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Abstract

Multi-versioned Data Storage and Iterative Processing in a Parallel Array Database Engine

Emad Soroush

Chair of the Supervisory Committee:
Associate Professor Magdalena Balazinska

Computer Science and Engineering

Scientists today are able to generate data at an unprecedented scale and rate. For example

the Sloan Digital Sky Survey (SDSS) generates 200GB of data containing millions of objects on

each night on its routine operation. The large hadron collider is producing even more data today

which is approximately 30PB annually. The Large Synoptic Survey Telescope (LSST) also will be

producing approximately 30TB of data per night in a few years. Also, in many fields of science,

multidimensional arrays rather than flat tables are standard data types because data values are

associated with coordinates in space and time. For example, images in astronomy are 2D arrays

of pixel intensities. Climate and ocean models use arrays or meshes to describe 3D regions of the

atmosphere and oceans. As a result, scientists need powerful tools to help them manage massive

arrays.

This thesis focuses on various challenges in building parallel array data management systems

that facilitate massive-scale data analytics over arrays.

The first challenge with building an array data processing system is simply how to store arrays on

disk. The key question is how to partition arrays into smaller fragments called chunks that form the

unit of IO, processing, and data distribution across machines in a cluster. We explore this question

in ArrayStore, a new read-only storage manager for parallel array processing. In ArrayStore, we

study the impact of different chunking strategies on query processing performance for a wide range

of operations, including binary operators and user-defined functions. ArrayStore also proposes two



new techniques that enable operators to access data from adjacent array fragments during parallel

processing.

The second challenge that we explore in building array systems is the ability to create, archive,

and explore different versions of the array data. We address this question in TimeArr, a new append-

only storage manager for an array database. Its key contribution is to efficiently store and retrieve

versions of an entire array or some sub-array. To achieve high performance, TimeArr relies on

several techniques including virtual tiles, bitmask compression of changes, variable-length delta

representations, and skip links.

The third challenge that we tackle in building parallel array engines is how to provide efficient

iterative computation on multi-dimensional scientific arrays. We present the design, implementation,

and evaluation of ArrayLoop, an extension of SciDB with native support for array iterations. In the

context of ArrayLoop, we develop a model for iterative processing in a parallel array engine. We then

present three optimizations to improve the performance of these types of computations: incremental

processing, mini-iteration overlap processing, and multi-resolution processing.

Finally, as motivation for our work and also to help push our technology back into the hands of

science users, we have built the AscotDB system. AscotDB is a new, extensible data analysis system

for the interactive analysis of data from astronomical surveys. AscotDB provides a compelling and

powerful environment for the exploration, analysis, visualization, and sharing of large array datasets.
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Chapter 1

INTRODUCTION

Today’s Web-based companies such as Google, Microsoft, Facebook, and others are growing in

popularity. These companies commonly accumulate logs from monitoring how their services are

being used (i.e., streams of search queries, click streams, low-level network flows, etc). Mining all this

monitoring data can help companies provide better services to their users: from personalized product

recommendations to quality-of-service assessment, and sophisticated product design and marketing

strategies. While several systems exist for large-scale data analytics (e.g., parallel database systems,

MapReduce-type systems), each tool satisfies only a subset of today’s data analysis needs. As a

result, all major players are developing new tools and platforms for data analytics [13, 44, 57, 70].

Interestingly, this trend is not restricted to businesses. Sciences are also increasingly becoming

data-driven. From small research labs to large communities [39, 54], scientists across a variety of

disciplines including astronomy, biology, physics, oceanography, and climatology are all dealing with

large-scale data analytics. For example, the Sloan Digital Sky Survey (SDSS) [95] generates 200GB

of data each night on its routine operation. Additionally, the next generation of telescopic sky surveys

such as the Large Synoptic Survey Telescope (LSST) [54] will generate 30TB of imagery data every

night or up to a hundred Petabytes of data for the duration of the survey. A large team of developers

is building a specialized data analysis pipeline to handle this data onslaught. As other examples, the

Earth Microbiome Project [26] expects to produce 2.4 petabytes in their metagenomics effort and the

Large Hadron Collider [11] generates data which is approximately 30 petabytes annually. Because of

the size of the data they need to analyze, scientists today can increasingly benefit from using data

management systems to organize and query their data.
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1.1 Scientific Application Requirements

Scientists with extreme data base requirements complain about the inadequacy of modern data

processing tools [101]. Many advocate that one should move away from the relational model and

adopt a multidimensional array data model [28, 102]. The main reason is that, in many fields of

science, multidimensional arrays rather than flat tables are standard data types because data values

are associated with coordinates in space and time. For example, images in astronomy are 2D arrays

of pixel intensities. Climate and ocean models use arrays or meshes to describe 3D regions of the

atmosphere and oceans. They simulate the behavior of these regions over time by numerically solving

the governing equations. Cosmology simulations model the behavior of clusters of 3D particles to

analyze the origin and evolution of the universe. One approach to managing this type of array data is

to build array libraries on top of relational engines, but many argue that simulating arrays on top of

relations can be highly inefficient [79, 102]. Scientists also need to perform a variety of operations on

their array data such as feature extraction [49], smoothing [87], and cross-matching [66], which are

not built-in operations in relational Database Management Systems (DBMSs). Those operations also

impose different requirements than relational operators on a data management engine. As a result,

many engines are being built today to support multidimensional arrays natively [3, 28, 87, 110].

To illustrate the need for processing arrays and performing array-oriented operations, consider

the following example from the astronomy domain:

Example 1.1.1. Consider the LSST image database. Telescope images are 2D arrays of pixels.

When taken over time, the images form a 3D array of pixel intensities. Three types of analysis are

commonly performed on this data:

When analyzing telescope images, some sources (a “source” can be a galaxy, a star, etc.) are too

faint to be detected in one image but can be detected by stacking multiple versions of images from the

same location on the sky. The stacking of LSST images is called co-addition. Figure 1.2(a) and 1.2(b)

illustrate a single LSST image and its corresponding co-added image. More objects are visible

in the co-added image. LSST will undertake repeated exposures over ten years with each image

partially overlapping with hundreds of others. Co-addition of LSST images involves grouping all the

pixel values from the same location on the sky followed by some aggregate computation. To enable

efficient stacking and comparison of these images, the data can benefit from being partitioned and
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grouped on array dimensions. While pipelines are being designed by the LSST team to handle this

image processing task and create catalogs of detected objects, the truly transformative science will

come from providing scientists with the ability to directly query basic operations on the pixel-level

raw data, and to enable interactive and exploratory computation and visualization of that data.

Before the co-addition is applied, astronomers often run a sigma-clipping noise-reduction al-

gorithm. The analysis in this case has two steps: (1) outlier filtering with “sigma-clipping” and

then (2) image co-addition. The “sigma-clipping” algorithm consists in grouping all pixels on their

sky coordinates. For each location, the algorithm computes the mean and standard deviation of the

flux (light intensity). It then sets to null all cell values that lie a user-specified number of standard

deviations away from the mean. The algorithm iterates by re-computing the mean and standard

deviation. The cleaning process terminates once no new cell values are filtered out. Figure 1.2(c)

represents the effect of “sigma-clipping” before stacking images. The filtering process removes

noises that are a side-effect of the LSST pipeline. The “sigma clipping” analysis involves a wide

set of operations. This analysis not only illustrates the need for efficient implementation of basic

operations such as filtering, grouping, and join, but also more complex iterative computations on

arrays.

Once telescope images have been cleaned and co-added, the next step is typically to extract

the actual sources from the images. Source detection is a time consuming operation that should be

parallelized by breaking down the large raw image into multiple smaller images. This algorithm is

often implemented as a user-defined function that involves a full scan of the raw data followed by

a grouping phase that groups observations detected in different partitions into ones that represent

the same object. Another way to implement this algorithm is to run it in an iterative fashion. An

iterative computation can be expensive to execute but it is easier to express (only requires grouping

and aggregation) and also avoids the overhead of the final cross-partition merging phase. In a

simplified version of the iterative source detection algorithm, each non-empty cell is initialized with

a unique label and is considered to be a different object. At each iteration, each cell resets its label

to the minimum label value across its neighbors. Two cells are neighbors if they are adjacent. This

procedure continues until the algorithm converges and no more cell values change. A key question is

how to access adjacent cells that fall outside a partition boundary and can thus be stored on a different
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machine. A nice solution is to provide each partition with a margin of overlapping data along its

boundaries. The challenges, however, are how to select the appropriate amount of data overlap when

partitioning the array and how to keep the overlap data up to date. This source detection analysis

illustrates the need for properly handling parallel array computations that involve overlapped data and

iterations. Figure 1.2(d) shows the result of running the source detection algorithm on the example

LSST image. �

Overall, we argue that a data management system for large-scale scientific data analytics should

meet the following requirements:

Support Structural Information at Scale: Scientists typically work with multidimensional mea-

surements such as arrays and meshes, because their data values are associated with coordinates in

space and time. Data management systems for scientific applications should thus provide efficient

support for array data and powerful analytics on that data. Additionally, those engines should adopt

effective techniques for parallel processing to bring scalability. To scale query processing, data

management systems often partition and process data in a shared-nothing cluster. However, this

is challenging to provide for complex data types such as arrays due to the data dependency that

exists in structural information (e.g., the source detection application from example 1.1.1 operates on

neighborhoods of cells and thus requires overlap data).

Support No Overwrite: Today’s scientific organizations commonly collect data over time (e.g.,

time series data or different versions of their data). An important requirement that scientists have for

any kind of data processing engine is the ability to create, archive, and explore different versions

of their data [102]. Hence, a no-overwrite storage manager with efficient support for querying old

versions of the data is a critical component of any large-scale data management system. There

is a long line of research on this topic, from temporal databases [46, 52, 75, 96], conventional

version-control systems [12], to video compression codecs [17]. However, none of those efficiently

supports all aspects of creating, archiving, and exploring different versions of an array.

Support Iterative Applications: Many data analysis tasks today require iterative processing.

Current distributed data processing platforms such as parallel DBMSs and Hadoop [36] do not have
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built-in support for iterative programs, which makes it difficult for them to support these types of

operations. Several systems have been developed that support iterative big data analytics [10, 30, 53,

93, 109]. For example Twister [27], Daytona [4], and HaLoop [10] extend MapReduce to preserve

state across iterations and to provide support for a looping construct. However, none of these is an

array engine. Modern data processing engines must treat iterative computations as first-class citizens.

Support Interactive and Exploratory Analytics: A truly transformative data analytics tool

should provide a compelling and powerful environment for the exploration, analysis, visualiza-

tion, and sharing of large datasets. We regard data analytics as a cycle consisting of a sequence

of exploration and analysis phases. Exploration is well supported with graphical interfaces while

analysis is well supported with programmatic interfaces. In order to maintain the cycle of data

exploration and analytics, it is crucial to provide a seamless interaction between those two phases.

As a result, a rich set of graphical and programmatic interfaces that supports an interactive and

seamless switching context is essential. Although there are some initial efforts [5] that emphasize

the graphical and programmatic interfaces as first-class citizens for data analytics tools, none yet

provides a seamless interaction between exploratory and analysis phases.

Today’s DBMSs do not handle these requirements well. Existing DBMSs are based on the

relational model, which is inefficient for the types of data used for complex data analytics [79].

They also do not sufficiently scale [40]. Data warehousing solutions based on the MapReduce

framework [23] such as Hive [40] are an alternate solution. They are not the final answer to data

analytics problems today, though, because they are not naturally designed to process data with

important structural information. For example, one of the algorithms commonly used across a variety

of disciplines is k-nearest neighbors. The source detection algorithm on LSST images (Example 1.1.1)

from the astronomy domain is another example. Those algorithms are hard to execute efficiently in

MapReduce because of the lack of natural support for locality information.

Array engines strive to satisfy this set of requirements. They naturally provide efficient support

for structural information both in terms of storage and data access by better capturing the multi-

dimensional nature of the measurement data. In array engines, structural information is associated

with each cell through its dimension values. Those dimensions provide a natural index for the data.
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Array engines also help the user through the data exploration and analysis by providing a rich set

of built-in operators, including common relational operators such as Select, Filter, and Join, and

array-specific operators such as Slicing, Dicing, and Regrid [87]. Consider the LSST images example

(Example 1.1.1): Array engines are a good candidate to store those images. Storing the LSST images

in a large multidimensional array with sky and time dimensions can yield significant savings in

storage space since sky dimensions are not stored. It also provides efficient indexing of pixel positions

both on the sky and in time. Array-engines can help through the noise reduction process in the LSST

images as well. All the grouping, aggregate computations, and subtraction of outlier cells are based

on the sky and time coordinates which are implicitly indexed by storing and processing images as a

multidimensional array. Array engines provide parallel processing by using data partitioning and

overlap processing techniques.

Array engines capabilities are very promising, however, the research challenge is to understand

effective partitioning strategies in the context of a complex query workload, comprising not only

range-queries, but also binary operations such as joins and complex user-defined functions, and to

develop efficient techniques that provide fast access to neighboring cells. The latter is challenging

especially for boundary cells of already partitioned data. Fast access to neighboring cells is vital

for algorithms such the source detection in the LSST images where access to adjacent cells is a

fundamental unit of computation. Efficient support for iterative applications and efficient support for

versioning array data are two requirements that are not well-studied in the context of array engines

and require major improvements.

1.2 SciDB: Open-source DBMS with Inherent Support for Array Processing

SciDB [87] is an open-source parallel database management system where the core data model

is a multi-dimensional array. SciDB supports arrays natively. That is, SciDB is designed and im-

plemented from the ground-up based on an array data model rather than being layered on top of an

existing DBMS [3, 19, 28, 110]. Figure 1.1 illustrates an example array, called MyArray, that is

supported by SciDB. MyArray is a 2D (16 × 5) array with two integer dimensions I and J and

two attributes v1 and v2. Each permutation of coordinates specifies a cell in the array. Cells can

be empty. Each non-empty cell contains a set of attribute-values. MyArray in Figure 1.1 is de-

fined as follow: Array MyArray <v1: double, v2: double>[int I=0:15,16,0,
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Figure 1.1 Scidb array data model example: MyArray is a 2D (16 × 5) array with two integer
dimensions I and J and two double attributes v1 and v2.
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MyArray [7,2] = (1,1) 

int J=0:4,5,0]. The first parameter in each dimension specifies starting index and ending

index, e.g. 0 : 15 in dimension I in MyArray. To store arrays on disk, SciDB partitions them

into sub-arrays called chunks. The second parameter specifies the chunk size in that dimension. In

this example MyArray has only one chunk. The third parameter defines the margin of overlapped

data between two chunks. MyArray has no overlap data. Dimensions in SciDB can be integer or

non-integer. In case dimensions are non-integers, such as strings, SciDB internally uses a mapping

function from the source dimension type to integers. Attributes in SciDB can be atomic types,

user-defined types, or even other arrays. The latter are called nested arrays. For further information

about SciDB, we refer the reader to the SciDB overview paper [87].

1.3 Thesis Outline and Contributions

This thesis focuses on parallel array data management systems, which hold the promise to be

well-suited for large-scale, complex array analytics. In the context of building an array-based system

to facilitate massive-scale data analytics, the contributions of this thesis are as follows:

Array Data Processing and Storage: A critical component of making an array data processing

system is to build an efficient storage layer, similar to the Hadoop Distributed File System (HDFS)

which is a key component of the Hadoop data processing system. A standard approach to storing an

array is to partition it into sub-arrays called chunks. Each chunk is typically the size of a storage

block. Chunking an array helps alleviate “dimension dependency” [94], where the number of blocks

read from disk depends on the dimensions involved in a range-selection query rather than just the
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range size. The challenge of building a storage manager for arrays is to choose the appropriate chunk

shape and structure. Do they need to be fixed in terms of number of bytes or they need to have a

fixed volume shape? What is the appropriate chunk size for a given workload? Should the system

use single level chunking or hierarchical chunking? Prior work [14, 61, 94] studies the tuning of

chunk shape, size, and layout on disk and across disks for range-selection queries. We refer the

reader to Section 6.2 for a more detailed discussion of related work. In contrast, in Chapter 2, we

study the impact of different chunking strategies on query processing performance for a wide range

of operations, including binary operators and user-defined functions. In Chapter 2, we present the

design, implementation, and evaluation of ArrayStore [99], a storage manager for complex, parallel

array processing. For efficient processing, ArrayStore partitions an array into chunks and we show

that a two-level chunking strategy with regular chunks (fixed volume) and regular sub-chunks, called

tiles, leads to the best and most consistent performance for a varied set of operations both on a single

node and in a shared-nothing cluster. ArrayStore also enables operators to access data from adjacent

array fragments during parallel processing. We present two new techniques to support this need: one

leverages ArrayStore’s two-level storage layout and the other one uses additional materialized views.

Both techniques cut runtimes in half in our experiments compared with state-of-the-art alternatives.

Array Data Versioning: As discussed above, a storage manager for an array engine must provide

efficient support for different versions of the array data. This feature can naturally be supported in an

array-based engine. For example to support no overwrite, an array database can simply add a hidden

“time” dimension to every array. Data is loaded into the array at the time indicated in the loading

process. Subsequent updates, inserts, or bulk loads add new data at the time they are running, without

discarding the previous information. Hence, for a given cell, moving along the time dimension will

indicate the sequence of updates to the cell. A common use-case for data versions is simply the

ability to point at a data value or a collection of values and say “show me the history of this data”. In

many applications, the number of updates and subsequently the length of the “time” dimension is not

known in advance. Also many updates only touch small fraction of the whole array. As a result, in

building an append-only array-based engine, we have to address challenging questions such as: What

is the right chunk representation for a versioned array? How to efficiently support updates and data

versioning in array chunks? How to efficiently support queries for the history of a sub-array? We
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address those questions in Chapter 3, where we present the design, implementation, and evaluation

of TimeArr [98], a new storage manager for an array database. Its key contribution is to efficiently

store and retrieve versions of an entire array or some sub-array. TimeArr also introduces the idea

of approximate exploration of an array’s history. To achieve high performance, TimeArr relies on

several techniques including virtual tiles, bitmask compression of changes, variable-length delta

representations, and skip links. TimeArr enables users to customize their exploration by specifying

both the maximum degree of approximation tolerable and how it should be computed. Experiments

with a prototype implementation and two real datasets from the astronomy and earth science domains

demonstrate up to a factor of six performance gain with Timarr’s approach compared to the naive

versioning system in SciDB.

Iterative Array Processing: Many data analysis tasks today require iterative processing: machine

learning, model fitting, pattern discovery, flow simulations, cluster extraction, and more. The need

for efficient iterative computation extends to analysis executed on multi-dimensional scientific arrays.

While it is possible to implement iterative array computations by repeatedly invoking array queries

from a script, this approach is highly inefficient. To support these iterative tasks efficiently, array

engines such as SciDB should have native support for array iterations. In Chapter 4, we present

the design, implementation, and evaluation of ArrayLoop [62], an extension of SciDB with native

support for array iterations. In the context of ArrayLoop, we develop a model for iterative processing

in a parallel array engine. We then present three optimizations to improve the performance of

these types of computations: incremental processing, mini-iteration overlap processing, and multi-

resolution processing. Experiments with 1 TB of publicly available LSST images [83] show that our

optimizations can significantly improve runtimes by up to 4X for real queries on LSST data

AscotDB: As motivation for our work and also to help push our technology back into the hands

of science users, we have built the AscotDB [62, 106] system. AscotDB is a new, extensible data

analysis system for the interactive analysis of data from astronomical surveys. In Chapter 5, we

present the design and implementation of AscotDB. AscotDB is a layered system: It builds on SciDB

to provide a shared-nothing, parallel array processing and data management engine. To enable both

exploratory and deep analysis of the data, AscotDB provides both graphical and programmatic (the
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latter is not a contribution of this thesis) interfaces with seamless switching between these two modes.

In summary, in the context of the AscotDB project and also motivated by other array-processing

applications, this thesis work focuses on the following critical challenges for a parallel array man-

agement system: 1) Efficient storage management mechanisms to store arrays on disk (ArrayStore,

Chapter 2). 2) Efficient support for updates and data versioning (TimeArr, Chapter 3). 3) Native

support for efficient iterative computations (ArrayLoop, Chapter 4).
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Figure 1.2 A motivating example from the astronomy domain that represents (a) a single LSST image,
(b) the equivalent stacked image, (c) the same stacked image but after applying the sigma-clipping
noise reduction algorithm, and (d) the result of feature extraction on that image.

(a) Single Image (b) Co-added image

(c) Co-added + sigma-clipped image (d) Image annotated with extracted features
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Chapter 2

ARRAYSTORE: STORAGE MANAGER FOR COMPLEX, PARALLEL ARRAY
PROCESSING

One major challenge with building an array data processing system is simply how to store

arrays on disk. We explore this question in ArrayStore [97, 99]. ArrayStore is a new read-only

storage manager for parallel array processing. ArrayStore supports a parallel and complex workload

comprising not only range-queries, but also binary operations such as joins and user-defined functions.

2.1 Requirements, Challenges, and Contributions

In this chapter, we address the following key question: what is the appropriate storage manage-

ment strategy for a parallel array processing system? Unlike most other array-processing systems

being built today [3, 19, 28, 110], we are not interested in building an array engine on top of a

relational DBMS, but rather building a specialized storage manager from scratch. In this chapter, we

consider read-only arrays and do not address the problem of updating arrays.

There is a long line of work on storing and indexing multidimensional data (see Section 6.2). A

standard approach to storing an array is to partition it into sub-arrays called chunks [88] as illustrated

in Figure 2.1. Each chunk is typically the size of a storage block. Chunking an array helps alleviate

“dimension dependency” [94], where the number of blocks read from disk depends on the dimensions

involved in a range-selection query rather than just the range size.

Requirements The design of a parallel array storage manager must thus answer the following

questions (1) what is the most efficient array chunking strategy for a given workload, (2) how should

the storage manager partition chunks across machines in a shared-nothing cluster to support parallel

processing, and (3) how to efficiently support array operations that need to access data in adjacent

chunks possibly located on other machines during parallel processing? Prior work examined some

of these questions but only in the context of array scans and range-selection, nearest-neighbors,
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Figure 2.1 (1) The 4x4x4 array A1 is divided into eight 2x2x2 chunks. Each chunk is a unit of I/O (a
disk block or larger). Each X-Y, X-Z, or Y-Z slice needs to load 4 I/O units. (2) Array A2 is laid out
linearly through nested traversal of its axes without chunking. X-Y needs to load only one I/O unit,
while X-Z and Y-Z need to load the entire array.

Z 
X 

 Y 

      A1: (4 X 4 x 4) 

   X-Z: (4 X 4) 

    
Y-Z:(4

 X 4)
 

    X-Y: (4 X 4) 

       A2: (4 X 4 x 4) 

and other “lookup-style” operations [8, 14, 32, 55, 61, 73, 74, 86, 88, 94]. In contrast, our goal is

to support a more varied workload as required by the science community [102]. In particular, we

aim at supporting a workload comprising the following types of operations: (1) array slicing and

dicing (i.e., operations that extract a subset of an array [14, 15, 87]), (2) array scans (e.g., filters,

regrids [102], and other operations that process an entire array), (3) binary array operations (e.g.,

joins, cross-match [66]), and (4) operations that need to access data from adjacent partitions during

parallel processing (e.g., canopy clustering [56]). We want to support both single-site and parallel

versions of these operations.

Challenges The above types of operations impose very different, even contradictory, requirements

on the storage manager. Indeed, array dicing can benefit from small, finely tuned chunks [32]. In

contrast, user-defined functions may incur overhead when chunks are too small and processed in

parallel [49] and they may need to efficiently access data in adjacent chunks. Different yet, joins

need to simultaneously access corresponding pieces of two arrays, and they need a chunking method

that facilitates this task. When processed in parallel, all these operations may also suffer from skew,

where some groups of chunks take much longer to process than others [24, 48, 49], slowing down

the entire operation. Binary operations also require that matching chunks from different arrays be

co-located possibly causing data shuffling and thus imposing I/O overhead.

These requirements are especially hard to satisfy for sparse arrays (i.e., an array is said to be
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Figure 2.2 Four different chunking strategies applied to the same rectangular array. Solid lines show
chunk boundaries of the logical array (sample chunks shaded). Inner-level tiles are represented by
dashed lines (one tile is textured).

       Regular Chunks (REG)       Irregular Chunks (IREG) 

 Two‐Level Chunks (REG,REG)  Two‐Level Chunks (IREG,REG) 

TILE 

sparse when most of its cells do not contain any data) because data in a sparse array is unevenly

distributed, which can worsen skew (e.g., in one of our datasets, when splitting an array into 2048

chunks, we found a 25X difference between the chunk with the most and least amount of data).

Common representations of sparse arrays in the form of an unordered list of coordinates and values

also slow down access to subsets of an array chunk, because all data points must be scanned. We

consider the problem of array storage in the context of SciDB whose goal is to provide a single

storage engine with support for both dense and sparse arrays. The chunking problem is relatively

simpler for dense arrays but is much harder for sparse arrays. In this chapter, we thus focus on sparse

arrays. We assume there are no value indexes on these arrays.

