
c©Copyright 2018

Jingjing Wang

This work is licensed under a Creative Commons Attribution

4.0 International License. To view a copy of this license, visit

https://creativecommons.org/licenses/by/4.0/.

Runtime Optimizations for Large-Scale Data Analytics

Jingjing Wang

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2018

Reading Committee:

Magdalena Balazinska, Chair

Bingni Burton

Alvin Cheung

Arvind Krishnamurthy

Dan Suciu

Program Authorized to Offer Degree:
Paul G. Allen School of Computer Science & Engineering

University of Washington

Abstract

Runtime Optimizations for Large-Scale Data Analytics

Jingjing Wang

Chair of the Supervisory Committee:
Magdalena Balazinska

Paul G. Allen School of Computer Science & Engineering

Large-scale data analytics is key to modern science, technology, and business development. Big

data systems have emerged rapidly in recent years, but modern data analytics remains challenging

due to application requirements. First, users need to analyze vasts amount of data generated from

various sources; Second, analysis efficiency is critical in many scenarios; Third, most big data

systems are built on top of new operating environments, such as clusters and cloud services, where

resource management is important; Fourth, high-level, feature-rich programming interfaces are

required to support a high variety of data and workload types.

In this dissertation, we present methods to improve system efficiency for large-scale data

analytics. We investigate the problem in the context of three research projects, which address the

same key problem: optimization of analytical query execution, in different ways. Specifically, these

projects focus on runtime optimzation, which considers not only static information that is available

prior to the actual execution, but more importantly, runtime information. We demonstrate, from

these projects, that runtime optimzation can significantly improve overall system performance: it

can lower query execution times, improve resource utilization, and reduce application failures.

We first present a full-stack solution for recursive relational query evaluation in shared-nothing

engines. Users express their analysis using a high-level declarative language (a subset of Datalog

with aggregate functions). Queries are then compiled into distributed query plans with termination

guarantee. Multiple execution models for iterative queries are supported, including synchronous,

asynchronous, and different processing priorities. Our evaluation shows that application properties

determine which model yields the fastest query execution time.

Next, we present ElasticMem, an approach for automatic and elastic memory management for

cloud data analytics applications. In clouds or clusters, a resource manager schedules applications in

containers with hard memory limits, which requires accurate application memory usage estimation

before launching containers. However, memory estimation for large-scale analytical applications is

difficult, and inappropriate estimate can lead to failures and performance degredation. ElasticMem

avoids pre-execution memory usage estimation by elastically allocating memory across containers

during runtime. Experiments show that ElasticMem outperforms static memory allocation, leading

to fewer query failures, lower garbage collection overheads, and lower query times.

Lastly, we present Deluceva, a system that dynamically optimizes neural network inference for

video analytics. Many video analysis approaches apply neural network models trained on images

directly to each video frame. While being easy to develop, these approaches do not leverage the

rich temporal redundancy in videos, which can be used to further reduce model inference time.

Deluceva accelerates model inference by dynamically selecting sufficiently significant temporal

deltas to process for each video frame. Evaluation on three models and six videos shows that it can

achieve significant performance gains with low errors.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . v

Chapter 1: Introduction . 1

1.1 Application Requirements . 2

1.2 Asynchronous and Fault-Tolerant Recursive Datalog Evaluation in Shared-Nothing
Engines . 4

1.3 ElasticMem: Elastic Memory Management for Cloud Data Analytics 5

1.4 Deluceva: Delta-Based Neural Network Inference for Fast Video Analytics 6

1.5 Summary of Contributions and Thesis Outline . 8

Chapter 2: Asynchronous and Fault-Tolerant Recursive Datalog Evaluation in Shared-
Nothing Engines . 10

2.1 Background . 12

2.2 Asynchronous Evaluation of Datalog with Aggregation 14

2.3 Failure Handling . 25

2.4 Implementation . 28

2.5 Evaluation . 30

2.6 Summary . 40

Chapter 3: ElasticMem: Elastic Memory Management for Cloud Data Analytics 42

3.1 Performance Impact of Automatic Memory Management 44

3.2 Elastic Memory Allocation . 47

3.3 Evaluation . 60

3.4 Summary . 66

i

Chapter 4: Deluceva: Delta-Based Neural Network Inference for Fast Video Analytics . 67
4.1 Background . 71
4.2 Delta-Based Models . 73
4.3 Dynamic Tuning . 78
4.4 Mixed Network . 85
4.5 Evaluation . 87
4.6 Summary . 101

Chapter 5: Related Work . 102
5.1 Related Work on Recursive Datalog Evaluation Engines 102
5.2 Related Work on Memory Management for Cloud Data Analytics 104
5.3 Related Work on Neural Network Inference for Video Analytics 105

Chapter 6: Conclusion and Future Directions . 108

Bibliography . 111

ii

LIST OF FIGURES

Figure Number Page

1.1 Overview of large-scale data analytics in the cloud 2

2.1 Datalog program for the GalaxyEvolution application 13
2.2 Datalog program for the GalaxyEvolution application using a recursive aggregate . 18
2.3 GalaxyEvolution query plan with IDBControllers and an TerminationController . . 20
2.4 The internal state of a TerminationController . 22
2.5 Datalog query and recursive query plan for connected components 25
2.6 Datalog query and recursive query plan for LCA 26
2.7 Fault-tolerance through data buffering in shuffle producer operators 27
2.8 A comparison of Spark and MyriaX on four queries 29
2.9 Connected Components: query run times and resource consumption 31
2.10 Relative resource consumption of different execution models for Connected Com-

ponents . 33
2.11 GalaxyEvolution: query run times and resource consumption, two-step versus

recursive Datalog . 34
2.12 GalaxyEvolution: query run times and resource consumption 35
2.13 LCA: query run times and resource consumption. 36
2.14 Relative resource consumption of different buffers on Connected Components . . . 38
2.15 Relative resource consumption of different buffers on GalaxyEvolution 39
2.16 Relative resource consumption of different buffers on LCA 39

3.1 A resource manager schedules multiple applications from multiple systems in a
shared cluster . 43

3.2 Internal heap states of a JVM before and after actions 46
3.3 Impact of GC on query execution time in Myria, Spark 1.1, and Spark 2.0 46
3.4 Average elapsed times and # of completed queries 62
3.5 Relative total query time and GC time and resident set size (RSS) improvement

ratio for Elastic over Original, DOP=8 . 63

iii

3.6 Average elapsed times and # of completed queries 64
3.7 GC Model accuracies on 10-fold cross validation and random TPC-H test set . . . 66

4.1 The architecture of Deluceva . 69
4.2 A slice of an example convolutional neural network model 72
4.3 Example incremental network . 74
4.4 A filter operator followed by a sparse convolution operator 77
4.5 sparse convolution operator for GPUs . 78
4.6 Effect of significance threshold on inference quality in a delta-model 80
4.7 An operator’s dense variant and its sparse operator unit 87
4.8 Total runtimes of common operators in the three models 90
4.9 Relative runtimes of sparse convolution over dense convolution with different

filtering percentages . 90
4.10 The cut-off percentages of sparse convolution units in the three models on CPU. . . 92
4.11 Relative runtimes of sparse convolution over dense convolution with different

filtering percentages . 92
4.12 The cut-off percentages of sparse convolution units in the three models on GPU. . . 93
4.13 Overall performance of the PI controller and machine learning model on each model

and video . 94
4.14 Overall performance of each method on all models and videos 95
4.15 Impact of PI controller parameter values . 97
4.16 RMSEs of 10-fold cross validation of the target percentage model 98
4.17 The test errors of the target percentage model trained and tested on different videos 99
4.18 Impact of the training-to-test factor on the target percentage model 100

iv

LIST OF TABLES

Table Number Page

3.1 Runtime metrics reported by JVM or estimated by the manager at a specific timestep 51
3.2 Per-generation size limit requirements, sizes of created space, and time taken for

each action on a JVM . 53
3.3 Features collected from a hash table. 59

4.1 The three object detection models used in the experiments 88
4.2 Six videos used in the experiments . 89

v

ACKNOWLEDGMENTS

First, I would like to express my sincerest gratitude to my advisor Magdalena Balazinska. The

way that she interacts with students and collaborators, her attitude and standards of academic

research, and more generally, her wisdom on career and life, have set up great examples for me to

observe, think, learn, and execute during these years. I am especially grateful to be consistently

impacted by her perfectly balanced advising style: strict but also tolerant, optimistic but a believer

of Murphy’s law, patient but pushes when needed, leaving students space to grow but also providing

detailed, reliable, hands-on mentoring. I hope that I have picked up these characteristics to some

extent and hopefully will have the chance to apply them one day.

In addition to Magda, I would like to also thank my other “unofficial” advisors. I want to

thank Dan Suciu for his thorough and deep understanding and extremely solid support on any

problem relevant to theory. I would also like to thank Bill Howe and Alvin Cheung for bringing

their perspectives and expertise from other sub-areas, and Arvind Krishnamurthy and Bingni Burton

for being my committee members. During my internships, I also had the great pleasure and honor

to work with researchers outside of UW. I would like to thank Surajit Chaudhuri, Sudipto Das,

Bolin Ding, Vivek Narasayya, Manoj Syamala, and many others from Microsoft Research, for their

support and advice on my project and also my career. Although not directly relevant to my PhD, I

also want to thank Haixun Wang for bringing me into my first (formal) research project and for his

mentoring.

I have been extremely fortunate to have been a part of the UW database group. During my

years here, I received not only thorough training on my academic skills, but more importantly, an

environment that encourages our initiatives, broadens our views, and nourishes genuine feedback,

discussions, and friendship. I am also very grateful to my advisor, UW CSE, and all the funding

vi

agencies, for providing me with a stable and welcome environment to do research.

This chapter of my life would not have been completed without support from my friends. I

would like to start with people from the database group: Maaz Bin Safeer Ahmad, Victor Teixeira de

Ameida, Seung-Hee Bae, Tobin Baker, Walter Cai, Lee Lee Choo, Shumo Chu, Eric Gribkoff, Helga

Guomundsdottir, Daniel Halperin, Brandon Hayes, Dylan Hutchison, Jeremy Hyrkas, Srinivasan

Iyer, Shrainik Jain, Tomer Kaftan, Nodira Khoussainova, Paris Koutris, YongChul Kwon, Ryan

Maas, Parmita Mehta, Dominik Moritz, Kristi Morton, Brandon Myers, Laural Orr, Jennifer Ortiz,

Guna Prasaad, Dan Radion, Sudeepa Roy, Vaspol Ruamviboonsuk, Babak Salimi, Emad Soroush,

Prasang Upadhyaya, Andrew Whittaker, Shengliang Xu, Cong Yan, and many others. It was my

great pleasure and honor to complete this chapter of my life together with them at different times

from different aspects: writing papers, doing code reviews, discussing ideas, asking for/giving

feedback, sharing successes and failures, and having fun together. Besides database people, I got to

know many people across CSE, UW, Seattle, and the research community during these years. It

would be a long list if I listed all, so here I am only able to thank them all from my heart. I also

want to thank friends that I met before or during college and are/were also pursuing PhD degrees

at the same time: Chen Chen, Yizheng Chen, Wenhan Dai, Bailu Ding, Chengjun Fang, Haijie

Gu, Qin Jia, Yanyan Jiang, Yuan Li, Yin Lou, Shuxiang Ruan, Chen Wang, Yue Wang, Wenlei

Xie, Mohan Yang, Jiacheng Yang, Shuang Yang, Jiaqi Zhai, Jun Zhang, Tao Zou, and many others,

for their companions on this journey. Finally, inspired by a technique from Halperin [101] and

Khoussainova [128], I intentionally left out a few people who are very important to me. You know

who you are.1

Finally, I would like to thank my parents. I began my PhD journey with motivations either

explicitly or implicitly impacted by them and what they have been consistently doing, valuing, and

believing in. Their unique ways of showing unconditional support: one stimulates me when I slack

off, the other comforts me for my defeats, have always been my rock for this journey and beyond.

