performance ratio distributions when using the initial SLA

and including the queries in the warm-up period. As the figure shows, the online learning technique

significantly outperform the bandit-based methods because it has the extra benefit of starting to

learn from the offline model and learning more quickly because it learns a single model for all

configurations. These results show that the PI controller is ill-suited to our problem and we do not

consider it further.

We now evaluate how query scheduling algorithms can adapt to changing conditions. Recall,

the goal of these query schedulers is to ensure a query performance ratio distribution close to 1.0.

We generate a query sequence by selecting one query and running it repeatedly several times. Each

time we run this query, we record the query performance ratio. Once we reach the 250th iteration,
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MAB CMAB Online Learning Oracle

µ 1.1368 1.1244 1.0161 1.0015

σ 0.1680 0.0871 0.0522 0.0008

Table 3.2: Ratio distributions during slow down

Notation Description

Uinit Initial number of tenants in the session

Vinit Initial number of virtual machines

λarrival Average time between new tenants

λthinktime Average tenant think time

λterminate Average tenant session duration

M Provisioning monitoring time interval

Table 3.3: Parameters of multi-tenant experiments

we increase the query’s runtime by 25% (essentially slowing down the system) for the rest of the

session, running up to 1000 iterations. Table 3.2 shows that the online learning technique reacts

the fastest to this change in conditions, leading to an overall mean performance ratio closest to 1.0.

3.4.3 Evaluation of Provisioning Algorithms

We first evaluate each provisioning algorithm in combination with the Oracle query scheduler to

ensure that query runtime penalties are not a side-effect of the query scheduler’s mispredictions.

We launch each multi-tenant tenant session based on session parameters summarized in Table 3.3.

We introduce up to 100 tenants in a session and simulate a shared cluster with thousands of

containers/VMs. We sample arrival times, think times, and session durations from Poisson distri-

butions defined by their corresponding parameters λarrival , λthinktime and λterminate. PerfEnforce

always keeps at least a minimum of 4 machines launched at all times, to ensure that there are

enough machines available to execute queries. Each provisioning algorithm monitors the shared

resources and tenants for M minutes before adding or removing VMs from the pool. Our step

function S provides no service credit if the system misses the runtime by 10%. For each additional

20% increment and given a threshold from x% to y%, we increase the credit to y%.
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As described in Section 3.1, each submitted query gets allocated a set of containers. We sched-

ule one container (running a Myria process) per VM. For each query, the system assigns the tenant’s

EBS volumes to a set of VMs in the pool. After the query completes, the volumes are detached from

the VMs, making them available to other tenants. We find it takes 4 seconds to mount a volume to

a VM. Detaching takes approximately 11 seconds. We include these delays in the experiments.

Utilization and Simulation-based Provisioning We compare the multi-tenant session costs

when provisioning VMs using either the utilization-based or simulation-based approaches. We

launch 100 VMs with 10 initial tenants and set the provisioning monitoring time to 20min. Fig-

ure 3.8 shows the results and the other experimental parameters. For different average utilizations,

Z, we show the results for the best parameter values Vkp and Vki . The y-axis shows the cost per time

unit, while the x-axis shows the value of the α parameter. Recall from Equation 3.3 that we define

α as a tunable parameter that amplifies the weight of the SLA penalty compared to the resource

cost. The hash pattern in each bar represents the proportion of the cost due to CostR, the cost of

resources. Other costs come from SLA violations. Error bars show variance across 10 runs. As ex-

pected, the utilization-based method requires tuning depending on the α value. Simulation-based

provisioning has the double-benefit of avoiding any tuning and more cost effectively provisioning

shared resources compared to the utilization-based approach.

Combining Scheduling and Provisioning We now evaluate the performance of simulation-

based provisioning in conjunction with various query scheduling algorithms on the initial SLA.

In Figure 3.9, we vary alpha (x-axis) and measure the total cost compared with an Oracle query

scheduler (y-axis). As a baseline, we also include a naive query scheduler, static, which sim-

ply schedules each query on the configuration initially purchased by the user. We also include

utilization-based provisioning at Z = .25 (using online learning as the query scheduler). We still

initialize the session with 10 tenants, but we start with a larger pool of 320 VMs, allowing enough

room to have each initial tenant schedule queries on up to 32 containers. In this experiment, since

we also include CMAB, we extend the session times to 180 to ensure the algorithm has more time

to operate in steady state (beyond the warm-up phase).

Overall, simulation-based provisioning continues to outperform the utilization-based approach
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Figure 3.8: Comparing utilization-based and simulation-based

provisioning in conjunction with an Oracle query scheduler.

The hash pattern represents the proportion of the cost due to

CostR

Figure 3.9: Costs of query schedul-

ing in conjunction with provision-

ing

even with a less perfect scheduler. Even when penalties are high, simulation-based provisioning re-

duces costs by 11% and more for lower penalties. Additionally, the online learning-based scheduler

yields similar costs to the Oracle scheduler (a 4% overhead). As expected, it significantly outper-

forms the static scheduler and CMAB when SLA penalties are expensive, with 20% cost savings.

CMAB does worse because it causes more SLA violations. For small α, the CMAB approaches

result in costs lower than even the Oracle scheduler. This is because the CMAB’s warm-up phase

initially schedules queries on all available configurations (even small configurations), which then

causes the simulation approach to provision less resources. Throughout the session, resources are

not added back in due to the low α value.

3.4.4 Dynamic Setpoint Tuning

Finally, we evaluate the benefits of dynamic setpoints together with the relative benefits of the

other optimizations. Figure 3.10a shows the results. In the figure, we start with SLAOrchestrator

as initially shown in Figure 3.1. We then remove optimizations one at a time in order. First, we

remove the ability to use dynamic setpoints, followed by removing SLA improvements, scheduling
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and provisioning. We remove these optimizations to run SLAOrchestrator as a simpler multi-tenant

system. To emphasize the differences between optimizations, we use α = 2 and α = 3. In this

experiment, we start the session with 5 tenants and 80 VMs (ensuring 16 nodes per tenant, the

amount they have purchased). New tenants arrive approximately every 5 minutes, and tenants

finish their session after 180 minutes. As seen in the figures, removing each optimization increases

the cost. This is especially apparent for α = 3, where SLAOrchestrator decreases the cost by up to

59% compared to the case with no optimizations.

3.5 Summary

We presented SLAOrchestrator, a new system designed to minimize the price of performance SLAs

in cloud analytics systems. SLAOrchestrator uses a double learning loop that improves SLAs and

resource management over time. To support the latter, the system also includes an efficient com-

bination of elastic query scheduling and multi-tenant resource provisioning algorithms that work

toward minimizing service costs. Experiments demonstrate that SLAOrchestrator dramatically re-

duces service costs for a common type of per-query latency SLAs.
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Figure 3.10: Performance when disabling different SLAOrchestrator optimizations
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Chapter 4

DEEPQUERY: AN EMPIRICAL ANALYSIS OF DEEP LEARNING FOR
CARDINALITY ESTIMATION

Query optimization is at the heart of relational database management systems (DBMSs). Given

a SQL query, the optimizer automatically generates an efficient execution plan for that query.

Even though query optimization is an old problem [115], it remains a challenging problem to-

day: existing database management systems (DBMSs) still choose poor execution plans for many

queries [78]. Cardinality estimation is the ability to estimate the number of tuples produced by a

subquery. This is a key component in the query optimization process. It is especially challenging

with complex queries that contain many joins, where cardinality estimation errors propagate and

amplify from the leaves to the root of the query plan. One problem is that existing DBMSs make

simplifying assumptions about the data (e.g., inclusion principle, uniformity or independence as-

sumptions) when estimating the cardinality of a subquery. When these assumptions do not hold,

cardinality estimation errors occur, leading to sub-optimal plan selections [78]. To accurately es-

timate cardinalities, optimizers must be able to capture detailed data distributions and correlations

across columns. Capturing and processing this information, however, imposes space and time

overheads and adds complexity.

Recently, thanks to dropping hardware costs and growing datasets available for training, deep

learning has successfully been applied to solving computationally intensive learning tasks in other

domains. The advantage of these type of models comes from their ability to learn unique patterns

and features of the data that are difficult to manually find or design [52].

Given this success, in this chapter, we ask the following fundamental question: Should we

consider using deep learning for query optimization? Can a deep learning model actually learn
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properties about the data and learn to capture correlations that exist in the data? What is the over-

head of building these models? How do these models compare to other existing machine learning

techniques? In this work, we implement a variety of deep learning architectures to predict query

cardinalities. Instead of relying entirely on basic statistics and formulas to estimate cardinalities,

we train a model to automatically learn important properties of the data to more accurately infer

these estimates. In this chapter, we seek to understand the fundamental capabilities of deep neural

networks for this application domain. For this reason, we focus on the performance of basic neural

network architectures.

The database community has recently begun to consider the potential of deep learning tech-

niques to solve database problems [132]. However, there remains a limited understanding of the

potential and impact of these models for query optimization. Previous work has demonstrated

the potential of using deep learning as a critical tool for learning indexes [73], improving query

plans [87], and learning cardinalities, specifically through deep set models [69]. However, we argue

that that the accuracy should not be the only factor to consider when evaluating these models. We

must also consider their overheads, robustness, and impact on query plan selection. There is a need

for the systematic analysis of the benefits and limitations of various fundamental architectures.

In this experimental study, we focus on the trade-offs between the size of the model (measured

by the number of trainable parameters), the time it takes to train the model, and the accuracy of the

predictions. We study these trade-offs for several datasets. Our goal is to understand the overheads

of these models compared to PostgreSQL’s optimizer. To do this, we build several simple neural

network as well as recurrent neural network models and vary the complexity by modifying the

network widths and depths. We train each model separately and compare the overheads of these

models to PostgreSQL and random forest models (based on an off-the-shelf machine learning

model).