Contributions We present the design, implementation, and evaluation of ArrayStore, a storage

manager for parallel array processing. ArrayStore is designed to support complex and varied opera-

tions on arrays and parallel processing of these operations in a shared-nothing cluster. ArrayStore

builds on techniques from the literature and introduces new techniques. The key contribution of the

ArrayStore work is to answer the following two questions:

(1) What combination of chunking and array partitioning strategies lead to highest performance

under a varied parallel array processing workload? (Sections 2.3.1 through 2.3.3). As in prior work,

ArrayStore breaks arrays into multidimensional chunks, although we consider much larger chunks
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Figure 2.3 Cumulative distribution function of number of points (i.e., non-null cells) per chunk for
regular (REG) and irregular (IREG) chunking in astronomy simulation snapshot S92 (Chapter 7).
Both strategies use 2048 chunks. Large circles for IREG and large triangles for REG mark the 0%
and 100% points in each distribution.
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than prior work (hundreds of KBs to hundreds of MBs rather than a single disk block). We study four

different array chunking techniques as summarized in Figure 2.2: regular chunks (REG), irregular

chunks (IREG), and two-level chunks (IREG-REG and REG-REG).1 In the case of regular chunks,

the domain of each array index is divided into uniform partitions. For irregular chunks, we create

chunk boundaries such that each chunk contains the same amount of data (in bytes), thus reducing

possible skew when processing data chunks in parallel. Figure 2.3 illustrates the per-chunk data

distribution differences when applying either the REG or IREG strategies. Finally, the basic idea

behind the two-level approaches is to split an array into regular or irregular chunks, and then further

divide each chunk into smaller regular fragments that we call tiles.

(2) How to enable an operator to efficiently access data in neighboring array chunks during

parallel processing? (Section 2.3.4) We develop two new techniques to enable an operator to

efficiently access a variable-amount of data in neighboring chunks during parallel processing. The

1In the ArrayStore work, we do not study indexing data within chunks, which is a complementary technique and could
further speed-up some operations, nor data compression on disk.
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first technique leverages directly our two-level REG-REG storage layout to enable an operator to

efficiently read and process as much overlap data as needed. The second technique stores separate

materialized views of increasingly distant overlapping data for each chunk.

We wrap the above techniques with a simple, yet flexible access method that we present in

Section 2.4.

We implement ArrayStore and a set of representative operators in a standalone C++ system and

evaluate the system on two real datasets from the science domain. The first one is a 74 GB dataset

comprising two snapshots from an astronomy simulation [51] (3D data). The second dataset is the

output of a flow cytometer from the oceanography domain [2] (6D data).

For the first question, What combination of chunking and array partitioning strategies leads

to the best overall performance under a varied workload?, we show that a two-level REG-REG

strategy leads to the best overall performance under a varied workload and requires the least tuning.

Indeed, it provides high-performance for single-site processing of all operations in our workload

and can be organized to avoid both skew and data shuffling during parallel processing. None of the

other techniques simultaneously achieves all these goals. For the second question, How to enable

an operator to efficiently access data in neighboring array chunks during parallel processing?, we

show that ArrayStore’s techniques outperform by a factor of 2X more naı̈ve techniques where either

overlap data is not explicitly supported or a pre-defined amount of overlap data is stored within or

even separately from each chunk.

2.2 Problem Statement

We start with a more precise problem statement. We define an array similarly to Furtado and

Baumann [32]: Given a discrete coordinate set S = S1 × . . . × Sd, where each Si, i ∈ [1, d] is a

finite totally ordered discrete set, an array is defined by a d-dimensional domain D = [I1, . . . , Id],

where each Ii is a subinterval of the corresponding Si. Each combination of dimension values in

D defines a cell. All cells in a given array have the same type T , which is a tuple as in a relational

DBMS.

ArrayStore must efficiently support the types of array operations outlined in Section 2.1, which

we formalize by presenting one or more representative operators for each type of operation.
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Array Scan (e.g., filter) Many operators process all chunks of an array such that each chunk can

be processed independently of other chunks. Filter, A′ = FILTER(A,P ), is representative of this type

of operators (assuming no value-based indexes). Here, A is an input array and P is a predicate over

cell values. The output array A′ has the same dimensions as A such that if v is a vector of dimension

values, A′ contains A(v) if P (A(v)) returns true, otherwise it contains null. A parallel filter, A′ =

P FILTER(A,P ), can be computed by partitioning A into N sets of non-overlapping chunks, with a

partitioning strategy R. Second, FILTER(ni,P ) is applied independently to each partition ni ∈ N .

A′ is the union of the results.

Array Dicing (e.g., subsample) We also want to support unary range-selection (or dicing) opera-

tors. Subsample [102], A′ = SUBSAMPLE(A,P ), is representative of this type of operators. Here

A is an array and P is a predicate over A’s dimensions. SUBSAMPLE returns an array A′ that

has the same number of dimensions as A, but a smaller number of dimension values. In the Array-

Store work, we study subsample operators, where P takes the form of a d-dimensional subinterval

d = [i1, . . . , id], and selects all cells that fall within this subinterval. Similar to filter, subsample can

process an array’s chunks independently of one another and is thus trivial to parallelize.

Binary Array Operation (e.g., join) In addition to unary operators, we need to support binary

operators such as JOIN. As representative operator, we consider a simple version of a structural

join [87], B = JOIN(A,A′), where A, A′, and B are defined over the same d-dimensional domain

D and each cell in B is the concatenation of cells in A and A′. As a concrete example, such a join

operator can correlate an array of temperature values with an array of pressure values, outputting

tuples that comprise both values for each combination of dimension values. In practice, joins can get

more complex. For example, a cross-match [66] compares cell values that are near each other in two

input arrays rather than being at the exact same location. However, the key requirement of bringing

together and processing corresponding array chunks remains. It is the key type of operation that we

want to support. To execute a join in parallel, the strategy that we adopt is to re-partition array A′

such that all cells corresponding to cells in A get physically co-located. Each pair of array partitions

can then be processed independently and the results can be unioned.
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Overlap Operations (e.g., clustering and volume-density) Many array operations cannot be

computed by simply partitioning an array, processing its partitions independently, and unioning the

result. Instead, processing each array fragment requires access to data in adjacent fragments. We

consider two types of such overlap-based operators: (1) operators that need to see a fixed amount of

adjacent data and (2) operators that need to see a bounded, though not fixed, amount of adjacent data.

We use canopy clustering as representative of the former type of operators and a volume-density

application as representative of the latter. We describe them further in Sections 2.3.4 and 2.4.

Non-requirements in ArrayStore, we do not include in our workload iterative operations nor

operations that examine a large number of input cells stretching across the array to compute the value

of an output cell: e.g., data clustering operations where a cluster can span a large fraction of the array.

We discuss the former in Chapter 4 and the latter in [97].

2.3 ArrayStore Storage Manager

In this section, we present the design of ArrayStore.

2.3.1 Basic Array Chunking

As in prior work on storage management for multidimensional data (see Section 6.2), ArrayStore

takes the approach of breaking an array into fragments called chunks and storing these chunks on

disk. We now present two types of chunking schemes studied in the literature and the two-level

strategy that we develop in ArrayStore.

Regular Chunks (REG) The first approach of breaking an array into chunks is to use what are

called regular chunks [25, 32], where all chunks have the same size in terms of the coordinate space.

For example, consider a 3D astronomy simulation snapshot with dimensions (X,Y, Z) such that

X=[−0.5:0.5],Y=[−0.5:0.5], and Z=[−0.5:0.5]. We can break the array into 256 regular chunks,

by splitting each X , Y , and Z dimension into 8, 8, and 4 respectively. Each chunk in the array

will then have size 0.125 ∗ 0.125 ∗ 0.25. Regular chunks are commonly used for storing arrays on

disk [14, 29, 74, 88]. Figure 2.2 illustrates this approach.
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Irregular Chunks (IREG) Several schemes have also been proposed where an array is fragmented

in a less regular fashion [15, 32]. In this chapter, we call all such strategies irregular chunking

schemes and illustrate them in Figure 2.2. Irregular chunking can speed-up range-selection queries

when the chunk size and shape is tuned to the workload [32]. While our goal is not to tune storage

for such specific queries, we consider irregular chunking, because it may help reduce skew in parallel

array processing. The key idea is to chunk the array such that each chunk covers a different volume

of the logical coordinate space but holds the same amount of data [48] as shown in Figure 2.3.2

One approach that has been proposed for creating such chunks [48] is to use a kd-tree [7], which

splits a multidimensional space into increasingly small partitions considering the data distribution

to ensure load balance between partitions. If chunks are irregular, they must be indexed to support

efficient access to subsets of an array. In our ArrayStore implementation, we index chunks using an

R-tree. Other indexes are possible, but we do not find that the index lookup time is a bottleneck in

our experiments.

Two-level Chunks (REG-REG or IREG-REG) For either of the above strategies a question that

arises is that of appropriate chunk size. Large chunks help amortize seek times when reading data

from disk. They also help amortize any potential fixed-costs associated with processing a data chunk

by an operator. However, for arrays containing sparse data, large chunks increase the amount of

processing required if an operator only needs a subset of a chunk (e.g., subsample or an operator

accessing data from adjacent chunks) because the lack of internal chunk structure forces the operator

to examine all data points within the chunk.

To address these contradictory requirements, an alternate approach is to create two-level chunks.

The basic idea is to split an array into small, regular chunks but then combine them together to form

larger chunks that are either regular (REG-REG) or irregular (IREG-REG) as illustrated in Figure 2.2.

With this approach, the larger chunks are the unit of disk I/O, while the smaller tiles can be the unit

of array processing. Regular chunks and tiles efficiently support binary operators on a single-node

and across nodes because they facilitates the co-location and co-processing of matching cells across

two arrays. In contrast, irregular chunks can help smooth-out data skew during parallel processing.

2For dense arrays, this approach is identical to regular chunks.
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Two-level chunking has been studied before [82, 94], but only as a container to place multiple

chunks on a single disk block. This approach is a form of IREG-REG, since regular tiles are grouped

into irregular chunks. We push the idea further by not only using bigger chunks to amortize seek

time overhead (unit of I/O) and operator overhead, but also by enabling operators to process different

granularity of chunks as needed (see Section 2.4), by leveraging the two-level structure to efficiently

support overlap processing (see Section 2.3.4), and by exploring the regular-regular (REG-REG)

approach as an alternative to IREG-REG. Through experiments (see Section 2.5), we show that

REG-REG is not only the simpler of the two strategies but also leads to highest performance under a

varied workload.

2.3.2 Organizing Chunks on Disk

Each array in ArrayStore is represented with one data file and one metadata file. The data file

contains the actual array values. The metadata file contains array meta information such as number

of dimensions, total number of chunks, and in the case of regular chunking the number of chunks

along each dimension. The metadata file also contains overlap information (see Section 2.3.4). For

irregular chunking, a chunk index is stored in a separate file. In the ArrayStore work, we do not

study how chunk layout on disk affects performance as it mostly matters for dicing queries [94]. For

sparse arrays, only non-null cells are stored inside chunks and their order is arbitrary. The only way

to access a particular cell in a chunk is thus to sequentially scan the cells inside the chunk. This

approach avoids the overhead of creating an index within each chunk and we show that the two-level

REG-REG storage management enables high performance even without such index.

2.3.3 Organizing Chunks across Disks

To support parallel array processing, ArrayStore can spread array chunks across multiple inde-

pendent processing units or nodes (i.e., physical machines, processes on the same machine, or other).

For this, ArrayStore partitions an array into N segments, each holding a subset of the array chunks,

not necessarily contiguous, and distributes each segment to a node.

We study the performance of several array partitioning strategies including (1) random (assign

each chunk to a randomly selected segment), (2) round-robin (iterate over chunks in some order and
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assign them to each segment in turn), (3) range (split the array into N disjoint ranges of chunks and

assign all chunks within a range to a segment), or (5) block-cyclic (split the array into M regular

blocks of N chunks each. Iterate over the chunks of a block in some pre-defined order and assign

them to each of the N segments in turn). Block-cyclic is thus similar to round-robin but it helps

spread dense array regions across more nodes (along all dimensions). For example, consider a 2D

array A4×4 which consists of 16 chunks labeled 1 to 16 in row-major order (first row holds chunks

{1, 2, 3, 4}, second row holds {5, 6, 7, 8}, etc). Block-cyclic partitions chunks in array A4×4 on 4

nodes such that chunks labeled {1,3,9,11} are assigned to the first node, while in round-robin, that

node contains {1,5,9,13}, all the chunks in the first array column. We do not study hash-partitioning,

because it is equivalent to either random or a form of block-cyclic partitioning.

2.3.4 Overlap Data Support

When processing an array in parallel, ideally, one would like to process each array segment

(or even chunk or tile) independently of the others and simply union the results. Many scientific

array operations, however, cannot be parallelized using this simple strategy. Indeed, operations

such as regression or clustering require that an operator considers data from a range of neighboring

cells in order to produce each output cell. To illustrate the problem and our approach to addressing

it, we use canopy clustering [56] as running example. In this section, we assume that the unit of

parallel processing is an array chunk. We come back to tile-based and segment-based processing in

Section 2.4

Canopy clustering is a fast clustering method typically used to create preliminary clusters that are

then further processed by more sophisticated algorithms [56]. Canopy clustering can serve to cluster

data points in a sparse array, such as the 3D astronomy or 6D flow-cytometer datasets. In fact, data

clustering is commonly used in both domains [49].

The canopy clustering algorithm takes as input a distance metric and two distance thresholds

T1 > T2. To cluster data points stored in a sparse array, the algorithm proceeds iteratively: it first

removes a point at random from the array and uses it to form a new cluster. The algorithm then

iterates over the remaining points. If the distance between a remaining point and the original point

is less than T1, the algorithm adds the point to the new cluster. If the distance is also less than T2,
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the algorithm eliminates the point from the set. Once the iteration completes, the algorithm selects

one of the remaining points (i.e., those not eliminated by the T2 threshold rule) as a new cluster and

repeats the above procedure. The algorithm continues until the original set of points is empty. The

algorithm outputs a set of canopies each of them with one or more data points.

Problems with Ignoring Overlap Needs To run canopy clustering in parallel, one approach is to

partition the array into chunks and process chunks independently of one another. The problem is

that points at chunk boundary may need to be added to clusters in adjacent chunks and two points

(even from different chunks) within T2 of each other should not both yield a new canopy. A common

approach to these problems is to perform a post-processing step [48, 49, 56]. For canopy clustering,

this second step clusters canopy centers found in individual partitions and assigns points to these

final canopies [56]. Such a post-processing phase, however, can add significant overhead as we show

in Section 2.5.

Single-Layer Overlap To avoid a post-processing phase, some have suggested to extract, for each

array chunk, an overlap area ε from neighboring chunks, store the overlap together with the original

chunk [87, 91], and provide both to the operator during processing. In the case of canopy clustering,

an overlap of size T1 can help reconcile canopies at partition boundary. The key insight is that

the overlap area needed for many algorithms is typically small compared to the chunk size. A key

challenge with this approach, however, is that even small overlap can impose significant overhead for

multidimensional arrays. For example, if chunks become 10% larger along each dimension (only 5%

on each side) to cover the overlapping area, the total I/O and CPU overhead is 33% for a 3D chunk

and over 75% for a 6D one!

A simple optimization is to store overlap data separately from the core array and provide it to

operators on demand. This optimization helps operators that do not use overlap data. However,

operators that need the overlap still face the problem of having access to a single overlap region,

which must be large-enough to satisfy all queries.

Multi-Layer Overlap Leveraging Two-level Storage In ArrayStore, we propose a more efficient

approach to supporting overlap data processing. We present our core approach here and an important
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Algorithm 1 Multi-Layer Overlap over Two-level Storage
1: Multi-Layer Overlap over Two-level Storage
2: Input: chunk core chunk and predicate overlap region.
3: Output: chunk result chunk containing all overlap tiles.
4: ochunkSet← all chunks overlapping overlap region.
5: tileSet← ∅
6: for all Chunk ochunki in ochunkSet− core chunk do
7: Load ochunki into memory.
8: tis← all tiles in ochunki overlapping overlap region.
9: tileSet← tileset ∪ tis

10: end for
11: Combine tilesSet into one chunk result chunk. return result chunk.

optimization below.

ArrayStore enables an operator to request an arbitrary amount of overlap data for a chunk. No

maximum overlap area needs to be configured ahead of time. Each operator can use a different

amount of overlap data. In fact, an operator can use a different amount of overlap data for each chunk.

We show in Section 2.5, that this approach yields significant performance gains over all strategies

described above.

To support this strategy, ArrayStore leverages its two-level array layout. When an operator

requests overlap data, it specifies a desired range around its current chunk. In the case of canopy

clustering, given a chunk that covers the interval [ai, bi] along each dimension i, the operator can

ask for overlap in the region [ai − T1, bi + T1]. To serve the request, ArrayStore looks-up all chunks

overlapping the desired area (omitting the chunk that the operator already has). It loads them into

memory, but cuts out only those tiles that fall within the desired range. It combines all tiles into one

chunk and passes it to the operator. Algorithm 1 shows the corresponding pseudo-code.

As an optimization, an operator can specify the desired overlap as a a hypercube with a hole in

the middle. For example, in Figure 2.4, canopy clustering first requests all data that falls within range

L1 and later requests L2. For other chunks, it may also need L3.

When partitioning array data into segments (for parallel processing across different nodes),

ArrayStore replicates chunks necessary to provide a pre-defined amount of overlap data. Requests

for additional overlap data can be accommodated but require data transfers between nodes.
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Algorithm 2 Multi-Layer Overlap using Overlap Views
1: Multi-Layer Overlap using Overlap Views
2: Input: chunk core chunk and predicate overlap region.
3: Output: chunk result chunk containing requested overlap data.
4: Identify materialized view M to use.
5: L← layers li ∈M that overlap overlap region.
6: Initialize an empty result chunk
7: for all Layer li ∈ L do
8: Load layer li into memory.
9: Add li to result chunk.

10: end forreturn result chunk.

Multi-Layer Overlap through Materialized Overlap Views While superior to single-layer over-

lap, the above approach suffers from two inefficiencies: First, when an operator requests overlap data

within a neighboring chunk, the entire chunk must be read from disk. Second, overlap layers are

defined at the granularity of tiles.

To address both inefficiencies, ArrayStore also supports materialized overlap views. A material-

ized overlap view is defined like a set of onion-skin layers around chunks: e.g., layers L1 through

L3 in Figure 2.4. A view definition takes the form (n,w1, . . . , wd), where n is the number of layers

requested and each wi is the thickness of a layer along dimension i. Multiple views can exist for a

single array.

To serve a request for overlap data, ArrayStore first chooses the materialized view that covers the

entire range of requested data and will result in the least amount of extra data read and processed.

From that view, ArrayStore loads only those layers that cover the requested region, combines them

into a chunk and passes the chunk to the operator. Algorithm 2 shows the pseudo-code.

Materialized overlap views impose storage overhead. As above, a 10% overlap along each

dimension adds 33% total storage for a 3D array. With 20% overlap, the overhead grows to 75%. In

a 6D array, the same overlaps add 75% and 3X, respectively. Because storage is cheap, however, we

argue that such overheads are reasonable. We further discuss materialized overlap views selection in

Section 2.5.3.
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Figure 2.4 Example of multi-layer overlap used during canopy clustering. C2 necessitates that the
operator loads a small amount of overlap data denoted with L1. C3, however, requires an additional
overlap layer. So L2 is also loaded.
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Array Iterator Methods
open(Range r, PackRatio p)
boolean hasNext()
Chunk getNext() throws NoSuchElementException
Chunk getOverlap(Range r) throws NoSuchElementException
close()

Table 2.1: Access Method API

2.4 ArrayStore Access Method

ArrayStore provides a single access method that supports the various operator types presented in

Section 2.2, including overlap data access. The basic access method enables an operator to iterate

over array chunks, but how that iteration is performed is highly configurable.

Array Iterator API The array iterator provides the five methods shown in Table 2.4. This API is ex-

posed to operator developers not end-users. Our API assumes a chunk-based model for programming

operators, which helps the system deliver high-performance.

Method open opens an iterator over an array (or array segment). This method takes two

optional parameters as input: a range predicate (Range r) over array dimensions, which limits the
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iteration to those array chunks that overlap with r; the second parameter is, what we call the packing

ratio (PackRatio p). It enables an operator to set the granularity of the iteration to either “tiles”

(default), “chunks”, or “combined”. Tiles are perfect for operators that benefit from finely-structured

data such as subsample. For this packing ratio, the iterator returns individual tiles as chunks on each

call to getNext(). In contrast, the “chunks” packing ratio works best for operators that incur

overhead with each unit of processing, such as operators that work with overlap data. Finally, the

“combined” packing ratio combines into a single chunk all tiles that overlap with r. If r is “null”,

“combined” returns all chunks of the underlying array (or array segment) as one chunk. If an array

segment comprises chunks that are not connected or will not all fit in memory, “combined” iterates

over chunks without combining them. In the next section, we show how a binary operator such as

join greatly benefits from the option to “combine” chunks.

Methods hasNext(), getNext(), and close() have the standard semantics.

Method getOverlap(Range r) returns as a single chunk all cells that overlap with the

given region (defined by predicate r) and surround the current element (tile, chunk, or combined).

Because overlap data is only retrieved at the granularity of tiles or overlap layers specified in the

materialized views, extra cells may be returned. Overlap data can be requested for a tile, a chunk,

or a group of tiles/chunks. However, ArrayStore supports materialized overlap views only at the

granularity of chunks or groups of chunks. The intuition behind this design decision is that, in

most cases, operators that need to process overlap data would incur too much overhead doing so

for individual tiles and ArrayStore thus optimizes for the case where overlap is requested for entire

chunks or larger.

Example Operator Algorithms in ArrayStore We illustrate ArrayStore’s access method by

showing how several representative operators (from Section 2.2) can be implemented.

Filter processes array cells independently of one another. Given an array segment, a filter

operator can thus call open() without any arguments followed by getNext() until all tiles have

been processed. Each input tile serves to produce one output tile.

Subsample. Given an array segment, a subsample operator can call open(r), where r is the

requested range over the array, followed by a series of getNext() calls. Each call to getNext()
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Algorithm 3 Join algorithm.
1: JoinArray
2: input: array1 and array2, iterators over arrays to join
3: output: result array, set of result array chunks
4: array1.open(null, “chunk”)
5: while array1.hasNext() do
6: Chunk chunk1 = array1.getNext()
7: Range r = rectangular boundary of chunk1
8: array2.open(r,“combined”)
9: if array2.hasNext() then

10: Chunk chunk2 = array2.getNext()
11: result chunk = JOIN(chunk1, chunk2)
12: result array = result array ∪ result chunk
13: end if
14: end whilereturn result array

will return a tile. If the tile is completely inside r, it can be copied to the output unchanged, which is

very efficient. If the tile partially overlaps the range, it must be processed to remove all cells outside

r.

Join. As described in Section 2.2, we consider a structural join [87] that works as follows: For

each pair of cells at matching positions in the input arrays, compute the output cell tuple based on the

two input cell tuples. This join can be implemented as a type of nested-loop join (Algorithm 3). The

join iterates over chunks of the outer array, array1 (it could also process an entire outer array segment

at once), preferably the one with the larger chunks. For each chunk, it looks-up the corresponding

tiles in the inner array, array2, retrieves them all as a single chunk (i.e., option “combined”), and

joins the two chunks. In our experiments, we found that combining inner tiles could reduce cache

misses by half, leading to a similar decrease in runtime.

All three operators above can directly execute in parallel using the same algorithms. The only

requirement is that chunks of two arrays that need to be joined be physically co-located. As a result

different array partitioning strategies yield different performance results for join (see Section 2.5).

Canopy Clustering. We described the canopy clustering algorithm in Section 2.3.4. Here we

present its implementation on top of ArrayStore. The pseudo-code of the algorithm is omitted

due to the space constraints. The algorithm iterates over array chunks. Each chunk is processed

independently of the others and the results are unioned. For each chunk, when needed, the algorithm

incrementally grows the region under consideration (through successive calls to getOverlap())
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to ensure that, every time a point xi starts a new cluster, all points within T1 of xi are added to the

cluster just as in the centralized version of the algorithm. The maximum overlap area used for any

chunk is thus T1. Points within T2 < T1 of each other should not both yield new canopies. In our

implementation, to avoid double-reporting canopies that cross partition boundaries, only canopies

whose centroids are inside the original chunk are returned.

Volume-Density algorithm. The Volume-Density algorithm is most commonly used to find

what is called a virial radius in astronomy [50]. It further demonstrates the benefit of multi-layer

overlap. Given a set of points in a multidimensional space (i.e., a sparse array) and a set of cluster

centroids, the volume-density algorithm finds the size of the sphere around each centroid such that

the density of the sphere is just below some threshold T . In the astronomy simulation domain, data

points are particles and the sphere density is given by: d = Σmass(pi)
volume(r) , where each pi is a point inside

the sphere of radius r. This algorithm can benefit from overlap: Given a centroid c inside a chunk,

the algorithm can grow the sphere around c incrementally, requesting increasingly further overlap

data if the sphere exceeds chunk boundary.

2.5 Evaluation

In this section, we evaluate ArrayStore’s performance on two real datasets and on eight dual

quad-core 2.66GHz Intel/AMD OpteronPentium-based machines with 16GB of RAM running

RHEL5.

The first dataset is Astro dataset that is described in Chapter 7. The Astro dataset comprises

several snapshots from a large-scale astronomy simulation [51] for a total of 74 GB of data. We

used two snapshots, S43 and S92 from this dataset. Each snapshot represents the universe as a set of

particles in a 3D space. Since the universe is becoming increasingly structured over time, data in

snapshot S92 is more skewed than in S43. In Figure 2.3, the largest regular chunk has 25X more

data points than the smallest one. The ratio is only 7 in S43 for the same number of chunks.