1I swear that it is not just for leaving myself some space.

vii

1

Chapter 1

INTRODUCTION

The ability to manage, process, and analyze large-scale datasets is key to modern science,

business, and technology. For example, astronomers today work with telescope images from sky

surveys, such as LSST [148], that require the analysis of tens of terabytes of data per night; retailers,

such as Walmart, use or build cloud solutions to cope with petabytes of transactional data every

hour [36]; and city-wise traffic and security monitoring are now realities in countries such as the

UK and China through the wide deployment of surveillance cameras [12, 22]. As the amount and

variety of data continue to grow, large-scale data analytics continues to demonstrate its significant

impact on people engaged in a wide range of professions.

In recent years, many new systems have emerged to help users analyze such large and var-

ied datasets. These systems, often called big data systems, include commercial (e.g., Amazon

Redshift [3], Vertica [34]) and open-source (e.g., Apache Spark [225], Apache Impala [129], Ten-

sorFlow [39]) engines. Big data analytics, however, remains challenging. First, many large-scale

analytical applications are performance-critical and must thus meet strict requirements concerning

system speed, efficiency, and robustness. These requirements are difficult to meet at large scale.

Second, more computing resources are needed for large-scale processing, therefore systems de-

signed to support these applications often run in new operating environments, such as clusters

and cloud services, where resource management poses new, not fully understood problems. Third,

data analyses involve a variety of data types (e.g., structured data, graphs, videos) and complex

workloads: modern analytics includes not only traditional workloads, such as relational queries, but

also graph analysis, machine learning and, more recently, deep learning.

Figure 1.1 illustrates a typical cloud-based data anlytics deployment: Users perform various

types of analysis on multiple data types using big data systems deployed in the cloud. Executions

2

…

IoT	Sensors

Myria

Spark

Hadoop

Impala

Memory

Myria

TensorFlow

Memory

Spark
Telescope	Images Social	Networks

Users

Relational Queries

Machine	Learning	
Models

Analytical	Workloads

Figure 1.1: Overview of large-scale data analytics in the cloud.

are automatically optimized and distributed, cluster resources are shared between systems and appli-

cations, and various systems targeting at different workload types and with different performance

characteristics may run together.

In this dissertation, we consider modern data management and analytics systems deployed in

cloud computing environments as illustrated in Figure 1.1. We identify several limitations that

cause these systems to underperform when executing modern data analytics workloads and propose

innovative solutions to addressing those limitations. In this chapter, we first present the requirements

of modern big data analytics applications that motivate our work and then given an overview of the

key contributions of this dissertation.

1.1 Application Requirements

We focus specifically on the following important characteristics of modern data management

and analytics applications:

• Vast amounts of data. Whether in the sciences or industry, users today must analyze large

datasets. In addition to the use-cases above, other notable examples include the processing of large-

scale outputs from pervasively-deployed devices: experts estimate that the Internet of Things (IoT)

3

will consist of some 30 billion objects by 2020 [16]. Traditional relational databases supporting

business analytics have also crossed into the petabyte range [36, 154]; and unstructured human-

generated data, such as videos, photos, and tweets, is rapidly growing in volume. Youtube, for

example, has over a billion users watching a billion hours of video each day [37].

• Efficient analysis. Efficiency is an important requirement in many modern data analysis sce-

narios. Many applications require efficient processing. For example, real-time decision-making

applications, such as ride-sharing scheduling or autonomous driving, have strong requirements

for low latency [13]. Users also require efficient processing. Data scientists need the ability to

efficiently explore their data, and build summaries and models. The challenge in both cases lies

in designing programming interfaces, systems, and infrastructures that perform fast analysis on

large-scale datasets.

• New operating environment. Large-scale analytics requires large amount of resources, and new

operating environments, such as clusters and cloud services [4], provide access to these resources.

Many big data systems, such as Hadoop MapReduce [71], Spark [225], Flink [5], and Myria [213],

are designed to run in clusters or in the cloud, where data and computation are automatically

distributed for scalability and performance. In such environments, resources may need to be shared

by multiple applications, systems, and users at the same time, but each execution unit may also

need to be protected and isolated from the others. As the number of big data systems and use cases

continue to grow, efficient resource management plays an important role in their cluster or cloud

deployments.

• Complexity of analysis. User needs have dramatically changed over the past twenty years, and

modern users increasingly require support to perform analysis over diverse data types. These types

include not only traditional business data, but also images, videos, high-throughput sensors or

devices, click streams, and social networks data. Further, the types of analyses that users seek to

perform has also grown in sophistication, from traditional relational algebra operations to machine

learning and linear algebra workloads. To support such diversity, high-level query languages with

features, such as iterative constructs, user-defined functions, and domain-specific transformations,

are necessary in many cases [213].

4

Motivated by these considerations, this thesis focuses on methods to improve the efficiency of

large-scale data analytics. Specifically, we investigate the problem in the context of the following

three research projects, which reflect big data analytics properties in different ways.

1.2 Asynchronous and Fault-Tolerant Recursive Datalog Evaluation in Shared-Nothing En-
gines

One distinguishing feature of modern analytics is that iterations occur in many workloads. Graph

analytics is a prime example: shortest path, reachability, and connected components are all iterative

algorithms. The need for iterative computations extends beyond graphs, though. With astronomy

simulations, for example, a common type of analysis traces the evolution of galaxies in the universe

by iteratively following simulated particles over time [145]. Many machine learning algorithms are

also iterative. Users such as data scientists need to easily express iterative applications in high-level

languages, and they also require efficient, scalable execution.

In response to this need, many existing data processing engines have either been extended

to support iterative computations [55, 75, 227], built to execute both non-iterative and iterative

queries [5, 225], or designed specifically for iterative computations [77, 157, 159, 179]. In these

systems, however, general-purpose, easy-to-express, and efficient, distributed execution for iterative

queries remains a key problem. Most parallel data processing engines support only synchronous

iterations [42, 55, 152, 157, 225, 227], where all machines must complete one iteration before the

next one begins. Such global synchronization barriers between iterations cause faster machines to

wait for the stragglers, slowing down query evaluation. While some engines support parallel and

asynchronous iterative processing, they are specialized for graphs [146,179,180,212]. Many general-

purpose iterative query processing systems do not support declarative queries but instead require

users to specify query plans directly [77, 159, 212]. Finally, some systems generate code [179, 180]

and thus do not provide a complete and general-purpose data management system. Existing Datalog

engines exist but are either single-node [21] or use MapReduce as a backend [84], which supports

only synchronous iterations.

Based on our experience working with big data users in domain sciences through the University

5

of Washington’s eScience Institute [204], we find that none of the above approaches is sufficient.

Modern engines should provide the following five capabilities for iterative computations. First,

query evaluation should be performed in parallel in shared-nothing clusters to ensure scalability.

Second, iterative query evaluation should be incremental, so that each iteration computes a change

only to the final solution rather than recomputing the entire result each time. Third, the system

should provide a variety of iteration models (synchronous, asynchronous, prioritized) because, as

we will show, different problems necessitate different evaluation strategies. Fourth, engines must

support a broad variety of application domains, not only graphs. Finally, users should be able to

specify their computation using a declarative query language for ease of use. These features should

be implemented in an efficient and fault-tolerant manner.

In Chapter 2, we develop such a new query evaluation approach [216] that supports incremental,

asynchronous or synchronous evaluation of iterative queries in shared-nothing clusters. Users

specify their queries declaratively in a subset of Datalog with aggregation, and queries are compiled

into distributed execution plans with multiple possible execution models. Taking advantage of

asynchronous execution, our approach also features a lightweight failure-handling solution. Finally,

it requires only small extensions to a shared-nothing query processing system, making it generally

well suited for implementation in big data systems.

1.3 ElasticMem: Elastic Memory Management for Cloud Data Analytics

Big data systems, such as Spark [225], Myria [213], and many others [3, 5, 6, 129, 159], are

typically designed to operate in clusters or cloud environments, where shared pools of system

resources and services can be acessed with minimal management effort, to leverage abundant

resources for large-scale analytics. In such environments, computing resources are typically shared

by many queries (also called “applications”), and even many systems executing in the same cluster

simutaneously. A resource manager [109, 207] is commonly used in such shared clusters. Modern

resource managers rely on containers (e.g., YARN [207], Docker [9], or Kubernetes [19]), which

isolate applications that share the same machine and provide hard resource limits. Application

resources are both constrained and protected by the containers.

6

In Chapter 3, we focus in particular on memory allocation because in-memory processing is

key to efficient large-scale analytics, yet memory remains an expensive resource. Many modern

data analytics systems strive to maximally utilize memory. However, container-based scheduling

has limitations in this regard: when an application needs to run, it must estimate its resource

requirements and communicate them to the resource manager. The latter then decides whether or

not to schedule the application based on the amount of available resources. The challenge, however,

is the difficulty of estimating the memory need of a data analytics application before executing it,

since its needs may depend on multiple runtime factors, including the cardinalities of intermediate

results, known to be hard to estimate [118, 137]. Inaccurate memory usage estimates can cause

either poor performance or poor resource utilization.

To address these problems, we develop a new approach, called ElasticMem [214, 215], where

data analytics applications execute in separate containers, but the resource manager elastically

adjusts the memory allocated to these containers. ElasticMem focuses on Java-based containers and

large-scale analytical applications. First, it relaxes the rigid design of JVM hard memory limits by

modifying it to enable dynamic memory layout adjustment during runtime. Second, ElasticMem

includes performance models for analytical queries to measure the impact of possible memory

allocation decisions on executing queries. Third, it has an algorithm to allocate memory across

multiple applications during runtime towards a global objective function. As a result, ElasticMem

substantially reduces application failure, garbage collection time, and query time for all applications

subject to the physical limit of the total amount of memory in the cluster.

1.4 Deluceva: Delta-Based Neural Network Inference for Fast Video Analytics

Modern users increasingly need support analyzing more diverse types of data, particularly

videos. Additionally, the type of processing that users perform has become more sophisticated and

commonly includes machine learning algorithms and, most recently, deep learning. As a result,

multiple new video data management and analytics systems have emerged [113, 150, 226]. Unlike

traditional video database management systems [45], these systems let users perform complex video

analytics tasks at large scale.

7

In Chapter 4, we focus specifically on video analytics applications that use deep learning at their

core. Deep learning is a fundamental component of today’s video analytics applications [113, 226].

Since videos can be treated as streams of images, most state-of-the-art video analysis approaches

directly apply neural network models developed for single images to video frames and use these per-

frame results for further processing [105, 124, 125, 171]. While it is possible to perform vision tasks

on video frames directly, the cost of running image neural network models is high and continues to

grow as models become more complex and inputs become larger. Representative object detection

models run at speeds of less than one frame [172] to 90 frames [171] per second on high-end GPUs

with low-resolution inputs (e.g., 300×300). Higher resolution images and larger models are needed

for more accurate and complex analysis [114], such as to detect small obstacles in autonomous

driving [67] because many accidents are caused by road debris or hazardous cargo [26, 31].

To address this limitation, we develop Deluceva, a system that optimizes live video analysis.

Deluceva accelerates a given neural network model’s inference on video frames by processing

significant deltas only, instead of processing full images.1 It consists of three components. First, it

includes efficient tensor operators that process delta inputs encoded with a sparse representation

instead of processing full frames. Second, to save computation by delta-based processing, it pro-

cesses only deltas that are sufficiently significant for each model evaluation. The criterion of being

significant is dynamically adjusted based on error feedback. Third, whether each operator’s sparse

or dense variant is more efficient depends on runtime factors, so an optimal network may consist

of operators of both types. Deluceva includes performance models for both types. It builds those

models by profiling operators offline and constructing model variants accordingly for each model

evaluation. We implement our approach in TensorFlow [39] and evaluate it on representative models

and test videos. Our approach outperforms the original model inference by up to 79% in terms of

runtime while keeping object detection errors low.