To summarize, we contribute the following:

• We show how deep neural networks and recurrent neural networks can be applied to the

problem of cardinality estimation and describe this process in Section 4.2.
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• We comparatively evaluate neural networks, recurrent neural networks, random forests, and

PostgreSQL’s optimizer on three real-world datasets in Section 4.3. For a known query work-

load, we find that, compared to PostgreSQL, simple deep learning models that are similar

in space improve cardinality predictions by reducing the error by up to 98%. These mod-

els, however, come with high training overheads. We also find that, although random forest

models usually require a larger amount of space, they are fast to train and are more accurate

than the deep learning models.

• In Section 4.3.3, we study these models in more detail by evaluating the robustness of these

models with respect to query workload changes. We find that random forest models are

more sensitive to these changes compared to the neural network and recurrent neural network

models. Although, decision tree models are known to have high variance and random forest

models should reduce this problem [59], we still find that the neural networks are generally

more robust to changes in the data.

• In Section 4.3.4, we visualize the embeddings from the models to understand what they are

learning.

• Finally, we study these models from a practical perspective in Section 4.4, where we evaluate

how predictions from these models improve query plan selection. We find that these models

can help the optimizer select query plans that lead from 7% to 49% faster query executions.

In addition, we study how active learning can help reduce the training overheads.

4.1 Background and Problem Statement

Many optimizers today use histograms to estimate cardinalities. These structures can efficiently

summarize the frequency distribution of one or more attributes. For single dimensions, histograms

split the data using equal-sized buckets (equi-width) or buckets with equal frequencies (equi-

depth). To minimize errors, statistics about each bucket are also stored including but not limited to

the number of items, average value, and mode [34].
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These histograms are especially relevant in cases where there are simple single query pred-

icates. For more complex predicates, the system extracts information from these histograms in

conjunction with “magic constants” to make predictions [78]. Optimizers typically do not build or

use multidimensional histograms or sampling due to the increased overheads [42, 138]. As the es-

timates from these optimizers are not theoretically grounded, propagating these estimates through

each intermediate result of a query plan can result in high cardinality errors, leading to sub-optimal

query plans.

In this chapter, we use PostgreSQL’s optimizer as representative of this class because it is a

mature optimizer available in a popular open source system.

Our goal in this work is to apply deep learning to the cardinality estimation problem and com-

pare the performance of this approach empirically to that of a traditional query optimizer.

We consider the following scenario: A database system is deployed at a customer’s site. The

customer has a database D and a query workload Q. Both are known. We compare the following

approaches:

• Traditional: In the pre-processing phase, we build histograms on select attributes in D. We

select those attributes following standard best practices given the workload Q. Simple best

practices include collecting statistics for all frequently joined columns and for non-indexed

columns frequently referenced as a selection predicate, particularly if the column contains

very skewed data[3]. We then measure the accuracy of cardinality estimates on queries in

Q (and queries similar to Q) and the overhead of creating and storing the histograms. We

measure both the time it takes to build the histograms and the space that the histograms take.

• Deep Neural Networks: In the pre-processing phase, we execute all queries in Q to com-

pute their exact cardinalities. All queries in Q are instantiated with a random number of

joins and selection predicates. We use the results to train deep neural networks. We encode

all queries in Q into inputs for the models, and evaluate how accurately these models are

able to learn the function between the input, X and the cardinality value, Y . As above, we

measure the overhead of building and storing the model and the accuracy of cardinality esti-
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mates for queries in Q and queries not in Q but similar to those in Q. To compare different

architectures, we build several models by varying the width and depth.

As a simplifying assumption, in this chapter, we focus on select-project-join queries and only

use single-sided range predicates as selection predicates. The join predicates consist of primary

key and foreign key relationships between tables, as defined by their schema. The queries are of

the following form:

SELECT *

FROM r1, r2, ... rn

WHERE joinR and a1 <= c1 and a2 <= c2 and ... an <= cn

where the FROM clause defines a set of relations from dataset D and joinR represents the

corresponding join predicates. The WHERE clause describes a set of single-sided range selection

predicates, where ai represents an attribute and ci represents a constant value.

4.2 Machine Learning-Based Cardinality Estimation

The first contribution of this chapter is to articulate how to map the cardinality estimation prob-

lem into a learning problem. We show the mapping for three types of models: neural networks,

recurrent neural networks, and random forests.

For ease of illustration, in this section, we use a simple running example comprising a database

D with three relations, D : {A,B,C}. Each relation has two attributes where relation A contains

{a1, a2}, relation B has attributes {b1, b2}, and relation C has attributes {c1, c2}. In this database,

there are two possible join predicates. Attribute a2 is a foreign key to primary key attribute b1,

while b2 serves as a foreign key to primary key attribute c1.

4.2.1 Neural Networks

Deep learning models are able to approximate a non-linear function, f [52]. These models define a

mapping from an input X to an output Y , through a set of learned parameters across several layers
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Figure 4.1: Illustration of a Deep Neural Network: The input consists of an input vector X . This

is then fed into a network with n hidden layers, which then makes a prediction for the cardinality

of the query, Y .

with weights, θ. Each layer contains a collection of neurons, which help express non-linearity.

During training, the behavior of the inner layers are not defined by the input data X , instead these

models must learn how to tune the weights to produce the correct output. Since there is no direct

interaction between the layers and the input training data, these layers are called hidden layers [52].

Training occurs through a series of steps. First, during forward propagation, a fixed-sized input

X is fed into the network through the input layer. This input is propagated through each layer

through a series of weights [119] until it reaches the final output, Y . This process is illustrated in

Figure 4.1. After a forward pass, the backpropagation step then evaluates the error of the network

and through gradient descent, modifies the weights to improve errors for future predictions.

There are several architectures we could consider for the model. As shown in Figure 4.1, a

neural network can have a different number of layers (depth) and a different number of hidden

units in each individual layer (width). Determining the correct number of hidden units is currently

an active area of research and does not have strong theoretical principles [52]. Although a network

with only a single wide hidden layer is capable of learning a complex function, deep networks are

able to use a smaller number of training parameters to achieve the same goal. Unfortunately, deep
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q:  SELECT * FROM A WHERE a1 <= 23
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Figure 4.2: Query Encoding for selections: We encode a selection query by specifying the under-

lying relations and all selection predicate values.

networks are difficult to train and to optimize [52]. In this work, we focus on evaluating a variety

of network architectures. We focus on simple architectures comprising a small number of fully

connected layers. We vary the width and the depth of the network. More complex architectures are

possible [69] and are also interesting to study. Our goal, however, is to understand the performance

of basic architectures first.

Given a model, a query q and a fixed dataset D, we define an encoding for the input, X .

The input X should contain enough information for the model to learn a useful mapping. There

are several ways to represent a query as an input vector. The encoding determines how much

information we provide the network. In this work, we define X as a concatenation of three single

dimensional vectors: Irelations, Iselpred, and Ijoinpred. To explain this encoding, we first describe

how to encode selection queries.

Modeling Selection Queries

With selections queries, the goal is to have the network learn the distribution of each column

and combinations of columns for a single relation. To encode a selection query, we provide the

model with information about which relation in D we are applying the selections to, along with

the attribute values used in the selection predicates. We encode the relation using vector Irelations,

and a binary one-hot encoding. Each element in Irelations represents a relation in D. If a relation

is referenced in q, we set the designated element to 1, otherwise we set it to 0.

We encode the selection predicates in q using vector Iselpred. As described in Section 4.1,

selection predicates are limited to single-sided range predicates. Each element in this vector holds
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q:  SELECT * FROM A,B WHERE a1 <= 23 and a2=b1

IselpredIrelation
A B C a1 a2 b1 b2 c1 c2

a
2 =b

1

b
2 =c1

Ijoinpred
Figure 4.3: Query Encoding for Joins+Selections: We encode a join+selection query based on the

joined relations, the selections predicate values and join predicates.

the selection value for one attribute. The vector includes one element for each attribute of each

relation in D. As an example, assume we have the following query: SELECT * FROM A WHERE

a1 ≤ 23. In this case, we set the corresponding element for a1 in Iselpred as 23. Otherwise, if

there is no selection on an attribute, we set the element with the maximum value of the attribute’s

domain. This captures the fact that we are selecting all values for that attribute.

Neural networks are highly sensitive to the domain of the input values. Having unnormalized

values in the input will highly impact the error surface for gradient descent, making the model

difficult to train. Instead, we encode these selection predicates as values ranging from 0 to 1,

where the value represents the percentile of the attribute’s active domain as shown in Figure 4.2.

The output of the model is also normalized to represent the percentage of tuples that remain after

the selection query is applied to the relation. Using this type of normalization, instead of learning

query cardinalities, we are learning in fact predicate selectivities.

Modeling Join Queries Introducing queries that contain both joins and selections requires the

model to learn a more complex operation. Joins essentially apply a cartesian product across a set of

relations followed by additional filters that correspond to the equality join and selection predicates.

As we later show in our measurement analysis, deeper networks are usually more successful at

predicting join cardinalities than shallower networks. We encode existing join predicates with the

vector Ijoinpred using a binary one-hot encoding. As we now include joins, the output Y now

represents the fraction of tuples selected from the join result. Hence, once again, the model will

learn the selectivity of the join operation.
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Figure 4.4: Illustration of a Recurrent Neural Network: The input consists of a sequence of inputs

{x1, x2, ..., xt}. Each input, along with the hidden state of the previous timestep, is fed into the

network to make a prediction, yi.

We illustrate this encoding using an example in Figure 4.3. Given the following query from

our running example dataset, SELECT ∗ FROM A,B WHERE a1 ≤ 23 and a2 = b1, we show

the encoding in the figure. For Irelations, there are three possible elements, one for each relation in

D. For this query, we only set the elements corresponding to relations A and B to 1. The vector

Iselpred contains the encoding for the selection predicates. Since relation C is not referenced in q,

we set all of its attributes in Iselpred to 0. We set to .1 the element corresponding to attribute a1,

as it represents the percentile of the active domain for a1. The rest of the attributes from A and

B are set to 1, as we are not filtering any values from these attributes. Finally, the vector Ijoinpred
encodes the join predicate a2 = b1 with a 1.