The second dataset is OceanFlow dataset that is described in Chapter 7. In this dataset, the

data takes the form of points in a 6-dimensional space, where each point represents a particle or

organism in the water and the dimensions are the measured properties. Each array in this dataset is

approximately 7 GB in size. Join queries thus run on 14 GB of 6D data.
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Notation Description
(REG,N) One-level, regular chunks. Array split into N chunks total.
(IREG,N) One-level, irregular chunks. Array split into N chunks total.

(REG-REG, N1-N2) Two-level chunks. Array split into N1 regular chunks and N2 regular tiles.
(IREG-REG,N1-N2) Two-level chunks. Array split into N1 irregular chunks and N2 regular tiles.

Table 2.2: Naming convention used in experiments.

Table 2.2 shows the naming convention for the experimental setups. ArrayStore’s best-performing

strategy is highlighted

2.5.1 Basic Performance of Two-Level Storage

First, we demonstrate the benefits of ArrayStore’s two-level REG-REG storage manager compared

with IREG-REG, REG, and IREG when running on a single node (single-threaded processing). We

compare the performance of these different strategies for the subsample and join operators, which

are the only operators in our representative set that are affected by the chunk shape. We show that

REG-REG yields the highest performance and requires the least tuning. Figures 2.5 and 2.6 show the

results. In both figures, the y-axis is the total query processing time.

Array dicing query Figure 2.5(a) shows the results of a range selection query, when the selected

region is a 3D rectangular slice of S92 (we observe the same trend in S43). Each bar shows the

average of 10 runs. The error bars show the minimum and maximum runtimes. In each run, we

randomly select the region of interest. All the randomly selected, rectangular regions are 1% of the

array volume. Selecting 0.1% and 10% region sizes yielded the same trends. We compare the results

for REG, IREG, REG-REG, and IREG-REG.

For both single-level techniques (REG and IREG), larger chunks yield worse performance than

smaller ones because more unnecessary data must be processed (chunks are misaligned compared

with the selected region). When chunk sizes become too small (at 262144 chunks in this experiment),

however, disk seek times start to visibly hurt performance. In this experiment, the best performance

is achieved for 65536 chunks (approximately 0.56 MB per chunk).

The disk seek time effect is more pronounced for REG than IREG simply because we used a

different chunk layout for REG than IREG (row-major order v.s. z-order [94]) and our range-selection
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queries were worst-case for the REG layout. Otherwise, the two techniques perform similarly. Indeed,

the key performance trade-off is disk I/O overhead for small chunks v.s. CPU overhead for large

chunks. IREG only keeps the variance low between experiments since all chunks contain the same

amount of data.

The overhead of disk seek times rapidly grows with the number of dimensions: for the 6D flow

cytometer dataset (Figure 2.5(b)), disk I/O increases by a factor of 3X as we increase the number of

chunks from 4096 to 2097152 while processing times decreases by a factor of 2X. Processing times

do not improve for the smallest chunk size (2097152) because our range-selection queries pick up

the same amount of data, just spread across a larger number of chunks.

Most importantly, for these types of queries, the two-level storage management strategies are

clear winners: they can achieve the low I/O times of small but not too small chunk sizes and the

processing times of the smallest chunk sizes. The effect can be seen for both the 3D and 6D datasets.

Additionally, the two-level storage strategies are significantly more resilient to suboptimal parameter

choices, leading to consistently good performance. The two-level storage thus requires much less

tuning to achieve high performance compared with a single-level storage strategy.

Join query Figure 2.6(a) shows the total query runtime results when joining two 3D arrays (two

different snapshots or same snapshot as indicated). Figure 2.6(c) shows the results for a self-join on

the 6D array.

We first consider the first three bars in Figure 2.6(a). The first bar shows the performance of

joining two arrays, each using the IREG storage strategy. The second bar shows what happens when

REG is used but the array chunks are misaligned: That is, each chunk in the finer-chunked array

overlaps with multiple chunks in the coarser-chunked array. In both cases, the total time to complete

the join is high such that it becomes worth to re-chunk one of the arrays to match the layout of

the other as shown in the third bar. For each chunk in the outer array, the overhead of the chunk

misalignment comes from scanning points in partly overlapping tiles in the inner array before doing

the join only on subsets of these points.

The following two bars (A4 and A5) show the results of joining two arrays with different chunk

sizes but with aligned regular chunks. That is, each chunk in the finer-chunked array overlaps with
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Figure 2.5 Array dicing query on 3D and 6D datasets.
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(a) Performance of array dicing query on 3D slices that are 1% of the array volume on
S92. Two-level storage strategy yields the best overall performance and also the most
consistent performance for different parameter choices.

Type I/O time (Sec) Proc. time (Sec) Total
(REG,4096) 28 115 143

(REG,262144) 46 51 97
(REG,2097152) 90 66 156

(REG-REG,4096-2097152) 28 64 92

(b) Same experiment as above but on 6D dataset. The two-level strategy
dominates the one-level approach again.

exactly one chunk in the coarser-chunked array. In that case, independent of how the arrays are

chunked, performance is high and consistent. We tried other configurations, which all yielded similar

results.

Interestingly, the overhead of chunk misalignment (always occurring with IREG and occurring

in some REG configurations as discussed above) can rapidly grow with array dimensionality. The

processing time of non-aligned 3D arrays is 3.5X that of aligned ones, while the factor is 6X for 6D

arrays (Figure 2.6(c)).

Finally, the last three bars in Figure 2.6(a) show the results of joining two arrays with either one-

level REG or two-level IREG-REG or REG-REG strategies. In all cases, we selected configurations

where tiles were aligned. The alignment of inner tiles is the key factor to achieving high performance

and thus all configurations result in similar runtimes.
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Figure 2.6 Join query on 3D and 6D arrays.

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

A1  A2  A3  A4  A5  A6  A7  A8 

to
ta
l r
un

3
m
e(
se
co
nd

s)
 

(type1)_(type2)_(snaphot1,snapshot2) 

JOIN REG and IREG chunks  

RECHUNK  I/O  CPU 

(a) Join query performance on 3D array. Tile alignment is the
key factor for the performance gain.

A1 (IREG,512) (IREG,2048) (92,43)
A2 (REG,512) (REG,400) (92,92)
A3 Rechunk(A2) + (REG,512) (REG,2048) (92,92)
A4 (REG,512) (REG,2048) (92,92)
A5 (REG,65536) (REG,262144) (92,92)
A6 (IREG-REG,256-262144) (REG,2048) (92,43)
A7 (REG-REG,256-262144) (REG-REG,2048-262144) (92,43)
A8 (REG,256) (REG,2048) (92,43)

(b) Notation.

Type I/O time Proc. time
(REG,REG) NONALIGNED 6D 205 6227

(REG,REG) ALIGNED 6D 221 988
(REG-REG,REG-REG) ALIGNED 6D 222 993

(c) Join query performance on 6D array. Processing time of
non-aligned configuration is 6X that of the aligned one.

Summary. The above experiments show that IREG array chunking does not outperform REG

on array dicing queries and can significantly worsen performance in the case of joins. In contrast, a

two-level chunking strategy, even with regular chunks at both levels can improve performance for

some operators (dicing queries) without hurting others (selection queries and joins). The latter thus

appears as the winning strategy for single-node array processing.

2.5.2 Skew-Tolerance of Regular Chunks

While regular chunking yields high performance for single-threaded array processing, an impor-

tant reason for considering irregular chunks is skew. Indeed, in the latter case, all chunks contain

the same amount of information and thus have a better chance of taking the same amount of time
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to process. In this section, we study skew during parallel query processing for different types of

queries and different storage management strategies. We use a real distributed setup with 8 physical

machines (1 node = 1 machine). To run parallel experiments, we first run the data shuffling phase and

then run ArrayStore locally at each node. During shuffling, all nodes exchange data simultaneously

using TCP. Note that in the study of data skew over multiple nodes, REG-REG and IREG-REG

converge to REG and IREG storage strategies, respectively because we always partition data based

on chunks rather than tiles.

Parallel Selection Figure 2.7 shows the total runtime of a parallel selection query on 8 nodes with

random, range, block-cyclic, and round-robin partitioning strategies. All these scenarios use regular

chunks. The experiment shows results for the S92 dataset (our most highly skewed dataset). The

figure also shows results for IREG and random partitioning, one of the ideal configurations to avoid

data skew. On the y-axis, each bar shows the ratio between the maximum and minimum runtime

across all eight nodes in the cluster (i.e., MAX/MIN = max(ri)
min(rj)

where i, j ∈ [1, N ] and ri is equal

to the total runtime of the selection query on node i). Error bars show results for different chunk

sizes from 140 MB to 140 KB.

For REG, block-cyclic data partitioning exhibits almost no skew with results similar to those of

IREG and random partitioning. Runtimes stay within 9% of each other for all chunk sizes. Runtimes

in round-robin also stays within 14% for all chunk sizes. Performance is a bit worse than block-cyclic

as the latter better spreads dense regions along all dimensions. For random data partitioning, skew

can be eliminated with sufficiently small chunk sizes. The only strategy that heavily suffers from

skew is range partitioning.

Parallel Dicing Similarly to selection queries in parallel DBMSs, parallel array dicing queries can

incur significant skew when only some nodes hold the desired array fragments as shown in Figure 2.8.

In this case, the problem comes from the way data is partitioned and is not alleviated by using an

IREG chunking strategy. Instead, distributing chunks using the block-cyclic data partitioning strategy

with small chunks can spread the load much more evenly across nodes. We measure a MAX/MIN

ratio of just 1.11 with 4 nodes and 65536 chunks with a std deviation of 0.036.



34

Figure 2.7 Parallel selection on 8 nodes with different partitioning strategies on REG chunks. We
vary chunk sizes from 140 MB to 140 KB. Error bars show the variation of MAX/MIN runtime ratios
in that range of chunk sizes. Round-Robin and Block-Cyclic have the lowest skew and variance.
Results for these strategies are similar to those of IREG.
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Parallel Join Array joins can be performed in parallel using a two-phase strategy. First, data from

one of the arrays is shuffled such that chunks that need to be joined together become co-located.

During shuffling, all nodes exchange data simultaneously using TCP. In our experiments, we shuffle

the array with the smaller chunks. Second, each node can perform a local join operation between

overlapping chunks.

Table 2.3 shows the percent data shuffled in an 8-node configuration. Shuffling can be completely

avoided when arrays follow the same REG chunking scheme and chunks are partitioned determin-

istically. When arrays use different REG chunks, the same number of chunks are shuffled for all

strategies. The shuffling time, however, is lowest for range and block-cyclic thanks to lower network

contention. With range partitioning, each node only sends data to nodes with neighboring chunks.

Block-cyclic spreads dense chunks better across nodes than round-robin and assigns the same number

of chunks to each node unlike random. Range partitioning, however, exhibits skew in the ”local join

phase” (Table 2.4), leaving block-cyclic as the winning approach.

Table 2.3 also shows the shuffling cost with IREG-REG chunks. Irregular chunks always suffer

from at least some shuffling overhead. The best strategy, range partitioning, still shuffles 11% of data

even when both arrays are ranged partition along the same dimension.

Summary. The above experiments show block-cyclic with REG chunks as the winning strategy:
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Figure 2.8 Parallel subsample with REG or IREG chunks distributed using range partitioning across
4 nodes. Subsample runs only on a few nodes causing skew, independent of the chunking scheme
chosen.
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For parallel selection, block-cyclic has less than 9% skew for all regular chunk sizes. For parallel

dicing, it also effectively distributes the workload across nodes. Finally, for parallel join block-cyclic

can avoid data shuffling and offers the best performance for the local join phase. Irregular chunks can

smooth out skew for some operations such as selections, but they hurt join performance both in the

local join and data shuffling phases. We prefer two-level chunking strategy REG-REG to IREG-REG

mainly due to the simplicity and leveraging block-cyclic partitioning strategy. Also IREG-REG

suffers from shuffling phase overhead in parallel join.

2.5.3 Performance of Overlap Storage in ArrayStore

We present the performance of ArrayStore’s overlap processing strategy. We compare four

options: ArrayStore’s multi-layered overlap implemented on top of the two-level storage manager,

ArrayStore’s materialized multi-layer overlap, single-layer overlap, and no-overlap.

In all experiments, we use (REG-REG,2048-262144) for the 3D arrays and (REG-REG,4096-

2097152) for the 6D arrays. In ArrayStore, we assume that the user knows how much overlap his

queries need (e.g., canopy threshold T1) and he creates sufficiently large materialized overlap views

to satisfy most queries within storage space constraints. The width of overlap layers is tunable, but

we find its effect to be less significant. Hence, we expect that a single view with thin layers should

suffice for most arrays. In our experiments, we materialize 20 thin layers of overlap data for each

chunk, which cover a total of 0.5 and 0.2 of each dimension length in 3D and 6D, respectively. The
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Partitioning Strategy Type Shuffling
Same chunking strategy, chunks are co-located, no shuffling.
Block-Cyclic (REG-2048,REG-2048) (00.0%,0)
Round-Robin (REG-2048,REG-2048) (00.0%,0)

Range (same dim) (REG-2048,REG-2048) (00.0%,0)
Different chunking strategies for two arrays, shuffling percentage.

Round-robin (REG-2048,REG-65536) (87.5%,1498)
Random (REG-2048,REG-65536) (87.6%,1416)

Block-Cyclic (REG-2048,REG-65536) (87.5%,1326)
Range (same dim) (REG-2048,REG-65536) (00.0%,0)

Range (different dim) (REG-2048,REG-65536) (87.5%,1313)
IREG-REG chunks, shuffling required.

Random (TYPE1,TYPE2) (62.0%,895)
Round-Robin (TYPE1,TYPE2) (73.0%,836)

Range (same dim) (TYPE1,TYPE2) (11.0%,210)
Block-Cyclic (TYPE1,TYPE2) N/A

Table 2.3: Parallel join (shuffling phase) for different types of chunk partitioning strategies
across 8 nodes. TYPE1=(IREG-REG,2048-262144) in S43 and TYPE2= (IREG-REG,2048-
262144) in S92. Each value in “Shuffling” column is a pair of (Cost,Time(sec.)).

Technique: Random Round-robin Range Block-cyclic
Avg 1.24 1.08 1.18 1.06

Max - Min 1.56-1.16 1.08-1.08 1.18-1.18 1.06-1.06

Table 2.4: “Local join phase” with regular chunks partitioned across 8 nodes. The values in
the table are the ratios of total runtime between the slowest and fastest parallel nodes. The
table shows the Avg, Min, and Max ratios across 10 experiments. Block-cyclic has the least
skew, (6%) compared to other techniques.

choice of 20 layers is arbitrary. The single-layer overlap is the concatenation of these 20 layers.

Experiments are on a single node.

Figure 2.9 presents the performance results for the canopy clustering algorithm. T1 is set to

0.0125 (20% of the dimension length). We set T2 = (0.75)T1. Note that in the no-overlap case, a

post processing phase is required to combine locally found canopies into global ones [56]. As the

figure shows, both multi-layer overlap strategies outperform no-overlap and single-layer overlap by

25% and 35% respectively. The performance of single-layer overlap varies significantly depending

on the overlap size chosen. In this experiment, the single-layer overlap is large to emphasize the

drawback of inaccurate settings for this approach. In contrast, with multi-layered overlap, we

can choose fine grained overlap layers (using views or small-size tiles), and get high-performance

without tuning the total overlap size. Additionally, different applications can use different overlap
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Figure 2.9 Canopy Clustering algorithm with or without overlap on the 3D dataset. Single-layer
overlap does not perform well because of a large maximum overlap-size chosen. Both multi-layer
overlap techniques outperforms no-overlap by 25%.
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sizes without hurting each other’s performance, which is not the case for the single-layer overlap

approach. We ran the canopy application on the 6D dataset with the same T1 and T2 settings

as in the 3D experiment and observed 16% improvement in total runtime for multi-layer overlap

using materialized view compared with no-overlap. When leveraging the two-level storage, the

improvement was 11%, mainly because of I/O overhead due to loading entire chunks.

Figure 2.10 shows the results from the volume-density application described in Section 2.4

on the 3D dataset. As shown in the figure, the multi-layer overlap strategy through materialized

overlap views outperforms no-overlap by a factor of almost two! Indeed, in order to compute the

volume-density of the points close to the boundary, without overlap, we may need to load and process

up to 3N − 1 neighboring chunks, where N is the number of dimensions (e.g., 26 chunks for the 3D

dataset). In contrast, the multi-layer strategy loads and processes only thin layers of overlap data as

needed. We observe the same trend on the 6D dataset

In this experiment, materialized views also outperform multi-layer using the two-level storage

because views can load overlap layers thinner than tiles. Similarly, single-layer overlap loses

because it does not have this flexibility in choosing the overlap granularity to load and process. For

completeness, in this experiment, we also show the performance when overlap data is stored directly

inside chunks as suggested in related work [87, 91]. The performance in this case is even worse than

no-overlap. The reason is that the no-overlap case loads and processes neighboring chunks only when
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Figure 2.10 Volume-density application on 3D dataset with and without overlap. Multi-layer overlap
outperforms no-overlap by almost 2X .
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required, but when overlap data is stored inside the chunk, we are forced to process unnecessary

overlap data.

Multi-layer overlap can outperform single-layer overlap even when overlap size is perfectly tuned.

Indeed, in the volume-density application, we find that 90% of chunks only need 3 out of the 20

layers of overlap, but the maximum number of layers required is 10. This large difference between

the average and maximum amount of overlap required is the key reason why multi-layer overlap

can outperform single-layer overlap even for a single application (even if we ignore varying overlap

needs of different operators).

2.6 Conclusion

We presented the design, implementation, and evaluation of ArrayStore, a storage manager for

complex, parallel array processing. For efficient processing, ArrayStore partitions an array into

chunks and we showed that a two-level chunking strategy with regular chunks and regular tiles
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(REG-REG) leads to the best and most consistent performance for a varied set of operations both on

a single node and in a shared-nothing cluster. ArrayStore also enables operators to access data from

adjacent array fragments during parallel processing. We presented two new techniques to support

this need: one leverages ArrayStore’s two-level storage layout and the other one uses additional

materialized views. Both techniques significantly outperform approaches that do not provide overlap

or provide only a pre-defined single overlap layer. The overall performance gain was up to 2X on

real queries and real data from two science domains.

ArrayStore’s design focuses on the workload from Section 2.2. It does not consider array updates

(Chapter 3) nor iterative operations (Chapter 4). It also does not consider operations that examine

input cells across the array to compute the value of an output cell. Such operations do not benefit

from overlap and some of them may be difficult to code with a chunk-based API. Finally, we did not

study the impact of indexing data inside chunks, which could further accelerate some operations. All

these considerations are interesting future work.
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Chapter 3

TIMEARR: STORAGE MANAGER WITH EFFICIENT SUPPORT FOR
VERSIONING

In many fields of science, researchers often work with multiple versions of the same array data.

For example, LSST images in astronomy are 2D arrays of pixel intensities. LSST will undertake

repeated exposures over time (Example 1.1.1), then the images form a 3D array of pixel intensities

with an additional version dimension. Climate models use arrays to describe 3D regions of the

atmosphere. They also simulate the behavior of these regions over time.

An important requirement that scientists have for parallel array engines such as SciDB is the

ability to create, archive, and explore different versions of their arrays [102]. Hence, a no-overwrite

storage manager with efficient support for querying old versions of an array is a critical component

of an array database management system (DBMS).

A no-overwrite array-based engine must support different types of queries over a versioned array:

It must support standard queries that retrieve specific array versions, queries that retrieve subarrays at

specific versions, and queries that track the history in the form of a series of subarrays across multiple

versions. At the same time, all these operations must be performed as efficiently as possible to enable

fast data exploration and analysis.

In this chapter, we present TimeArr [98], a new storage manager for array DBMSs that provides a

no-overwrite, versioned array storage model together with both precise and approximate time-travel

queries over these versioned arrays.

3.1 Challenges, and Contributions

TimeArr storage manager makes the following contributions:

(1) A backward delta versioning system specialized for arrays. At the heart of the TimeArr

storage manager, is a new storage model for efficiently representing and querying a versioned array.

First, because scientific datasets can grow to be large, the storage model compresses the data using
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Figure 3.1 Illustration of a chain of backward delta versions for a 3x3 array. The most recent version
V3 is materialized. Earlier versions are stored in the form of arrays of cell-value differences.
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a backward delta encoding method: the most recent version of the array is fully materialized and

earlier versions only contain differences in cell values between consecutive versions as illustrated in

Figure 3.1. ∆i,i−1 represents differences in cell values between version Vi and Vi−1 of an array. The

backward delta technique is known to be an efficient compression method. To illustrate the efficiency

of this method for scientific arrays, we store 61 versions of the Global Forecast System (GFS)

dataset [67] in TimeArr using four methods. The naı̈ve materialization of all versions takes 65.6MB

of space on disk. Storing only the values of cells that change between consecutive versions reduces

disk-space utilization to 14MB. Storing differences in cell values between each version Vi and the

original version Vz achieves almost no compression compared to storing only materialized versions

and takes about 62.7MB. Finally, the backward delta method stores all versions using only 3.5MB,

a 19X improvement over the full materialization. Of course, this compression comes at the cost of

slower version retrieval. Hence, an important question is how to achieve fast array query processing

with this method. Query processing times are also the main reason for always materializing the most

recent version of the array, which should be most frequently accessed by applications.

Unlike most other applications of the backward deltas method (e.g., in backup storage [71] or

temporal databases [52]), our storage layout is specialized for arrays. The specialization enables

TimeArr to achieve both high compression ratios and high query performance. The approach uses

three key ideas. First, it applies the notion of array tiling [14, 25, 29, 87, 99] to efficiently limit

the changes that must be processed when retrieving old versions of a sub-array. This approach
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significantly speeds up query processing. Second, it uses a variety of compressed bitmasks [87]

to encode the regions of an array that change from one version to the next and to identify which

subset of changes need to be processed to satisfy a user query. This approach both enables better data

compression and speeds-up query processing. Third, our storage model uses variable-length delta

encoding across tiles, which helps adapt the compression-level to different magnitudes of changes

in different regions of an array and yields better compression ratios for the array data. In addition

to these three basic methods, to further speed-up query processing over commonly accessed parts

of an array, TimeArr lazily adds connections, called skip links, between certain non-consecutive

versions of an array. TimeArr’s skip links are similar to regular backward delta versions except that

they contain differences in cell values between two non-consecutive versions. TimeArr utilizes skip

links similarly to a skip list data structure [63] with the important difference that TimeArr creates

links based on version content and not version numbers. Additionally, TimeArr creates skip links

lazily during version retrieval to reduce the overhead of maintaining this data structure. Finally, it

maintains skip links at the granularity of tiles to increase their efficiency. As a result, regions of the

array that are fetched more often create more skip links which reduces their version retrieval time.

We present TimeArr’s detailed storage model in Section 3.3.

(2) Approximate and customizable array-exploration queries. It is well-known that, when first

exploring data, users need a quick query turn-around time and are willing to tolerate some inaccuracy

to achieve faster time-to-result [21, 38, 80]. To speed-up the exploration of a versioned array, we

leverage this observation and introduce the idea of querying approximate versions of an array. In our

approach, the user specifies both the degree of approximation tolerable and how that approximation

should be computed. Hence, TimeArr’s approximate exploration is highly customizable and carefully

controlled by the user. The system efficiently answers approximate queries over a versioned array by

aggressively leveraging tiling and skip links and also by maintaining short summary statistics that

capture the overall changes between different subarrays at different versions. We present the details

of approximate version querying and customization in Section 3.4.

(3) Prototype implementation and evaluation with real datasets. We implement the above tech-

niques as a C++ prototype storage manager called TimeArr on a branch of the SciDB array processing

engine [87]. We evaluate TimeArr on a real dense array containing 61 snapshots from the global
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Figure 3.2 The 4x4x4 array A1 is divided into eight 2x2x2 chunks.
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      A1: (4 X 4 x 4) 

forecast system (GFS) model [67] and a real sparse array containing 9 snapshots from an astronomy

universe simulation [51]. For precise queries, without using skip links, TimeArr outperforms the

current SciDB version-storage technique [87, 92] (which is also based on backward deltas) by a

factor of 1.6X to 6.6X in terms of query processing times and up to 40% in terms of version creation

time. Skip links further improve query performance by 75%. Furthermore, when a user retrieves

only a small fraction of an array, our approach based on a combination of bitmasks and virtual tiling

can cut query times by an order of magnitude. For approximate queries, we show that query times

are halved when a user is willing to see data off by at most one array version.

The goal of TimeArr is to efficiently support queries for array regions and versions. We do not

study additional indexing techniques over array contents.

3.2 TimeArr Overview

TimeArr is a new storage manager for array database systems. While TimeArr could be inte-

grated with various array systems [28, 87], our design and implementation are based on the SciDB

engine [87]. In this section, we present an overview of TimeArr’s approach and also TimeArr’s core

API.

In most array database engines including SciDB, each array is partitioned into chunks, which are

small subarrays as illustrated in Figure 3.2. Array chunking is a well-known method for alleviating

dimension dependency [94]. Each chunk maps onto a unit of disk IO (either a disk block or larger).

TimeArr assumes a chunked array layout. Furthermore, we assume that chunks are regular. That

is, each chunk covers the same space in terms of array coordinates. This layout has been shown to
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Array Updates
Create(ArrayType Q, ArrayName A)
Append(ArrayName A, ArrayContent Ci)
Precise Queries
Select(ArrayName A, Predicate p, VersionNb j, VersionNb k)
Approximate Queries
Select(ArrayName A, Predicate p, VersionNb j, VersionNb k, ErrorBound B1, ErrorBound B2, Granularity g, StatisticID s)

Table 3.1: TimeArr Versioned Array API.

deliver high performance across a wide range of array operations for both dense and sparse arrays

(Chapter 2). In SciDB, array chunks are further stored using a column-based representation [87].