1 Our focus is on accelerating model inference instead of model training.

8

1.5 Summary of Contributions and Thesis Outline

Although the three projects at the heart of this dissertation focus on different aspects of system

efficiency for large-scale data analytics, their core techniques address the same key problem: opti-

mization of analytical query execution. Traditional techniques, such as database query optimization,

perform static optimization, where the optimal execution plan is determined statically prior to the

actual execution. However, our experience with the preceding projects led us to observe that static

optimization is not always sufficient or optimal when runtime information must be considered.

When we lack access to such information, statically optimized execution may lead to suboptimal

results, such as redundant computation, unexpected query failures, and resource overprovisioning.

The complexity of big data further increases the unpredictability of runtime execution. Motivated by

these considerations, this thesis addresses the problem of runtime optimzation for large-scale data

analytics from multiple perspectives.

In summary, this thesis addresses runtime optimizations for large-scale data analytics, making

the following contributions:

• Full-stack solution for multiple execution models of iterative relational queries. We de-

velop a full-stack approach [216] for large-scale iterative data analytics that combines the benefits

of many existing systems: users express their analysis in recursive Datalog with aggregation, which

simplifies the expression of data analysis tasks from a variety of application domains. The system

executes the analysis using parallel query plans that require only small extensions to an existing

shared-nothing engine yet deliver the full power of incremental synchronous and asynchronous

query evaluation even for query plans with multiple recursively computed relations.

We implement our approach in the Myria big data management system and service [23, 102, 213].

We empirically evaluate how small changes in the query evaluation strategy can lead to large

performance differences for different types of queries and characterize when each approach

leads to the lowest query runtime. We also empirically study the interplay between iterative

processing method, iterative query, and failure handling method. We find that no single iterative

execution strategy outperforms all others; rather, application properties must drive method selection

9

(Chapter 2).

• Dynamic, elastic memory management for cloud data analytics. We develop ElasticMem [214,

215], a technique for the automatic and elastic memory management of big data analytics applica-

tions running in shared-nothing clusters. ElasticMem includes a technique to dynamically change

JVM memory limits, an approach to model memory usage and garbage collection cost during

query execution, and a memory manager that performs actions on JVMs to reduce total failures

and runtimes.

We evaluate ElastcMem using TPC-H queries [29] on Myria [23, 102, 213] against containers with

fixed memory limits. Our approach outperforms static allocation in terms of query failure, garbage

collection time, query execution time, and overall resource utilization (Chapter 3).

• Delta-based neural network inference for fast video analytics. We develop Deluceva, a

system that optimizes live-video analysis using deep learning by applying incremental and approx-

imate computation techniques. Our approach includes: (1) a novel method for incremental deep

network inference with new, specialized operators, (2) two algorithms to dynamically adjust the

amount of data processed to minimize runtime subject to achieving a target quality, and (3) a new

method to generate mixed networks with sparse and dense operators.

We implement our approach in TensorFlow [39] and evaluate it on three representative object

detection models and six videos. The evaluation shows that our approach outperforms the original

model inference by up to 79% in terms of total compute resources with F1 errors below 0.1

(Chapter 4).

We discuss related work in Chapter 5 and conclude in Chapter 6.

10

Chapter 2

ASYNCHRONOUS AND FAULT-TOLERANT RECURSIVE DATALOG
EVALUATION IN SHARED-NOTHING ENGINES

In this chapter, we focus on the problem of declarative specification and efficient execution of

iterative queries. The work presented in this chapter appeared at VLDB’15 [216]. As we described

in Section 1.2, iterative computations commonly occur in modern data analysis applications, such

as graph analytics, machine learing, and data science applications. While traditional methods to

express and evaluate iterative queries exist [169, 175], they only provide limited expressiveness and

usually assume single-machine execution, which is insufficient to handle the complexity and scale

of modern analytics. We observe that newer systems also have important limitations. In particular,

none [5, 42, 55, 75, 77, 157, 159, 179, 212, 225, 227] offer the combination of declarative, easy-to-

use query languages, distributed execution, fault-tolerance, and support for both synchronous and

asynchronous execution.

We address the above needs by developing a full-stack solution [216] to efficiently express and

evaluate iterative relational queries in shared-nothing architectures. With our approach, users can

easily express their queries using a declarative query language: a subset of Datalog with aggregate

functions. The queries are then compiled and optimized into distributed in-memory execution plans.

Our approach support multiple execution models for iterative queries: synchronous, asynchronous,

and prioritized processing. For asynchronous computation, our approach also features a lightweight

failure-handling solution with multiple optimization options.

We implement our approach in Myria [213] and evaluate it using three iterative applications:

GalaxyEvolution (Figure 2.1, Figure 2.2), which computes the evolution history of galaxies in

an astrophysical simulation; Connected Components (Figure 2.5), which outputs the connected

components of an undirected graph; and Least Common Ancestor (LCA, Figure 2.6), which derives

11

the least common ancestor of pairs of publications from a citation graph. The key questions that we

answer are: (1) what class of positive Datalog queries with aggregation can be evaluated recursively

and asynchronously in shared-nothing systems (i.e., the aggregate function can be evaluated inside

the iteration), (2) which execution model to choose to achieve the best performance and how to

generate a distributed query plan with termination guarantee, and (3) which fault-tolerance method

imposes a low overhead yet achieves fast failure recovery for each execution model. Specifically,

we make the following contributions:

• We develop a query-plan based approach for efficient, incremental processing of iterative

computations in a parallel, relational engine. Our approach supports iterative computations with

aggregations and with multiple output results. It supports both synchronous and asynchronous

query evaluation, and different processing priorities. Our approach is easily implementable as

it only requires a small set of extensions to an existing shared-nothing engine (Section 2.2.2

and Section 2.2.3).

• We enable users to specify declarative queries in a subset of Datalog with aggregation extended

from prior work [180] and present an algorithm to automatically convert these programs into our

new query plans (Section 2.2.1).

• We empirically evaluate different query evaluation methods on iterative applications from

the astronomy, social networks, and bibliometrics domains and on real data from these domains.

We characterize when and why each query evaluation method yields the lowest query runtime

(Section 2.5.2).

• We study the interplay of iterative query execution methods, iterative queries, and fault-tolerance

techniques. We evaluate which failure-handling method yields the fastest recovery in the presence

of failures while imposing a small overhead without failures (Section 2.3 and Section 2.5.3).

Exploring a broad set of applications and techniques, we find that no single execution strategy

wins in all cases as method selection must serve application properties. The wrong choice of

execution technique can increase CPU utilization and network bandwidth by a factor of 6×. Memory

usage can increase by a factor of 2× (Section 2.5). The key lies in the amount of intermediate data

12

being generated during query evaluation.

2.1 Background

In this section, we briefly review how to express iterative queries with aggregation in Datalog

and present existing query evaluation methods for iterative queries in shared-nothing systems.

2.1.1 Iterative Queries in Datalog

Iterative queries are naturally expressed in Datalog as this language supports recursion. As an

example, Figure 2.1 shows an iterative Datalog program called GalaxyEvolution. The program

computes the history of a set of galaxies in an astrophysical simulation. The history of a galaxy is

the set of past galaxies that merged over time to form the galaxy of interest at present day. The input

table, Particles(pid,gid,time), holds the simulation output as a set of particles, where pid

is a unique particle identifier, and gid is the identifier of the galaxy that the particle belongs to at

time, time. The gid values are unique only within their timesteps, time, but a particle retains the

same pid throughout the simulation.

The program takes the form of a set of rules. Each rule has a head, an implication symbol :-,

and a body. The first rule computes relation Edges, which contains the number of shared particles

for every pair of galaxies at adjacent timesteps. The second and the third rules compute Galaxies,

which is the set of earlier galaxies that have merged to form the galaxies of interest. The second

rule states that a galaxy from GalaxiesOfInterest at present day (i.e., time=1) is a part of

the ancestry. The third rule states that a galaxy (time+1,gid2) is also part of the ancestry if an

adjacent galaxy (time,gid1) is part of the ancestry, and the number of shared particles between

the two galaxies is above the threshold, thresh. This last rule is recursive because the relation

Galaxies appears both in the head and in the body of the rule.

In Datalog programs, base data is referred to as Extensional Database predicates (EDBs)

(e.g., Particles). Derived relations are Intensional Database predicates (IDBs) (e.g., Edges and

Galaxies). EDBs occur only in bodies, while IDBs appear in the heads of the rules and can also

13

Edges(time,gid1,gid2,$Count(*)) :- Particles(pid,gid1,time),

Particles(pid,gid2,time+1) (1)

Galaxies(1,gid) :- GalaxiesOfInterest(gid) (2)

Galaxies(time+1,gid2) :- Galaxies(time,gid1),

Edges(time,gid1,gid2,c), c >= thresh (3)

Figure 2.1: Datalog program for the GalaxyEvolution application. The inputs are relation Parti-

cles(pid,gid,time), which contains the output of an astrophysical simulation, and a set of galaxies of

interest GalaxiesOfInterest(gid) at time=1.

appear in the bodies.

Without aggregations and without negations (i.e., in the case of conjunctive queries), the result

of a Datalog program is its least fixpoint, which can be computed by repeatedly evaluating the rules

in any order until no new facts (i.e., tuples) are found.

When a positive Datalog program includes aggregations, as in our example, it is evaluated

in a stratified manner, which means that the program is evaluated one subset of rules at the time.

More specifically, the aggregate function is evaluated only after all predicates that form the right

hand-side of the corresponding rule have been fully evaluated (i.e., have reached their fixpoint). In

our example, the condition holds trivially since the rule with the $Count aggregate has only an

EDB in its body rather than one or more IDBs. Similarly, the rules that use the aggregate value are

blocked until the aggregate has been computed. In the example, rules (2) and (3) are not evaluated

until rule (1), which contains the aggregate function $Count, has been evaluated.

In this work, we focus on positive Datalog programs (no negated predicates) with aggregate

functions that only occur in IDBs. Given an IDB with a set of grouping attributes v and aggregate

functions f , the semantics are those of group by aggregation: For all tuples that satisfy the body of

the rule, the rule evaluates the value of each function f for each unique combination of values of v.

2.1.2 Shared-Nothing Iterative Processing

There exist three common approaches to evaluate iterative query plans in shared-nothing systems:

14

• Bulk synchronous: Each iteration computes a completely new result from the result of the

previous iteration. A synchronization barrier separates each iteration.

• Incremental synchronous: Each iteration computes a new result, then compares it with the result

of the previous iteration and feeds only the delta to the next iteration. This approach corresponds

to semi-naı̈ve Datalog evaluation.

• Incremental asynchronous: New facts are continuously discovered without coordination between

operator partitions and without any synchronization barriers.

Consider GalaxyEvolution from Figure 2.1. During the evaluation of rules (2) and (3), with bulk

synchronous execution, each iteration i takes all the galaxies reachable from GalaxiesOfInterest

within i− 1 timesteps as input, then joins them with Edges to get all the galaxies reachable within

i timesteps. With the incremental synchronous evaluation, the input of iteration i is only the set of

galaxies that are reachable with no less than i− 1 timesteps. The output contains only newly discov-

ered reachable galaxies. With asynchronous execution, operator partitions continuously discover

and communicate reachable galaxies without synchronization barriers.

2.2 Asynchronous Evaluation of Datalog with Aggregation

In this section, we present our asynchronous evaluation technique for recursive queries. We first

introduce an extended class of aggregate functions that can recursively be evaluated in Datalog pro-

grams (Section 2.2.1). We then show how to generate query plans for the asynchronous and parallel

evaluation of Datalog programs with this extended class of recursive aggregates (Section 2.2.2).