4.2.2 Recurrent Neural Networks

As we described in our prior work [94], if we focus on left-deep plans, we can model queries

as sequence of operations, and we can leverage that structure when learning a model. Recurrent

neural networks (RNN) in particular are designed for sequential data such as time-series data or

text sequences [119]. Compared to neural networks where the input is a single vector X , the input

to RNNs is a sequence with t timesteps, X = {x1, x2, ..., xt}. For each timestep t, the model

receives two inputs: xt and ht−1, where ht−1 is the generated hidden state from the previous



78

1 0 0 .1 1 0 0 0 0 0 0

q:  SELECT * FROM A,B WHERE a1 <= 23 and a2=b1
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Figure 4.5: Query Encoding for the RNN model: In this example, the input consists of two inputs:

{x1, x2}. The first input represents the subquery that scans and filters relation A. The second

represents the join with relation B.

timestep [119]. With these inputs, the model generates a hidden state for the current timestep

t, where ht = f(ht−1, xt) and f represents an activation function. Given this feedback loop, each

hidden state contains traces of not only the previous timestep, but all those preceding it as well.

RNNs can either have a single output Y for the final timestep (a many-to-one architecture) or they

can have one output for each timestep (many-to-many) where Y = {y1, y2, ..., yt}.

In our context, we model queries as a series of actions, where each action represents a query

operation (i.e. a selection or a join) in a left-deep query plan corresponding to the query. With a

sequential input, RNNs incrementally generate succinct representations for each timestep, which

are known as hidden states, and which represent a subquery. Recurrent neural networks rely on

these hidden states to infer context from previous timesteps. More importantly, ht is not a manually

specified feature vector, but it is the latent representation that the model learns itself. We illustrate

how these hidden states are generated in Figure 4.4. Information from each hidden state, ht is fed

into the next timestep, t+ 1 through shared weights, w. In our context, hidden representations are

useful, as they capture important details about the underlying intermediate result. The information

learned at the hidden state is highly dependent on the input and output of the network.

To generate the input for this model, we concatenate three input vectors for each action xi.
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Figure 4.6: Illustration of a Random Forest Model: Each input X is tested against each criteria

in each node (where each X[i] represents an attribute in X). The predictions from each tree are

aggregated for the final prediction, Y .

That is, for each action xi, we concatenate vectors Irelationi
, Iselpredi and Ijoinpredi . In Figure 4.5,

we show the representation for our running example, SELECT ∗ FROM A,B WHERE a1 ≤ 23

and a2 = b1. We break down this query into two operations: the scan and selection on relation A,

followed by a join with relation B. Alternatively, we could have the first action represent the scan

on relation B (with no selections applied), followed by a join and selection with relation A.

4.2.3 Random Forest

In this study, we also include random forest models, as they are fast to build and are well suited

for regression and classification problems [35]. A random forest model is a combination of pre-

dictions from several independently trained trees as shown in Figure 4.6. Each tree, Treei, is a

sequence of decisions that leads to a prediction at the leaf nodes, yi. With each tree, the data is

repeatedly split based on different attributes from X . Each tree partitions the input space into

subregions, where each of these subregions either contains a linear model [107] or a constant to

make a prediction [22]. Finding these subregions requires finding an optimal set of splits, which is
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computationally infeasible. Instead, these models use a greedy optimization to incrementally grow

the trees one node at a time. To help generalize the model and to help add randomness, the random

forest model uses a bootstrapped dataset from the training data to build many trees [41]. Based on

the predictions from all these trees, the random forest model uses a function F (usually the mean)

to compute a final prediction Y .

4.3 Measurement Analysis

In this section, we evaluate all models and their architecture variants on three datasets. We start

with a description of the experimental setup, which includes the implementation of the models

and generation of the training datasets. We then evaluate the accuracy, time, space trade-offs in

subsection 4.3.2, followed by a study of the robustness of the models in subsection 4.3.3 and a look

into their latents in subsection 4.3.4.

4.3.1 Experimental Setup

Datasets: We evaluate the models on three datasets:

• IMDB: The Internet Movie Data Base is a real dataset that contains a wide variety of infor-

mation about actors, movies, companies, etc. This dataset has 21 relations. The dataset is

based on the 3.6GB snapshot from Leis et. al. [77].

• DMV: This dataset contains 6 relations (61MB) and is based on a real-world dataset from

a Department of Motor Vehicles [68]. Relations include accidents, owners, cars, location,

demographics and time.

• TPC-H (skewed) : This is a standard benchmark dataset with 8 relations and a scale factor

of 1 (1GB). We adjust the skew factor to z = 1 [31].

Model Architectures: For the recurrent and neural networks, we build several models that

vary in width (w) and depth (d). To minimize the number of possible architecture combinations,
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we assume that all layers within a model have the same width. We annotate the models as a pair (x,

y), where x represents the width and y represents the depth. For example, (100w, 1d) represents

a model with 100 hidden units in a single hidden layer. For the random forest models, we vary

the number of trees from 1 to 500. No additional pruning takes place. We compare these models

to estimates from PostgreSQL version 9.6 [105]. To fairly compare PostgreSQL to these models

in terms of space, we modify the PostgreSQL source to allow for a larger number of bins in each

histogram. For each relation in each dataset, we collect statistics from each join predicate column

and each selection column. We vary the number of bins from the default size (100 bins) up to

100K.

Training Data: For each dataset, we generate various training sets with different levels of

query complexity. We define three complexity levels: 2Join, 4Join and 6Join. 2Join is the case

where we generate a training set with joins that consist of any 2 relations in the dataset, 4Join

represents joins with 4 relations, and 6Join represents joins with 6 relations. In addition, for each

dataset, we manually select a set of columns as candidates for selection predicates. We select

columns with small discrete domain sizes, as these are generally the columns that contain more

semantically meaningful information about the data, unlike columns that contain a sequence of

identifiers. As we generate the workload, selection predicate values are randomly drawn from the

domains of the selected candidate columns. We generate 100K training samples for each query

complexity and each dataset. We randomly select the desired number of tables and pick the selec-

tion columns from the joined relations. For the RNN, because it requires an input for each timestep,

we extend these training sets by adding more training samples for all the subqueries. For example,

for a query that joins six relations, we extend the training set with additional examples representing

the subquery after each intermediate join. When generating the subqueries, we randomly select the

order of the join operations. For each query complexity training set, we select 1K samples to serve

as the test set.

Hyperparameter Tuning: We tune each model architecture for each dataset. We separate

10% of the training data as the validation data. We run a basic grid search over the learning rate

and batch size. A larger batch size (although faster to train, especially on a GPU) might lead to
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sub-optimal results, while a small batch size is more susceptible to noise. Larger learning rates

also have the tendency to oscillate around the optimum, while smaller learning rates might take a

long time to train. We set the number of epochs to 500 for all learning rate and batch parameter

combinations. Based on the combination that leads to the lowest learning rate, we continue to train

for more epochs as long as the validation loss keeps decreasing. We stop the training once the

validation loss plateaus or increases.

Model Implementation Details: The neural network is implemented in Tensorflow [5] and

is implemented as a residual network with leaky RELU activation functions, as it is a default

recommendation to use in modern neural networks [52]. Weights are initialized from a random

normal distribution with a small standard deviation. Biases are initialized to .01. The input X is

normalized as explained in subsection 4.2.1 and centered using a StandardScaler. The output Y is

log transformed and also normalized with a StandardScaler. The model’s goal is to minimize the

mean squared error between the real outputs and the predictions. We use the AdamOptimizer as

the optimizer for the model. The recurrent neural network is also implemented in Tensorflow. For

deep recurrent neural networks, we use a ResidualWrapper around each layer, to mimic the residual

implementation of the neural networks. Both the neural network and recurrent neural networks are

run on a GPU on p2.xlarge instances on Amazon AWS [11]. Finally, the Random Forest model is

based on an implementation from sklearn’s RandomForestRegressor module [101].

4.3.2 Learning Cardinalities for Selections + Joins

In this section, we vary the architecture of the models and evaluate them on the three datasets. We

study the trade-offs (space, time, and accuracy) for these models.

First, we evaluate the prediction accuracy for each model. As described in Section 4.1, we make

the assumption that the query workload is known in advance (we relax this assumption later in this

section). In this case, the models overfit to a specific set of queries. For each query complexity,

we train six neural network (NN) and six recurrent neural network models (RNN) based on the

following widths and depths: (100w, 1d), (100w, 5d), (500w, 1d), (500w, 5d), (1000w, 1d), (1000w,

5d). We separately train four random forest models (RF) with 1, 5, 50 or 500 trees. Larger models
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generally use up more space, but result in more accurate cardinality predictions.

To make this analysis comparable to PostgreSQL, we first limit the storage budget for the

models to be no more than the storage budget for PostgreSQL histograms. We compute the size

of a model as the size of all its parameters. For the NN and RNN models, we thus measure the

number of trainable variables and for PostgreSQL, we measure the number of parameters used in

the pg stats table. We compare PostgreSQL cardinality estimates to those produced by models that

are smaller in size compared to PostgreSQL’s histograms. We specifically study the PostgreSQL

scenario where each histograms builds at most 1K bins. Setting the number of bins to 1K for

PostgreSQL results in 13385 parameters for the DMV dataset, 15182 parameters for the TPC-H

dataset and 44728 parameters for the IMDB dataset. We purposely set PostgreSQL as the storage

upper bound size. Given these storage budgets, we then select the best neural network architecture,

the best recurrent network architecture, and the best random forest model. If no model meets the

budget, we do not display them on the graphs. If more than one model architecture meets the

storage budget, we display the best model, where the best model is defined as the one with the

lowest median error.