TimeArr builds on this column-based, chunked storage layout.

TimeArr supports the operations shown in Table 3.1. The Create operation creates an initial,

empty array of typeQ and namedA. The array type includes the specification of the array dimensions,

the type of each array cell, and how the array should be both chunked and tiled. This operation only

creates array metadata in the SciDB catalog.

The Append operation appends a new version to array A. The payload of the append operation,

Ci, is a new snapshot of the array content at the new version i. Version numbers are incremented

automatically.

When an initial array version is created, its data is broken up into chunks as per the chunking

specification in the ArrayType. Each chunk is stored in a separate file on disk. For example, the

array from Figure 3.2 is stored in eight separate files, one per chunk. Subsequent calls to Append

add new versions to the array. The new version of each chunk is added to the corresponding file

where the earlier version of that chunk is stored. We refer to a file that contains a materialized chunk

together with its series of appended versions as a segment.

To maintain high performance in the face of a growing number of versions, TimeArr is configured

with a maximum segment size F . If a segment grows beyond threshold F for some chunk, a new

segment is created for that chunk. Each segment (or file) contains one materialized version of a

chunk, which is the most recent version stored in that segment. All prior versions in the same segment

are compressed using the backward-delta-based approach described in Section 3.3. Such periodic

materialization is a well-known technique adopted in many systems including BigTable [13]. The
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selection of the threshold value F depends on various parameters such as chunk size and version

content. We do not address the problem of optimizing the value of F in this chapter.

The Select operation returns the content of a subarray of A that satisfies predicate p at versions

v ∈ [Vj , Vk]. We refer to this operation as array history selection. To retrieve data for a single

version, the last argument can be omitted. To retrieve the data for the entire array, the predicate p

can be omitted. p is a predicate over array dimensions. For example, in the array from Figure 3.2,

we could select the first chunk with predicate x ∈ [1, 2] ∧ y ∈ [1, 2] ∧ z ∈ [1, 2]. We further present

TimeArr’s storage model and history selection query implementation in Section 3.3.

TimeArr also supports an approximate variant of array history selection to speed-up early array

exploration. As shown in Table 3.1, this variant takes four extra arguments as input. The first

one, B1, is an error bound: if a user requests a single array version, Vj , B1 serves to specify the

maximum tolerable loss in accuracy. The selection of a specific array version thus returns the

subarray of A at version Vj that satisfies p. The content returned, c′j(p), satisfies the error condition:

Difference(c′j(p), cj(p)) < B1, where cj(p) is the precise version of the corresponding subarray.

The computation of the Difference function is configurable as we show in Section 3.4. In fact, a

user can specify several methods for computing this difference and use different methods in different

queries. The StatisticID argument to the function specifies which of these methods to use. If

not specified, TimeArr uses the default StatisticID. TimeArr computes version differences at two

granularities of tiles or chunks. The user specifies the granularity with the Granularity parameter.

We further discuss the semantics and computation of these differences in Section 3.4.

When multiple versions are requested, an extra parameter B2 must also be specified. The Select

operation then returns the most recent requested version, Vj , within error bound B1 as above. It also

returns a sequence of versions V such that ∀ Vu ∈ V , Vu ∈ (Vj , Vk] ∧ Difference(c′u(p), cu(p)) <

B1. Additionally, for each pair, (Vu, Vw) of consecutive returned versions (i.e., no version in between

Vu and Vw is returned), we have Difference(cu(p), cw(p)) > B2. This operation thus returns the

first selected version using the same method as above. It then returns subsequent versions such

that each new version’s content remains within distance B1 of the corresponding precise version.

Additionally, the query skips over similar versions, returning only the next version that differs by at

least B2. The granularity (tile or chunk) is the same as for B1. We further discuss this approximate
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history extraction in Section 3.4.

3.3 Version Storage and Retrieval

In this section, we present TimeArr’s approach to storing and retrieving array version data.

3.3.1 Version Storage

As indicated earlier, TimeArr stores array versions using a backward delta approach: When a

new version of a given chunk is appended, TimeArr iterates over both the new version, call it Vj , and

the most recent previous version, call it Vj−1, of the chunk. It subtracts the cell values in the new

chunk from the corresponding cell values in the older chunk. These differences in cell values are

called delta values. More formally: dj(j−1)k ← Subtract(c(j−1)k, cjk) where d is the delta value

and cjk is the k’th cell in the array at version j, assuming that cells are traversed in some order such

as the row-major order. The group of delta values for a chunk forms a delta chunk. We call the array

that wraps all delta chunks the delta array. Figure 3.1 illustrates a materialized array version and two

delta arrays.

While the basic idea of storing array versions using backward deltas is not new [92], the details of

the version data structures that TimeArr uses are different from prior work. In particular, TimeArr’s

version storage layout uses four key ideas: (1) it partitions chunks into tiles to limit the amount of

work when rebuilding an old version of a subset of an array or when answering an approximate

query; (2) it uses bitmasks to quickly identify the tiles or cells that changed between two versions;

(3) it uses variable-length delta-encoding to capture changes with as few bytes as possible; it also

uses run-length encoding (RLE) to compress its bitmasks; (4) it lazily creates skip links to boost the

Select query performance over time. We now present these four key techniques.

Figure 3.3 shows the internal representation that TimeArr uses to store one segment on disk.

Each segment contains one materialized version of a chunk and zero or more delta chunks. The

materialized version in the segment could be stored using either a sparse or dense representation,

with or without compression, etc. [14, 15, 25, 29, 87, 92, 99]. In this paper, we treat the most recent

version as a black box.

TimeArr represents each delta chunk with a structure that we call VersionDelta. To speed-up
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range-selection and approximate queries, TimeArr divides a delta chunk into a series of virtual delta

tiles. Each tile is a subarray within the delta chunk. TimeArr represents virtual delta tiles with a

structure that we call TileDelta. In the rest of the paper, ∆i,i−1 represents the delta values between

version Vi and Vi−1 of either an array, a chunk, or a tile depending on context.

A VersionDelta contains a header that summarizes the changes in the version and a payload that

holds the actual changed values. The VersionDelta header contains a bitmask with one bit per tile

(VDBitmask in the figure). VDBitmask identifies the tiles that have been modified in the new version

of the array. Such tiles have their bit set to true in the VDBitmask. This approach has successfully

been applied in the past to compressing array contents [87]. We apply it here for compactly storing

changes between array versions.

Tiles that contain changes are stored in a set of TileDelta data structures. A TileDelta contains

the details of changes in one tile. Because TileDeltas have variable sizes, TimeArr uses a standard

slot-based approach to locate them on disk: for each tile that includes changes, a slot points to

the location of the corresponding TileDelta on disk (TileSlotsMap in the figure). Prior work

studied the tuning of chunk/tile shape, size, and layout on disk for a given workload and for regular

chunking [74, 88]. In TimeArr, the virtual tile size determines the finest granularity with which

the system can do history and approximation queries. Hence, smaller tiles enable finer-grained

operations. On the other hand, larger tiles decrease the metadata overhead and preserve the locality

of the data (logically close delta values in the array are physically stored together). However, we do

not address the problem of tuning the size of virtual tiles in this chapter.

The details of a TileDelta structure are illustrated in Figure 3.4. Similar to the VersionDelta

structure, each TileDelta contains a bitmask with one bit per cell (TileBitMask in the figure). The

TileBitMask is a bit vector that indicates which cells in the tile contain any changes. A TileDelta

also contains a payload that holds the actual delta values. A conceptual view of a TileDelta is shown

in Figure 3.5. The first delta value in the list corresponds to the first 1 in the bitmask, the second delta

value corresponds to the second 1, and so on. Because we use regular tiling, where each tile covers

the same number of cells in each direction as other tiles, mapping from the bitmask bits to the cell

coordinates happens efficiently in near constant time.

Following the TileDelta header, we store the actual cell updates in the form of backward deltas.
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Figure 3.3 Representation of a single array chunk with multiple versions.
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Depending on the magnitude of the changes, we can use a different number of bytes to store the delta

values. TimeArr chooses the number of bytes to use to store delta values at the granularity of tiles.

The TileDelta header includes some information about which encoding is used for delta values

(Type t in the figure).

To save space, TimeArr uses run-length encoding (RLE) to compact all bitmasks. For example,

bitmask 1100111000 is RLE encoded as <1,2> <0,2> <1,3> <0,3>. Values of 1 in the bitmask

correspond to cells that were updated.

In addition to bitmasks, VersionDelta and TileDelta headers also include summary vectors,

called StatsVectors. We describe the StatsVectors in Section 3.4, when we discuss customization

and approximation.
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Figure 3.5 Internal structure of a TileDelta V in TimeArr. The bitmask is represented as a 2D array
only for illustration purposes.
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3.3.2 Skip Links

Initially, the data in a segment corresponds to a fully materialized version of a chunk and a series

of consecutive delta chunks. If Vr is the materialized version in the segment then any older version,

Vk, of the chunk in the segment is rebuilt as follows: Vk = Vr +
∑r

i=k+1(∆i,i−1) where the “+”

operator applies all delta values in one version of the chunk by invoking an Add function for each

cell:

c(j−1)k ← Add(cjk, dj(j−1)k)

where c are cell values, d is a delta value, k represents the k’th cell, and j and j − 1 represent two

consecutive versions.

The version retrieval time thus grows linearly with the number of versions in a segment. One can

use skip lists [63] to maintain the retrieval time for any version of a chunk below log(|V |) where

|V | is the number of versions in a segment. That is, a segment should contain the VersionDelta for

consecutive versions but it should also contain additional VersionDeltas for each pair of versions 2i

versions apart. Extra VersionDeltas, however, would significantly increase storage costs. Additionally,

as we discussed in Section 3.1, delta chunks for non-consecutive versions that are far apart do not

provide much compression compared to materializing the actual array version. Finally, skip lists

would significantly increase the time to append a new version due to the creation of multiple extra

delta chunks.

To avoid these limitations yet benefit from “shortcut links”, TimeArr uses what we call skip links,
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inspired by the skip list technique, to cut the version retrieval costs by skipping over multiple versions

in one step. To maximize the benefits of these links, TimeArr defines them at the granularity of

tiles. The fundamental differences between a skip list and TimeArr’s skip links are that (1) skip links

replace some of the consecutive delta tiles, (∆i+1,i), with non-consecutive ones, ∆j,i j>i+1, and (2)

skip links are established only between similar versions; that is, only when ∆j,i is backward delta

encoded more compactly than ∆i+1,i:

(3.1) sizeof(∆j,i) < α× sizeof(∆i+1,i)

where sizeof returns the size of an object in bytes and α ∈ [0, 1] is a tunable parameter that

ensures skip links are created between similar tiles rather than between arbitrary ones. We use

α = 0.9 in our experiments, which we find to suffice to filter out spurious skip links. An abstract

example of skip links is shown in Figure 3.6.

To decide which tile versions to consider for replacement, TimeArr could enumerate all possible

∆j,i combinations and verify the condition in Equation 3.1. This approach, however, would be

computationally expensive because of the large number of version combinations. Instead, we propose

to consider only the linear sequence of links. That is, given a most recent version Vr, TimeArr

only considers adding skip links of the form ∆r,i ∀i<r. This approach is significantly less expensive

computationally because it considers fewer options but also because it can compute these options

incrementally. Indeed, TimeArr reuses the computation spent on a previous candidate skip link ∆r,i

to recursively construct the new candidate skip link ∆r,i−1. At the same time, we hypothesise (and

experimentally demonstrate in Section 3.5) that this approach retains the most useful links, since

TimeArr always starts from Vr when fetching older versions.

An important design decision for TimeArr is when to create skip links. One approach is to

exhaustively consider all linear skip links every time a new version is appended to a chunk. A less

expensive variant is to compute skip links only every T new versions appended, where T > 1 . We

study the overhead and gain of different values of T in Section 3.5 for version insertion and retrieval.

A third approach is to identify skip links lazily when executing selection queries that retrieve old
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Figure 3.6 ∆5,2 is a skip link from V5 to V2. sizeof(∆5,2) < α×sizeof(∆3,2). So ∆3,2 is replaced
with ∆5,2 in the chain of backward deltas. Note that V2 = V5 + ∆5,2 and V1 = V5 + ∆5,2 + ∆2,1.
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versions of sub-arrays. The approach works as follows: Consider a segment with materialized version

Vr and the goal is to retrieve version Vi. To test potential linear skip links, TimeArr reconstructs

Vi as Vi = Vr + ∆r,i and it computes ∆r,i incrementally by computing each intermediate linear

skip link, ∆r,k ∀k i≤k<r, where Vr is the materialized version in the segment. This approach thus

significantly reduces the overhead of finding skip links at the expense of not being able to use this

optimization the first time that an old version is retrieved. To further limit overheads, while retrieving

old versions, TimeArr keeps track of deltas ∆r,i that have already been explored as potential skip

links. For example, if TimeArr issues two consecutive selection queries to retrieve Vi, only the first

one involves the exploration of possible skip links.

Algorithm 4 describes the tile-based skip link creation procedure. In the algorithm, after ∆i+1,i is

replaced with skip link ∆j,i for tile t (Line 9), TimeArr puts a lock on all the deltas ∆k+1,k i < k < j

at tile t. Delta versions that are locked are not eligible to be replaced with any other skip links

(which is one reason why spurious links should be avoided by tuning the α parameter). Locks are at

the granularity of tiles and are not revertible. This constraint is reflected in Algorithm 4 at Line 8

and line 10. The reason TimeArr locks the deltas is to avoid overlapping skip links as illustrated in

Figure 3.7(a). If skip links overlap, TimeArr can reach a dead-end if it does not apply the correct

combination of skip links during version retrieval. Locking certain tiles prevents this complication

and simplifies the version retrieval algorithm.
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Algorithm 4 Skip Links Creation Procedure for One Tile
1: Input: Materialized Version Vr, Delta versions ∆i+1,i, Target Version Index k.
2: Output: Vk.
3: i← r − 1
4: ∆r,x ← φ
5: while i ≥ k do
6: ∆r,x ← ∆r,x + ∆i+1,i

7: if ∆r,x ≤ (α×∆i+1,i) then
8: if ∆i+1,i is not locked then
9: Replace ∆i+1,i with ∆r,x

10: Lock all the ∆n+1,n i < n < r
11: end if
12: end if
13: i = i− 1
14: end while
15: Vk ← Vr + ∆r,x

Figure 3.7 Valid v.s. Invalid states of skip links. TimeArr must avoid overlapping skip links. The
lock mechanism prevents Invalid state (a) by prohibiting L10,5.
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(a) Invalid State: V1 and V2 are accessible only if
TimeArr applies L8,2 and not L10,5.
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(b) Valid State: All versions are accessible through any
combination of links.

3.3.3 Query Processing

To support a selection query that retrieves a specific version of an array chunk, TimeArr first

selects the set of files –with one file per array chunk– that contain the desired version. Within each

file, TimeArr starts from the most recent materialized chunk version and applies all the changes

backwards until it rebuilds the version of interest.

If the selection query includes a range predicate, TimeArr leverages its virtual tiles to identify

and process only changes that fall within the region of interest.

Each delta tile ∆j,j−1 keeps track of a constant number of skip links ∆j,i j−1>i that TimeArr

can leverage at version Vj to skip directly to an older version Vi. Each ∆j,j−1 stores the number of
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versions that ∆j,i skips as Lji = (j− i−1) as shown in Figure 3.7. In our experiments keeping track

of a small number of Lji’s, L = 3, sufficed to hold all skip links for α < 0.9. Right before applying

∆j,j−1, TimeArr checks for potential skip links to leverage. TimeArr selects a link that skips the

most versions while still landing before or at the desired version. For example in Figure 3.7(b), in

order to retrieve version V1, TimeArr chooses L10,2 = 7 at V10 and skips 7 delta tiles until it reaches

∆10,2 which means V1 = V10 + ∆10,2 + ∆2,1. These choices are performed separately for each tile.

3.4 Approximate Queries

In this section, we present TimeArr’s approach to efficiently supporting approximate queries.

3.4.1 Distance between Versions

We recall from Section 3.2 that, when a user requests the approximate content c′j(p) of the

subarray satisfying predicate p at version number j, the user specifies the maximum tolerable error

in the form of an error bound B1. The system guarantees that the data returned will satisfy the

condition Difference(c′j(p), cj(p)) < B1. The difference between two subarrays can be computed

at the granularity of tiles or chunks as requested by the user. The semantics are as follows:

Difference(c′j(p), cj(p)) < B1 iff(3.2)

∀tiles or chunks c′jk ∈ c′j Distance(c′jk, cjk) < B1

where cj(p) is the exact content of the subarray at version j and cjk(p) is the exact content of

tile or chunk k in that subarray. The computation includes tiles or chunks that partially overlap the

subarray cj(p).

Similarly, the Difference between subarrays is equal to B1 if the Distance between all pairs of

tiles or chunks is equal to B1. If the Difference is neither less than B1 nor equal to B1, then it is

considered to be greater than B1.

Distance functions in TimeArr are implemented in a manner analogous to aggregation functions

in OLAP data cubes [34] or parallel aggregations [107]. The distance between two tiles is computed

by aggregating the delta values of their cells as shown in Listing 1: the Distance function takes two
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Listing 1 Distance Function at the Granularity of Tiles
// A1 and A2 are two versions of the same tile
double Distance (Subarray A1, Subarray A2)

Instantiate Statistics object s.
s.initialize()
Iterate over all pairs of matching cells (c1,c2)
where c1 in A1 and c2 in A2 in lock step:

delta = s.subtract(c1,c2)
s.process(delta)

return s.finalize()

Listing 2 Distributive Distance Function at the Granularity of Chunks
// A1 and A2 are two versions of the same chunk
double Distance (Subarray A1, Subarray A2)

Instantiate Statistics object s.
s.initialize()
Iterate over all pairs of matching tiles t1 and t2 where
t1 in A1 and t2 in A2 in lock step:

delta = Distance(t1,t2)
s.merge(delta)

return s.finalize()

versions of the same tile as input (A1 and A2). It iterates over the two versions and computes the

delta value for each pair of cells. The subtract method used here is the same as the one introduced in

Section 3.3. It then accumulates these differences using a standard aggregation method.

If the difference computation is at the granularity of chunks, to avoid tedious re-computations,

TimeArr requires that the Distance function be distributive as defined by Gray et al. [34]: max(),

count(), and sum() are all distributive. That is, to compute the Distance of two chunks, TimeArr

aggregates the Distance of the underlying tiles as shown in Listing 2.

The user can redefine the subtract and aggregate operations involved in these distance computa-

tions as we describe shortly.

TimeArr also requires the Distance function to be a metric and thus to satisfy the triangle

inequality:
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Listing 3 Statistics Interface
interface Statistics
CellValue add (CellValue, CellValue)
CellValue subtract(CellValue, CellValue)

void initialize()
process(CellValue c)
merge(Statistics s2)
double finalize()

Distance(A1, A3) ≤ Distance(A1, A2) +Distance(A2, A3)(3.3)

where Ai is a subarray. An example of a metric is a Distance function that computes the

maximum delta value for all cells in the array.

At the core of these Distance functions is the Statistics object, which defines how the delta

values are computed and aggregated. To implement a new Distance function, a user only needs to

provide a new class that implements the Statistics interface as shown in Listing 3.

The add and subtract methods operate on delta values as described in Section 3.3. CellValue

can be any numeric atomic type including integer and real.

TimeArr allows users to provide multiple classes that implement the Statistics interface. TimeArr

also provides a default Distance function using a default Statistics class that computes a value

difference for subtract and a value sum for add. It also maintains the absolute maximum delta

value across versions as the aggregate distance returned by finalize.

Next, we present how TimeArr uses these Distance functions to answer approximate queries.

3.4.2 Approximate Version Selection

Given a segment with a fully materialized chunk version Vr and VersionDeltas for earlier versions

Vr−1 down to Vz (the original version in the segment), the goal is to return some desired version Vj

within an error bound B1.
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Figure 3.8 A 3x3 array with 3 versions. V3 is materialized and V2 and V1 are backward delta encoded.
CumDiff (CD) and LocDiff (LD) are calculated for the two ∆3,2 and ∆2,1. Highlighted cells are the
ones to contribute to the CD and LD calculations, which use the default distance (maximum absolute
difference between any two cells). The VersionDelta for ∆3,2 contains CumDiff3 and LocDiff3.
Similarly, the VersionDelta for ∆2,1 contains CumDiff2 and LocDiff2.
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In the absence of approximation, TimeArr will start with Vr and it will apply delta chunks in

sequence (using skip-links when possible) until it gets back to version Vj . With approximation

specified at the granularity of tiles, for each tile separately, we want to stop the delta application

process as soon as we reach a version V ′j that satisfies the error condition: Distance(cj′k, cjk) < B1,

where cjk is the content of tile k at version j and cj′k is the content of that same tile at version j′.

If the approximation is specified at the granularity of chunks, TimeArr returns a set of tiles in the

approximate chunk cj′k that all have the same version j
′

and it checks the error condition at the

granularity of the whole chunk.

The key question is how to efficiently verify these error conditions? It is impractical to compute

the Distance function between all versions of each tile in a chunk. Instead, TimeArr computes

only two distances for each version Vu: Distance(cuk, cu−1,k) and Distance(cuk, czk). We call

the former distance the LocDiffuk or Local Difference at version u and tile index k because it is a

difference between consecutive versions . We call the latter distance the CumDiffuk or Cumulative

Difference at version u and tile index k because it is the distance to the oldest version in the chunk.

For each new version Vu appended to a chunk, TimeArr computes CumDiffuk and LocDiffuk at

the granularity of tiles and stores the results in the TileDelta StatsVector for version Vu−1 (since

version Vu will be materialized). Figure 3.8 illustrates the CumDiff and LocDiff computation for a

small array. Finally, TimeArr merges these CumDiff and LocDiff values for all tiles in a chunk and

stores the chunk-level CumDiff and LocDiff in the VersionDelta StatsVector.
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Hence, the StatsVector is a vector of pairs (CumDiff,LocDiff), with one pair for the system’s

default Statistics object and extra pairs for all the user-defined Statistics objects. In the API in

Table 3.1, the arguments that refer to statistics are indexes into the StatsVector.

To verify that the error condition is satisfied, TimeArr leverages the fact that Distance is a

metric and verifies two conditions. First, since CumDiffj′k is defined as Distance(cj′k,czk), and the

distance function is a metric, we have:

Distance(cj′k, cjk) ≤ CumDiffj′k + CumDiffjk(3.4)

Therefore:

IF CumDiffj′k + CumDiffjk ≤ B1 ⇒ Distance(cj′k, cjk) ≤ B1(3.5)

Second, TimeArr performs a similar check using LocDiffs:

IF

j∑
u=j′

LocDiffuk ≤ B1 ⇒ Distance(cj′k, cjk) ≤ B1(3.6)

If either condition holds, cj′k is an approximate version of c
′
jk that satisfies the error threshold B1,

which avoids further processing of tile k until version Vj .

Algorithm 5 shows how TimeArr utilizes CumDiff and LocDiff in Equation 3.5 and 3.6 to

answer approximate selection queries of the form: “Select version Vj of array A with predicate p and

ErrorBound B1”. For simplicity, the algorithm is only described for the error computation at the tile

granularity, but it follows a similar description for the chunk granularity. For each tile, Algorithm 5

finds the version Vj′ that satisfies either of the inequalities in Equation 3.5 or 3.6. Then it reconstructs

and updates C
′
j as the approximate version content. It repeats the process for all the tiles separately.

Algorithm 5 uses two bitmasks ChunkRangeBitmask and TileRangeBitmask that keep track of

the chunks and tiles that require to be processed further toward version j. Whenever the CumDiff

or the LocDiff of a given tile satisfies the inequality in Equation 3.5 or 3.6, respectively, the

corresponding bit value in TileRangeBitMask is set to 0, which avoids further triggers of the

ApplyDelta() function for the same tile. The ApplyDelta(cjk,C
′
j) executes the Add() function on
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Algorithm 5 Approximate Selection Queries
1: Input: ArrayName A, Predicate p, End VersionNumber j, ErrorBound B1.
2: Output: C

′

j , approximate content of A at Vj .
3: C

′

j ← Vr, i← r //current VersionNumber i, materialized VersionNumber r.
4: ChunkRangeBitmask bit set for chunks with cells that satisfy p.
5: TileRangeBitMask bit set for tiles with cells that satisfy p.
6: while i ≥ j do
7: for all Chunks C in A do
8: c← chunk index C
9: if ChunkRangeBitMask.getBit(c) == false then

10: continue.
11: end if
12: for all Tiles T in c do
13: t← tile index T
14: if TileRangeBitMask.getBit(t) == false then
15: continue.
16: end if
17: if CumDiff it + CumDiff jt ≤ B1 or

∑i
u=j LocDiffut ≤ B1 then

18: TileRangeBitMask.unsetBit(t).
19: end if
20: ApplyDelta(C

′

j ,T )
21: end for
22: if TileRangeBitMask IS ALL ZERO then
23: ChunkRangeBitMask.unsetBit(c).
24: end if
25: end for
26: if ChunkRangeBitMask IS ALL ZERO then
27: break.
28: end if
29: i = i− 1
30: end while

all the corresponding pairs of cells in cjk and C
′
j .