Finally, we discuss optimizations that can significantly affect query performance and example

applications that illustrate these performance trade-offs (Section 2.2.3).

2.2.1 Recursive Bag-Monotonic Aggregation

As described in Section 2.1.1, the non-recursive method to evaluate a Datalog program with

aggregation consists in evaluating an aggregate function only after all its input IDBs have converged

to their fixpoints. Furthermore, if an IDB with an aggregate function is used in the body of another

15

rule, the evaluation of that rule also blocks until the aggregate function is evaluated.

In some cases, recursively evaluating these aggregates can speed-up convergence by pruning

unnecessary partial results early. In contrast, the blocking strategy must evaluate each IDB in

full, which may yield worse performance as we show in Section 2.5.2. The SociaLite work [180]

has shown that a small class of aggregates, meet aggregates, can be evaluated recursively. These

aggregate functions are associative, commutative, and idempotent binary operations defined on a

domain S. These operations, denoted with ∧, induce a partial order � on S, which is defined as:

∀x, y ∈ S, x � y if and only if x ∧ y = x. The result of the function on any two elements is the

greatest lower bound with respect to this partial order. $Min and $Max are two examples of meet

operations. Furthermore, if a Datalog program comprises a meet aggregate function defined on a

finite set, and the rest of the program is monotonic with respect to the partial order induced by the

aggregate, then the iterative evaluation of the rules converges to the greatest fixpoint. Finally, these

programs can be evaluated incrementally [180] and asynchronously [179].

As in SociaLite, we support meet aggregates, which already enables us to express a subset

of our target applications (see Section 2.2.3) . We observe, however, that many applications re-

quire aggregates other than meet aggregates, yet can still benefit from the recursive evaluation of

those aggregates. Typical examples of these aggregates are $Count and $Sum. These aggregates

are commonly used in analytical applications yet are not meet aggregates because they are not

idempotent.

GalaxyEvolution is one example application that can benefit from the recursive evaluation of

a $Count aggregate, which is illustrated by the Datalog program from Figure 2.2. This program

computes the same result as the one in Figure 2.1 but uses different rules, which involve recursive

aggregates. Here, the Edges IDB depends on the recursively defined Galaxies IDB. As a result,

Edges and its $Count aggregate must be recursively evaluated as well. We show in Section 2.5.2

that the recursive version of the application can significantly reduce the run time because it avoids

the computation of unnecessary tuples in Edges. The clustering algorithm DBSCAN [76] is another

example application that can benefit from the recursive evaluation of a $Count aggregate (used

during the density estimates).

16

The above examples and other similar examples that we encountered while working with

scientists at the University of Washington motivate us to extend the notion of recursive aggregates to

a broader class of aggregate functions: We show that it is possible to recursively evaluate aggregate

functions that are commutative, associative, and bag-monotonic (but not necessarily idempotent).

Examples of bag-monotonic aggregates include $Count, $Sum, which are not idempotent, and also

include $Min and $Max. We start with a definition of a bag-monotonic aggregate:

Definition 2.2.1. Let S be a set of bags of tuples, and x, y ∈ S. A partial order � on S is defined

as: x � y if and only if x ⊆bag y
1. An aggregate function a : S → V is bag-monotonic with

respect to a partial order � defined on V , if for any x, y ∈ S such that x � y, we have a(x) � a(y).

We can now define a Datalog program with a recursive, bag-monotonic aggregate. Let

g : T → W be the function that takes a bag of tuples R ∈ T , does a group by on the set of

grouping attributes, then applies the aggregate function a to each group k to generate a set of tuples

U = {(k, v) . . . }, v ∈ V, U ∈ W . The partial order on T is defined as: R1 � R2 if and only if

R1 ⊆bag R2. The partial order on W is its Hoare order: U1 � U2 if and only if ∀(k, v) ∈ U1,

∃(k′, v′) ∈ U2, (k, v) � (k′, v′), where (k, v) � (k′, v′) if and only if k = k′, v � v′. We refer to

the rest of the program as f : W → T , and require f to be monotonic with respect to the order

defined on T and distributive. The whole program is then defined as the recursive application of the

function (f ◦ g). Starting with a set of empty bags of tuples R0, for each i ≥ 0, we have:

Ui+1 = g(Ri), Ri+1 = f(Ui+1).

We illustrate the definition using Figure 2.2. In this program, the $Count aggregate computes

the number of particles shared between any pair of galaxies, (gid1,gid2), at adjacent timesteps.

As the rules are evaluated, more particles can be found to satisfy the body of rule (3). As a result,

the bag of particles that serves as input to $Count grows. Each bag is a superset of the previous

bag, thus only causes $Count to be computed on supersets of the previous inputs. Since $Count is

1⊆bag is bag containment, x ⊆bag y if and only if for any tuple t that appears n times in x, t also appears m times
in y, and n ≤ m.

17

bag-monotonic, the output of the aggregate only increases. Furthermore, once a new pair of galaxies

is discovered, no new tuples can cause the pair to be removed. Notice that if the condition in rule

(2) was changed to c < thresh, the program would no longer be monotonic with respect to the

partial order defined on the input to the aggregate operator.

Finally, we use a similar approach as in SociaLite to show that the naı̈ve evaluation of such

a program converges to a fixpoint, and that its semi-naı̈ve evaluation is equivalent to the naı̈ve

evaluation. Since R0 consists of sets of empty bags, we have R0 � (f ◦ g)(R0). Using mathematical

induction, if T is a finite set, then there must exist a finite n such that

R0 � (f ◦ g)(R0) � · · · � (f ◦ g)n(R0) = (f ◦ g)n+1(R0),

where (f ◦ g)n(R0) is the greatest lower bound of the program.

The process of semi-naı̈ve evaluation is the following. Starting from R′0 = R0, for each i >= 0,

we have:

U ′i+1 = g(R′i),

∆i+1 = U ′i+1 − U ′i ,

R′i+1 = R′i ∪ f(∆i+1).

We use mathematical induction to show that U ′i = Ui.

Basis: U ′1 = g(R′0) = g(R0) = U1.

Inductive: assuming U ′k = Uk for all k ≤ i, then we have:

U ′i+1 = g(R′i) = g(R′i−1 ∪ f(∆i))

= . . .

= g(f(∆1) ∪ f(∆2) ∪ · · · ∪ f(∆i))

= g(f(∆1 ∪∆2 ∪ · · · ∪∆i))

= g(f(U ′i)) = g(f(Ui)) = Ui+1.

18

Galaxies(1,gid) :- GalaxiesOfInterest(gid) (1)

Galaxies(time+1,gid2) :- Galaxies(time,gid1),

Edges(time,gid1,gid2,c), c >= thresh (2)

Edges(time,gid1,gid2,$Count(*)) :- Galaxies(time,gid1),

Particles(pid,gid1,time), Particles(pid,gid2,time+1) (3)

Join	

Scan(Par,cles)	

Join	

IDBController(Galaxies)	

IDBController(Edges)	

(Count	
 +	
 Filter	
 inside)	

Join	
 Scan(GalaxiesOfInterest)	

Scan(Empty)	

Figure 2.2: Datalog program for the GalaxyEvolution application using a recursive aggregate (top).

Query plan for this application (bottom). Dashed lines indicate shuffling over the network. Note that:

1. we push the selection into the IDBController as an optimization, 2. since the Edges IDB does not

have an initial input, we link a Scan, which reads an empty relation, to initialize the IDBController

for Edges.

2.2.2 Parallel and Asynchronous Evaluation

In this section, we show how to translate a Datalog program with bag-monotonic recursive

aggregates into a query plan that can be executed asynchronously and incrementally. Our approach

can be implemented in a broad class of big data management systems with only small extensions

that we present in this section. Our approach then enables the asynchronous evaluation of even

complex query plans with multiple recursive IDBs. The systems that we target are shared-nothing,

dataflow, analytical engines, in which operators and data are horizontally partitioned across worker

processes, and data can be pipelined from one operator to the next without going to disk and without

synchronization barriers. Examples of such systems include Flink [5, 77], Dryad [120], parallel

database systems [10, 87], and also our own system, Myria [102]. Spark [225] could also benefit

from our approach if it was extended with pipelined data shuffling, while MapReduce [71] serves

as a counterexample. Note that these specific systems already have their own approach to iterative

processing (see Section 5.1). We use them as examples of the class of systems to which our approach

19

also applies.

Recursive Query Plans

The incremental evaluation of recursive Datalog programs with bag-monotonic aggregate

operators requires query plans that perform several functions: (1) At each iteration, the query plan

must compute new facts based on the incremental changes to the states of the recursive IDBs since

the last iteration. In the example from Figure 2.2, each iteration discovers new Galaxies tuples

and new qualifying pairs of Particles tuples that join together. (2) The query plan must then

update the state of the recursive IDBs based on the new facts. This state update may require the

computation of the aggregate functions if present. (3) The query plan must compute and output the

changes to the IDB states since the last iteration, such as the newly computed Edges and Galaxies

tuples. (4) The plan must detect whether all IDBs have reached a fixpoint. We propose to use regular

relational operators for (1). We encapsulate functions (2) and (3) into a new operator that we call

IDBController. We introduce a second operator, the TerminationController, to check (4).

As shown in Figure 2.2, an IDBController has two input children. One child is the initial state of

the IDB, which is not recursive. For Galaxies, this input is the relation GalaxiesOfInterest,

although it can also be empty, as for Edges. The other child is the recursive input for the new tuples

that are generated during the iterations.

We let the IDBController perform the group-by and aggregation within itself to avoid generating

and moving unnecessary tuples between operators. Instead, the IDBController computes directly

the aggregated state. Additionally, while the IDBController accumulates the complete IDB state, it

outputs only changes to that state in order to support incremental evaluation.

An IDBController has two execution modes: synchronous and asynchronous. In synchronous

mode, the IDBController first fully consumes its initial input, initializes the state of its IDB, and

outputs that state. Second, it accumulates tuples from the recursive input until the end of one

iteration. It then updates the state of its IDB and outputs changes to that state for the next iteration.

In asynchronous mode, the IDBController consumes input tuples on either input as they become

available. For each input tuple, it updates the state of the corresponding group, and outputs the new

20

IDBController(Galaxies)	

IDBController(Edges)	

Termina8onController	

Worker	
 1	

…	

…	

…	

…	

IDBController(Galaxies)	

IDBController(Edges)	

Worker	
 n	

…	

…	

…	

…	

…	

Figure 2.3: GalaxyEvolution query plan with IDBControllers and an TerminationController. Other

operators are omitted.

aggregate value if it has changed. We explore the performance implications of each execution mode

in Section 2.5.2. In the rest of this subsection, we focus on the asynchronous mode.

There is one TerminationController for each iterative computation. This operator collects periodic

messages from all IDBControllers indicating whether the operators produced any new tuples since

the last message. We further discuss the details of the TerminationController and fixpoint detection

in Section 2.2.2.

Figure 2.3 illustrates the positions of the two operators in a query plan by showing the query

plan produced for GalaxyEvolution. In all other figures, we omit the TerminationController (and the

parallelism) when showing query plans.

Given these two special operators, we are now able to translate a positive Datalog program into

an asynchronous recursive query plan, as shown in Algorithm 1. Briefly, the procedure translates

the head of each rule into an IDBController, the body of each rule into a relational query plan. It

then connects the appropriate inputs and outputs. As an example, Figure 2.2 shows the generated

query plan for GalaxyEvolution, where the two IDBControllers recursively depend on each other.

21

Lightweight Termination Check

Evaluating a recursive query asynchronously raises an important issue: how to decide if the

program has terminated. Since there are multiple IDBs being evaluated on multiple machines, and

messages are sent through the network with possible delays, we need a protocol to guarantee a

correct termination.