Limited Storage CDFs and Outlier Analysis: For PostgreSQL, as for other relational DBMSs,

cardinality estimation is easy for some queries and hard for others. As expected PostgreSQL

yields more accurate predictions for queries with a low complexity, particularly those with no

selection predicates. To help distinguish between these “easy” and “hard” queries (labeled as

Easy(PostgreSQL) and Hard(PostgreSQL)), we plot the absolute errors from PostgreSQL as a cu-

mulative distribution (cdf) as shown in Figure 4.7. We use the knee (k) of the cdf curve to split

the queries into an “easy” category (those with errors less than the knee, k) and a “hard” category

(those with errors greater than the knee k). We compute the k through the Kneedle algorithm,

which returns the point of maximum curvature [114].For the TPC-H dataset, the distribution of

errors is wide. To ensure we retain enough queries in the Hard(PostgreSQL) category (for later

more in-depth analysis), we compute k and half the corresponding error.

We first focus on the Hard(PostgreSQL) queries. These are the more interesting queries to

study as these are the queries for which we seek to improve cardinality estimates. We plot the
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Figure 4.7: CDF of PostgreSQL absolute errors with storage budget: For each curve, we show

the knee, k, which defines the split between Easy(PostgreSQL) and Hard(PostgreSQL). The x-axis

shows the absolute error, where K and M represent the scale in thousands and millions respec-

tively.

distribution of errors for the best performing models for each dataset in Figure 4.8. Overall, both

types of models outperform PostgreSQL on all three datasets. We also find the performance of

both types of models to be similar.

First, in Figure 4.8a, we show the cdf for the Hard(PostgreSQL) queries from the IMDB dataset.

From the entire set of IMDB queries, 11% of the queries fall in the Hard(PostgreSQL) category.

The y-axis represents the percentage of queries and the x-axis represents the absolute error. In

addition to the PostgreSQL error curve, we show the cdf for the corresponding queries from the

best neural network and recurrent neural network models. We do not show the random forest

models here, as the smallest model does not meet the storage budget. Both the neural network and

recurrent neural network have comparable cardinality estimation errors. On average, the neural

network reduces estimation error by 72%, while the recurrent neural network reduces the error by

80%. Below Figure 4.8a, we include additional details that show the percentiles of the model cdfs,

the average absolute error for each query complexity, and the average relative error.

In Figure 4.8b, we show the cdf for Hard(PostgreSQL) from the DMV dataset. Approximately

10% of the queries are labeled as hard for PostgreSQL. The NN reduces the errors by 75% on
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(a) IMDB with Storage Budget

CDF Percentiles

25% 50% 75%

PostgreSQL 7.8M 13.8M 29.7M

NN (100w,1d) 1.25M 2.97M 6.6M

RNN (100w,1d) .71M 1.49M 3.67M

Average Absolute Errors

2Join 4Join 6Join

PostgreSQL 6.8M 12.8M 31.3M

NN (100w,1d) .80M 4.1M 7.0M

RNN (100w,1d) .58M 2.2M 4.1M

Average Relative Errors

2Join 4Join 6Join

PostgreSQL .39 .75 .95

NN (100w,1d) .04 .22 .20

RNN (100w,1d) .03 .11 .13

(b) DMV with Storage Budget

CDF Percentiles

25% 50% 75%

PostgreSQL 5.2K 6.8K 10.3K

NN (500w,1d) .50K 1.4K 4.1K

RNN (100w,1d) .76K 2.1K 5.1K

Average Absolute Errors

2Join 4Join 6Join

PostgreSQL 9.4K 9.4K 8.9K

NN (100w,1d) 4.9K 3.0K 3.1K

RNN (100w,1d) 7.9K 2.9K 4.0K

Average Relative Errors

2Join 4Join 6Join

PostgreSQL .10 .20 .23

NN (100w,1d) .03 .03 .04

RNN (100w,1d) .06 .02 .07

(c) TPCH with Storage Budget

CDF Percentiles

25% 50% 75%

PostgreSQL 1.2M 1.8M 2.9M

NN (100w,1d) .01M .02M .05M

RNN (100w,1d) .01M .03M .06M

Average Absolute Errors

2Join 4Join 6Join

PostgreSQL 2.9M 2.2M 1.8M

NN (100w,1d) 35K 40K 32K

RNN (100w,1d) 27K 60K 41K

Average Relative Errors

2Join 4Join 6Join

PostgreSQL .99 .99 .99

NN (100w,1d) .01 .02 .01

RNN (100w,1d) .01 .03 .02

Figure 4.8: Error Analysis for all Models : We show the curve for Hard(PostgreSQL) and show the

corresponding errors from the best models below the storage budget. Below each graph, we show

tables detailing the percentiles, the average absolute error and average relative error.

average and the RNN by 73%. As shown in the tables below the figure, the complexity of the

queries does not heavily impact the average error. In fact, the relative errors for the NN across

all query complexities have a small standard deviation (σ = .004), compared to IMDB (σ =

.08). Compared to DMV, the IMDB dataset contains several many-to-many primary/foreign key

relationships, so joining relations significantly increases the size of the final join result.
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% Queries Easy

(Models)

IMDB DMV TPC-H

NN(100w,1d) RNN(100w,1d) NN(500w,1d) RNN(100w,1d) NN(100w,1d) RNN(100w,1d

Easy(PostgreSQL) 99.5% 99.8% 90.5% 94.5% 100% 100%

Hard(PostgreSQL) 71.4% 83.5% 75.6% 69.4% 100% 100%

Table 4.1: Percentage of Queries that are Easy for the Models: For each Easy(PostgreSQL) query

batch, we find the percentage of queries that are also easy for the models. We also show the

percentage of queries that are easy based on the Hard(PostgreSQL) batch

We also observe a significant error reduction in Figure 4.8c (TPC-H), where the NN improves

estimates by 98% and the RNN by 97%. For TPC-H, 30% of the queries are hard for PostgreSQL.

Table 4.1 shows the percentage of queries that are easy for the models given that they are

either Easy(PostgreSQL) or Hard(PostgreSQL) for PostgreSQL. In the case of Hard(PostgreSQL)

queries, 70% or more become easy with the models. For the Easy(PostgreSQL) queries, the simple

NN and RNN models also find a majority of these queries to be easy (¿90%). For IMDB and

DMV, there are some queries from the Easy(PostgreSQL) batch that the models find to be hard.

We highlight some of these hard queries below:

• From the IMDB dataset, approximately 0.4% of the Easy(PostgreSQL) queries are hard for

the NN, and we find that the query with the highest error is one with an absolute error of

8.9M. This query joins the name, cast info, role type, and char name relations and has

a selection predicate on role id <= 8. For the RNN, the query with the highest error is

similar. It joins the name, cast info, role type, and char name relations, with a selection

predicate on role id <= 4.

• For the DMV dataset, approximately 10.5% of the queries are hard for NN, and 6.5% are hard

for the RNN. The query with the highest error for the NN is one that joins all relations car,

demographics, location, time, owner, and accidents and has several selection predicates:
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age demographics <= 89, month time <= 12, year accidents <= 2004. For the RNN,

the query with the highest absolute error also joins all relations and has selection predicates

with similar values, age demographics <= 93,month time <= 9,year accidents <=

2005.

Queries with Highest Errors from 2Join

Best NN per Dataset Best RNN per Dataset

IMDB

(cast info,role type) where role id<= 11 [1.9M]

(cast info,role type) where role id <= 10 [1.9M]

(cast info,role type) where role id <= 8 [1.9M]

(cast info,title) where kind id <= 1,production year <=\

2019,role id<= 4 [1.5M]

(movie info,info type) [1.3M]

(cast info,role type) where role id <= 7 [1.2M]

(cast info,role type) where role id <= 6 [1.1M]

(cast info,title) where kind id <= 4,production year <=\

2019,role id<= 6 [1.0M]

(cast info,name) where role id <= 9 [2.1M]

(cast info,name) where role id<= 11 [2.1M]

(cast info,role type) where role id <= 11 [1.9M]

(cast info,role type) where role id <= 9 [1.8M]

(cast info,role type) where role id <= 7 [1.3M]

(cast info,name) where role id <= 8 [1.2M]

(cast info,role type) where role id <= 7 [1.1M]

(cast info,title) where kind id <= 4,production year <=\

2019,role id<= 6 [.9M]

DMV

(accidents,time) where year<= 2005 and month <= 9 [11K]

(accidents,time) where month <= 9 and year <= 2005 [11K]

(accidents,time) where year <= 2003 and month <= 6 [10K]

(accidents,time) where year <= 2000 and month <= 6 [10K]

(accidents,location) where year <= 2001 [7K]

(accidents,location) where year <= 2000 [7K]

(car,accidents) where year <= 2005 [6K]

(car,accidents) where year <= 2004 [6K]

(accidents,time) where year <= 2005 and month <= 9 [33K]

(accidents,location) where year <= 2003 [18K]

(car,accidents) where year <= 2005 [18K]

(car,accidents) where year <= 2003 [18K]

(accidents,time) where year <= 2005 and month <= 9 [17K]

(accidents,time) where year <= 2003 and month <= 6 [10K]

(accidents,time) where year <= 2000 and month <= 6 [10K]

(accidents,location) where year <= 2002 [8K]

TPC-H

(lineitem,orders) l linenumber <= 7 and l quantity <=16 [116K]

(lineitem,orders) l linenumber <= 6 and l quantity<= 16 [109K]

(lineitem,orders) l linenumber <= 5 and l quantity <= 35 [98K]

(lineitem,orders) l linenumber <= 7 and l quantity <= 34 [84K]

(lineitem,orders) l linenumber <= 7 and l quantity <= 27 [65K]

(lineitem,orders) l linenumber <= 2 and l quantity <= 17 [61K]

(lineitem,orders) l linenumber <= 6 and l quantity <= 27 [61K]

(lineitem,orders) l linenumber <= 7 and l quantity <= 23 [59K]

(lineitem,orders) where l linenumber <= 7 and l quantity <= 34 [89K]

(lineitem,orders) where l linenumber<= 6 and l quantity <= 38 [75K]

(lineitem,orders) where l linenumber <= 5 and l quantity <= 35 [72K]

(lineitem,orders) where l linenumber <= 6 and l quantity <= 28 [62K]

(lineitem,orders) where l linenumber <= 7 and l quantity <= 22 [55K]

(lineitem,orders) where l linenumber <= 5 and l quantity <= 28 [52K]

(lineitem,orders) where l linenumber <= 4 and l quantity <= 28 [51K]

(lineitem,orders) where l linenumber <= 7 and l quantity <= 23 [50K]

Table 4.2: The 2Join Queries with the Highest Errors from the NN and RNN Models: For each

dataset, we show the top eight queries with the highest absolute errors.