We include CumDiffu together with LocDiffu for the approximate version selection computation

because it significantly improves the bound. However, one challenge with this approach lies in the

efficient computation of the CumDiffu values. CumDiffu corresponds to Distance(Vu, Vz) where

Vu is the most recent version and Vz is the original version in the segment. In order to calculate

CumDiffu, we need to compute Distance(Vu, Vz) at the granularity of tiles and chunks, which means

that we need to have a helper VersionDelta that keeps track of delta values corresponding to

∆u,z . We name this auxiliary VersionDelta aux. At version Vu insertion time, in addition to the

regular computation of ∆u,u−1, TimeArr applies (∆u,z + ∆u,u−1) to update delta values in the aux



59

VersionDelta. Unlike CumDiffu, LocDiffu values are easy to compute during version insertion

since they aggregate delta values between consecutive array versions.

3.4.3 Approximate History Selection

LocDiff also serves to skip over similar versions during approximate history selection. These are

versions for which Difference(Vu+1, Vu) ≤ B2, which is directly captured by the LocDiff values.

Algorithm 6 shows the details of how TimeArr extracts approximate history at the granularity

of tiles (algorithm for chunk granularity is very similar). The algorithm proceeds in two phases. In

the first phase, TimeArr extracts the header information using the statisticsID s specified by the user.

From the header information, TimeArr extracts all the LocDiff values at the granularity of either

tiles of chunks as requested by the user. The algorithm then runs a standard SciDB query to identify

all versions Vu that differ by more than B2 from their successor Vu+1. The query issued on line

6 in Algorithm 6 captures the maximum variation between adjacent versions and it checks if the

difference is high enough to satisfy the lower-bound constraint B2. TimeArr outputs the version

numbers of these versions into a variable named res. Recall that TimeArr checks B2 at the same

granularity as B1.

The second phase retrieves the actual version contents using the version numbers and a bulk

approximate selection query that scans all past versions and returns the desired ones with the required

degree of precision B1.

3.5 Evaluation

In this section, we evaluate TimeArr’s performance on two real datasets and two synthetic

datasets. All experiments are performed on dual quad-core 2.66GHz Intel/AMD OpteronPentium-

based machines with 16GB of RAM running RHEL5. We use the following datasets.

Astronomy Universe Simulation dataset (Astro). The first dataset is the output of an astrophysical

simulation (see Chapter 7 for a detailed description of this dataset). We use 9 snapshots from this

dataset where each snapshot is 1.6 GBs in size and represents the universe as a set of particles in a 3D

space. To represent the data as an array with integer dimensions, we create a (500× 500× 500) array

and project the array content. Following SciDB’s column-based array representation, we perform all

experiments on the array containing the data for the mass attribute of the particles. We divide this
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Algorithm 6 Approximate History Queries
1: Input: ArrayName A, Predicate p, Start VersionNumber k, End VersionNumber j, ErrorBound B1,

ErrorBound B2, StatisticID s.
2: Output: A sequence of contents C containing all matching version contents C

′

j .
3:
4: PHASE ONE: Header Information Extraction.
5:
6: Extract header info using StatisticID s for the tiles that match p from Vk to Vj .
7:
8: Store result in array Ahead. // Schema: Ahead{CumDiff , LocDiff }[v][t]
9: // Extract all versions that meet the B2 bound (v is VersionNumber, t is TileIndex):

10: res = SELECT v FROM Ahead WHERE EXISTS (SELECT t FROM Ahead WHERE
Ahead[v][t].LocDiff ≥ B2)

11:
12: PHASE TWO: Bulk Approximate Version Selection.
13: for all i in res do
14: C

′

i ←Select(Ap, p, i,B1,s)
15: C.add(C

′

i )
16: end for

array into 8 chunks, each containing one eighth of the logical size of the array and each having 1000

virtual tiles.

Global Forecast System Model dataset (GFS). The second dataset is the output of a flow cytometer

from oceanography from the National Oceanic and Atmospheric Administration (NOAA) [67] that is

also described in Chapter 7. We use this dataset for a total of 61 versions, each about 1MB in size.

Each grid is a (720 × 360) two dimensional array (one array in one chunk) and we consider 100

virtual tiles for this single chunk.

Gaussian Distribution (Synthetic dataset 1). The synthetic dataset comprises a single, dense two-

dimensional array chunk with 1000× 1000 cells. The chunk is divided into one hundred 100× 100

tiles unless mentioned otherwise. We create synthetic versions by randomly updating the array. The

probability that a cell will be updated follows a normal distribution centered at coordinate [500][500].

For a normal distribution, 99.8% of all values fall within 3 standard deviations of the mean. Hence

we pick sigma to be 1
6 of the dimension length. Each update consists of the addition of a marginal

value (<127) . Each snapshot is 8 MB in size.

Uniform Distribution (Synthetic dataset 2). The synthetic dataset follows the same description

as the Gaussian Distribution except the probability that a cell will be updated follows a uniform
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Figure 3.9 Time to create 100 versions of a two-dimensional array with normally distributed updates.
A new segment is initialized at version 65 in the non-approximate setting and version 62 when
approximations are enabled. Each new version adds a constant overhead. I/O overhead is insignificant.
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distribution.

3.5.1 Basic Version Creation and Retrieval Performance

We first evaluate the performance when appending new versions to an array. Figure 3.9 shows

the time to create 100 new versions for the first synthetic dataset. Each new version adds a constant

overhead (1.5 seconds) in the non-approximate setting. The overhead is constant primarily because

the total number of updates is approximately the same for each version. As we show later, the version

creation time grows almost linearly with the number of updated cells per version. The overhead of

creating a new version is higher with approximation enabled. The extra overhead comes primarily

from updating the aux VersionDelta in addition to the main VersionDelta, doubling processing

times. The I/O times in both cases are insignificant. The CPU cost of computing delta values

dominates the runtime. In this experiment, we arbitrarily set the segment size to 48 MBs. When a

new segment is created the version creation time with approximation is close to the non-approximate

setting primarily because the aux VersionDelta starts-off empty and is thus quick to update. We

observe the same trend with the real datasets.

Next, we study the query processing time to fetch each version either precisely or approximately
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Figure 3.10 Time to fetch each version in the GFS dataset. β, 2β, and β
2 refer to the error bounds,

where β is the average maximum change observed in two adjacent versions. I/O times are insignificant
and not shown. For the GFS dataset the maximum segment size is 12 MBs. The segments reaches its
full size at version number 38 and 36 in the non-approximate and approximate settings respectively.
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in synthetic and real datasets. For the experiments with approximation, we consider an error bound

β equal to the average maximum change observed between any two adjacent versions. With such

an error bound, the user may see values that are in aggregate off by at most one array version. As

Figure 3.10 shows, the cost of retrieving a version precisely decreases linearly with the version

number. With high approximation (error bound β), for the GFS dataset, query times decrease by

factors between 25% and 300%. Similarly, we observe that retrieving any version in the synthetic

dataset (not shown in the figure) takes half the time or less compared with retrieving the exact version.

Even with a small approximation (error bound β/2), performance gains are above 35%. We observe

similar trends for the Astro dataset.

Overall, TimeArr’s approach to approximate query processing thus adds overhead during version

insertion. This overhead, however, is paid only once. At the same time, approximation enables the

system to cut query times significantly when users can tolerate approximate results. These savings

are repetitive. Interestingly, the performance gains of approximation increase as we query older

versions while the version creation overhead remains constant.

We also study the effect of the number of updates on the version creation time. We calculate the
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total time to create 50 versions from the synthetic dataset 2 with different numbers of updates

ranging from one thousand to one million updates per version. As expected version creation time

grows almost linearly with the number of updates per version. Going from one thousand to one

million updates always added 7 to 8 seconds to the total version creation time. We run a similar

experiment keeping the number of updates constant, but increasing the updated values. We observe

no significant increase in the version creation time (although the size of the version in terms of bytes

changed rapidly).

We also evaluate the benefit of using virtual tiles and variable-length delta encoding on the storage

space at version creation time and we observed up to 70% space savings compare to the case with

no-tile settings and no variable-length delta encoding. The space savings, however, do not come for

free. The finest tile settings in the experiment had up to 25% version creation time overhead compare

to the no-tile settings.

We now evaluate the benefits of using virtual tiles to speed-up historical queries over subsets of a

chunk (i.e., range selection queries over array coordinates). Figure 3.11 shows the performance of

the following query: Return the original version of the rectangular subarray [C1;C2],

where C1 and C2 are the upper-left and lower-right corners of a region. In Figure 3.11(a), we use a

single chunk with 100 virtual tiles and Synthetic dataset 1. The rectangular regions have the same

center as the chunk and range from one tile to the whole chunk. The performance gains that we

achieve using virtual tiles depend on the granularity of the tiles and the size of the fetched region.

In the tile setting in this experiment, we fetch a single tile 50 times faster than the setting with no

virtual tiles used. Even with the window sizes that retrieve as much as 25% of the chunk, TimeArr

runs significantly faster than the setting without virtual tiles. Figure 3.11(b) shows the performance

of the range selection query on the astronomy dataset. Similar to what we observed in the synthetic

dataset, the benefits of using virtual tiles to speed-up historical queries over subsets of an array are

significant. The trend is the same for the GFS dataset as well.

3.5.2 Version Retrieval with Links Support

The advantage of the skip link technique is highlighted on datasets such as the Global Forecast

System Model (GFS) where similar data patterns are repeated at different versions. Figure 3.12 shows
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Figure 3.11 Time to fetch the original version where the region window changes from one tile to the
whole chunk. (a) Synthetic dataset with 20 versions. (b) Astronomy dataset with 9 versions.
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the time to fetch 60 versions of the GFS dataset. The segment size is chosen such that all the versions

reside in one segment. In this experiment, TimeArr periodically computes skip links after each T

versions appended. As illustrated in Figure 3.12 the performance gain to fetch the oldest version

with skip links is 42% for T = 20 and 75% for T = 1 compared to the no-link case. However, the

skip link computation incurs overhead at version insertion time. Table 3.2 summarizes the overhead

for different values of T . Although exhaustive computation of skip links (T = 1) improves the

performance in Figure 3.12, it incurs significant overhead when inserting new versions. Finding the

optimal interval T is left for future work. Instead, TimeArr uses lazy computation of skip links whose

performance is shown in Figure 3.13. The query workloads, Q-NORM and Q-UNIFORM are as follows:
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Figure 3.12 Time to fetch each version in a single-chunk array with 60 versions. The result with skip
link is competitive with approximate result with β error bound.
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TimeArr appends 61 versions from the GFS dataset in total and between each append operation,

we issue 5 original-version retrieval queries (305 queries in total). Each original-version retrieval

query only fetches a few tiles from the array. The tiles to be fetched are selected randomly based

on either normal distribution (Q-NORM) or uniform distribution (Q-UNIFORM). Figure 3.13(a) shows

the advantage of the lazy link computation with the Q-NORM workload. Q-NORM simulates a workload

with a hot spot region; i.e., a number of tiles are fetched many times while other tiles are fetched

only once. Figure 3.13(a) shows that lazy computation of skips links is better than the skip-link

computation at version insertion time with interval T = 5. However, this is not true when TimeArr

runs the Q-UNIFORM workload (Figure 3.13(b)), because the skip-link computation overhead for a

specific tile at version fetch time is not paid off later. In the Q-UNIFORM workload, many tiles are

only fetched once. In Figure 3.13, lazy computation of skip links during version retrieval incurs

approximately 2 seconds of overhead in total (not shown in the figure). The algorithm to decide when

to compute skip links lazily during version retrieval, when to compute them after certain intervals at

version insertion time, and possibly the combination of these two approaches are left for future work.
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NoLink (Lazy) Link (T=20) Link (T=5) Link (T=1)
Add Versions (sec) 13.16 12.00 13.48 14.56
Create Links (sec) 0 3.68 11.11 47.13

Table 3.2: GFS dataset: Skip links overhead at version insertion time. TimeArr computes
skip links each T consecutive versions appended.

Figure 3.13 Cumulative query runtime of workloads Q-NORM and Q-UNIFORM. Skip links are computed
either lazily at version retrieval or at version insertion time after each T = 5 versions appended.
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(b)

3.5.3 Comparison with SciDB

The current SciDB version storage also uses backwards deltas [92]. Unlike TimeArr, however,

it represents each VersionDelta using two chunks, one with a sparse and the other with a dense

representation. Each cell-value in the VersionDelta is either in the sparse or dense chunk.

We compare TimeArr to SciDB’s current storage manager using the synthetic dataset 2.

There is thus a total of 106 cells in a single-chunk array. We create four synthetic streams of versions:

mass updates, medium updates, rare updates, and very rare updates that correspond to 106,105,104,

and 103 updates between each array version respectively. The approximation feature is turned off

in all the experiments. Table 3.3 shows the results. TimeArr outperforms SciDB in all four cases.

It achieves 40% version creation time savings for medium and mass updates. Table 3.3 also shows

that version creation time variation in SciDB is much larger than TimeArr in the case of medium and

mass updates. In TimeArr the overhead of adding a new version is constant while this is not the case
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updates mass medium rare very rare
TimeArr(sec) AVG 1.16 0.60 0.50 0.48
TimeArr(sec) STD 0.08 0.01 0.04 0.05
SciDB(sec) AVG 1.80 1.01 0.67 0.55
SciDB(sec) STD 0.83 0.45 0.85 0.60

Table 3.3: Average time to create one version after appending 50 versions on a two-dimensional array with
uniformly distributed updates. TimeArr outperforms SciDB in all four cases.

in SciDB.

Figure 3.14 shows the query processing performance of both approaches when fetching the whole

chunk at a specific, precise version. The chunk has 100 tiles. TimeArr achieves a 1.6X to 6.6X

performance gain in terms of query processing compared with SciDB for mass and medium updates.

For rare updates, improvement is marginal (it is not shown in the figure). TimeArr’s performance

gains compared to SciDB come from the fact that SciDB stores delta values in one dense and one

sparse chunk for compactness. When fetching a version, SciDB first needs to combine delta values

from both representations, which incurs significant overhead. Also, TimeArr uses bitmask techniques

to locate changes efficiently, while SciDB needs to iterate over the whole dense delta chunk. Overall,

our design decision to have a single storage representation for delta chunks is a key factor for

TimeArr’s query time performance.

We also studied the advantage of using virtual tiles in TimeArr compared to the current imple-

mentation of SciDB. We did a similar experiment as the one in Figure 3.11. We observed two orders

of magnitude improvement in TimeArr for regions covering only a few tiles (The trend is similar to

Figure 3.11).

3.5.4 Approximate History Query

We now demonstrate the benefits of approximate history query using the GFS dataset. We execute

the following example query: Select(AGFS,true,V1,V61,54,260) where Ain is the input array.

This query asks for all 61 versions of the dataset such that each version is approximately returned

with the error bound B1 = 54 and only versions that differ by at least error bound B2 = 260 are

returned. 260 is approximately half of the maximum change observed in two adjacent versions.

Figure 3.15 shows the result of this query. TimeArr quickly identifies that only 9 versions differ by
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Figure 3.14 Time to fetch each version from 1 to 50 on a two-dimensional array with uniformly
distributed updates. TimeArr is about 1.6X to 6.6X better than SciDB for mass and medium updates.
“Rare updates” and “very rare updates” lines overlap for both systems. Only TimeArr is shown.
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more than the specified threshold and it only requests to approximately fetch these 9 versions. In

contrast, with exact history TimeArr has to fetch all the versions. The approximate query runs in

less than 7.5 seconds and the equivalent precise query takes 37 seconds to complete, which is a 5X

performance difference.

3.6 Conclusion

TimeArr is a new storage manager for an array database. Its key contribution is to efficiently

store and retrieve versions of an entire array or some sub-array. TimeArr also introduces the idea

of approximate exploration of an array’s history. To achieve high performance, TimeArr relies on

several techniques including virtual tiles, bitmask compression of changes, variable-length delta

representations, and skip links. TimeArr enables users to customize their exploration by specifying

both the maximum degree of approximation tolerable and how it should be computed. Experiments

with a prototype implementation on two real datasets demonstrate the performance of TimeArr’s

approach.
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Figure 3.15 Approximate history query returns only 9 versions out of 61 with a maximum degree of
changes from the previous version greater than 260, while in exact history , TimeArr has to go over
all the versions. The performance gain is almost 5X.
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Chapter 4

ARRAYLOOP: SCIDB WITH SUPPORT FOR ITERATIVE COMPUTATION

Many data analysis tasks today require iterative processing [30]: machine learning, model fitting,

pattern discovery, flow simulations, cluster extraction, and more. As a result, most modern Big Data

management and analytics systems (e.g., [53, 108]) support iterative processing as a first-class citizen

and offer a variety of optimizations for these types of computations: caching [10], asynchronous

processing [53], prioritized processing [59, 109], etc.

The need for efficient iterative computation extends to analysis executed on multi-dimensional

scientific arrays. In this chapter, we present the design and implementation of ArrayLoop [62], an

extension of SciDB that adds native support for array iterations. ArrayLoop comprises a model

for iterative processing in a parallel array engine and followed by three optimizations to improve

the performance of these types of computations: incremental processing, mini-iteration overlap

processing, and multi-resolution processing.

4.1 Requirements, Challenges, and Contributions

Iterative data analysis on multi-dimensional scientific arrays is ubiquitous. For example, as-

tronomers typically apply an iterative outlier-removal algorithm to telescope images as one of the

first data processing steps. Once the telescope images have been cleaned, the next processing step is

to extract sources (i.e., stars, galaxies, and other celestial structures) from these images. The source

extraction algorithm is most easily written as an iterative process as well. As a third example, the

simple task of clustering data in a multi-dimensional array also requires iterating until convergence

to the final set of clusters. We describe these three applications in more detail in Section 4.2.

While it is possible to implement iterative array computations by repeatedly invoking array

queries from a script, this approach is highly inefficient (as we show in Figure 4.11(a)). The reason is

that iterations do a lot of repeated work that can be avoided if the computation keeps track of the

states across iterations. Instead of invoking iterative array queries from a script, a large-scale array
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management systems such as SciDB should support iterative computations as first-class citizens in

the same way other modern data management systems do for relational or graph data.

In this chapter, we address the problem of how to efficiently execute iterative computations over

array data. We focus both on single-machine and parallel array processing in a shared-nothing cluster

as both are common deployments today. We fist develop a model that captures the essence of a

large class of iterative array computations. Using this model, we develop three optimizations that

significantly speed-up iterative array computations. The first optimization, which focuses on making

iterations incremental, is based on analogous optimizations in relational and graph systems, but we

show how it can be pushed all the way to the storage manager in the case of an array system. The

following two optimizations, which relate to efficient parallel array iterations and multi-resolution

computations, are specific to arrays.

1) Incremental iterative processing: In many iterative applications, the result of the computation

changes only partly from one iteration to the next. As such, implementations that recompute the

entire result every time are known to be inefficient. The optimization, called incremental iterative

processing [30], involves processing only the part of the data that changes across iterations. When

this optimization is applicable, it has been shown to significantly improve performance in relational

and graph systems [30, 59]. This optimization also applies to array iterations. While it is possible to

manually write a set of queries that process the data incrementally, doing so is tedious, error-prone,

and can miss optimization opportunities. To address this challenge, we develop an approach that

enables users to specify their computation at a logical, high-level. The system automatically generates

an incremental version of the computation when it is possible. Additionally, we optimize the way in

which the system handles all partial results and merges them with the full result at each iteration. We

show that several of these optimizations can be pushed all the way down to the storage manager in an

array system.

2) Overlap iterative processing: In many array operations, including, for example, cluster finding

and source detection, some operations in the body of the loop update the value of certain array cells

by using the values of other neighboring array cells. These neighborhoods are often bounded in size.

These applications can effectively be processed in parallel if the system partitions an array but also

replicates a small amount of overlap cells. In the case of iterative processing, the key challenge lies
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in keeping these overlap cells up-to-date. We develop an approach that efficiently updates overlap

cells through select bulk-operations.

A subset of applications that leverage overlap data also have the property that overlap cells can be

updated only every few iterations. Examples of such applications are those that try to find structures

in the array data. They can find structures locally, and need to exchange information only periodically

to stitch these local structures into larger ones. We develop an approach that leverages this property

to reduce the overhead of synchronizing overlap data. We call this optimization, mini-iterations.

3) Multi-resolution iterative processing: Finally, in many applications the raw data lives in a

continuous space (3D universe, 2D ocean, N-D space of continuous variables) and arrays capture

discretized approximations of the real data. Different data resolutions are thus possible and scientifi-

cally meaningful to analyze. In fact, it is common for scientists to look at the data at different levels

of detail. In many applications over such data, it is often efficient to first process the low-resolution

versions of the data and use the result to speed-up the processing of finer-resolution versions of the

data if requested by the user. Our final optimization automates this approach.

We implement the iterative model and all three optimizations as extensions to the open-source

SciDB engine and we demonstrate their effectiveness on experiments with 1 TB of publically-

available synthetic LSST images [83]. Experiments show that Incremental iterative processing can

boost performance by a factor of 4-6X compared to a non-incremental iterative computation for

applications that support it. Iterative overlap processing together with mini-iteration processing

can improve performance by 31% compared with SciDB’s current implementation of overlap pro-

cessing in the context of parallel iterative computations that can leverage overlap data. Finally,

multi-resolution optimization can cut runtimes in half if an application can leverage this technique.

Interestingly, these three optimizations are complementary and their benefits can be compounded.

4.2 Motivating Applications

We start by presenting three array-oriented, iterative applications. We use these applications as

examples throughout the chapter and also in the evaluation.

Example 4.2.1. Sigma-clipping and co-addition of LSST images (SigmaClip): The Large Syn-

optic Survey Telescope (LSST [54]) is a large-scale, multi-organization initiative to build a new
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telescope and use it to continuously survey the visible sky. The LSST will generate tens of TB of

telescope images every night. Before the telescope produces its first images, astronomers are testing

their data analysis pipelines, storage techniques, and data exploration using realistic but simulated

images.

When analyzing telescope images, some sources (a “source” can be a galaxy, a star, etc.) are

too faint to be detected in one image but can be detected by stacking multiple images from the

same location on the sky. The pixel value (flux value) summation over all images is called image

co-addition. Figure 4.1 shows a single image and the corresponding co-added image. Before the

co-addition is applied, astronomers often run a “sigma-clipping” noise-reduction algorithm. The

analysis in this case has two steps: (1) outlier filtering with “sigma-clipping” and then (2) image

co-addition. Listing 4 shows the pseudocode for both steps. Sigma-clipping consists in grouping all

pixels by their (x,y) coordinates. For each location, the algorithm computes the mean and standard

deviation of the flux. It then sets to null (or zero) all cell values that lie k standard deviations away

from the mean. The algorithm iterates by re-computing the mean and standard deviation. The

cleaning process terminates once no new cell values are filtered out. We refer to this application as

SigmaClip. �

Example 4.2.2. Iterative source detection algorithm (SourceDetect): Once telescope images have

been cleaned and co-added, the next step is typically to extract the actual sources from the images.

A simple pseudocode of source detection is shown in Listing 5. Each non-empty cell is initialized

with a unique label and is considered to be a different object. At each iteration, each cell resets its

label to the minimum label value across its neighbors. Two cells are neighbors if they are adjacent.

This procedure continues until the algorithm converges and no more cell value changes. We refer to

this application as SourceDetect. �

Example 4.2.3. K-means clustering algorithm (KMeans): In many domains, clustering algo-

rithms are commonly used to identify patterns in data. Their use extends to array data. We consider

in particular K-means clustering on a 2D array [45]. K-means clustering works as follows: It assigns

each cell randomly to one of the k clusters. It computes the centroid of each cluster. It iterates by

re-assigning each cell to its nearest cluster. We refer to this application as KMeans. �

These applications illustrate two important properties of iterative computations over arrays.
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Figure 4.1 Illustrative comparison of one single image and its corresponding co-added image. There
are many faint objects that show up in the co-added image but not in the single image

(a) Single Image (b) Co-added image

Listing 4 Pseudocode for SigmaClip application
Input: Array A with pixels from all the x-y images over time.
//Part 1: Iterative sigma-clipping
While(some pixel changes in A)
For each (x,y) location
Compute mean/stddev of all pixel values at (x,y).
Filter any pixel value that is k
standard deviations away from the mean

//Part 2: Image co-addition
Sum all non-null pixel values grouped by x-y

First, the goal of an iterative computation is to take an array from an initial state to a final state by

iteratively refining its content. The SigmaClip application, for example, starts with an initial 3D

array containing 2D images taken at different times. Each iteration changes the cell values in this

array. The iteration terminates when no cell changes across two iterations. Second, the value of

each cell at the next iteration is determined by a subset of array cells at the current iteration that

can be mathematically described. For SigmaClip those are “all pixel values at the same (x,y)

location”. Interestingly, unlike the SigmaClip application, where each group of cells at the same

(x, y) location influences many cell-values at the next iteration, in the SourceDetect algorithm

any given cell (x, y) is influenced by a unique group of cells, which are its adjacent neighbors. These

groups of cells partially overlap with each other, which complicates parallel processing as we discuss

in Section 4.5.
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Listing 5 Pseudocode for SourceDetect application
Input: Co-added Array A with uniquely labeled pixels from

all the x-y images.
Input: int r, the adjacency threshold.
While(some pixel changes in A)
For each (x,y) location
Compute the minimum label of all pixel values (x’,y’)
with x-r <= x’<= x+r and y-r <= y’<= y+r.
Update (x,y) with the minimum label.