To detect termination, we propose a lightweight protocol that only requires small extensions

to operators. First, we extend all operators with the ability to propagate a special message called

end-of-iteration (EOI), based on the following three rules. Later in this section, we show how these

messages serve as markers to determine that the fixpoint has been reached.

1. An IDBController generates the first EOI when its initial input has been fully consumed, and

all the following EOIs when it receives an EOI from its iterative input.

2. An operator which is not an IDBController generates an EOI when it has received at least one

EOI from each of its children since the last time it generated an EOI.

3. The internal design of an operator needs to ensure that, after it generates an EOI, it does not

generate more tuples until it has fetched some new tuples from its children.

Additionally, an IDBController sends a message to the TerminationController every time it

generates an EOI. Each message is a triple (R,α, b), where b is a boolean value indicating whether

the IDBController for relation R on worker α generated any new tuples since the last message. The

TerminationController maintains one relation for each IDB with one column per worker. Whenever

it receives a message from a worker, the TerminationController appends the boolean value to column

α in table R as shown in Figure 2.4.

When the TerminationController finds a full-false row, in which which all attribute values in all

tables are false, the TerminationController signals that the query has completed. To ensure that

the above condition correctly identifies the termination of the query, we need to prove two lemmas:

Lemma 2.2.1. When the query terminates, there exists a row n such that any row i with i ≥ n is a

full-false row.

Proof. The above lemma follows directly from the rules in the protocol: operators output an EOI in

22

EOSController+

Termina0on+

messages+
IDB+1+Reports+from+

IDBControllers+

Worker&1& … Worker&n&

Report+#1+ True+ … True+

…+

Report+#k+ False+ … False+

Worker&1& … Worker&n&

Report+#1+ True+ … True+

…+

Report+#k+ False+ … False+

Worker&1& … Worker&n&

Report+#1+ True+ … True+

…+

Report+#i+ False+ … False+

IDB+m+

…+

Figure 2.4: The internal state of an TerminationController

response to receiving EOIs on all their children and there is no termination condition for this process.

Starting from some time t, if the query will not generate any more data, then all the following

messages must be false.

Lemma 2.2.2. If row k is a full-false row, then any row i, i > k, is also a full-false row.

Proof. We prove the lemma by contradiction. Consider that operators produce EOIs with increasing

sequence numbers (in our protocol, EOIs need not be numbered). We use EOIt,A to denote the

t-th EOI produced by IDBController A. A outputs EOI0,A after consuming its entire initial input.

Because an operator only propagates an EOI after receiving at least one EOI from each of its

children, A will be able to produce EOI1,A only after all IDBControllers B that produce data

consumed by A have produced their EOI0,B. Furthermore, we use s1 to denote the largest EOI

sequence number that A has received as input before generating EOI1,A, then s1 ≥ 0. 2 By induction,

A outputs EOIi+1,A only after any recursively connected IDBController B has produced EOIsi+1,B ,

and si+1 ≥ i.

Consider the case where k is a full-false row but there exist some true cells following row k.

Consider ta, the earliest tuple that was generated among all the true cells after row k. By rule 3 in

the protocol, ta was generated in response to some other tuple tb and, by definition of ta, tb must

2To see why A can receive EOIs1,B with s1 ≥ 0 before generating EOI1,A, consider the case where B generates
data consumed by A but is itself independent from A.

23

belong to a cell before row k. On the other hand, since EOIsk,B was generated before EOIk,A based

on the above induction and ta goes after EOIk,A, then tb must go after EOIsk,B. Since sk ≥ k − 1

and k is a full-false row, we know tb must live in a cell after row k. Thus the lemma is proven by

contradiction.

2.2.3 Execution-Time Optimizations

Iterative query processing with aggregation is amenable to several execution time optimizations.

Importantly, as we show in Section 2.5.2, selecting different execution strategies for the same query

plan can significantly impact performance.

The first optimization is the decision to execute a query either synchronously or asynchronously.

We use sync and async to denote these two execution modes respectively. We find that it is not the

case that the latter always outperforms the former for applications that tolerate asynchrony.

Asynchronous processing has the benefit of resilience against uneven load distribution because

workers process data without synchronization barriers. This benefit, however, can be offset by a larger

amount of intermediate result tuples generated during execution. We demonstrate experimentally

that, each combination of iterative application and execution strategy (sync or async), can generate

a different number of intermediate result tuples, which significantly affects performance. The sync

and async execution modes are supported by the IDBControllers as described in Section 2.2.2. The

system sets the execution mode when initializing these operators for a query.

A second query execution strategy choice that can yield dramatically different numbers of

intermediate result tuples is the join pull order. Binary operators, such as joins, can consume their

input data in several ways. One approach is to fully consume one of the inputs before fetching any

data from the other one. Alternatively, a join can pull from both children with or without preference

if it is a symmetric operator such as a symmetric hash-join. We observe that, when one child of a

join is an EDB and the other one is a recursive IDB, the join pull order can significantly affect the

number of intermediate result tuples. More precisely, we comparatively evaluate three execution

strategies:

24

• build EDB: The join operator first consumes all data from one input and builds a hash-table

in memory. It then streams the other input and probes the hash table. Note that it is only possible

to fully consume the input that is not recursive.

• pull IDB: The join only consumes data from its EDB child if no data is available on the

recursive IDB input.

• pull EDB: Opposite to pull IDB, the join only consumes its IDB child if no data is available

on the EDB child.

• pull alter: The join pulls alternatively from the two children without favoring one over the

other.

The presence and impact of the intermediate result tuples depend both on the execution strategy

and the application. In GalaxyEvolution (Figure 2.2), the number of intermediate result tuples is

the same independent of the execution strategy. However, for other applications, the number of

intermediate tuples varies when the execution strategy changes. To better illustrate this point, we

consider two additional applications.

Consider the connected components application shown in Figure 2.5, which computes the

connected components in a graph. In this application, rule (1) initializes the connected components:

each vertex starts as its own connected component with its identifier. Rules (2) and (3) recursively

compute the connected components: For all combinations of facts that satisfy the bodies, the

aggregate function $Min(v) keeps and propagates only the current minimal component ID v for

each vertex y. The evaluation of $Min(v) is inter-twined with the discovery of new facts, where

intermediate result tuples are generated until convergence. This is true in both the synchronous

and asynchronous modes, but the number of intermediate result tuples varies when the join pull

order changes in the asynchronous mode. Intuitively, if the join between Edges and the newly

updated component values from CC favors the recursive input (pull IDB execution method), then

it prioritizes the propagation of values closer to convergence, which ultimately reduces the number

of intermediate result tuples.

We also consider another application from the bibliometrics domain. The application computes

25

CC(x,x) :- Edges(x,) (1)

CC(y,$Min(v)) :- CC(x,v), Edges(x,y) (2)

:- CC(y,v) (3)

IDBController(CC) Scan(Edges)

Join

Scan(Edges)

Figure 2.5: Datalog query (top) and recursive query plan (bottom) for connected components. The

input EDB Edges(x,y) contains follower-followee edges.

the least common ancestor (LCA) for pairs of publications in a citations graph. An ancestor a of a

paper p is any paper that is transitively cited by p, and the LCA a of two papers p1 and p2 is the least

ancestor of both p1 and p2. Ancestor order is defined by the triple: (depth, year, paper id). Figure 2.6

shows the Datalog and query plan for this application. The IDB Ancestor uses the aggregate

function $Min to keep the length of the shortest path between two papers. In the synchronous mode,

each iteration i only generates new pairs of papers with shortest path lengths equal to i. Once such a

tuple is emitted, it will never be replaced by another tuple, which means there will be no unnecessary

intermediate result tuples in this mode. In the asynchronous mode, however, a tuple of Ancestor

may be replaced by another tuple with a smaller path length, which leads to a larger number of

intermediate result tuples. The number of intermediate result tuples grows even larger in rule (3)

with a self-join on Ancestor.

We evaluate the performance implications of these different execution alternatives on these three

applications in Section 2.5.2.

2.3 Failure Handling

Several techniques exist to handle failures during the execution of iterative queries. The simplest

approach is to restart the entire computation. The most well-known alternatives include data

materialization at synchronization boundaries [55, 71, 221], checkpointing the state of the entire

26

Ancestor(b,a,1) :- Cite(b,a), b<seed (1)

Ancestor(p,a,$Min(depth+1)) :- Ancestor(p,b,depth), Cite(b,a) (2)

LCA(p1,p2,$Min(greater(d1,d2),year,a)) :- Ancestor(p1,a,d1), Ancestor(p2,a,d2),

Paper(a,year), p1<p2 (3)

IDBController(Ancestor) Scan(Cite)

Join

Scan(Paper)

Join

IDBController(LCA)

Join

Scan(Cite)

Filter

Figure 2.6: Datalog query (top) and recursive query plan (bottom) for LCA. The inputs are two

EDBs: Paper(a,year) and Cite(b,a). The computation produces two outputs: Ancestor(b,a,depth) and

LCA(p1,p2,depth,year,a).

computation either synchronously [152, 159] or asynchronously [146], and restarting using lineage

tracking and periodic checkpoints [184, 225].

An important goal of our work is to develop synchronous and asynchronous iterative query

processing methods that are simple to add to an existing shared-nothing engine. For this reason, we

focus on failure handling methods that can be implemented by simply inserting failure-handling

operators into query plans rather than modifying all operators (and queues) with the ability to

checkpoint and recover state. We do not develop a new failure-handling method. Instead, we study

fault-tolerance methods in the context of iterative query plans.

Similar to MapReduce [71] and Hadoop [221], we focus on fault-tolerance methods that buffer

data on the producer side of data shuffling operators in the query plan. When a shuffle consumer

worker fails, the shuffle producer resends the buffered data to a newly scheduled instance of the

failed worker. Unlike MapReduce, but similar to the River system [47], the upstream backup

methods developed for stream processing engines [115] and also used with shared-nothing database

27

Operators) Shuffle)

N
e
tw

o
rk
)

Worker)1)

Operators) Shuffle)
Worker)n)

Worker)k)

Buffer)of)worker)k)

Buffer)of)worker)k)

Resend)

Resend)

Worker)k’)

Figure 2.7: Fault-tolerance through data buffering in shuffle producer operators. When worker k

fails, a new worker is re-scheduled and all other workers re-send their buffered data.

management systems [205], we buffer the data in-memory and without blocking. Figure 2.7 illustrates

the approach. Buffers can spill to disk but we did not find that necessary in the applications that we

used in the experiments.

For failure detection, we use simple heartbeat messages from the workers to the master, but we

could also use more sophisticated cluster configuration methods [210].

During normal computation, each worker buffers its outgoing messages to other workers in

memory in these shuffle operator buffers. If a worker fails, the master starts a new worker process

and reschedules the failed query fragment on that process. The approach could also recover the

failed fragments in parallel using multiple workers to speed-up recovery [184, 225]. The newly

scheduled fragments process the iterative query from the beginning, while all other workers resend

their buffered data.

The above failure handling methods are known. Our contribution is to study how amenable

iterative computations are to optimizations that are possible for these buffer-based fault-tolerance

28

methods. We study the following optimizations:

• Append Buffer: Buffer all data in FIFO queues with no optimization.

• Aggregate Buffer: The idea is equivalent to using a MapReduce combiner. In the case when

the data being buffered is part of an IDB with aggregation, the data can be partially aggregated at

the sender.

• Prioritized Buffer: Prior work [227] has shown that prioritizing the execution of specific

tuples can speed-up convergence of iterative computations. For example, in the case of Connected

Components, prioritizing tuples with the lowest component IDs can help to propagate these lower

values faster. The idea of the prioritized buffer is to support such prioritization during failure

recovery be re-ordering tuples in the buffer based on an application-specific priority function. For

Connected Components, the sort order is increasing on component ID.