From the Hard(PostgreSQL) queries, there are more queries that remain difficult for the mod-

els compared to Easy(PostgreSQL). These hard queries consist of joins of 6 relations (the most
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(a) role id (b) info type (c) production year (d) company type (e) kind id

(f) year (accidents) (g) month (h) year (car) (i) age

(j) l quantity (k) l linenumber (l) p size (m) c nation

Figure 4.9: Distributions for all Selection Columns: First row shows all distributions from the

IMDB relation. Second shows distributions from DMV, and the third shows TPC-H.
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complex queries we have in the test set) and up to 5 selection predicates.

Understanding why the NN or RNN fail to accurately predict the cardinality for specific queries

is challenging as there are several factors to consider. For example, the error could be caused by

a specific join or perhaps a combination of selection attributes. To gain a better understanding of

these errors, we now only focus on the queries with a low complexity (i.e. those from the 2Join

test set). In Table 4.2, we take the Easy(PostgreSQL) queries and show the queries with the highest

errors from the 2Join set. For succinctness, we annotate each query with the names of the relations

it joins (relations are listed in parenthesis) and its selection predicates. We further add the absolute

error of the query in brackets.

For IMDB, the hardest queries for the NN and RNN are similar. These queries consist of

joins with cast info and either role type or name. All queries also have a selection predicate

on the role id column with values between 6 and 11. Figure 4.9 shows the value distributions for

different attributes. The first row shows all selection columns for IMDB, the second for DMV, and

third for TPC-H. The x-axis in each graph represents the column value and the y-axis represents

the frequency of the value. In Figure 4.9a, we show the distribution of the role id column. The red

bars represent the values for which we see the highest errors for the NN and RNN models, based

on Table 4.2. Compared to the other existing selection attributes, role id comes from the largest

relation in the dataset, cast info. We generally observe that the models have the highest errors for

columns that belong to the largest relations and specifically at the points where the distribution is

irregular.

For the DMV dataset, the hardest queries are those that contain the accidents relation and join

with time or location. These queries have selection predicates on the year and month columns.

We highlight the selection predicate values in Figure 4.9f and Figure 4.9g. We note that there is a

one-to-one mapping between the accidents and time relation, so the distribution for these columns

does not change due to the join. This is also the case for the join between accidents and location.

The year column in the accidents relation has a high skew and the models have the highest errors

for the more frequent values. The accidents relation also happens to be the largest relation in the

DMV dataset.
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(a) IMDB Unlimited

CDF Percentiles

25% 50% 75%

PostgreSQL 7.8M 13.9M 27.5M

NN (500w,5d) .30M .97M 2.6M

RNN (100w,1d) .6M 1.4M 3.6M

Random Forest (1) 1e-6M 6e-6M .2M

Average Absolute Errors

2Join 4Join 6Join

PostgreSQL 6.8M 12.8M 31.3M

NN (500w,5d) .28M .45M 4.1M

RNN (100w,1d) .58M 2.0M 4.1M

Random Forest (1) 1e-6M .21M 1.0M

Average Relative Errors

2Join 4Join 6Join

PostgreSQL .38 .80 .95

NN (500w,5d) .01 .03 .11

RNN (100w,1d) .03 .11 .13

Random Forest (1) 3e-8 .01 .03

(b) DMV Unlimited

CDF Percentiles

25% 50% 75%

PostgreSQL 5.28K 6.82K 10.3K

NN (500w,5d) .16K .46K 1.0K

RNN (500w,5d) .02K 1.1K 3.2K

Random Forest (1) 3e-6K 6e-6K 1e-5K

Average Absolute Errors

2Join 4Join 6Join

PostgreSQL 9.5K 9.3K 8.9K

NN (500w,5d) .4K .9K 1.3K

RNN (500w,5d) 1.1K 3.3K 2.8K

Random Forest (1) 8e-5 .06K .29K

Average Relative Errors

2Join 4Join 6Join

PostgreSQL .10 .20 .23

NN (500w,5d) .002 .01 .01

RNN (500w,5d) .006 .03 .04

Random Forest (1) 7e-8 .0008 .007

(c) TPCH Unlimited

CDF Percentiles

25% 50% 75%

PostgreSQL 1.2M 1.8M 2.9M

NN (1000w,5d) .01M .02M .04M

RNN (500w,5d) .01M .02M .05M

Random Forest (1) 4e-8M 8e-8M 1e-7M

Average Absolute Errors

2Join 4Join 6Join

PostgreSQL 2.9M 2.2M 1.8M

NN (1000w,5d) 16K 41K 28K

RNN (500w,5d) 29K 59K 23K

Random Forest (1) 9e-4 3K 15K

Average Relative Errors

2Join 4Join 6Join

PostgreSQL .99 .99 .99

NN (1000w,5d) .007 .02 .01

RNN (500w,5d) .01 .02 .01

Random Forest (1) 4e-8 .001 .009

Figure 4.10: Error Analysis for all Models : We show the curve for Hard(PostgreSQL) and show

the corresponding errors from the best models with an unlimited storage budget. Below each graph,

we show tables detailing the percentiles, the average absolute error and average relative error.

For the TPC-H dataset, most of the errors come from the join between lineitem and orders.

These contain selection predicates on both the l linenumber and l quantity. The pearson corre-

lation for these two attributes is low (.0002) so these are independent attributes. We highlight the

values with highest errors in Figure 4.9j and Figure 4.9k. We note that the l quantity in particular
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has an irregular distribution, and also belongs to the relation with the highest number of tuples in

the dataset, lineitem.

Unlimited Storage CDFs and Outlier Analysis In Figure 4.10, we show similar graphs across

all datasets, but with an unlimited storage budget. The goal here is to understand how more com-

plex models compare against the simpler ones from Figure 4.8. Given this unlimited budget, we

now include the random forest models. The PostgreSQL estimates do not significantly change even

with 100K bins, which implies that adding finer granularity to the histograms does not significantly

improve estimates. Among all the models, the trees have the lowest errors overall across all query

complexities and across all datasets.

Time vs Space vs Accuracy Trade-offs In Figure 4.11, we show the error, space and time

trade-offs for each model. First, in Figure 4.11a we compare the error and space. On the y-axis,

we show the absolute error between the predicted value and the real value on a log scale. On the

x-axis we show the space of each model on a log scale. Each point represents the median error and

the error bars represent the 25th and 75th percentiles. For all datasets, all variants of PostgreSQL

have the highest errors and increasing histogram bin granularity does not significantly improve

performance. Neural networks and recurrent neural networks are fairly competitive in terms of

absolute error. In Section 4.4, we study whether deeper models actually learn more context about

the relations compared to the shallower ones. Models that are deeper are much larger in terms of

space, with small error improvement over simpler models.

In Figure 4.11b, we compare the accuracy to the time (in seconds) it takes to train each model.

We do not include the time it takes to run the hyperparameter tuning and we do not include the

time it takes to run the training queries. We address the latter overhead in Section 4.4.

Given their large sizes, an important question is whether the models improve upon simply

keeping the entire query workload in a hash table (with query features as keys and cardinalities as

values). To answer this question we plot the overhead of such a hash table. Given that our training

data consists of only 100K samples for each query complexity, our goal is to understand whether

the deep learning models can actually compress information and still provide a good accuracy. For

the hash table model, we assume that each feature for each training example is equivalent to one
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(a) Space vs. Error for all models

(b) Time vs Error for all models

Figure 4.11: Trade-offs between Error, Space and Time: We show the absolute error, space and

time for each model and for PostreSQL for different number of bins. The horizontal line represents

the space and time for the hash table model.

weight when measuring space. To measure time, we measure the time it takes to populate the hash

table. We mark this implementation in the graphs as a vertical dashed line. For this model, the

error is 0 for each query.

For each dataset, all variants of the tree models result in the lowest error. In particular the trees

with the lowest error are those with 1 decision tree. Since we build these models to overfit to a
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specific query workload, using a single decision tree results in the lowest error. Once more decision

trees are introduced, the error is higher as these models no longer overfit and attempt to generalize

over the training set. These results suggest that for overfit workloads, the random forest model is

able to build these models quickly and more accurately compared to the deep learning models. The

deep learning models are able to save in space and although they are not as accurate as the trees,

they can still improve errors in some cases by an order of magnitude compared to PostgreSQL.

4.3.3 Model Robustness

In this section, we discuss how sensitive these models are in the face of unknown query workloads.

That is, instead of overfitting each model to a specific set of queries, we remove some query

samples from the training entirely from the 6Join sets. We evaluate the most complex models for

the RNN and NN (1000w, 5d) as these perform favorably for the 6Join set and also select the best

performing version of the random forest model as we saw in Figure 4.11 (Random Forest (1)).

Removing Selections In the first row of Figure 4.12, we remove 10% of values from three

columns: production year in Figure 4.12a, role id in Figure 4.12b and kind id in Figure 4.12c.

In each graph, we have two variants of each model where Leave-Out (shown in lighter colors) is

the case where we do not include these queries in the training and Overfit (shown in darker colors)

is the case when the models do in fact learn about all possible queries. As shown in Figure 4.12c

for the IMDB dataset, the accuracy of the Random Forest model degrades significantly compared

to the RNN and NN models for all columns, but still maintains a highest accuracy for all columns.