Figure 4.2 Iterative array A and its state at each iteration for “iterative source detection” application.
{Qf

π ,δπ

cells(A) : ∀ci,j ∈ cells(A) i ∈ I1 & j ∈ I2 } where I1 = I2 = {1, 2, 3, 4} are the set
of dimension values, fπ applies min() aggregate on each group of cells, δπ simply stores the
aggregated value in each cell ci,j , and π : (x, y)→ [x± 1][y ± 1]. At each iteration, sliding window
scans through all the cells. The convergence occurs at iteration 3 when there is no change in labeling
between A2 and A3
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4.3 Iterative Array-Processing Model

We start with a formal definition of an array similar to Furtado and Baumann [32]: Given a

discrete coordinate set S = S1× . . .×Sd, where each Si, i ∈ [1, d] is a finite totally ordered discrete

set, an array is defined by a d-dimensional domain D = [I1, . . . , Id], where each Ii is a subinterval

of the corresponding Si. Each combination of dimension values in D defines a cell. All cells in

a given array A have the same type T . cells(A) is the set of all the cells in array A and function

V : cells(A)→ T maps each cell in array A to its corresponding tuple with type T . In the rest of the

paper, we refer to the dimension x in array A as A[x] and to each attribute y in the array A as A.y.

In SciDB, users operate on arrays by issuing declarative queries using either the Array Query

Language (AQL) or the Array Functional Language (AFL). AQL and AFL queries are translated into

query plans in the form of trees of array operators. Each operator O takes one or more arrays as input

and outputs an array: O : A→ A or O : A×A→ A.

In an iterative computation, the goal is to start with an initial array A and transform it through
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a series of operations in an iterative fashion until a termination condition is satisfied. The iterative

computation on A typically involves other arrays, including arrays that capture various intermediate

results (e.g., arrays containing the average and standard deviation for each (x, y) location in the

SigmaClip application) and arrays with constant values (e.g., a connectivity matrix in a graph

application).

One can use the basic array model to express iterative computations. The body of the loop can

simply take the form of a series of AQL or AFL queries. Similarly, the termination condition can be

an AQL or AFL query.

To enable optimizations, however, we extend the basic array model with constructs that capture

in greater details how iterative applications process arrays. We start with some definitions.

Definition 4.3.1. We call an array iterative if its cell-values are updated during the course of

an iterative computation. The array starts with an initial state A0. As the iterative computation

progresses, the array goes through a set of states A1, A2, A3, . . ., until a final state AN . Note that

all Ai have the same schema. In other words, the shape of an iterative array does not change.

Figure 4.2 shows a (4×4) iterative array that represents a tiny telescope image in the SourceDetect

application. In the initial state, A0, each pixel with a flux value above a threshold is assigned a unique

value. As the iterative computation progresses, adjacent pixels are re-labeled as they are found to

belong to the same source. In the final state A3, each set of pixels with the same label corresponds to

one detected source.

Iterative applications typically define a termination condition that examines the cell-values of the

iterative array. In many applications, this condition can be expressed as follows:

Definition 4.3.2. We say that an iterative array A has converged, whenever T (Ai, Ai+1) ≤ ε for

some aggregate function T . T is the termination condition. ε is a user-specified constant.

In Figure 4.2, convergence occurs at iteration 3 when ε = 0 and the termination condition T is

the count of differences between Ai and Ai+1.

An iterative array computation takes an iterative array, A, and applies to it a computation Q until

convergence:
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A0
Q−→ A1

Q−→ . . .
Q−→ Ai

Q−→ Ai+1(4.1)

where Q is a set of valid AQL or AFL queries. At each step, Q can either update the entire array

or only some subset of the array. We capture the distinction with the notion of major and minor

iteration steps:

Definition 4.3.3. A state transition, Ai
Q−→ Ai+1, is a major step if the function Q operates on all

the cells in A at the same time. Otherwise it is a minor step.

The array state Ai,j represents the state of the iterative array after i major steps followed by j

minor steps. We are interested in modeling computations where each major step can be decomposed

into a set of associative and commutative minor steps that can be evaluated in parallel. That is, a

Major step Qi can be expressed as a set of minor steps qi such that for any permutation of these steps

σ, Qi = qi,σ1 · qi,σ2 . . . qi,σn−1 · qi,σn .

The iterative array computation in Equation 4.2 includes (i + 1) major steps. The first line

illustrates the transition of iterative array A in major steps and the second line illustrates the possible

minor steps between two major steps i and i+1. Termination condition check always occurs between

two states of an iterative array after a major step.

A0
Q1−−→ A1

Q2−−→ . . . Ai−1
Qi−→ Ai

Qi+1−−−→ Ai+1(4.2) ︷ ︸︸ ︷
Ai

qi,1·qi,2...qi,j−1·qi,j−−−−−−−−−−−−→ Ai+1

Figure 4.2 shows an iterative array computation with only major steps involved, while Figure 4.3

presents the same application but executed with minor steps.

We further observe from the example applications in Section 4.2 that the functions Q often follow

a similar pattern.

First, the value of each cell in iterative array Ai+1 that is updated by Q only depends on values

in nearby cells in array Ai. We capture this spatial constraint with a function π that specifies the

mapping from output cells back onto input cells:
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Figure 4.3 Iterative array A and its state after three minor steps, each of the form: Qi,j = Qf
π ,δπ
ci,j

where ci,j is the cell at A[i][j], fπ applies min() aggregate, δ simply stores the aggregate result as
the new value in cell ci,j , and π : (x, y)→ [x± 1][y ± 1]
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Definition 4.3.4. π is an assignment function defined as π : cells(A) → P (cells(A)), where

cells(A) is the set of all the cells in array A and P() is the powerset function.

Figure 4.4 illustrates two examples of assignment functions.

Definition 4.3.5. fπ is an aggregate function defined as fπ : cells(A)→ τ . fπ groups the cells of

the array A according to assignment function π, with one group of cells per cell in the array A. It

then computes the aggregate functions separately for each group. The aggregate result is stored in

tuple τ .

Finally, Q updates the output array with the computed aggregate values:

Definition 4.3.6. δπ : (cells(A), fπ)→ cells(A) is a cell-update function. It updates each cell of

the array A with the corresponding tuple τ computed by fπ and the current value of the cell itself.

These three pieces together define the iterative array computation Qf
π ,δπ

C as follows:

Definition 4.3.7. Iterative array computationQf
π ,δπ

C on the subset of cellsC whereC ∈ P(cells(A))

generates subset of cells C
′ ∈ P(cells(A)) such that ∀c ∈ C and c

′ ∈ C ′ c′ = δπ(c, fπ(c)) where

c and c
′

are two corresponding cells in those subsets.

An example iterative array transformation is presented in Figure 4.2.

The following example from the SourceDetect application helps us to clarify the intuition

behind the definition of iterative array computation.
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Example 4.3.1. Consider a simplified version of the SourceDetect application described in

Section 4.2. The goal is to detect all the clusters c in the array A where each cell p1 = (x1, y1) in

cluster c has at least one neighbor p2 = (x2, y2) |x1 − x2| ≤ 1 |y1 − y2| ≤ 1 in the same cluster, if

it is not a single-cell cluster. One can implement SourceDetect with a simple iterative computation.

Consider π to be the 3X3 window around a cell. We slide the window through the array cells in major

order. At each minor step, at each cell ci,j at the center of the window, we apply an iterative array

computation Qi,j = Qf
π ,δπ
ci,j where fπ applies min() aggregate of the 3x3 window, π, and δπ is a

cell-update function that simply stores the result of the min() aggregate into the cell ci,j . Figure 4.3

illustrates three steps of this computation. Notice that the output of iterative array computation Q0,0

becomes the input forQ0,1 and so on. Another strategy is to have many windows grouped and applied

together. In other words, instead of applying iterative array computation per cell, we apply Qf
π ,δπ

C on

a group of cells C ∈ P (cells(A)) at one major step. Note that when using minor steps, the output

of each minor step serves as input to the next step. In contrast, when using major steps, the iterative

array computations see the original array state at the beginning of that iteration. Figure 4.2 shows the

iterative array computation of the latter strategy. The former strategy has less expensive steps than

the latter strategy, but it requires more steps to converge. �

π assignment function In many iterative array algorithms, the value of a cell ci in the next

iteration is influenced either by nearby cells or by cells that share the same cell-value with ci for

some attributes. Based on this observation, our system allows the user to express the P (cells(A)) in

Definition 4.3.4 either as a window or as an attribute. An example window assignment in a 3D array

is π : (x, y, z)→ [x± k1][y ± k2][z ± k3], where (x, y, z) is a cell coordinate and the window w is

defined as follow:

w : [x± k1][y ± k2][y ± k3] = {(x′, y′, z′) ∈ cells(A) :

x− k1 ≤ x′ ≤ x+ k1 &

y − k2 ≤ y′ ≤ y + k2 &

z − k3 ≤ z′ ≤ z + k3}
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Figure 4.4 Two examples of window assignment functions: (a) π1 : (x, y, z)→ [x±1][y±1][z±1],
the associated window is highlighted for the cell at (2, 1, 2). (b) π2 : (x, y, z)→ [x][y], the associated
window is highlighted for all the cells at (x, y, z) with z = 0.

 Y 
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Z 

(a) An example window for
SourceDetect application

X 

 Z 

Y 

(b) An example window for
SigmaClip application

where each ki is a constant. Two examples of assignment functions are illustrated in Figure 4.4. Note

that in the Example 4.4(a), assignment function π1 is a one-to-one function and in 4.4(b), π2 is not a

one-to-one mapping. An example attribute assignment function is the K-means clustering application

described in Example 4.2.3: π : (x, y)→ label where all the cells with the same label are grouped

together.

ArrayLoop asks the user to encapsulate all the elements of the model in a FixPoint operator:

FixPoint(A, π, f, δ, T, ε)(4.3)

With our model so far, the user specifies the logic of the iterative algorithm without worrying

about the way it is going to be executed. Similar to relational databases that support logical and

physical independence, our model can be implemented and executed on top of various array execution

engines independent of their execution strategy (refer to Example 4.3.1). In the rest of the paper,

we describe how the queries specified in our model are rewritten and efficiently run in the SciDB

array engine. The execution strategy in SciDB only uses major steps. Mini steps implementation, i.e.

asynchronous execution, is left for future study.

To execute an iterative array computation in SciDB, a naı̈ve approach (shown in Algorithm 7)

is to simply iteratively invoke array queries from a high-level scripting language such as SciDB-

Py [90], a python interface for SciDB. This approach, however, prevents or at least complicates the
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Algorithm 7 Iterative algorithm, naı̈ve approach
1: while Ai 6= Ai+1 do
2: run AQL Q1

3: . . .
4: run AQL Qk
5: end while

automated optimizations of iterative computations. Instead, our approach is to extend SciDB-Py

with a python FixPoint() operator and an optimizer module that we name ArrayLoop. The user

encapsulates its iterative algorithm in our FixPoint() python operator and then the ArrayLoop

optimizer triggers a set of query re-writing tasks in order to leverage a series of optimizations that we

develop: incremental iterative processing, overlap iterative processing, and multi-resolution iterative

processing. ArrayLoop acts as a pre-processing module before executing the iterative query in SciDB.

Currently the majority of the ArrayLoop implementation is outside the core SciDB engine. As future

work, we are planning to push the ArrayLoop python prototype into the core SciDB engine. In the

rest of this section we describe each of the three optimizations in more detail.

4.4 Incremental Iterations

In a wide range of iterative algorithms, the output at each iteration differs only partly from the

output at the previous iteration. Performance can thus significantly improve if the system computes, at

each iteration, only the part of the output that changes rather than re-computing the entire result every

time. This optimization called incremental iterative processing [30] is well-known, e.g. in semi-

naive datalog evaluation, and has been shown to significantly improve performance in relational and

graph systems. ArrayLoop tries to build in support for incremental processing when the application

supports it. The SigmaClip application described in Section 4.2.1 is an example application

that can benefit from incremental iterative processing. Figure 4.6 shows multiple snapshots of

running the sigma-clipping algorithm with incremental iterative processing on a subset of the lsst

dataset. Green-colored points are the ones with changed values across two consecutive iterations.

As the iterative computation proceeds, the number of green-colored points drops dramatically and

consequently the amount of required computation at that step.

sigma-clipping() and incr-sigma-clipping() modules in Algorithm 8 show the
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Algorithm 8 SigmaClip application followed by image co-addition
1. function SIGMA-CLIPPING(A,k) . Naı̈ve sigma-clip
2. Input: Iterative Array A <float d>[x,y,t]
3. Input: k a constant parameter.
4. while (some pixels A[x, y, t] are filtered) do
5. T [x, y] = select avg(d) as µ, stdv(d) as σ from A group by x, y

6. S[x, y, t] = select * from T join A on T.x = A.x and T.y=A.y
7. A[x, y, t] = select d from S where µ− k × σ ≤ d ≤ µ+ k × σ
8. end while
9. end function

10. function INCR-SIGMA-CLIPPING(A,k) . Incremental sigma-clip
11. Input: Array A <float d>[x,y,t].
12. Input: k: a constant parameter.
13. Local: Array C <int c,float s,float s2>[x,y].
14. Local: Collect← φ . Collects all the filtered points.
15. Local: Remain← A . Keeps track of remaining points.
16. ∆A← A
17. while (∆A is not empty) do
18. T1[x, y]← select count(d) as c, sum(d) as s, sum(d2) as s2 from ∆A group by x, y

19. if (first iteration) then
20. C ← T1[x, y]
21. else
22. ∆C[x,y]← select C.c− T1.c as c , C.s− T1.s as s , C.s2 − T1.s2 as s2 from C join T1 on T1.x = C.x & T1.y=C.y

23. end if

24. T [x, y]← select C.s
C.c

AS µ, 2
√
C.s2

C.c
− (C.s

C.c
)2 AS σ from ∆C

25. S[x, y, t]← select A.d, T.µ, T.σ from T join Remain on T.x = A.x and T.y=A.y

26. ∆A← select d from S where d ≤ µ− k × σ or d ≥ µ+ k × σ

27. Remain← πd(S)-∆A . Updates Remain.

28. Collect←∆A . Adds the filtered points to Collect.
29. end while
30. A← A-Collect . Produces the final state for A.
31. end function

co-addition phase:
32. R[x, y]← select sum(A.d) as coadd from A group by x, y

original implementation and the manually-written incremental version of the implementation, respec-

tively. In the sigma-clipping() module, the avg() and stdv() aggregate operators are com-

puted over the whole input at each iteration, which is inefficient. In incr-sigma-clipping(),

the user rewrites the avg() and stdv() aggregate operators in terms of two other aggregate

operators count() and sum() (Algorithm 8, Lines 18 and 24). The user also needs to carefully

merge the current partial aggregates with the aggregate result of the previous iteration (Algorithm 8,

Line 22). As shown in Algorithm 8, writing an efficient incremental implementation is not a trivial

task. It is painful for users if they need to rewrite their algorithms to compute these increments
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Algorithm 9 ArrayLoop version of the SigmaClip application followed by image co-addition
1. function ARRAYLOOP-SIGMA-CLIPPING(A,k) . SigmaClip algorithm with FixPoint operator provided by the user.
2. Input: Iterative Array A <float d>[x,y,t],
3. Input: k a constant parameter.
4. π : [x][y][z]→ [x][y].
5. δ : “A.d ≥ µ− k × σ and A.d ≤ µ+ k × σ : A?φ”
6. f : {avg() as µ, stdv() as σ}
7. FixPoint(A, π, f, δ, count(), 0)
8. end function

9. function ARRAYLOOP-INCR-SIGMA-CLIPPING(A,k) . ArrayLoop incremental rewriting of the SigmaClip.
10. Input: Iterative Array A <float d>[x,y,t],
11. Input: k: a constant parameter.
12. Local: Iterative Array C <int c,float s,float s2>[x,y],
13. ∆A− ← A
14. while (∆A− is not empty) do
15. T1[x, y]← select count(d) as c, sum(d) as s, sum(d2) as s2 from ∆A− group by x, y

16. if (first iteration) then
17. C ← T1[x, y]
18. else
19. merge(C,T1,C.c− T1.c)

20. merge(C,T1,C.s− T1.s)

21. merge(C,T1,C.s2 − T1.s2)
22. end if

23. T [x, y]← select T.s
T.c

AS µ, 2
√
T.s2

T.c
− (T.s

T.c
)2 AS σ FROM ∆+C

24. merge(A, T, T.µ− k × T.σ ≤ A.d ≤ T.µ+ k × T.σ : A?φ)

25. end while
26. end function

co-addition phase:
27. R[x, y]← select sum(A.d) as coadd from A group by x, y

and manage them during the computation. Ideally, the user wants to define the semantics of the

algorithm and the system should automatically generate an optimized, incremental implementation.

Additionally, as we show in the evaluation, if the system is aware of the incremental processing, it

can further optimize the implementation by pushing certain optimizations all the way to the storage

layer.

4.4.1 Query Rewrite for Incremental Processing

In ArrayLoop, we show how the incremental processing optimization can be applied to ar-

rays. As it is shown in Algorithm 9, with ArrayLoop, the user provides a FixPoint operator

in ArrayLoop-sigma-clipping function. ArrayLoop automatically expands and rewrites

the operation into an incremental implementation if the application supports it, as shown in the

ArrayLoop-incr-sigma-clipping function. Currently the decision to use incremental itera-
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tive processing is left to the user. Given the FixPoint operator, ArrayLoop performs two tasks: (1)

it automatically rewrites aggregate functions, if possible, into incremental ones and (2) it efficiently

computes the last state of the iterative array using the updated cells at each iteration. The automatic

rewrite is enabled by the precise model for iterative computations in the form of the three functions

π, f , and δ. Given this precise specification of the loop body, ArrayLoop rewrites the computation

using a set of rules that specify how to replace aggregates with their incremental counter-parts when

possible. To efficiently compute incremental state updates, we introduce a special merge operator.

We now describe both components of the approach.

(1) Automatic aggregate rewrite: ArrayLoop triggers the incremental iterative processing

optimization if any aggregate function in the FixPoint operator is flagged as incremental. The Data

cube paper [34] defines an aggregate function F () as algebraic if there is an M-tuple valued function

G() and a function H() such that: F ({Xi,j}) = H({G({Xi,j}|i = 1, . . . , I})|j = 1, . . . , J}).

ArrayLoop stores a triple (agg, {G1, . . . , Gk}, H) for any algebraic function in the system and

rewrites the aggregate query in terms of G() and H() functions during the query rewriting phase. For

example, ArrayLoop records the triple (avg(),{sum(),count()},sum/count) and rewrites

the algebraic average function avg() using the combination of sum() and count() to leverage

incremental iterative processing.

(2) Incremental state management: ArrayLoop provides an efficient method for managing

array state and incremental array updates during the course of an iterative computation. We observe

that, during incremental processing, a common operation is to merge the data in two arrays, which do

not necessarily have the same number of dimensions. In our example application, merging happens

when the partial aggregates are combined with the aggregate result of the previous iteration, line 22

in incr-sigma-clipping() function. This operation merges together two 2D arrays where

the merge logic is inferred from the incremental aggregate function f . Such merging also happens

when the results of the aggregate function are used to update the iterative array, lines 25 and 26

in incr-sigma-clipping() function. In this case, the application merges the data in a 2D

array with the data in a 3D array by sliding or extruding the 2D array through the 3D array. The δ

cell-update function defines the logic of the merge operation in this case. The π assignment function

pairs-up cells from the intermediate aggregation array and the iterative array that merge together.
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In the manual implementation, shown in the incr-sigma-clipping() function, the user

implements the merge logic manually using join and filter queries, which is inefficient. 1 To remove

this inefficiency, given the FixPoint operator, ArrayLoop automatically generates queries with

explicit merge points that leverage a new merge operator that we add to SciDB: merge(Array

source, Array extrusion, Expression exp).

The new merge operator is unique in a sense that it not only specifies the merge logic between

two cells via a mathematical expression, exp, but it also automatically figures out which pairs of

cells from the two arrays merge together by examining their common dimensions. ArrayLoop merges

two cells from the source array and extrusion array if they share the same dimension-values in those

dimensions that match in dimension-name. One cell in the extrusion array can thus merge with

many cells in the source array. Figure 4.7 illustrates the merge operator for queries in lines 25

and 26 in Algorithm 8. As the figure shows, the extrusion array slides through the source array

as the merging proceeds.

4.4.2 Pushing Incremental Computation into the Storage Manager

Our key observation is that increments between iterations translate into updates to array cells and

can thus be captured with two auxiliary arrays: a positive delta array and a negative delta array. At

each iteration, the positive delta array ∆A+ records the new values of updated cells and the negative

delta array ∆A− keeps track of the old values of updated cells. Delta arrays can automatically be

computed by the system directly at the storage manager level.

As a further optimization, we extend the SciDB storage manager to manage simple merge

operations such as addition/subtraction found in Lines 19, 20, and 21 of Algorithm 9. In fact, queries

in the incr-sigma-clipping() function at Lines 27, 28, and 30 (queries with red box frames)

can all be pushed into the storage manager. ArrayLoop uses naming conventions as a hint to the

storage manager about the semantics of the merge operation. For example A(−) ← B, asks the

storage manager to subtract array B from array A and store the result of the (A−B) operation as

the new version of array A. In case array A is iterative, the new values and the old values of updated

1From an engineering point of view, the new merge operator, unlike a join, can also leverage vectorization where
instead of merging one pair of matching cells at a time, ArrayLoop merges group of matching cells together, potentially
improving query runtime, especially when the number of dimensions in the two input arrays is different.
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Figure 4.5 Cumulative runtime of the SigmaClip application with constant k = 2 on a subset of
LSST images with and without incremental iterative processing optimization on the first 17 iterations.
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cells are stored in ∆+A and ∆−A, respectively.

To achieve high performance, the storage manager keeps chunks of the result array A together

on disk with the corresponding chunks from the auxiliary ∆A+ and ∆A− arrays. Furthermore, we

extend the Scan() and Store() operators to read and write partial arrays ∆A+ and ∆A−, respec-

tively. With those optimizations, the user does not need to explicitly write a user-defined diff()

function or, as shown in the incr-sigma-clipping() example, a sequence of join() and

filter() queries in order to extract delta arrays from the output of the last iteration.

A query runtime comparison of the SigmaClip application with all the incremental iterative

processing optimizations and no optimization is illustrated in Figure 4.5. Unlike the naı̈ve version

whose cumulate runtime increases linearly as the iteration proceeds, the runtime increase drops

significantly in the incremental version and the cumulative runtime of the graph nearly flatten at

iteration 17.

4.5 Iterative Overlap Processing

To process a query over a large-scale array in parallel, SciDB (and other engines) break arrays

into sub-arrays called chunks, distribute chunks to different compute nodes (each node receives

multiple chunks), and process chunks in parallel at these nodes. For many operations, such as filter

for example, one can process chunks independently of each other and can union the result. This
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Figure 4.6 Snapshots from the first 3 iterations of the SigmaClip application with incremental
optimization on the LSST dataset. Green-colored points are the ones that change across iterations.
As the iterative computation proceeds, the number of green-colored points drops dramatically.

(a) Original Image (b) Iteration-1 (c) Iteration-2 (d) Iteration-3

Figure 4.7 merge(A, T, T.µ−k×T.σ ≤ A.d ≤ T.µ+k×T.σ : A?φ) in SigmaClip application.
This is the core filtering step where the outliers are removed. The 3D source array A<float d>[x,y,t]
and the 2D extrusion array (highlighted) T <float µ,float σ>[x,y] share the first two dimensions. (a),
(b), (c), and (d) show how the cells in the extrusion array slide into the source array at runtime.
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simple strategy, however, does not work for many scientific array operations. Frequently, the value of

each output array cell is based on a neighborhood of input array cells. Data clustering is one example.

Clusters can be arbitrarily large and can go across array chunk boundaries. A common approach to

computing such operations in parallel is to perform them in two steps: a local, parallel step followed

by an aggregate-type post-processing step [48, 49, 56] that merges partial results into a final output.

For the clustering example, the first step finds clusters in each chunk. The second step combines

clusters that cross chunk boundaries [48]. Such a post-processing phase, however, can add significant

overhead. To avoid a post-processing phase, some have suggested to extract, for each array chunk, an

overlap area ε from neighboring chunks, store the overlap together with the original chunk [87, 91],

and provide both the core data and overlap data to the operator during processing [99]. This technique

is called overlap processing. An example of the overlapped chunks are depicted in Figure 4.8.
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4.5.1 Efficient Overlap Processing

Overlap processing can be especially helpful for iterative computations that need to perform an

operation multiple times until a termination condition. A technique similar to overlap processing has

been used in iterative graph-processing systems. Distributed GraphLab [53] proposed ghost nodes

that are replicas of vertices across graph partitions. The idea is to provide each vertex in the graph

with direct memory access to all its neighboring vertices. The challenge is then to efficiently keep

the cached vertices up to date. Similarly, ArrayLoop leverages overlapping techniques to support

iterative parallel array processing, where cells at boundary of chunk partitions are replicated and

must be kept up to date.

Array applications that can benefit from overlap processing techniques are those that update the

value of certain array cells by using the values of neighboring array cells. The SourceDetect

application described in Section 4.2.2 is an example application that can benefit form overlap

processing. Other example applications include “oceanography particle tracking”, which follow a set

of particles as they move in a 2D or 3D grid. A velocity vector is associated with each cell in the grid

and the goal is to find a set of trajectories, one for each particle in the array. Particles cannot move

more than a certain maximum distance (depending on the maximum velocity of particles) at each

step. These applications can be effectively processed in parallel by leveraging overlap processing

techniques.