We empirically compare the overhead and recovery time of the above failure-handling methods

in Section 2.5.3.

2.4 Implementation

We implement our approach in the Myria [23, 102] data management system. Myria’s query

execution layer, called MyriaX, is a shared-nothing distributed engine, where there is one master

node and multiple worker nodes. As in HadoopDB [40], datasets ingested into Myria are sharded

into PostgreSQL databases local to each node. MyriaX can read from other sources but we use

PostgreSQL in our experiments. Once data is read out of PostgreSQL it is processed entirely in

memory.

MyriaX is a relational engine. Query plans comprise relational algebra operators that are

partitioned across workers. To distribute data across operator partitions, we use hash-partitioning

and insert data shuffling operators to perform data re-distribution when necessary. Within each

worker, query execution is pull-based: each operator produces output by pulling data from its

children and returning it to its parent. Communication between workers is push-based: producer

operators aggressively push data to consumers, with backpressure-based flow control used to balance

29

the rates of data production and consumption while keeping the dataflow pipeline full. MyriaX

processes tuples in batches to remove function call and network protocol overheads.

To justify our choice of the Myria engine for the implementation and evaluation of recursive

query plans, we compare Myria’s basic query execution performance to Spark [225], a state-of-the-

art engine that includes support for synchronous iterative computations.

Figure 2.8 shows the results 3, 4. Each bar shows the ratio of query execution time of Spark over

Myria. Selection, aggregation and connected components are running on top of the full Twitter [133]

dataset, which contains approximately 41 million vertices and 1.5 billion edges of the “follower,

followee” relationships. For join, we use a subset of Twitter, which contains 60 thousand vertices

and 1.5 million edges, because Spark could not produce results when a larger subset was used due to

large memory usage. The join result has around 400 billion tuples. In all cases, Myria outperforms

Spark with also a smaller variance in query execution times. These experiments illustrate that

MyriaX achieves state of the art performance on standard queries, including iterative queries and

is thus a good platform for the study of the performance differences between recursive query plan

execution methods presented in this paper.

2.5 Evaluation

In this section, we evaluate the performance of our recursive query plans. The experiments

address the following: (1) Does asynchronous query evaluation always lead to the fastest run times?

(2) Do the variants of asynchronous evaluation (Section 2.2.3) matter? When does each variant lead

to the fastest query run time and why? (3) Which fault-tolerance approach yields the best trade-off

between run time overhead and failure recovery time?

We evaluate our techniques using three applications and datasets:

• Connected Components (Figure 2.5): We compute the connected components on a subset of

the Twitter graph [133], which contains 21 million vertices and 776 million edges. To study how

3Results are generated in memory, not materialized to disk.
4Here we use round-robin partitioning for all datasets in Myria to make it a fair comparison with Spark and HDFS.

30

0

2

4

6

8

10

12

14

16

18

4 8 16 32 64

R
a
#
o
 (
S
p
a
rk
 /
 M

y
ri
a
)

workers

Select

Aggregate

Join

Connected Components

Figure 2.8: A comparison of Spark and MyriaX on four queries: Select (R(x,y) :-

Twitter(x,y), x < 5000000), Aggregate (R(x,sum(y)) :- Twitter(x,y)), Join

(R(x,z) :- Twitter(x,y), Twitter(y,z)), and Connected Components. MyriaX completes

these queries 1.5× to 10× faster on average than Spark. For Connected Components, Spark (using

GraphX) runs out of memory for small cluster sizes and large data.

the graph degree distribution may affect results, we also compute the connected components for

three synthetic graphs generated using Snap [138]. These graphs are power-law graphs obtained by

varying the exponent of the power law distribution. Each graph has 21 million vertices and either

192 (dense), 81 (medium), or 20 (sparse) million edges.

• GalaxyEvolution (Figure 2.2): We compute galactic merger graphs on an astronomy simula-

tion [27] that is 80GB in size with 27 timesteps.

• LCA (Figure 2.6): We determine the least common ancestor in a real bibliometrics dataset

obtained from a UW collaborator containing 2 million papers and 8 million citations.

2.5.1 Experimental Method

We run all experiments using our Myria prototype implementation (Section 2.4) in a 16-node

shared-nothing cluster interconnected by 10 Gbps Ethernet. Each machine has four Intel Xeon CPU

E5-2430L 2.00GHz processors with 6 cores, 64GB DDR3 RAM and four 7200rpm hard drives. We

vary cluster size using 8 or 16 machines with 1 to 4 worker processes each.

31

In each experiment, we measure the run time and resource consumption of each query while

it executes until convergence. We report the query run time, total CPU time across all workers,

total network I/O (number of tuples sent), and the maximum memory consumption for the entire

query (number of tuples in operator states and buffers). All queries are executed five times, and we

report the average values along with min/max values as error bars. Unless stated otherwise, we use

round-robin partitioning for the base data (EDBs), hash-based partitioning for the operators in the

query plans, present resource consumption results for the 32-worker cluster configuration (other

sizes exhibit the same trends), and normalize the figures to the resource consumption of the best

evaluation strategy to enable comparison across resource types.

2.5.2 Execution Model

In this section, we evaluate the performance of the various execution models described in

Section 2.2.3. In particular, we evaluate synchronous versus asynchronous execution strategies

and, for asynchronous execution, compare how EDB-first, IDB-first, or balanced pull orders affect

convergence.

Connected Components

Figure 2.9 shows the query run time and resource consumption results for Connected Com-

ponents on Twitter: we find that using asynchronous execution and preferring new IDB results

((async, pull IDB)) yields both the fastest query run time and the lowest overall resource

utilization. Synchronous iteration is about a factor of 2 slower. This result is expected, as the benefits

of asynchronous execution for Connected Components have been widely reported [157, 179].

However, we surprisingly find that synchronous iteration is significantly faster than (async,

pull EDB) and (async, build EDB). Asynchronous models range from 2× faster to 6× slower

than synchronous, depending on how they propagate data. For this query, pulling from the IDB as

much as possible helps to propagate small component IDs faster across the network to CC on remote

nodes. This helps reduce the amount of intermediate result tuples significantly and thus achieves

32

Async,#pull#IDB# Sync# Async,#pull#EDB# Async,#build#EDB#

0

500

1000

1500

2000

8 16 32 64

T
im

e
 (
s
e
c
o
n
d
s
)

workers

(a) Query run times of different cluster sizes and

execution models

0

1

2

3

4

5

6

7

CPU Network

I/O

Memory Run =me

R
a
#
o

(b) Relative resource consumption of different exe-

cution models with 32 workers. (Async, pull

IDB) serves as reference.

Figure 2.9: Connected Components: query run times and resource consumption.

faster convergence and lower resource consumption. In contrast, the strategies that prefer to load the

EDB into memory generate many intermediate tuples that are later replaced; build EDB is slightly

faster than pull EDB because it only builds a single hash table, saving some computation.

The synchronous model achieves a middle ground between the asynchronous strategies. It

is slower than (async, pull IDB) because of the global barrier between each iteration step.

However, it is able to aggregate away intermediate results at the barriers, and this reduction in

redundant work dominates the EDB strategies. The sizes of intermediate results are immediately

visible among all four techniques when considering the network I/O: (async, pull IDB) shuffles

fewer than one quarter of the tuples of the other asynchronous methods.

Figure 2.10 shows the results on the synthetic datasets. We only show the resource consumption

of the dense and the sparse datasets because the pattern of the medium dataset falls between them.

The dense dataset yields similar results to the Twitter dataset. In contrast, for the sparse dataset,

sync becomes the slowest strategy in terms of query run time. This is caused by the long tail of the

sparse graph. However, for other types of resource consumption, sync still sits in between the two

33

Async,#pull#IDB# Sync# Async,#pull#EDB# Async,#build#EDB#

0	

2	

4	

6	

8	

CPU	
 Network	

I/O	

Memory	
 Run	
 :me	

Ra
#o

	

(a) Dense

0	

0.5	

1	

1.5	

2	

2.5	

CPU	
 Network	

I/O	

Memory	
 Run	
 :me	

Ra
#
o	

(b) Sparse

Figure 2.10: Connected Components on synthetic datasets: relative resource consumption of differ-

ent execution models with 32 workers. (Async, pull IDB) serves as reference.

asynchronous strategies, which is similar to the Twitter dataset.

To our knowledge, even though Connected Components is such a well-studied problem, no

prior report has illustrated the subtleties in how strongly the choice of execution strategy affects

distributed system performance.

GalaxyEvolution

An important benefit of our approach is its focus on general-purpose Datalog programs as

opposed to focusing only on processing graphs as in the case of SociaLite [179, 180] and several

other engines [146, 212]. In GalaxyEvolution, the input data is a relation tracking particles through

galaxies over time, and the goal is to compute the historical merger graph for a set of galaxies of

interest at present day. As we described above, there are two ways to query the data. One approach

Figure 2.1 first computes a full Edges relation for the galaxies in the simulation, in essence a full

graph of galaxies, then extracts the sub-graphs reachable from the galaxies of interest. The alternate

approach (Figure 2.2) represents the entire computation directly using recursive Datalog with our

novel support for bag-monotonic aggregation.

34

Recursive"Datalog" Two"Steps,"pull"alter" Two"Steps,"build"EDB"

0

100

200

300

400

500

8 16 32 64

T
im

e
 (
se
co
n
d
s)

workers

(a) Query run times of two-step and recursive Data-

log.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

CPU Network

I/O

Memory Run Time

R
a
#
o

(b) Relative resource consumption of two-step and

recursive Datalog with 32 workers. Recursive Data-

log serves as reference.

Figure 2.11: GalaxyEvolution: query run times and resource consumption, two-step versus recursive

Datalog.

In this experiment, we randomly select one percent of the present day galaxies as the groups

of interest. We compare our novel recursive Datalog plan (the choice of strategy does not matter,

for reasons we discuss below) to the two-step approach using two execution models: pull alter

for the join in step 1 or build EDB for building the EDB hash table first since they have different

memory consumption on hash tables. As the results in Figure 2.11 show, using recursive Datalog

leads to a 25% faster total run time and a lower resource utilization except for memory. The

performance and network I/O gains are explained because we avoid the computation of unnecessary

Edges. The higher memory utilization comes from having both recursive join operators active at

the same time in one query rather than computing them one at a time in two separate steps.

Next, we focus on the recursive Datalog approach. Figure 2.12 shows the performance of

different execution methods. To emphasize the differences between these models, we change the

selectivity of the GalaxyEvolution query by using all galaxies in the groups of interest and also

lowering the thresh to ensure that the bottleneck of the query is not the disk I/O.

35

Async,#pull#IDB# Sync# Async,#pull#EDB# Async,#build#EDB#

0

100

200

300

400

500

600

8 16 32 64

T
im

e
 (
se
c
o
n
d
s)

workers

(a) Query run times of different cluster sizes and

execution models.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

CPU Network

I/O

Memory Run <me

R
a
#
o

(b) Relative resource consumption of different exe-

cution models with 32 workers. (Async, build EDB)

serves as reference.
Figure 2.12: GalaxyEvolution: query run times and resource consumption.

As we can see, (async, pull EDB) and (async, build EDB) yield the lowest run time.

The latter does so with less memory because it never builds a hash table for the IDB input. These

results are in contrast with Connected Components, where (async, pull IDB) is the most

efficient execution model. The key reason is that there are no invalid intermediate results as

GalaxyEvolution converges to a fixpoint; each step learns new facts about the next timestamp.

Hence, prioritizing the IDB does not help to converge faster, and instead the symmetric joins

employed by pull IDB and pull EDB spend time updating two hash tables, though pull EDB

finishes one child and switches to a single-sided join earlier. The sync uses the same amount of

resources as the best async methods but it is slower because of the global barrier.