For both the DMV and TPC-H dataset (shown in rows 2 and 3) of Figure 4.12, removing values

from training significantly decreases the accuracy for the random forest models. In these graphs,

we also included the accuracy of the hash table model (Leave-Out) implementation. Since the

samples in the test set are not included in the training set, we use a nearest neighbor approach

to find the closest sample that exists in the training set (our hash table). In many cases, the hash

model performs similarly to the random forest (Leave-Out) model. For the IMDB dataset, the

hash model does not perform as well due to lack of training data. We found that for some queries,

the nearest neighbor is actually not very similar. For example, a selection predicate value for the
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(a) IMDB Remove Values

production year
(b) IMDB Remove Values role id (c) IMDB Remove Values kind id

(d) DMV Remove Selection Values year
(e) DMV Remove Selection Values

month
(f) DMV Remove Selection Values age

(g) TPC-H Remove Selection

l quantity

(h) TPC-H Remove Selection

c nationkey
(i) TPC-H Remove Selection p size

Figure 4.12: Removing 10% selection predicate values across all datasets
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(a) IMDB Remove Join (b) TPC-H Remove Join

Figure 4.13: Remove Joins from the Training Workload

nearest neighbor was actually a few values away from the target query.

Removing Joins In Figure 4.13a and Figure 4.13b, we remove a join with a specific combi-

nation of tables from the IMDB and TPC-H 6Join datasets. During training, the models observe

how certain tables join with each other, but they never see the specific combinations we remove. In

Figure 4.13a, we remove the join between relations: { complete cast, aka title, movie info idx,

title, movie companies, movie link } from the training set. The queries shown in the figure cor-

respond to the test set, which includes the removed combination of tables with random selection

predicates. When comparing between the Overfit and Leave-Out models, there is a large degrada-

tion in accuracy for the NN. In particular, the RNN and the random forest model have an advantage

over the NN. For the IMDB dataset, we observe that the random forest model relies heavily on fea-

tures from Iselpred. We found that the IMDB dataset contains combinations of tables in the training

data that are very similar (and yield the same cardinality) as the combination of tables we removed

from the training. In fact, when observing the splits used in the tree, approximately 16% of the

splits on average for all test samples are from the features in Irelation. Whereas 67% of the splits
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are from Iselpred. It is not clear why the NN model does not learn to rely more on information from

Iselpred. The hash table model has the worst accuracy, since the nearest neighbor at times selects

queries with selection predicates on the same values but different underlying tables.

In Figure 4.13b, we observe a similar trend. For this experiment, we remove a join from

the TPC-H dataset with the relations: { customer, lineitem, partsupp, nation, part, orders }.

Again, the RNN results in lower errors than the neural network, but the tree model still performs

better than the RNN and NN. Compared to the IMDB models, the tree model for TPC-H more

heavily depends on splits from Iselpred. In fact, on average, 88% of the splits are from these

selection features. One reason why the random forest might only split on selection features is

due to TPC-H’s schema. For all the queries in TPC-H’s 6Join set, the join cardinality (without

selections) result in approximately 6M tuples. This implies that regardless of the join combination,

the maximum number of tuples is always the same, and the the selections are the defining feature

that ultimately determine the final number of tuples.

4.3.4 Model Latents

One challenge of training deep neural networks is the difficulty to understand what the models

are actually learning. As discussed in subsection 4.3.3, the random forest models are easily inter-

pretable as we can track path of decision splits to understand how the model is able to predict the

outcome given the input. For neural networks, diagnosing why a model arrives at a specific answer

is a harder problem. There are several existing approaches, which include masking or altering the

input to measure the predication change and studying hidden unit activation values [65, 116, 142].

We study the activation values of the hidden layers for the NN and RNN models. During

training, these models take the input, X , and propagate it through a series of transformations that

represent the data at different levels of abstraction [52]. Taking a close look at the activation values

(also referred to as latent representations or embeddings) can help diagnose what the model is

learning from the inputs. For example, if we cluster training samples based on their latents, we

can determine whether models are in fact generating similar representations for queries that are

semantically similar.
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Cluster 1 Cluster 2

Cluster 3 Cluster 4

Figure 4.14: Clustering dimensionality-reduced latents for the NN (100w, 1d) model on the TPC-H

dataset.

We use the t-SNE technique to cluster latents, which is a dimensionality reduction technique

that is often used to visualize high-dimensional data [128]. This approach has an objective function

that minimizes the KL-divergence between a distribution that measures pairwise similarities of the

objects in high-dimensional space and a distribution that measures the pairwise similarities of the

corresponding low-dimensional points [128]. Compared to principal component analysis (PCA),

t-SNE is non-linear and relies on probabilities.

We cluster latent vectors from the (100w, 1d) NN model for the 6Join training set from each

dataset. In Figure 4.14, we reduce the dimensionality of the latents from the (100w, 1d) model on

the TPC-H dataset (100 hidden units total) down to three dimensions, which is the highest number

of dimensions allowed for t-SNE. In the figure, there are four clusters, each representing different

sets of joins:

• Cluster 1: customer,lineitem,nation,orders,partsupp,region
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• Cluster 2: customer,lineitem,orders,part,partsupp,supplier

• Cluster 3: customer,lineitem,nation,orders,partsupp,supplier

• Cluster 4: customer,lineitem,nation,orders,part,partsupp

For t-SNE, the distance between clusters is irrelevant, the more important factor is the relevance

among the points that are clustered together. For the DMV dataset and IMDB, the clusters do not

represent combinations of relations, but we observe that queries that are near each other share

similar selection predicate values.

For the RNN (100w, 1d) model, we find that clusters are determined based on the sequence

of operations. Recall, during training, the RNN learns to predict cardinalities for different join

sequences, as a result of observing many queries. We observe that the resulting clusters represent

queries that end with similar operations. For example, one cluster contains combinations of rela-

tions orders, lineitem, partsupp, but always ends the sequence with joins on either the supplier

and part relation or customer and supplier. We find that complex models (1000w, 5), also show

a similar trend. This is actually a side-effect of RNNs, as more recent actions have a heavier in-

fluence on the content that exists in the hidden states. More specifically, it is difficult to learn

long-term dependencies as the gradient is much smaller compared to short-term interactions [52].

As an additional experiment, we cluster the latents from queries that have not been included in

the training. Ideally, although these queries have never been observed by the model, they should

cluster with similar training queries. We focus on the TPC-H join removal scenario, originally

shown in Figure 4.13b. When we cluster the latents from the (1000w, 5d) NN model, the queries

that were not included in the training are clustered separately from the rest. This seems to imply

that the NN does not learn the interactions between subqueries. This is not the case for the RNN, as

queries that are left out of training are clustered together with queries that have similar subqueries.

For example, a query that joins relations lineitem, orders, partsupp, customer, part, and nation,

is clustered together with queries that contain relations lineitem, orders, partsupp, customer,

part, and supplier.
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(a) IMDB Impact (b) DMV Impact (c) TPC-H Impact

Figure 4.15: Query execution time speed-ups thanks to cardinality estimates from simple or com-

plex RNN

4.4 Practical Considerations

In this section, we study two additional practical considerations. In Section 4.3, we evaluated the

accuracy of cardinality estimates produced by the different models. In this section, we evaluate

whether the cardinality estimate improvements lead to faster query execution plans. Additionally,

in earlier sections, we showed the trade-offs between prediction error and time overhead due to

model training. We did not consider the time that it takes to execute the training queries. To mini-

mize this overhead, we consider using active learning as a way to reduce the time spent generating

training sets.

4.4.1 Impact on Query Plans

We evaluate the impact of these models starting with a simple RNN model (100w, 1d) and going

to a more complex one (1000w, 5d). We use the RNN, as query optimization requires evaluating

cardinalities for several possible subqueries that could exist in the final plan. We evaluate the

performance benefit for queries with 6 relations for each of the three datasets. As we collect the
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subquery cardinalities from the RNN, these estimates are then fed into a version of PostgreSQL

modified to accept external cardinality estimates [24].

In Figure 4.15, we show the performance impact of these improved cardinalities compared

to the default cardinality estimates from PostgreSQL. First, for the IMDB dataset, we show the

performance improvement for 50 queries in Figure 4.15a. The runtimes for these queries range

from<1sec up to 200sec. The simple RNN model improves the performance of 54% of the queries,

while the complex model improves 60% of the queries. For the simpler model, query 22 is an

outlier where the model’s estimates actually slows down the query considerably (from 2 seconds

up to 39 seconds). In contrast, there is no significant slow down on any query for the complex

model.

For the DMV dataset, both the simple model and complex model improve the performance for

76% of the queries and there is no significant slow down for any query. We should note, however,

that a majority of the query runtimes in this dataset range from 1 to 3 seconds. Finally, for the

TPC-H dataset, the complex model improves 90% of the queries. The simpler model also makes

a significant improvement, speeding up 84% of the queries. The query execution times for this

dataset range from 20 to 120 seconds.

4.4.2 Reducing the Training

Building a model can be time consuming depending on the size of the model, the training time,

and the amount of time that it takes to collect the training samples. To train the models shown in

Section 4.3, we needed to run a large set of random queries to collect their ground-truth cardinal-

ities, the output Y , for the models. Depending on the complexity of these queries, running them

and collecting these labels can be time consuming. This process can be parallelized, but it comes

with a resource cost.

Models can be trained in several ways. One approach to reducing the time to collect training

samples, is to train the model in an online fashion. That is, as the user executes queries while using

the system, the model can train on only those queries. The learning happens in an incremental

fashion, and updates the model after observing a batch of samples. This approach can work well
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if the user executes similar queries. Online learning can also be fast and memory efficient, but

the learning may experience a drift [47], where the model’s decision boundary changes largely

depends on the latest samples it observes.

Alternatively, instead of relying on a user to provide query samples, we can use a technique

known as active learning. Active learning selects the best sample of candidates to improve a

model’s objective and to train as effectively as possible [71]. It is ideal in settings where labeled

examples are expensive to obtain [26].