The challenge, however, is to keep replicated overlap cells up-to-date as their values change

across iterations. To efficiently update overlap array cells, we leverage SciDB’s bulk data shuffling

operators as follows: SciDB’s operator framework implements a bool requiresRepart()

function that helps the optimizer to decide whether the input array requires repartitioning before the

operator actually executes. The partitioning strategy is determined by the operator semantics. For

example, WindowAggregate operator [89] in SciDB requires repartitioning with overlap in case

the input array is not already partitioned in that manner. We extend the SciDB operator interface

such that ArrayLoop can dynamically set the returned value of the operator’s requiresRepart()

function. To update overlap data, ArrayLoop sets the requiresRepart() return value to true.

ArrayLoop has the flexiblity to set the value to true either at each iteration or every few iterations. In

case an operator in SciDB is guided by ArrayLoop to request repartitioning, the SciDB optimizer
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injects the Scatter/Gather [89] operators to shuffle the data in the input iterative array before

the operator executes. With this approach, ArrayLoop leverages the rich set of array operators

available in SciDB to keep the overlap data up to date. One benefit of this approach is that array

operators in SciDB runs at the chunk level. They receive data chunks as inputs and produce a data

chunk as output. Therefore, the Scatter/Gather operation re-shuffles overlap data one chunk at

a time. Chunk-based data shuffling is faster compared with the method that shuffles overlap data one

cell at a time. The downside of using SciDB’s Scatter/Gather general operators is the relative

higher cost of data shuffling when only few overlap cells have changed.

4.5.2 Mini-Iteration Processing

Keeping overlapping cells updated at each iteration requires reading data from disk, shuffling it

across the network, and writing it to disk. These are all expensive operations. Any reduction in the

number of such data synchronization steps can yield significant performance improvements.

We observe that a large subset of iterative applications have the property that overlap cells can

be updated only every few iterations. These are applications, for example, that try to find structures

in the array data, e.g. SourceDetect application. These applications can find structures locally

and eventually need to exchange information to stitch these local structures into larger ones. For

those applications, we do the following additional optimization: We run the algorithm for multiple

iterations without updating the replicas of overlap cells. The application iterates over chunks locally

and independently of other chunks. Every few iterations, we update overlap cells, and continue with

another set of local iterations. The key idea behind this approach is to avoid data movement across

array chunks unless we are sure there are enough changes to justify the cost.

We call each series of local iterations without overlap cell synchronization a mini iteration.

Figure 4.8 illustrates the schematic of the mini iteration optimization. A similar idea has already

been exercised in other data management systems with iteration support. For example, in distributed

GraphLab [53], a vertex may choose to schedule its neighbors only when it has made a substantial

change to its local data. We borrow this optimization and apply it to arrays to measure the efficiency

of that optimization in this new setting. Unlike GraphLab, ArrayLoop makes the overlap data

shuffling a global decision for the entire array not the individual cells, which leverages SciDB’s
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Figure 4.8 The schematic picture for mini iteration optimization. ∆i
m represents local changes at

iteration i at mini-iteration m and ∆i is the global changes at iteration i.
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simpler scheduler and also amortizes the cost by synchronizing all overlap cells in the same operation.

An alternative approach is for the scheduler to delegate the decision to shuffle overlap data to

individual chunks, rather than making the decision array-global as we do in this paper or cell-local as

in GraphLab. We leave this extra optimization for future work.

ArrayLoop includes a system-configurable function SIGNAL-OPT() that takes as input an

iteration number and a delta iterative array which represents the changes in the last iteration. This

function is called at the beginning of each iteration. The output of this function defines if the overlap

data at the current iteration needs to be shuffled. A control flow diagram of this procedure is described

in Figure 4.9. There exists an optimization opportunity to exploit: Do we exchange overlap cells

every iteration? or do we wait until local convergence? or something in between these two extremes?

We further examine those optimization questions in Section 4.7.

4.6 Multi-Resolution Optimization

In many scientific applications, raw data lives in a continuous space (3D universe, 2D ocean, N-D

space of continuous variables). Scientists often perform continuous measurements over the raw data

and then store a discretized approximation of the real data in arrays. In these scenarios, different

levels of granularity for arrays are possible and scientifically meaningful to analyze. In fact, it is

common for scientists to look at the data at different levels of detail.

As discussed earlier, many algorithms search for structure in array data. One example is the
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Figure 4.9 Control flow diagram for mini-iteration-based processing in ArrayLoop.
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extraction of celestial objects from telescope images, snow cover regions from satellite images, or

clusters from an N-D dataset. In these algorithms, it is often efficient to first identify the outlines of

the structures on a low-resolution array, and then refine the details on high-resolution arrays. We call

this array-specific optimization multi-resolution optimization. This multi-resolution optimization is a

form of prioritized processing. By first processing a low-resolution approximation of the data, we

focus on identifying and approximating the overall shape of the structures. Further processing of

higher-resolution arrays helps extract the more detailed outlines of these structures.

In the rest of this section we describe how ArrayLoop automates this optimization in SciDB.

We use the KMeans application described in Section 4.2.3 and the SourceDetect application

described in Section 4.2.2 as our illustrative examples.

To initiate the multi-resolution optimization, ArrayLoop initially generates a series of versions,

Ai, Ai+1, . . . , Aj , of the original iterative array A. Each version has a different resolution. Ai is the

original array. It has the highest resolution. Aj is the lowest-resolution array. Figure 4.10 illustrates

three pixelated versions of an lsst image represented as iterative array A0 in the context of the

SourceDetect application. The coarser-grained, pixelated versions are generated by applying a

sequence of grid followed by filter operations represented together as gridp(), where p is the

predicate of the filter operator. The size and the aggregate function in the grid operator are
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application-specific and are specified by the user. The SourceDetect application has a grid-size

of (2 × 2) and an aggregate function count with a filter predicate that only passes grid blocks

without empty cells (in this scenario all the grid blocks with count=4). This ensures that cells that

are identified to be in the same cluster in a coarsened version of the array, remain together in finer

grained versions of the array as well. In other words, the output of the iterative algorithm on the

pixelated version array Aj should be a valid intermediate step for Aj−1. ArrayLoop runs the iterative

function Q on the sequence of pixelated arrays in order of increasing resolution. The output of the

iterative algorithm after convergence at pixelated version Ai is transformed into a finer-resolution

version using an xgrid operator (inverse of a grid operator). It is then merged with Ai−1, the next

immediate finer-grained version of the iterative array. We represent both operations as xgridm().

The xgrid operator [89] produces a result array by scaling up its input array. Within each dimension,

the xgrid operator duplicates each cell a specified number of times before moving to the next

cell. The following equations illustrate the ordered list of operators called by ArrayLoop during

multi-resolution optimizations:

A0 gridp()−−−−→ . . . Ai gridp()−−−−→ Ai+1 gridp()−−−−→ . . . Aj

Aj Q−→ A∗j xgridm(A∗j)−−−−−−−−→ Aj−1
x

. . .(4.4)

A1
x

Q−→ A∗1 xgridm(A∗1)−−−−−−−−→ A0
x

A0
x

Q−→ A∗0

where A∗i is the output of the iterative algorithm Q on pixelated array Ai, and Aj−1 is replaced

with Aj−1
x as the new input for the iterative computation at pixelated version (j − 1).

By carefully merging the approximate results with the input array at the next finer-grained level,

ArrayLoop skips a significant amount of computation.

The K-means clustering algorithm on points in a continuous space is another example application

that benefits from this optimization. The KMeans application can use an arbitrary grid size. It also

uses count as the aggregate function with a filter predicate that passes grid blocks that have at
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Figure 4.10 Illustration of the multi-resolution optimization for the SourceDetect applica-
tion. There is a sequence of three grid operations initiated from the original lsst image A0:

A0 gridp(A0,2,2)−−−−−−−−→ A1 gridp(A1,2,2)−−−−−−−−→ A2 gridp(A2,2,2)−−−−−−−−→ A3. The more pixelated versions only retain the
main structure of the image.

Array A0 

Array A1 

   grid() 

   xgrid() 

least one non-empty cell. It is easy to observe that in case of K-means clustering, Aj−1
x is a valid

labeling for the next pixelated array Aj−1. Basically, K-means clustering on Aj produces a better set

of centroids for the k-means algorithm on Aj−1 than a random set of centroids.

The advantage of applying the multi-resolution optimization goes beyond better query runtime

performance. This optimization can also help when the original iterative array changes, which is

described as the following additional optimization:

Input Change Optimization: If ArrayLoop materializes the outputs A∗i for all the pixelated

versions of the original array A, then there is an interesting optimization in case the original iterative

array A is modified. Unlike the Naiad system [59] that materializes the entire state at each iteration to

skip some computation in case of change in the input data, ArrayLoop takes a different strategy. When

changes in the input occur, ArrayLoop re-generates the pixelated arrays Ais in Equation 4.4, but only

runs the iterative algorithm Q for those arrays Ais that have also changed in response to the input

array change. If Ai did not change for some i, ArrayLoop skips the computation Ak
Q−→ A∗k ∀k ≥ i

and uses the materialized result A∗i from the previous run to produce Ai−1
x . The intuition is that, if

there are only a few changes in the input array, it is likely that changes are not carried over to all the

pixelated versions of the array and our system reuses some results of the previous run for the current

computation as well.
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4.7 Evaluation

In this section, we demonstrate the effectiveness of ArrayLoop’s native iterative processing

capabilities including the three optimizations on experiments with 1TB of LSST images [83]. We

describe this dataset in detail in Chapter 7. Because the LSST will only start to produce data in 2019,

astronomers are testing their analysis pipelines with synthetic images that simulate what the survey

will produce. We use one such synthetic dataset. The images take the form of one large 3D array

(2D images accumulated over time) with almost 44 billion non-empty cells. The experiments are

executed on a 20-machine cluster. (Intel(R) Xeon(R) CPU E5-2430L @ 2.00GHz) with 64GB of

memory and Ubuntu 13.04 as the operating system. We report performance for two real-scientific

applications SigmaClip and SourceDetect described in Sections 4.2.1 and 4.2.2, respectively.

SigmaClip runs on the large 3D array and SourceDetect runs on the co-added 2D version of

the whole dataset.

4.7.1 Performance for Incremental Iterative Processing

We first demonstrate the effectiveness of our approach to bringing incremental processing to the

iterative array model in the context of the SigmaClip application. Figure 4.11(a) shows the total

runtime of the algorithm with different execution strategies. As shown, the non-incremental

“sigma-clipping” algorithm performs almost four times worse than any other approach. The manual-incr

approach is the incr-sigma-clipping function from Section 4.4, which is the manually-written

incremental version of the “sigma-clipping” algorithm. This approach keeps track of all the points that

are still candidates to be removed at the next iteration and discards the rest. By doing so, it touches

the minimum number of cells from the input dataset at each iteration. Although manual-incr

performs better than other approaches at later stages of the iterative computation, it incurs significant

overhead during the first few iterations due to the extra data points tracking (Lines 25 to 28 in

incr-sigma-clipping() function). manual-incr also requires a post-processing

phase at the end of the iterative computation to return the final result. efficient-incr and

efficient-incr+storage are the two strategies used by ArrayLoop. efficient-incr

represents ArrayLoop’s query rewrite for incremental state management that also leverages our

merge operator. efficient-incr+storage further includes the storage manager extensions.
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Figure 4.11 SigmaClip application: incremental strategy v.s. non-incremental. Constant k = 3 in
all the algorithms.

0	
  

1000	
  

2000	
  

3000	
  

4000	
  

5000	
  

6000	
  

7000	
  

8000	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
  

po
st-­‐
pro
ce
ss	
  

Ru
n4

m
e	
  
in
	
  se

co
nd

s	
  

Itera4on	
  number	
  

SigmaClip,	
  Incremental	
  Itera4ve	
  Processing	
  

non-­‐incr	
   manual-­‐incr	
   efficient-­‐incr	
   efficient-­‐incr+storage	
  

(a) SigmaClip application with different strategies. manual-incr refers to
the incr-sigma-clipping function in Section 4.4. efficient-incr and
efficient-incr+storage refer to ArrayLoop versions of the SigmaClip
computation with and without additional storage optimizations, respectively.
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(b) Total runtime for SigmaClip for different strategies in seconds.

Figure 4.11(b) shows the total runtime in each case. ArrayLoop efficient versions of the algorithm

are competitive with the manually written variant. They even outperform the manual version in this

application. All the incremental approaches beat the non-incremental one by a factor of 4 − 6X .

Interestingly, our approach to push some incremental computations to the storage manager improves

efficient-incr by an extra 25%.

4.7.2 Performance of Overlap Iterative Processing

In Section 4.5, we describe overlap processing as a technique to support parallel array processing.

In the case of an iterative computation, the challenge is to keep the overlap data up-to-date as

the iteration progresses. The solution is to efficiently shuffle overlap data at each iteration. An

optimization applicable to many applications is to perform mini-iteration processing, where
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the shuffling happens only periodically. Figure 4.12(a) shows the effectiveness of this optimization

in the context of the SourceDetect application, which requires overlap processing. T1 refers

to the policy where ArrayLoop shuffles overlap data at each iteration, or no mini-Iteration

processing. As expected this approach incurs considerable data shuffling overhead, although it

converges faster in the SourceDetect application (Figure 4.12(b)). At the other extreme, we

configure ArrayLoop to only shuffle overlap data after local convergence occurs in all the chunks.

Interestingly, this approach performs worse than T1. Although this approach does a minimum number

of data shuffling, it suffers from the long tail of mini-iterations (Figure 4.12(b): 94 mini-iterations).

T5 and T10 are two other approaches, where ArrayLoop shuffles data with some constant interval.

We find that T10, which shuffles data every ten iterations, is a good choice in this application. The

optimal interval is likely to be application-specific and tuning that value automatically is beyond

the scope of this paper. The other interesting approach is to instruct ArrayLoop to initiate overlap

data shuffling when the number (or magnitude) of changes between mini-iterations is below some

threshold. We simply pick a constant number to determine the overlap data shuffling interval in the

context of the SourceDetect application. More sophisticated approaches are left for future study.

4.7.3 Performance of Multi-Resolution Optimization

The multi-resolution optimization is a form of prioritized processing. By first processing

a low-resolution approximation of the data, we focus on identifying the overall shape of the structures.

Further processing of higher-resolution (larger) arrays then extracts the more detailed outlines of these

structures. Figure 4.13(a) shows the benefits of this approach in the context of the SourceDetect

application. We generate four lower-resolution versions of the source array A0 by sequentially calling

the grid() operator with the grid-size of (2×2). We operate on these multi-resolution versions

exactly as described in Equation 4.4. The performance results are compared to those of T10 from

Figure 4.12(a) as we pick the same overlap-processing policy to operate on each multi-resolution

array. Interestingly, the multi-resolution optimization cuts runtimes nearly in half. Note that

most of the saving comes from the fact that the algorithm converges much faster in A0 compared to

its counterpart T10 (Figure 4.13(b)) thanks to the previous runs over arrays A1 through A4, where

most of the cell-points are already labeled with their final cluster values.
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Figure 4.12 SourceDetect application: Iterative overlap processing with mini-iteration optimiza-
tion.
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(a) SourceDetect application: T1, T5, and T10 refer to policies where ArrayLoop
shuffles overlap data every iteration, every 5 iterations, and every 10 iterations, re-
spectively. converge is the strategy where ArrayLoop shuffles data only after local
convergence occurs.

T1 T5 T10 converge
mini# 51 57 60 94
major# 51 11 6 3

(b) Number of major and mini iterations. Major# is the number of times
that overlap data is reshuffled and Mini# is the total number of iterations.

In Section 4.6, we described a potential optimization in case of input data changes in the original

array. As an initial evaluation of the potential of this approach, we modify the input data by dropping

one image from the large, 3D array. This change is consistent with the LSST use-case, where a new

set of images will be appended to the array every night. We observe that the new co-added image

only differs in a small number of points from the original one. Additionally, these changes do not

affect the pixelated array A1. This gives us the opportunity to re-compute the SourceDetect

application not from the beginning, but from the pixelated version A1. Although the performance

gain is not major in this scenario, it demonstrates the opportunity for further novel optimizations that

we leave for future work.



98

Figure 4.13 SourceDetect application: Multi-resolution Optimization.
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(b) Iteration# that converges at each resolution.

4.8 Conclusion

In this chapter, we developed a model for iterative processing in a parallel array engine. We then

presented three optimizations to improve the performance of these types of computations: incremental

processing, mini-iteration overlap processing, and multi-resolution processing. Experiments with

a 1TB scientific dataset show that our optimizations can cut runtimes by 4-6X for incremental

processing, 31% for overlap processing with mini-iterations, and almost 2X for the multi-resolution

optimization. Interestingly, the optimizations are complementary and can be applied at the same time,

cutting runtimes to a small fraction of the performance without our approach.
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Chapter 5

ASCOTDB: DATA ANALYSIS AND EXPLORATION PLATFORM FOR
ASTRONOMERS

In previous chapters, we tackled some challenging problems in the context of building an array-

based system. We introduced ArrayStore (Chapter 2) which provides efficient storage management

techniques to store an array on disk. We built TimeArr (Chapter 3), a second storage manager with

efficient support for updates and data versioning. We also prototyped ArrayLoop (Chapter 4), an

array-query executor and extended storage manager with support for efficient iterative computations.

In this chapter, we present AscotDB a data analysis system and service that we built on top of SciDB

to enable efficient analysis of telescope images. AscotDB is an example application that leverages a

parallel array-based system, including several of the iteration-related optimizations from Chapter 4.

As we described in the introduction (Chapter 1.1.1), astronomy, like other scientific fields, is

currently moving to a new realm of research driven by large datasets. A famous example is the Large

Synoptic Survey Telescope (LSST), which will accumulate a large database of telescope images of

the visible sky. In order to bring a truly transformative science from the LSST dataset, astronomers

need powerful engines with the ability to directly analyze the pixelated raw images. The system must

enable interactive and exploratory computation and visualization of the data, which are essential first

steps that inform further, more in-depth analysis.. Now the question is: Can we provide the scientific

community with such a transformative tool? The AscotDB [62, 106] system has emerged in answer

to this question.

AscotDB is a new tool for the analysis of telescope image data. While based on astronomy as its

key application-domain, AscotDB primitives are general enough to be applicable to other scientific

fields. AscotDB integrates several pieces of technology: the SciDB [87] engine for data storage and

processing, Python for easy programmatic access (the programmatic access is not a contribution of

this thesis), and The AStronomy COllaborative Toolkit (Ascot) [58] for graphical data exploration.

None of these technologies solves the LSST large-scale data analytics and data management problems
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on its own. More importantly, their naı̈ve combination is also insufficient.

Ascot [58]1 developed in the Astronomy community, is a collection of Web-based gadgets that

facilitate collaboration between astronomers. These gadgets are assembled into a dashboard and

communicate using a node.js server. Through the use of a customizable dashboard interface, users can

easily visualize, manipulate, and share large data sets from many different sources. Ascot, however,

only enables the display of individual images and the analysis of pre-processed catalog data. It does

not support the large-scale analysis of pixel data.

AscotDB provides a compelling and powerful environment for exploration, visualization, and col-

laborative analysis of large telescope image datasets. AscotDB further contributes several techniques:

(1) It demonstrates a scientifically useful integration of Ascot and SciDB. (2) It proves the success of

integration by demonstrating [62] the data exploration and analysis enabled by this integrated tool on

a terabyte-sized dataset. (3) Finally, It demonstrates the necessity of extending SciDB with native

support for efficient iterative computations (Chapter 4). Other contributions of AscotDB that are

not part of this thesis include: (1) A more intuitive Python language bindings through a new Python

package called SciDB-Py2. (2) A Python middleware that enables efficient storage and manipulation

of spherical data [106].

In the rest of this chapter, we present an overview of the AsctoDB system, its architecture, its

components, and how user interacts with the AscotDB front-end.

5.1 AscotDB Overview

The basic operations astronomers perform on images fall into two categories: detection and

measurement. Detection is the process of identifying the location of individual sources in an

image, where the sources might be stationary objects such as individual stars and galaxies, or

moving/transient objects such as asteroids or supernovae. Measurement involves computing well-

calibrated statistics from the light of the individual objects: for example, computing the total optical

flux from a star through a detailed model of its response across the CCD pixels. AscotDB provides

the user with two modes of interaction with the data: (1) Visual interaction with Ascot gadgets

1http://ascot.github.io/

2http://jakevdp.github.io/SciDB-Py

http://ascot.github.io/
http://jakevdp.github.io/SciDB-Py
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Figure 5.1 AscotDB architecture: SciDB as back-end, python middleware, Ascot and IPython as
front-ends.
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that we describe in Section 5.2.1 – these visual interactions are an important component of the

detection process; and (2) an IPython interface for programmatic interaction for both detection and

measurement. The latter is not a contribution of this thesis and we refer the reader to the AscotDB

overview paper for details [106]. The overall architecture of AscotDB and the high level interaction

between components are illustrated in Figure 5.1.

5.2 AscotDB Front-end and User Interactions

AscotDB provides the user with two modes of interaction with the data: (1) Visual interaction;

and (2) Programmatic interaction. These two modes are illustrated in Figure 5.2.

5.2.1 Graphical and Programmatic Front-End Support

Figure 5.2(a) shows a screenshot of AscotDB’s graphical interface. AscotDB retains important As-

cot features including its extensibility through the addition of new gadgets and its sharing capabilities

across users. AscotDB, however, radically transforms Ascot’s data analysis capabilities. Originally,

Ascot enabled users to view a single telescope image at a time and overlay on the image catalog data

extracted from a back-end relational DBMS. In contrast, AscotDB enables users to manipulate raw

pixel data. For example, users can stack images of the sky that fall within a region, clean them using

an iterative process, re-run a source detection algorithm, annotate interesting sources, and generate

visual summaries (e.g., light curves) before initiating a measurement process. To support these novel

operations, AscotDB stores the telescope image data inside SciDB and translates operations on the

interface into queries over SciDB’s arrays. Because scientists are technically savvy users and because

graphical interfaces can inaccurately capture a user’s intent, AscotDB always shows the queries that
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Figure 5.2 Two modes of interaction with AscotDB: visual interface and IPython interface. The
visual interface is embedded in IPython, but here is shown separately for purposes of illustration.

(a) Graphical front-end of AscotDB with a pixel image, a time-
series chart, and a SciDB interface

(b) Programmatical front-end of AscotDB.

it generates and enables a user to modify them before executing them.

A second important design decision in AscotDB’s graphical front-end was to strike a balance

between a tool specialized for one analysis task and a general-purpose system such as Tableau [103].

For AscotDB, we opted to develop one gadget per high-level activity (e.g., data cleaning, image stack-

ing, and time-series extraction) since the community typically performs a small set of such activities.

AscotDB enables users to assemble these gadgets and thus activities in arbitrary combinations.

AscotDB also includes a Python interface for programmatic interaction which is not the con-

tribution of this thesis. The Python interface to AscotDB is provided via the IPython notebook as

illustrated in Figure 5.2(b). IPython is a set of tools designed to facilitate the entire life-cycle of a

scientific project, from data exploration to publication. One component is a browser-based notebook

with the support for editing and running Python code, as well as rich objects such as embedded plots,

html objects, and mathematical expressions. Integrating the interactive, visual scientific computing

environment of IPython interface within the AscotDB environment enables seamless sharing and

processing of large astronomical datasets.
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5.2.2 User Interaction with AscotDB

We now describe the AscotDB capabilities in more detail. There are two fundamental phases as

the user interacts with AscotDB: the Analysis phase and the Exploration phase.

Analysis Phase In this phase, the user can run and observe the results of the “co-addition” (stacking

images together to detect faint sources) and the “sigma-clipping” (iterative data cleaning algorithm)

tasks (Example 1.1.1 for more details). The user selects the region of the sky that forms the input to

the analysis. The user also has the choice to run the “sigma-clipping” algorithm in a naı̈ve way or

to enable incremental iterative processing optimization (Section 4.4) and observe the performance

differences. The user can also tune parameters, such as the threshold to filter outliers in “sigma-

clipping” algorithm, to observe its effect on the number of iterations until convergence. The sequence

of tasks in this phase is illustrated in Figure 5.3(a).

Exploration Phase AscotDB supports multiple exploratory tasks such as viewing images, querying

catalogs, and plotting time-series data. This phase is illustrated in Figure 5.3(b). We describe the

time-series capability in more detail: the user can select an arbitrary region on the sky and generate a

time-series for that region as shown in Figure 5.2(a). The time-series plot that AscotDB supports

shows the value of one of the attributes (e.g. flux value) over time. The value shown is an aggregate

value computed over the entire selected region.

Each point in the time-series plot corresponds to one timestep in our original pixel images.

AscotDB gives the option to the user to select interesting points in the time series, filter out the rest,

and redo the analysis (i.e., sigma-clipping and co-addition) on a subset of pixel images corresponding

to the interesting points in the time series. As Figure 5.4 illustrates, the output of the exploration

phase is fed back as refined input to the next analysis phase.

5.3 AscotDB Middleware Python Support and SciDB backend

AscotDB is a layered system. It builds on a Python middleware and SciDB back-end to enable

both exploratory and deep analysis of the data. We now describe these two layers in more details.
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Figure 5.3 “Analysis” and “Exploration” phases
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(a) Analysis phase: The user selects a region on the sky,
tunes parameters, and runs the “sigma-clipping” algorithm
followed by image “co-addition”. The user also has the op-
tion to perform “co-addition” on the original images directly.
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(b) Exploration phase: AscotDB supports multiple ex-
ploratory tasks such as viewing images, querying catalogs,
and plotting time-series data.