Least Common Ancestor

Figure 2.13 shows the performance results for the LCA application. As the Datalog program is

essentially stratified by depth, the synchronous execution model always finds ancestors at the lowest

depth and has no unnecessary intermediate result tuples in the Ancestor relation. In contrast,

36

Async,#pull#IDB# Sync# Async,#pull#EDB# Async,#build#EDB#

0

20

40

60

80

100

120

140

160

180

200

8 16 32 64

T
im

e
 (
se
co
n
d
s)

workers

(a) Query run times of different cluster sizes and

execution models.

0

1

2

3

4

5

6

7

CPU Network I/O Memory Run =me

R
a
#
o

(b) Relative resource consumption of different exe-

cution models with 32 workers. (Async, pull IDB)

serves as reference.
Figure 2.13: LCA: query run times and resource consumption.

the asynchronous model generates many such intermediate result tuples in Ancestor, and even

more such tuples are generated when Ancestor is joined with itself to compute the LCA relation.

Because of the large number of intermediate result tuples, and their quadratic impact on result size,

all async strategies yield much worse performance than sync. In general, the three async models

have similar resource consumption numbers when varying the cluster size, although in this figure,

(async, build EDB) slightly outperforms the other methods.

Summary

In summary, our experiments show the following trends:

• Asynchronous query evaluation does not always lead to the fastest query run times. For

Connected Components async only works well combined with the right execution strategy (join

pull order), and for stratified applications like LCA, asynchronous query evaluation performs

unnecessary work that synchronous evaluation can avoid.

• The variants of asynchronous evaluation (Section 2.2.3) have a big impact on query run time.

37

Our study of Connected Components shows, for the first time, that variants can significantly affect

performance. The system should favor propagating newly-generated IDB tuples only when it will

not generate many intermediate result tuples; otherwise using single-sided joins with fewer hash

tables saves computation.

2.5.3 Failure Handling

In this subsection, we evaluate the failure-handling approaches described in Section 2.3 on the

same three applications. For each query, we first evaluate the resource consumption overhead of

fault-tolerance in the absence of failures. Then, we kill one worker during the query execution,

and compare the total amount of resources used to process the query using either query restart (No

Buffer) or one of the three buffer-based methods described in Section 2.3. We measure resource

consumption instead of run time as it measures the total overhead on the cluster independent of

how the recovery tasks are scheduled. We show the results when killing one worker approximately

70% of the time into the query execution. Similar patterns, though with somewhat different values,

emerge when killing a worker earlier during the query execution.

We perform all experiments twice. First, we randomly partition EDBs. These EDBs must be

shuffled during the query execution. Second, we hash-partition EDBs before the query execution

such that they only need to be read locally. The difference between the two approaches lies only in

the number of shuffle operators and in-memory buffers: when EDBs are hash-partitioned, shuffles

after scans are not needed, which saves in-memory buffers. We find that all the trends are identical

for both scenarios. The overheads are uniformly somewhat larger when an extra shuffle operator is

added. We thus only show the results with the hash-partitioned EDBs.

Figure 2.14 shows the fault-tolerance overheads of the (async, pull IDB) or (async,

pull EDB) execution methods. Each bar represents the ratio of resource utilization of one buffer

type compared with execution without any failure handling. The filled portions at the bottom show

the ratios in the absence of failures, while the portions with diagonal stripes on top show the

additional overhead to recover from a failure.

In the absence of failures, maintaining buffers in shuffle operators adds overhead. Basic Append

38

Priori:zed$Buffer$ Aggregate$Buffer$ Append$Buffer$ No$Buffer$

CPU	
 Network	
 I/O	
 Memory	

0	

0.5	

1	

1.5	

2	

2.5	

R
a#

o	

(a) Pull from IDB

CPU	
 Network	
 I/O	
 Memory	

0	

0.5	

1	

1.5	

2	

2.5	

Ra
#
o	

9.66	
 (+0.10)	

(b) Pull from EDB
Figure 2.14: Connected Components: relative resource consumption of different buffers with 32

workers. Filled bars: no failure, patterned bars: overhead to recover from a failure. No Buffer, no

failure serves as reference. In (b), the memory consumption of the Append Buffer reaches 9.66 with-

out failures and 9.76 with failure. It is truncated in the figure.

buffers add significant memory overhead, especially for (async, pull EDB) as it generates more

intermediate tuples. The Aggregate and Prioritized buffers dramatically cut memory and network

I/O overheads while only minimally increasing CPU overheads. These two methods have even lower

network I/O than no buffering due to the data aggregation they perform before shuffling.

In the case of failure, all three buffer-based methods incurred negligible overhead due to failure

recovery. Because this overhead is negligible, the extra work of sorting tuples in the buffer to

prioritize the execution is unnecessary. As a result, the Aggregate Buffer delivers the best trade-off

in terms of total resource consumption with or without failures.

Figure 2.15 shows the results for the GalaxyEvolution application. Aggregate Buffer and

Prioritized Buffer are not applicable to this application since the only aggregate function is $Count.

Similar to Connected Components, using Append Buffer consumes more memory during normal

execution, but saves CPU time and network bandwidth in case of failures. Once again, the total

resource consumption is nearly identical for an execution without failure or one with one failed

39

CPU	
 Network	
 I/O	
 Memory	

0	

0.5	

1	

1.5	

2	

2.5	

Ra

#o
	

No	
 Buffer	

Append	
 Buffer	

Figure 2.15: GalaxyEvolution: relative resource consumption of different buffers with 32 workers.

Filled bars: no failure, patterned bars: overhead to recover from a failure. No Buffer, no failure serves

as reference.

worker.

Finally, Figure 2.16 shows the results for LCA. The trends are the same as for Connected

Components. An interesting effect is that the early aggregation in the recovery buffers reduces

total CPU consumption even in the absence of failures. Importantly, total resource utilization in the

presence of a failure is, once again, nearly identical to the resource utilization without failure for all

three buffer-based methods showing that prioritization during recovery is not necessary.

In summary, a lightweight buffer-based method for failure handling yields only a small increase

in CPU utilization in the absence of failures, yet can recover from failures with negligible added

CPU cost. The memory overhead of data buffering can be large but extending the buffers with

early aggregates dramatically cuts these costs, which stay within 2X in all three applications tested.

Interestingly, the failure-handling extensions reduce network I/O even without failures.

2.6 Summary

In this chapter, we developed an approach for large-scale iterative data analytics that combines

the benefits of many existing systems. Users express their analysis in recursive Datalog with

aggregation, which simplifies the expression of analytics from a variety of application domains.

The system executes the analysis using parallel query plans that require only small extensions

to an existing shared-nothing engine yet deliver the full power of incremental synchronous and

40

Priori:zed$Buffer$ Aggregate$Buffer$ Append$Buffer$ No$Buffer$

CPU	
 Network	
 I/O	
 Memory	

0	

0.5	

1	

1.5	

2	

2.5	

Ra
#o

	

14.44	
 (+0.53)	

(a) Pull from IDB

CPU	
 Network	
 I/O	
 Memory	

0	

0.5	

1	

1.5	

2	

2.5	

Ra
#o

	

13.92	
 (+1.76)	

(b) Pull from EDB

Figure 2.16: LCA: relative resource consumption of different buffers with 32 workers. Filled bars:

no failure, patterned bars: overhead to recover from a failure. No Buffer, no failure serves as reference.

The memory consumption of the Append Buffer reaches 14.44 without failures and 14.97 with failure

in (a), and 13.92 without failures and 15.68 with failure in (b). They are truncated in the figure.

asynchronous query evaluation even for query plans with multiple recursive IDBs. Finally, we

empirically evaluate when different variants of query execution and failure handling methods deliver

the fastest query run time for different applications. We find that no single method outperforms

others. The key factor is the amount of intermediate tuples generated during query evaluation.

41

Algorithm 1 Translate a Datalog program into an asynchronous recursive query plan

1. function GENERATEPLAN(P)

2. Input: Datalog program P

3. R← Set of all rules in P

4. X ← Set of all IDBs in P

5. Y ← Set of all EDBs in P

6. Instantiate an TerminationController E

7. for (x ∈ X) do

8. Instantiate an IDBController Cx with empty inputs

9. Connect control output of Cx to input of E

10. for (y ∈ Y) do

11. Instantiate a Scan Sy

12. for (r ∈ R with h ∈ X as head) do

13. Translate the body of r into a relational query plan Qr

14. for (x ∈ X that appears in the body of r) do

15. Connect output of Cx to Qr as input

16. for (y ∈ Y that appears in the body of r) do

17. Connect output of Sy to Qr as input

18. if (body of r contains only EDBs) then

19. Union the output of Qr with the initial input of Ch

20. else

21. Union the output of Qr with the recursive input of Ch

22. for (x ∈ X) do

23. if (x has nothing on its initial input) then

24. Instantiate and connect a Scan(∅) to its initial input

25. if (x has nothing on its recursive input) then

26. Instantiate and connect a Scan(∅) to its recursive input

42

Chapter 3

ELASTICMEM: ELASTIC MEMORY MANAGEMENT FOR CLOUD
DATA ANALYTICS

In this chapter, we focus on the problem of elastic memory management for cloud data ana-

lytics. The work presented in this chapter appeared at USENIX ATC’17 [215]. As we introduced

in Section 1.3, large-scale analytics needs large amounts of computing resources, and many big

data systems are designed to run in clusters or cloud environments to leverage abundant resources.

Resources in such environments are often shared by multiple systems, users, and applications, and a

resource manager is often used for scheduling and resource allocation. Modern resource managers

rely on containers (e.g., YARN [207]), which have hard resource limits to both protect and isolate

applications. As an example, Figure 3.1 illustrates the interaction between a resource manager

and containers. The resource manager launches containers with resource limits and schedules

applications inside those containers.

To use containers, users or service providers need to estimate the resource needs of an application

before its execution. However, estimating resource usage, especially memory usage for large-scale

analytical queries, is a hard problem, and inaccurate memory usage estimates can harm query

performance in multiple ways. If the estimate is too high, cluster resources may be under-utilized.

If too low, the system must either spill data to disk, which degrades performance, or fail with

an out-of-memory error, wasting the resources already consumed by the query. This challenge

exists in systems with manual memory management, such as those written in C/C++ [129, 146],

in Java-based systems that use byte arrays [32], and in systems that rely on automatic memory

management provided by runtimes, such as Java [6,213,221,225] and the .NET Common Language

Runtime (CLR) [159]. The situation becomes more complicated when garbage collection (GC) is

used for automatic memory management since GC activities add another layer of unpredictability

43

Myria	Query	1	

Spark	
App	1	

Spark	
App	1	

System	X	App	A	

Myria	Query	1	
Myria	
Query	1	

Myria	
Query	2	

Myria	
Query	2	

Machine	1	

Resource	
Manager	

Machine	2	 Machine	3	

Spark	App	1	

Myria	Query	1	

Myria	Query	2	

System	X	App	A		

Figure 3.1: A resource manager schedules multiple applications from multiple systems (Spark [225],

Myria [213], and System X) in a shared cluster. An application may have multiple processes across

multiple machines. The resource manager schedules applications by putting them in containers with

resource limits.

to query performance. Even if resource estimates are sufficient to complete the query, garbage

collection in some cases can significantly slow down query execution. As a concrect example, we

demonstrate (Section 3.1) how changing the maximum heap size of Java-based systems significantly

impacts query execution time.