Active learning works through a series of iterations. In each iteration, it determines unlabeled

points to add to the training sample to improve the model. Given a large pool of unlabeled samples,

active learning will select the unlabeled sample that should be annotated to improve the model’s

predictions. In our context, given a large pool of unlabeled queries, active learning should help

narrow down which queries to execute next.

There are various existing active learning methods. Common techniques include using uncer-

tainty sampling, query-by-committee (QBC), and expected model change [71]. In this work, we

focus on using QBC [117]. After each active learning iteration, QBC first builds a committee of

learners from the existing training dataset via bootstrapping [137]. Each learner in the committee

makes a prediction for all the samples in the unlabeled pool. The sample with the highest dis-

agreement is labeled and added to the training pool. For regression tasks, this disagreement can be

measured by the variance in the predictions across the learners [111].

Traditionally, active learning only adds a single informative sample in each data sampling iter-

ation [25]. More recently, batch-model AL (BMAL), where multiple samples are labeled in each

iteration has become more prevalent, as labeling in bulk or in parallel has been more accessible

in recent years [27]. As shown in work by Wu et. al. [137] careful attention must be placed in

picking out diverse points with BMAL, as models might disagree on a batch that contains very

similar points, leading to suboptimal results.

We use BMAL in the following experiment and run three different methods to help select the

unlabeled points for each iteration:
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Figure 4.16: Active Learning

1. QBC: after each iteration, we train an ensemble of models and select the top K points with

the highest disagreement

2. QBC+Clustering: we train an ensemble of models, but pick out the top K diverse set of

points through clustering, which is based on the technique from [137] for linear regression

3. Random: we select a random sample of points from the unlabeled pool

For each dataset, we use training samples from the 2Join, 4Join, and 6Join set along with all

their subqueries, for a total of 600K samples for the model. We run two experiments. In the first

experiment, we start with a small number of training samples (100) and set K=100. For the second

experiment, we start with a larger sample (1000) and set K=1000. As the number of training

samples is small, we include regularization to prevent overfitting.

In Figure 4.16, we show the loss of each technique for three active learning iterations on each

dataset. We show the results for both experiments (K=100 and K=1000). Each point represents

the average loss for three separate runs. For each graph, we also include the loss for the case where

all samples are labeled (labeled as “all training”).

In general, we find that with small training sets, QBC and QBC+Clustering result in a lower
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loss, particularly at the end of the first iteration. For subsequent iterations, the random technique

performs just as well and in some cases even better, as in the TPC-H dataset for example. QBC is

competitive, but it often overfits as shown by the cases where the loss increases (IMDB and TPC-

H). This is expected, as BMAL techniques are known to select a distinct set of points to improve

the loss more effectively.

When the training set is larger (K=1000), all techniques perform similarly, negating the imme-

diate benefit of active learning. Nevertheless, adding fewer points rather than the entire training set

can still reach a loss that is approximately an order of magnitude away from the loss that includes

all the training data.

4.5 Summary

We show the promise of using deep learning models to predict query cardinalities. In our study

we found that even simple models can improve the runtimes of several queries across a variety of

datasets. Although there is a large training overhead, we can use techniques such as active learning

to reduce the loss quickly without having to run a large set of queries.
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Chapter 5

RELATED WORK

In this chapter, we cover related work for the three previous chapters. We cover the literature

in the following areas: query performance prediction, admission control, elastic scaling, workload

consolidation, and cardinality estimation.

5.1 Related Work on Generating Personalized Service Level Agreements

There are several lines of work related to PSLAManager from Chapter 2. The key contribution

of the PSLAManager is to summarize a query workload into a concise PSLA with latency-based

guarantees. Related work includes work that considers query latency prediction and SLAs for cloud

data analytics. In addition, there is other work that includes various templating and summarization

methods. We review these techniques here.

Query Runtime Prediction Related work has relied on various types of techniques to predict

query execution times. Work by Gandhi et. al. [50] uses gray-box regression models for Hadoop

workloads that relate execution times to resource allocation parameters. The Jockey system [45]

provides latency SLOs for jobs in SCOPE by using a simulator that captures information about the

current job and historical traces. Jockey then dynamically adjusts resources based on the different

stages of the job. Work by Yadwadkar et. al. [141] uses a set of benchmarks with diverse resource

requirements to profile information about each VM type. As these benchmarks are independent of

the query workloads, the benchmarks only need to be run once. Users then provide representative

workloads to enable the system to recommend the best type of VM to run the job. The Ernest [129]

system helps users select between configurations by sampling the input data to create a perfor-

mance model. The goal here is to understand how different stages of a MapReduce job behave in
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a long pipeline. Herodotou et. al. [60], assumes a previously profiled workload to predict the

runtime throughout different sized clusters. Jalaparti et. al. [62] generates resource combinations

given performance goals. In contrast to the above approaches, PSLAManager focuses on ad-hoc

analytical queries with no prior profiles. The system relies on a previously built model based on a

different dataset to predict the performance of the queries.

Query Admission Control Admission control frameworks provide techniques to reject queries

that cannot meet SLA objectives. Q-Cop [126] considers the number of concurrent queries for each

query type. Based on this query mix, it uses a linear regression model to estimate the running time

of the query with the goal of minimizing wait time. In contrast, ActiveSLA [139] builds a non-

linear classification model to predict the probability for each query to meet or miss its deadline. In

addition, it takes as input information about each query and system-level metrics. Both of these

systems use a system-wide fixed query performance threshold and reject queries that could affect

the overall goal. PSLAManager, in contrast, does not reject any queries. It groups query templates

in terms of estimated runtime and presents to the user different tiers with a mix of runtime, price,

and query capabilities, given those groups of query templates.

Workload Summarization The idea of representing multiple queries with a single template

is not new. The term “query template” is commonly used to refer to parameterized queries. Ra-

jaraman et al. [109] used the term query template to designate parameterized queries that differ in

their selection predicates. Agarwal et al. [6] use the term query template to refer to queries with

different projected attributes. We generalize the notion of a query template to include queries that

differ in the projected attributes, relations used in joins (the joined tables are also parameters in our

templates), and selection predicates.

Perhaps, the work in the literature closest to ours is by Chaudhuri et al. [30, 29], in the context

of SQL workload compression. The main goal of their work is to compress workloads of queries

to improve scalability of tasks such as index selection, without compromising the quality of such

tasks’ results. In contrast, our goal is to cluster all possible queries by runtime estimates and com-

bine queries into templates guaranteeing coverage in terms of query capabilities. Our optimization

goal and workload compression method are thus different.
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Howe [61] have looked at the problem of generating sample queries from user databases. Their

work is complementary to our workload generation approach as it focuses on inferring possible

joins between tables, while we assume the presence of a schema with PK-FK constraints.

5.2 Related Work on Meeting Performance Guarantees in the Cloud

Elastic Scaling for Performance Guarantees Performance guarantees have been the focus of

real-time database systems [66], where the goal is to schedule queries in a fixed-size cluster and

ensure they meet their deadlines. Work by Das et. al [37], uses telemetry to determine whether to

scale up containers within a single node, whereas our goal is to scale the number of containers per

query. Ernest [129] builds performance models based on the behavior of the job on small samples

of the data. CherryPick [8] uses a similar job sampling approach, but uses Bayesian Optimization

to build performance models. Morpheus [64] relies on historical usage to determine SLOs and en-

force these SLOs by using scheduling techniques to isolate jobs. Several of these systems require

representative workloads or repeated tenant usage patterns. In our work, performance guarantees

are based on an offline model without prior knowledge about the tenant’s workload. In addition,

several systems have also studied performance SLAs through dynamic resource allocation, through

feedback control [80] and through reinforcement learning techniques as seen in TIRAMOLA [70].

Others leverage decisions based on resource utilization goals [36, 40, 46, 91, 124, 140]. In PerfEn-

force, we compare a variety of query scheduling algorithms including feedback control, reinforce-

ment learning, and online learning techniques.

Cloud providers today offer the ability to scale a database application [11, 134]. However, they

require users to manually specify scaling conditions through vendor-specific APIs. This requires

expertise and imposes the risk of resource over-provisioning. Moreover, these scaling features

can be costly, as they are subject to downtimes when data re-balancing is required [11]. Most

academic work on elastic systems focuses on OLTP workloads [38, 122, 130] and thus develops

new techniques for tenant database migration [43], data re-partitioning while maintaining consis-

tency [89] or automated replication [130]. In these systems, the goal is to maximize aggregate

system performance, while our focus is on a per-query performance guarantees.
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Multi-Tenant Workload Consolidation An active area of research in multi-tenant cloud DBMS

systems is tenant packing [44, 84, 82], or how best to co-locate tenants on a shared set of ma-

chines or even DBMS instances. In a multi-tenant setting, guaranteeing these objectives relies on

the ability to pack tenants effectively without significantly impacting performance. Related work

addresses this challenge by focusing on techniques that can help mitigate the result of a bad ten-

ant packing by either finding a good initial tenant placement strategy or dynamically migrating

tenants throughout their session [40, 44, 76, 82, 124]. To help minimize costs, the Kairos [36] sys-

tem predicts hardware requirements for combined tenant workloads and similarly, Romano [100]

focuses on consolidating workloads across different storage devices. Although PerfEnforce is a

multi-tenant service, we do not focus on minimizing the effect of workload interference or finding

satisfactory tenant packings. Our architecture isolates each tenant through the use of containers.

Each tenant’s dataset attaches to each of the containers, allowing each tenant to process the data in

isolation.

Work by Wong et. al. [135] addresses the need to consolidate thousands of tenants by schedul-

ing their queries on specific groups of resources. Their work focuses on scheduling tenants based

on temporal skew and keeps the shared cluster at a static size for days, while PerfEnforce’s simu-

lation provisioning algorithm quickly and automatically provisions new machines if there is a high

demand.