Figure 5.4 The user interacts with AscotDB by alternating between exploration and analysis phases.
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5.3.1 Middleware Python

Python has seen significant uptake among astronomers and other domain scientists because

it is open-source, cross-platform, and easy for non-programmers to learn. The scientific Python

ecosystem, built around the core tools of NumPy & SciPy [69], Matplotlib [42], and IPython [78]

(including the web-based interface of the IPython notebook), provides a complete environment for

the analysis and visualization of data at a small to medium scale. Due to its advantages, a wide

selection of current and future astronomical surveys are now building their data analysis pipelines

using Python. Of particular relevance for this work, the LSST project plans to use Python as their

primary data pipeline interface. In this environment, it is increasingly important for data analysis

tools to provide Python-hooks for any computing infrastructure. Python alone, however, provides

limited data management capabilities and is non-trivial to use on LSST-sized datasets.

AscotDB includes a Python middleware, illustrated in Figure 5.1, that wraps around the SciDB

backend and provides a foundation for a host of more specialized packages implementing algorithms

used in a wide variety of scientific fields. Current implementation of Python middleware hosts
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libraries to transform SciDB query result into FITS3 file format and essential specialized Python

libraries to transform sky coordinates to the underlying SciDB array coordinates and vice versa.

The graphical front-end is layered on top of this python middleware and leverages both the FITS

file and spherical coordinates capabilities. The Python front-end through SciDB-py also uses these

middlware capabilities.

5.3.2 SciDB Back-end

AscotDB stores the LSST image data inside SciDB. Several astronomy operations including

source detection and data cleaning are iterative in nature and they are expensive to run in SciDB.

To support these iterative tasks at interactive speeds (Figure 4.5), AscotDB uses the iterative array

processing extensions in SciDB that we developed and we present in Chapter 4. The support

includes the execution of such iterations in shared-nothing clusters and various optimizations such as

incremental processing (Section 4.4). We presented an overview of SciDB in Section 1.2. For further

information about SciDB, we refer the reader to the SciDB overview paper [87].

5.4 AscotDB Lessons Learned and Future Directions

Efficient data exploration, visualization, and analysis in the context of future large astronomical

surveys will require a combination of advances in the areas of large-scale data storage, processing,

and visualization. We have presented one set of approaches to this problem: AscotDB. While we

demonstrate the capabilities of our solution in the context of the analysis of astronomy telescope

images, we emphasize that AscotDB primitives are general enough to be applicable to other scientific

fields.

One important requirement of AscotDB is the integration of both the graphical and python modes

of interaction such that the user can go seamlessly back and forth between them. The main question

to be answered is how to keep the working data in both modes synchronized. One possibility is to

keep track of all the actions in the Ascot front-end in the form of SciDB queries and, after switching

the mode to Python, have the system run the same queries in the same order in the background. This

approach makes it easier to track the lineage of data and thus facilitates reproducibility. However,

3http://fits.gsfc.nasa.gov/fits_standard.html

http://fits.gsfc.nasa.gov/fits_standard.html
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a session where a user interacts with a graphical engine can be long, can contain a large number

of queries, and can dwarf the remaining Python script. Another approach is to move minimal

amounts of data between the two interfaces to keep the working data synchronized. We prefer

synchronizing the two interfaces by capturing user queries because of this approach’s lineage tracking

and reproducibility properties. To address the problem of large query sessions, however, in the

AscotDB system, an interesting area of future work is to experiment with a variety of techniques to

automatically extract minimal query sets, which produce the results from a visual analysis session.

The key aim is to minimize the number of queries but without re-ordering them nor combining them

into more complex and difficult-to-understand queries. It is critical for the user to identify in the

summary script all the key steps that he or she took during the visual exploration.
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Chapter 6

RELATED WORK

There are multiple lines of research that are related to this thesis work. In this chapter, we cover

the literature in the following areas: Array processing and systems, array data storage, array data

versioning, and iterative processing.

6.1 Related Work on Array Processing and Systems

Many engines are being built today to support multidimensional arrays [3, 15, 20, 28, 33, 87, 110].

RasDaMan [28] is a multidimensional array DBMS implemented on top of a relational DBMS. Array

chunks in RasDaMan are stored as BLOBs in the underlying database. The array processing in

RasDaMan is through a set of operators that are integrated into the SQL language. A few optimization

techniques in RasDaMan are loop fusion, dynamic compilation, and GPU support. Loop fusion

optimization merges atomic operation nodes in the query plan tree into one. In our work, we

developed several array storage and processing methods, and implemented them as extensions to

SciDB, to provide efficient support for versioning and iterative computations, features that are not

well-supported by RasDaman.

MonetDB [3, 43] is a columnar database with support for array processing through the RAM [105]

and the SRAM [22] systems. RAM and SRAM do not run in parallel and they do not provide native

support for arrays. Arrays in those systems are represented as relations and array operations are

mapped onto relational algebra operators.

Many engines support parallel array processing [3, 15, 20, 28, 33, 87]. A well-studied approach

for processing array operations in parallel is to divide the original array into multiple subarrays and

run the operation independently on each subarray. If necessary, the results from local computations are

post-processed (a.k.a., “rolled-up” or “merged”) to obtain the final output [3, 15, 20, 28, 48, 49, 87].

Additionally a few engines [87] also have the ability to run queries with overlap and potentially avoid

the merge processing overhead. The prototypes that we developed in this thesis support parallel



108

array processing by both partitioning the array into smaller subarrays and also running queries with

overlap.

SciDB [87] is an open-source database system with inherent support for multi-dimensional arrays.

SciDB is a parallel, distributed data management system based on shared-nothing architecture. It

provides parallelism by partitioning array data into multiple sub-arrays called chunk. It further paral-

lelizes queries using overlap processing strategy (rather than post-processing merge). The application

layer in SciDB has full support for both declarative and functional languages. There are bindings

from popular languages such as Python and R to SciDB as well. Our work develops techniques that

can be integrated into a system such as SciDB and several of our prototypes (ArrayLoop in Chapter 4

and TimeArr in Chapter 3) have been developed as extensions to SciDB.

Parallel programming languages such as UPC [104], Global Arrays [65], and Co-Array For-

tran [68] faciliate the task of coding parallel array processing applications. Those parallel languages

provide flexible access to remote array partitions providing the abstraction of a shared memory

address space. They target applications where a given local chunk may need to access an arbitrary

set of remote chunks. In contrast, “overlap” and “merge” execution techniques in array engines

such as SciDB and RasDaMan provide more loosely coupled parallelism for applications where the

computation of a given chunk is restricted to its adjacent chunks in the context of shared nothing

architectures.

The Network Common Data Form (netCDF) [84, 85] and Hierarchical Data Format version 5

(HDF5) [37] are simple data models that provide a portable and efficient mechanism to store and

access multidimensional data. They both simply organize data into regular arrays using traditional

programming languages techniques. Neither is a database management system and thus is not not an

alternative for array databases.

EXTASCID [16] is an extensible parallel system that provides native support both for arrays

and key-value relations. The execution strategy in EXTASCID is through user defined aggregates

(UDA) interface with easy reasoning for parallelism, while other array engines such as SciDB provide

parallelism through array partitioning and overlap processing.

AstroShelf [64], similar to AscotDB, is a collaborative system that enables astrophysicists to

investigate celestial objects using catalog data hosted at different sites. Astroshelf is a stream
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processing system that matches events (either celestial events or derived annotations) to users who are

likely to be interested in them. In contrast, AscotDB focuses on interactive, collaborative processing

of archived data.

While SciDB does provide a low-level Python API for the execution of Array Query Language

(AQL) and Array Functional Language (AFL) queries, the interface is too opaque for it to be useful

to most astronomers. SciDB-Py [90]1 is an intuitive Python interface to SciDB. It is designed with an

API familiar to users of the NumPy array computing library. The SciDB-py operations are executed

entirely within the SciDB architecture through the automatically generated AFL queries. the actual

AFL queries are transparent to the user, and the Python interpreter itself never sees the data. By

providing such an intuitive, high-level wrapper around the efficient storage and operations available

in SciDB, SciDB-py makes the power of SciDB accessible to the average scientific Python user.

Blaze [9], often billed as the “Next generation NumPy”, aims to implement a very general array

framework within Python. It will support a wide variety of table and array-like structures capable

of handling arbitrary local and distributed memory layouts, type heterogeneity, axis labels, missing

or masked values, and other commonly-requested features. SciDB is just one of a wide variety of

potential backends for large-scale distributed array storage and computing through Blaze: in this light,

SciDB-Py can be considered a precursor to the much more ambitious framework Blaze promises to

implement. Our extensions in SciDB also provide SciDB AFL and AQL languages as query interface,

so they are thoroughly compatible with Python interfaces to SciDB such as SciDB-py and potentially

Blaze.

6.2 Related Work on Array Storage

Many existing array-processing systems [14, 25, 29, 87] use regular tiling for data storage. Others

support user-defined irregular tiles [15]. In contrast to our work on ArrayStore (Chapter 2), none

of these systems, however, studies the impact of different tiling strategies on query processing

performance, although they do consider different tile layouts on disk [14] and across disks [14, 61]

for range-selection queries.

MOLAP [31] systems store data in multidimensional arrays [31, 77]. They focus on aggregation

1http://jakevdp.github.io/SciDB-Py

http://jakevdp.github.io/SciDB-Py
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queries and exploit data structures to efficiently compute rollups, while, in ArrayStore, we consider a

broader set of operations. Today’s business intelligence (BI) suites utilize closed source, proprietary

MOLAP engine solutions such as Oracle Database OLAP Option [72], Cognos PowerPlay [18], and

others to analyze large datasets. To the best of our knowledge, Palo [76] is the only open source

memory-based MOLAP engine, which is specifically developed for spreadsheet data storage and

analysis. However, Palo is not designed for large databases.

Furtado and Baumann [32] studied the performance of different tiling strategies in RasDaMan

(including regular and irregular tiles). Their study, however, was limited to scans and different types

of array dicing operations. Their conclusions are thus different from the ArrayStore since they find

that arbitrary tiling tuned to a specific workload outperforms regular tiling. Reiner et al. [82] studied

hierarchical storage support for large-scale multi-dimensional arrays in RasDaMan. Their approach

is analogous to the two-level, IREG-REG, chunking strategy, described in ArrayStore. However,

their study is constrained to range-selection queries.

Shimada et al. [94] propose a chunking scheme for sparse arrays, where multiple chunks are

compressed and stored in a single physical page. This approach is analogous to the two-level,

IREG-REG, storage system that we study in Chapter 2. Shimada et al., also introduce “extended

chunks”, which are similar to IREG. Again, however, this earlier study was limited to range-selection

queries.

Prior work studied the tuning of chunk shape, size, and layout on disk for a given workload

and for regular chunking [74, 88]. This work is orthogonal to our work in Chapter 2, since we

comparatively study regular v.s. irregular v.s. two-level chunking schemes and support for overlap

data.

Seamons and Winslett [91] examine different storage management strategies for regularly-tiled

arrays. In particular, they propose that data from multiple arrays be either stored separately or be

interleaved on disk. This strategy is orthogonal to those we study in Chapter 2. They also consider

storage strategies for overlap data mentioning both the option to store overlap data together with

or separately from the core data. Their implementation and evaluation, however, only examine the

co-located scenario, similarly to SciDB [87].

There exist many data structures for indexing multidimensional data including the R-Tree [35]
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and its variants [1, 6], the KD-Tree [7], the KDB-Tree [86], the GammaSLK [55], the Pyramid

technique [8], the Gamma strategy [73], RPST [81], and more. All these indexes organize a raw

dataset into a multi-dimensional data structure to speed-up range-, containment-, and nearest-neighbor

queries. In contrast, in ArrayStore, we study storage management techniques for more varied array

operations.

6.3 Related Work on Array Data Versioning

There is a long line of research on temporal databases [46, 52, 75, 96]. Temporal databases

have two notions of time: “valid time” and “transaction time”. Many databases provide time-travel

support along the transaction time dimension [41, 52, 71, 100]. However, none of these databases is

specialized for time travel over array data nor approximate time-travel. In particular, Postgres [100]

uses R-trees for version management. This technique is complementary to the approach that we

propose in TimeArr (Chapter 3). Immortal DB [52] adds transaction time database support into a

database engine. For this, Immortal DB stores versions data as a linked list, while we store versions

as delta values. Our versioning system in TimeArr also heavily applies array-oriented techniques

including bitmasks, virtual tiles, and skip links. Finally, TimeArr supports a new type of “approximate

queries” in the context of scientific array database engines. Most array engines being built today,

such as RasDaMan [28], are not designed as no-overwrite storage systems and consequently cannot

naturally support versioning. NetCDF [84, 85] and HDF5 [37] are common data models that provide

a portable and efficient mechanism to store and access multidimensional data which are extensively

used by scientists, but they also do not support versioning explicitly.

MOLAP systems store data in multidimensional arrays [31, 77]. The MOLAP system in [47]

supports versions to represent changes to the data sources that should be propagated to the data

warehouse periodically. But the versioning system is designed to benefit the concurrency control

mechanism in order to minimize contention between query and maintenance transactions.

Delta encoding is a popular technique in video and image compression. Video compression

codecs like MPEG-1 [17] apply several delta encoding techniques both within and between frames.

Similar to TimeArr, they regularly materialize versions (frames) in a chain of delta frames, They also

divide the frames into smaller chunks and compare each chunk to every possible region in a specified

radius around its origin. Hence, their version insertion is expensive. Previous work [92] showed that
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although video compression techniques efficiently compress arrays, the version import time is too

expensive and consequently not appropriate for versioning in array systems.

Version Control Systems are an old topic in computer science. Versioning techniques such as

forward and backward delta encoding and the use of multi-version B-trees have been implemented in

various legacy systems. Git [12] is one of the conventional version-control systems and is believed to

be faster and more disk efficient than other similar version-control systems. TimeArr borrows some

ideas such as backward delta encoding from other version control systems such as Git, but we also

use sophisticated array-oriented optimization techniques to efficiently encode the delta versions and

to support approximate queries.

Lastly, the state of the art for versioning in array systems [92] uses a materialization matrix to

efficiently find the best versions to materialize. TimeArr is similar to this recent prior work [92] in

the sense that we also use backward delta versions and store and fetch consecutive deltas together.

The ability of TimeArr to add skip links at the granularity of tiles, to approximately answer queries,

and our use of virtual tiles to support versioning at fine granularity are the main advantage of our

system compared to this prior work [92].

6.4 Related Work on Iterative Processing

Several systems have been developed that support iterative big data analytics [10, 30, 53, 93, 109].

Some have explicit iteration, others require an external driver to support iteration, but none of them

provide native support for iterative computation in the context of parallel array processing.

Twister [27], Daytona [4], and HaLoop [10] extend MapReduce to preserve state across iterations

and support for looping construct. HaLoop takes advantage of the task scheduler to increase local

access to the static data. However, our system takes advantage of iterative array processing to

increase local access to the dynamic data as well by applying overlap iterative processing.

PrIter [109] is a distributed framework for fast iterative computation. The key idea of PrIter

is to prioritize iterations that ensure fast convergence. In particular, PrIter gives each data point a

priority value to indicate the importance of the update and it enables selecting a subset of data rather

than all the data to perform updates in each iteration. ArrayLoop also supports a form of prioritized

processing through multi-resolution optimization. ArrayLoop initially finds course-grained outlines
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of the structures on the more pixelated versions of the array, and then it refines the details on

fine-grained versions.

REX [60] is a parallel shared-nothing query processing platform implemented in Java with a

focus on supporting incremental iterative computations in which changes, in the form of deltas, are

propagated from iteration to iteration. Similar to REX, ArrayLoop supports incremental iterative

processing. However REX lacks other optimization techniques that we provided.

A handful of systems exist that support iterative computation with their focus on graph algorithms.

Pregel [57] is a bulk synchronous message passing abstraction where vertices hold states and

communicate with neighboring vertices. Unlike Pregel, ArrayLoop relieves the synchronization

barrier overhead by including mini-iteration steps in the iterative query plan. Unlike ArrayLoop,

Pregel does not prioritize iterative computation.

GraphLab [53] develops a programming model for iterative machine learning computations.

The GraphLab abstraction consists of three main parts, the data graph, the dynamic asynchronous

computation as update functions, and the globally sync operation. GraphLab has configurable

consistency levels and update schedulers, making it a powerful, but with low level abstraction.

Similar to our overlap iterative processing technique in ArrayLoop, GraphLab has similar notion

of ghost nodes, however the granularity of computation is per node, while ArrayLoop supports

overlap iterative processing per chunk. Our system also supports prioritization through the novel

multi-resolution iterative processing.
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Chapter 7

EVALUATION DATASETS

This chapter describes the datasets used in the evaluation of the array storage and processing

techniques developed in this thesis.

Astronomy Universe Simulation dataset (Astro): The Astro dataset comprises nine snapshots

from a large-scale astronomy simulation [51] for a total of 74GB of data. The simulation models the

evolution of cosmic structure from about 100K years after the Big Bang to the present day. Each

snapshot represents the universe as a set of particles in a 3D space, which naturally leads to the

following schema: Array Simulation {id,vx,vy,vz,mass,phi} [X,Y,Z], where X ,

Y , and Z are the array dimensions and id, vx, vy, vz, mass, phi are the attributes of

each array cell. id is a signed 8 byte integer while all other attributes a 4 byte floats. Each snapshot

is stored in a separate array. Since the universe is becoming increasingly structured over time, data in

snapshot S92 is more skewed than in S43. In Figure 2.3, the largest regular chunk has 25X more

data points than the smallest one. The ratio is only 7 in S43 for the same number of chunks.

Oceanography Flow Cytometer dataset (OceanFlow): The oceanography dataset is the output of

a flow cytometer [2]. A flow cytometer measures scattered and fluoresced light from a stream of water

particles. Similar microorganisms exhibit similar intensities of scattered light. In this dataset, the data

takes the form of points in a 6-dimensional space, where each point represents a particle or organism

in the water and the dimensions are the measured properties. We thus use the following schema for

this dataset: Array Cytometer {day, filenumber, row, pulseWidth, D1, D2}

[FSCsmall, FSCperp, FSCbig, PE, CHLsmall, CHLbig], where all attributes are

2-byte unsigned integers. Each array is approximately 7 GB in size.
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Global Forecast System Model dataset (GFS): “GFS” is a dataset from the National Oceanic and

Atmospheric Administration (NOAA) [67]. This dataset is the output from 180 hours of simulation

based on a global forecast system weather model and contains data for a grid of locations covering

the whole earth. Each type of measurement such as snow cover or inches of rain is stored as a

floating-point number in its own versioned grid. We use the output of a 180 hour weather forecast

simulation sampled every 3 hours, for a total of 61 grids, each about 1MB in size. Each grid is a

(720× 360) two dimensional array (one array in one chunk).

Large Synoptic Survey Telescope (LSST): The Image Co-Addition benchmark1 records raw

astronomy data in the form of 2D images output by a telescope. The data in this benchmark comes

from an LSST image simulator developed by the LSST team. It comprises 4725 images over 25 time

steps. The LSST [54] telescope is going to visit sky each night. A visit is one exposure on the sky

and is made up of 189 individual 2D ccd images stored in HDF format . The ccd images are grouped

into 21 individual rafts (9 per raft). We load all the simulated ccd image into the SciDB and repre-

sent it as a 3D array with the following schema: Array CCD <data:float NULL,mask:int16

NULL,var:float NULL> [row(int64),col(int64),time(int64)], where data, mask,

and var are attributes in each cell and row,col, and time are three dimensions. Total number of

points is approximately 44 billions and the total size is approximately one terabyte of data.

1http://myria.cs.washington.edu/repository/uw-cat.html

h
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Chapter 8

CONCLUSION AND FUTURE DIRECTIONS

In this thesis work, we developed efficient query processing, versioning, and storage techniques

for parallel array database systems. The contributions of this thesis are as follows:

Array Data Processing and Storage: In Chapter 2, we presented the design, implementation, and

evaluation of ArrayStore, a storage manager for complex, parallel array processing. In ArrayStore, we

studied the impact of different chunking strategies on query processing performance for a wide range

of operations, including binary operators and user-defined functions. We showed that a two-level

chunking strategy with regular chunks and regular tiles (REG-REG) leads to the best and most

consistent performance for a varied set of operations both on a single node and in a shared-nothing

cluster. We presented two new techniques to support efficient processing of overlap data (i.e., data in

neighboring array chunks): one leverages ArrayStore’s two-level storage layout and the other one

uses additional materialized views. Both techniques significantly outperform approaches that do not

provide overlap or provide only a pre-defined single overlap layer.

Array Data Versioning: In Chapter 3, we presented TimeArr, a new storage manager for array

databases that provides a no-overwrite, versioned array storage model. TimeArr’s key contribution is

to efficiently store and retrieve versions of an entire array or some sub-array. TimeArr also introduces

the idea of approximate exploration of an array’s history. To achieve high performance, TimeArr

relies on several techniques including virtual tiles, bitmask compression of changes, variable-length

delta representations, and skip links.

Iterative Array Processing: In Chapter 4, we presented ArrayLoop, an extension of SciDB that

adds native support for iterative computation. First, we developed a model for iterative processing

in a parallel array engine. We then presented three optimizations to improve the performance
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of these types of computations: incremental processing, mini-iteration overlap processing, and

multi-resolution processing.

AscotDB: Finally, in Chapter 5, we presented AscotDB, a new, extensible data analysis system

for the interactive analysis of telescope image data. We designed AscotDB as a layered system with

a rich graphical interface as front-end that is built on top of a Python middleware and the SciDB

parallel array engine as back-end.

We validated our contributions through extensive evaluations with real datasets described in

Chapter 7. Several open research problems follow directly from the results presented in this thesis.

First, the interested reader may ask how best to handle workloads that are a mix of array and non-array

datasets and operations. One example are 2D satellite images with meta data associated with them.

Should both the data and metadata be stored in the array engine? Is the overhead of adding artificial

structure to the non-array meta data significant? or perhaps we should store satellite images (array

data) in array engines and meta data (non-array data) in a relational engine. Second, it is very hard

for the user of an array engine to figure out the right chunk size. Are there approaches that help the

system to figure out the chunk size (semi) automatically? Third, we did not explore the nested array

data representation. What are the challenges and difficulties of supporting this feature? How much

more complexity it adds to the query execution layer? Fourth, the user has to provide a complete

schema of an array, e.g. type of dimensions, type of attributes, starting index and ending index for

each dimension, chunk size, overlap size, before doing any exploration or analytics on that data. Can

we relax some of the conditions of this rigid schema to speed up the initialization phase?

Beyond the direct future work described above, several longer-term research directions would

further facilitate large-scale array processing:

Support data visualization as first-class citizen: Current big data management tools often leave

the data visualization task to the user. To visualize the result, the user either delegates the responsibility

to a general-purpose system such as Tableau [103] or writes a customized application [62]. Array

data analytics systems should integrate the visualization task into the query itself and propagate the

query plan, which is augmented with the visualization query, down to the query processing layer on

the server-side to leverage possible optimizations. For example, the system could leverage the fact
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that the user visualizes the query result in an aggregated (pixelated) form [5], and could possibly

push the aggregation down the query plan or even return an approximate but fast result. Furthermore,

we regard the future data analytics pipeline as a cycle consisting of a sequence of exploration and

analysis phases. As we discussed in Chapter 5, users need support for easily alternating between

data exploration using a visual interface and deeper analysis using a programming interface (e.g.,

Python). Data visualization plays an important role during the exploration phase where users detect

patterns or anomalies in results. Although initial efforts [5] are ongoing to support data visualization

as a first-class citizen for array data management systems, none yet provides a seamless interaction

between exploratory and analysis phases.

Support large-scale interactive stream analytics: Modern array data management systems should

provide a compelling and powerful environment for the exploration, analysis, and visualization of

data with the ability for interactive feedback from the client-side. Smart devices are making the

world more connected and the number of interfaces for data analytics tools to collect data is rapidly

increasing. Examples are human clicks, sensors, mobile devices, Google glass, Nest, etc. As a

results array data management systems will need to handle these data streams, which requires in

situ data processing. The data from these streams could be relevant only for a few steps in the

analytics pipeline and not be suitable for offline data mining. Others may require long-term storage

and processing. Current large-scale data management solutions are either designed and optimized

for stream data analytics or offline data analytics. Future data management tools, in order to main-

tain the cycle of data exploration and analytics, should provide efficient support for the interactive

analysis of heterogenous large-scale data streams as well as the offline data mining of large-scale

collected data; a requirement that is not fully satisfied by current data management systems including

array-based engines. Interactive analytical capability is a requirement for stream processing engines.

In array-based systems, we can provide interactive analytics either through sophisticated sampling

or by providing array at different levels of granularity. The latter is partially studied in Chapter 4

where we leverage array data at different levels of granularity for iterative computation. We believe

caching array data with different resolutions has more potential to speed up different kinds of queries

including those that require interactive analytics but tolerate approximated results and it requires

further study.
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Support large-scale data analytics as a service: Finally, cloud-based analytical capabilities ease

the adaptation for many companies and end-users. Modern array data management systems should

provide big data analytical capabilities using cloud delivery models over a varied set of use cases.

Future data management tools should support both requirements of large-scale and as a service data

analytics at the same time. Array engines are not an exception. Array data analytics services in the

cloud bring multiple challenges including the proper design for the service model, storage and access

methods, data model, and networking model. They also need to take into consideration advances in

computer architecture.
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