Provisioning In terms of provisioning, some systems rely on machine learning techniques

such as the hill-climbing approach seen in Marcus et. al. [86], which allows machines to learn

an optimal time to wait before they shut down. Neural networks for dynamic allocation [88] or

dynamic provisioning [106] have also been used, but have distinct goals: one focuses on allocating

resources with minimal use of electrical power while the other assumes predictable workloads.

PerfEnforce focuses on combining query scheduling and resource provisioning techniques to

minimize costs for the service provider. Our query scheduling techniques focus on allocating

resources at a per-query level, while provisioning focuses on allocating sufficient machines at a

global level across many tenants. Similarly, SmartSLA [140] minimizes the total cost by perform-

ing a local analysis (at the client level) and a global analysis (among many tenants). In contrast to



108

our work, SmartSLA focuses on allocating based on virtualized resources. In addition, their global

analysis determines the amount of resources to provide for different tenant classes. Quasar [40], a

system based on Paragon [39], focuses the combination between resource allocation and resource

assignment to provide performance guarantees. Their resource assignment technique focuses on

finding resources that will not impact the performance for other tenants, while resource allocation

focuses on determining the amount of resources that should be used by a workload. Again, finding

a good tenant placement strategy is not the focus of our work. In addition, we focus on algorithms

that help determine when to launch or turn off machines.

5.3 Related Work on Using Deep Learning for Cardinality Estimation

Cardinality Estimation Cardinality estimation is an important component in the query optimiza-

tion process, as it is the process of estimating the number of tuples produced by a subquery. Many

optimizers today use histograms to estimate cardinalities. These structures can efficiently summa-

rize the frequency distribution of one or more attributes. For single dimensions, histograms split

the data using equal-sized buckets (equi-width) or buckets with equal frequencies (equi-depth). To

minimize errors, statistics about each bucket are also stored including but not limited to the number

of items, average value, and mode [34].

Related work in cardinality estimation has looked at more sophisticated histograms including

multi-dimensional ones such as mHist [104] and genHist [55]. There have also been more adaptive

multi-histogram approaches such as stHoles [23], which is generated by analyzing query results,

compared to analyzing the entire dataset. Unfortunately, as more dimensions exist in the data, the

more difficult it is to build these multi-dimensional models [42]. In addition, constructing these

multi-dimensional histograms can take a long time.

There are other existing alternatives to summarize data, including wavelets, graphical mod-

els [127], sketches [34], and sampling [77]. Nevertheless across of these these techniques, there is

always a trade-off across time, space and accuracy of these models.

Learning Optimizers Leo [121], was one of the first approaches to automatically adjust an

optimizer’s estimates based on past mistakes. This requires successive runs of similar queries to
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make adjustments.

Similarly, in the effort of using a self-correcting loop, others have proposed a “black-box” ap-

proach to cardinality estimation by grouping queries into syntactic families [85]. Machine learning

techniques are then used to learn the cardinality distributions of these queries based on features

describing the query attributes, constants, operators and aggregates. They specifically focus on

applications that have fixed workloads do not require fine-grained, sub-plan estimates.

Work by Marcus [87] uses a deep reinforcement learning technique to find optimal join orders

to improve query latency on a fixed database. They use cost estimates from PostgreSQL to boot-

strap the learning and continuously improve the accuracy of the model’s rewards during training.

Related work by Sanjay [74], also uses deep reinforcement learning to improve query plans, but

they assume perfect cardinality predictions for base relations.

Neural Networks and Cardinality Estimation Liu [81] use neural networks to solve the

cardinality estimation problem, but focus on selection queries only. Hasan [58] also only focus on

selectivity estimation, but show that deep learning models are particularly successful at predicting

query cardinalities with a large number of selection predicates.

Work by Kipf [69] proposes a new deep learning approach to cardinality estimation by using

a multi-set convolutional network. Cardinality estimation does improve, but they do not show

improvement of query plans. In addition, our work explores the space, time, accuracy of these

models across a variety of datasets.

Work by Kraska [73] uses a mixture of neural networks to learn the distribution of an attribute

with a focus on building fast indexes. In SageDB [72], this work is extended towards building

a new system that learns the underlying structure of the data to provide optimal query plans. In

their work, they state that one key aspect in successfully improving these query plans is through

cardinality estimation. They are currently working on a hybrid model-based approach to cardinality

estimation, where they balance between looking for a model that can learn the distribution of the

data and a model that can capture the extreme outliers and anomalies of the data.

Wu [136] learn several models to predict the cardinalities for a variety of template subgraphs

in a dataset instead of building one large model. Input features include filters and parameters for
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the subgraph, but they do not featurize information about the dataset (i.e. the relations). Thus, their

models cannot make predictions for unobserved subgraph templates.
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Chapter 6

CONCLUSION AND FUTURE DIRECTIONS

Data analytics has been a critical asset for large enterprises that need to explore and gain further

insights from their data. Cloud computing has opened data analytics to the masses, providing an

efficient way to acquire resources at scale compared to an on-premise cluster. Today, when con-

figuring a data analytics service in the cloud, users are required to pay for a cluster configuration.

This creates a challenge, as users are required to translate their data management needs into re-

sources. We proposed to change this interface and instead, show users what they can do with their

data along with a set price. In this dissertation, we introduced the notion of a “Personalized Service

Level Agreement”, which is a performance-based SLA specific to a user database. We then devel-

oped and presented three new components: PSLAManager, SLAOrchestrator (which introduced

the PerfEnforce subsystem), and DeepQuery.

We first focused on the challenge of generating performance-based SLAs for each user. To

address this problem, we presented PSLAManager (Chapter 2). PSLAManager generates Per-

sonalized Service Level Agreements that show users a selection of service tiers with different

price-performance options to analyze their data using a cloud service. To use this service, users

first upload their data and schema to PSLAManager, allowing it to collect statistics about the data.

Based on these statistics, PSLAManager generates a query workload, estimates the runtime of this

workload on different configurations, compresses the queries, and provides the user with a final

PSLA. Each PSLA comes with several options, each with a different price and performance trade-

off. We consider the PSLA an important direction for making cloud DMBSs easier to use in a

cost-effective manner.

There are several direct extensions to the initial PSLA generation approach presented in Chap-
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ter 2. First, our approach currently assumes no indexes. We posit that physical tuning should

happen once the user starts to query the data. The cloud can use existing methods to recommend

indexes. It can then re-compute PSLAs but, this time, include the specific queries that the user

is running and combinations of indexes. This approach, however, requires an extended model for

query time prediction and makes it more difficult to compare service tiers with different indexes

because each index accelerates different queries.

Second, many variants of the PSLA approach are possible: We could vary the structure of the

query templates and the complexity of the queries shown in the PSLAs. We could use different

definitions for PSLA complexity and error metrics.

Beyond these fundamental extensions, additional questions remain: Can the cloud use the

PSLAs to help users reason about the cost of different queries? Can it help users to rewrite ex-

pensive queries into cheaper, possibly somewhat different, ones? What else should change about

the interface between users and the DBMS now that the latter is a cloud service?

In Chapter 3 we presented SLAOrchestrator, which combines the previous PSLAManager’s

SLA generation with a new sub-system called PerfEnforce. SLAOrchestrator uses a double learn-

ing loop that improves SLAs. After the completion of a tenant’s hourly session, PSLAMan-

ager uses the metadata collected from previous query runtimes to improve subsequent SLAs.

SLAOrchestrator also improves resource management over time through PerfEnforce. PerfEn-

force includes an efficient combination of elastic query scheduling and multi-tenant resource pro-

visioning algorithms that work toward minimizing service costs. Experiments demonstrate that

SLAOrchestrator dramatically reduces service costs for a common type of per-query latency SLAs.

A challenge raised by the performance-based SLAs relates to query runtime guarantees. The

initial performance predictions are based heavily on an offline model. Building and training a

model that generalizes well for many tenant datasets is a challenge as tenant datasets can vary in

size, column distributions and schema.

The SPJ query workloads we use throughout the evaluation allowed us to demonstrate a proof

of concept for SLAOrchestrator. As future work, incorporating more complex query workloads

(e.g., considering aggregates and subqueries), would impact the online learning and contextual
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multi-armed bandit (CMAB) techniques as they would require more advanced models and more

extensive feature engineering than those considered in this work. Second, for a more thorough

provisioning evaluation, running SLAOrchestrator against real tenant traces would help to better

understand how the system would behave under more bursty workloads.

Finally, in Chapter 4, we presented DeepQuery, where we evaluated deep learning for cardi-

nality estimation by studying the accuracy, space and time trade-offs across several deep learning

architectures. We found that simple deep learning models can learn cardinality estimations across

a variety of datasets (reducing the error by 72% - 98% on average compared to PostgreSQL). In

addition, we empirically evaluated the impact of injecting cardinality estimates produced by deep

learning models into the PostgreSQL optimizer. In many cases, the estimates from these models

lead to better query plans across all datasets, reducing the runtimes by up to 49% on select-project-

join workloads.

There are several question that remain in this work. First, we have highlighted distributions

that are difficult to learn for the deep models, but it is unclear why the models fail to learn specific

distributions. The next step would be to generate several different types of synthetic distributions to

gain a better understanding of which types of distributions the model fails to predict properly. The

second challenge, which ties closely to the first, is the lack of model interpretability. Unlike the

random forest models, it is difficult to understand what the models are actually learning. Given this

ambiguity, there is always the chance that the model might predict cardinalities with high errors

for specific subqueries, making it difficult to debug and improve the models.

Final Remarks: Providing and enforcing performance-based service level agreements at a low

cost is a challenging problem. This thesis contributes techniques that can help a cloud data analytics

service enforce these guarantees in a cost-effective manner. In addition, we can strengthen these

techniques by relying on improved query cost estimates through trained deep learning models.

In general, cloud computing has fundamentally transformed the way users administer database

systems. Users now have the capability to launch resources in a matter of seconds. As these

systems mature, we should continue to consider other ways we can improve the usability of these

systems while minimizing the financial burden to the service providers.
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