To avoid memory usage estimation before execution forced by hard container memory limit,

one possible solution is to make container memory limit elastic, i.e., changing the limit dynamically

during runtime. However, elastic container memory management presents difficulties. First, most

systems do not support it. For Java-based systems, the maximum heap size of a Java virtual machine

(JVM) stays constant during its lifetime. For C/C++-based systems, such as Impala [129], limiting

process resources is usually done using Linux utilities (such as cgroups), which do not expose

functionality to change resource limits at runtime. For systems that run in CLR [159], the problem

is the opposite: control on heap size cannot be specified, so it can grow arbitrarily up to the total

physical memory. Second, in order to elastically and dynamically allocate memory to data analytics

applications, we must understand how extra memory can prevent failures and speed up these

applications. We need models of GC benefits and overheads. Finally, we need an algorithm that uses

44

the models to orchestrate memory allocation across multiple data analytics applications.

In this chapter, we present ElasticMem [214, 215], an approach for dynamically allocating

memory across multiple applications in a shared cluster. Our solution is to avoid the rigid design

of container resource hard limits by proposing an elastic way to manage memory, where container

memory limits can be changed dynamically during runtime. Our focus is on analytical applications,

in particular relational algebra queries on large data, and Java-based systems. Since memory

management in Java containers (e.g., YARN [207]) is determined by JVMs internally, we focus

on how and when to change the memory layouts of JVMs. Specifically, our contributions are the

following:

• We show how to modify the JVM to enable dynamic changes to an application’s heap layout

for elastic management of its memory utilization (Section 3.2.1).

• Our key contribution is an algorithm for elastically managing memory across multiple applica-

tions in a big data analytics system to achieve an overall optimization goal (Section 3.2.2). In this

paper, we present scenarios where each query runs in one JVM and multiple queries run in one

machine, but our approach can be extended to a multi-machine setting.

• In support of elastic memory management, we develop a machine-learning based technique

for predicting the heap state and GC overhead for a relational query and whether it is expected

to run out of memory (Section 3.2.3) based on operator statistics. Since the common approach

for implementing relational operators in memory, such as joins and aggregates, is to use hash

tables [94], we build models that use hash table statistics as input.

We evaluate our elastic memory management techniques using TPC-H queries [29] on Myria [102,

213], a shared-nothing data analytics system, against containers with fixed memory limits. In our

experiments, our approach outperforms static allocation: It reduces the number of query failures;

it reduces query times by up to 30%, GC times by up to 80%, and overall resource utilization

(Section 3.3).

45

3.1 Performance Impact of Automatic Memory Management

Many big data analytics systems today, including Spark [225], Flink [5], Hadoop [221], Gi-

raph [6], and Myria [213], are written in programming languages with automatic memory man-

agement, specifically Java. Garbage collection associated with automatic memory management is

known to cause performance variations that are hard to control: The GC policy, although customiz-

able by the programmer to some extent, is controlled by the runtime internally. Depending on the

policy and heap state, the time and frequency of GCs may vary significantly and, as we later show

in this section, may significantly impact query performance.

Over the past decade, there have been several JVM implementations with various GC algorithms.

However, most of the contemporary ones share the concept of generations [38]. With this design, the

heap space is partitioned into multiple generations for storing objects with different ages. Figure 3.2

illustrates the internal state of a JVM heap with two generations. Initial memory allocation requests

always go to the young generation. When it fills up, a GC is triggered to clean up dead objects.

There are different types of GCs as shown in Figure 3.2. In a young collection, live objects in

the young generation are promoted to the old generation. In a full collection, dead objects are

cleaned from both generations in addition to promotions. The type of collection to trigger depends

on whether a promotion failure, i.e., insufficient space for promoting objects from the young

generation, is expected to occur or actually occurs. In this paper, we use OpenJDK as the reference

JVM implementation. We focus on the common class of GC algorithms that use a young and old

generation, and leave extensions to other languages and GC algorithms to future work.

We show a concrete example of how GC can impact query execution by executing a self-join

query on a synthetic dataset containing ten million tuples with two int columns, on three systems:

Myria, Spark 1.1 and Spark 2.0, using one process on one machine with default GC collectors

(-XX:+UseParallelGC). Figure 3.3 shows the query execution times with different heap-size

limits. Each data point is the average of five trials with error bars showing the minimum and

maximum values. For both Myria and Spark 2.0, when the heap is large, the query time converges

to approximately 35 seconds, which is the pure query time with almost no GC. When we shrink the

46

L LL	

L LL	 D D L	

L	 LD D L

L	 LD D L

L L L	

L L L	

N

Young	Genera+on	 Old	Genera+on	

Heap	

L L L	L LL	 D D L	 D

New	Alloca+on		
(GROW)	

Young	Collec+on		
(YGC)	
Full	Collec+on		
(FGCp)	

Ini+al	State	

Full	Collec+on		
(FGCc)	

Dynamic	Size	Limits	

Figure 3.2: Internal heap states of a JVM before and after actions of new object allocation, young

generation collection, and full collections, starting from an initial state. Dark blocks: (L)ive objects,

light blocks: (D)ead objects, blue blocks: (N)ew objects. Dashed lines: generation size limits that can

be changed in real time by our approach. We describe FGCp and FGCc in Section 3.2.2.

heap size, however, the run times increase moderately due to more GC time. For Myria, the run time

increases from 35 seconds to 55 seconds when the heap size goes from 16 GB to 3 GB, and further

increases drastically to 141 seconds when the heap size shrinks from 3 GB to 2 GB. Eventually,

Myria fails with an out-of-memory error when the limit is less than 2 GB. Similarly, the query time

for Spark 1.1 has a steep increase from 86 to 466 seconds when the heap size changes from 5 to

4 GB, and the query fails when the heap size is less than 4 GB. Spark 2.0 follows a similar trend as

Myria, but does not fail even with only 500 MB of memory because it is able to spill data to disk

when memory is insufficient. As a result, however, its execution time increases to 127 seconds.

3.2 Elastic Memory Allocation

In this section, we present our approach, called ElasticMem, for elastic memory allocation.

ElasticMem comprises three key components. First, ElasticMem needs JVMs that can change

memory limits dynamically, and we describe how we modify OpenJDK to enable this feature

in Section 3.2.1. Second, the heart of ElasticMem is a memory manager that dynamically allocates

memory across multiple queries (Section 3.2.2). Finally, to drive the manager’s allocation decisions,

47

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Heap Size (GB)

20

50
100
200

500
Q

ue
ry

 T
im

e
(s

)

OOM OOMOOM OOM

1..

Myria
Spark 1.1
Spark 2.0

Figure 3.3: Impact of GC on query execution time in Myria, Spark 1.1, and Spark 2.0. The y-axis

uses a log scale.

ElasticMem uses models that predict the heap state and the GC costs (i.e., impact on run time) and

benefits (i.e., expected freed memory) at any point during query execution (Section 3.2.3).

3.2.1 Implementing Dynamic Heap Adjustment in a JVM

OpenJDK manages an application’s memory as follows: First, the user specifies the maximum

heap size of a JVM process before launching it. The JVM then asks the operating system to reserve

the heap space and divides the space into generations based on its internal size policy as in Figure 3.2.

During program execution, if a memory allocation request cannot be satisfied due to insufficient

memory, the JVM may trigger GCs to release some memory. If not much memory is released after

spending a large amount of time on GC, the JVM throws an OutOfMemory error. The maximum

heap size stays constant during a JVM’s lifetime. It cannot be increased even if an OutOfMemory is

thrown while more memory is available on the machine, or decreased if heap space is underutilized.

This rigid design, however, is unnecessary. For operating systems that support overcommitting

memory, a logical address space does not physically occupy any memory until it is used. This

property, together with 64-bit address spaces, allow us to reserve and commit a large address space

when launching a JVM. The actual memory limits on heap spaces, such as generations, can be

modified later during runtime.

48

We modify the source code of OpenJDK to implement this feature. We change the JVM to

reserve and commit a continuous address space of a specified maximum heap size (-Xmx) when

it launches. The initial size limit of each generation is set according to the JVM’s internal policy.

We make the maximum heap size large enough such that the per-generation limits are sufficiently

large to become irrelevant. Additionally, we add our new dynamic size limits to both the young and

old generation of a JVM p, denoted with ylimit(p) and olimit(p) respectively. Our memory manager

changes these limits at runtime. We set their initial values to reasonably small numbers (e.g., 1 GB)

and prevent each generation from using more memory than its dynamic limit.

To interact with the JVM, we add a socket-based API through which the JVM receives instruc-

tions such as requests for the current heap state, memory limit adjustments, or GC triggers. We

disable the JVM’s internal GC policies to let our memory manager control when and which GCs to

happen. We modify GC implementations to always release recycled memory to the OS. If more

memory is needed but unavailable given the current limits, we let the JVM pause until more memory

is available. We implement our changes on top of OpenJDK 7u85’s default heap implementation

(ParallelScavengeHeap), which contains approximately 1000 lines of code.

3.2.2 Dynamic Memory Allocation

The main component of ElasticMem is a memory manager. It monitors concurrently executing

queries and alters their JVMs’ memory utilizations by performing actions on the JVMs, such as

triggering a GC or killing the JVM. Each action has a value, and the objective is to maximize the

sum of all action values. A value is a combination of several factors, including whether the action

kills a JVM, causes a JVM to pause, or how efficiently it enables the JVM to acquire memory: i.e.,

the ratio of time spent over space acquired (from the OS or recovered through a GC).

The manager makes decisions according to two pieces of information: the JVM heap states

and the estimated values of performing actions on the JVMs. Because predicting these values far

into the future carries significant uncertainty, and because our changes to the JVM enable us to

adjust memory limits without any overhead, we develop a dynamic memory manager. The manager

makes decisions adaptively at each timestep t for some small period [t, t+ δt]. At t, the manager

49

gathers runtime statistics from each JVM and performs actions on it. Queries then execute for time

δt. Their states change and the manager makes another round of decisions at t+ δt. We describe our

allocation algorithms in this section, starting with a more precise problem statement.

Problem Statement

We start with a single-node and a one-process-per-query scenario. As introduced in Chapter 3,

each JVM is a container that executes a single query (or query partition). We model query execution

as the process of accommodating the memory growth of the corresponding JVM. For a period

[t, t+ δt], the memory usage of a JVM may grow by some amount. We can perform various actions

to the JVM to affect its memory utilization: allocate enough memory for the expected growth,

trigger a GC, which may require extra memory in the short term but free up memory in the longer

term, kill the JVM to release all its memory, or do nothing, which may stall a JVM if it cannot grow

its memory utilization as needed.

Consider a single physical machine with a total amount of memory M . A set of N JVMs

{p1, . . . , pN} is running on it, each has used some space in both the young and the old generation.

At the current timestep t, we need to allocate M across the N JVMs, such that the total memory

used does not exceed M , while minimizing a global objective function.

The memory that must be allocated to a JVM is entirely determined by the action that the

manager selects. For example, to perform a young generation GC, the old generation needs to have

enough space to accommodate the promoted young generation live objects. The manager must

increase the memory limit for the old generation to accommodate the added space requirement. We

denote with ycap(pi, ai) and ocap(pi, ai), the minimal amount of memory that must be allocated to

the young and old generation of JVM pi, if the manager chooses action ai. These values refer to the

new required totals and not increments.

Each action has a value that contributes to the global objective function. We denote the value of

action ai on pi with value(pi, ai). The objective function is thus:

50

maximize
N∑
i=1

value(pi, ai), ai ∈ Actions,

subject to
N∑
i=1

(ycap(pi, ai) + ocap(pi, ai)) ≤M,

where Actions is the set of possible actions. In our approach, the value(pi, ai) is a structure with

multiple fields. We describe its internal structure and how to sum and compare values in Section 3.2.2

below.

The above definition can be extended to a shared-nothing cluster scenario by letting the manager

make decisions independently for each machine.

Runtime Metrics

Several runtime metrics are needed to compute the value and the space requirements of actions.

Some are reported by the JVM while others are estimated by the manager:

Metrics reported by the JVM: For a JVM p at timestep t, ylimit(p, t) and olimit(p, t) are the

current memory limits of the young and old generation. The manager sets those limits at the previous

timestep. However, only some of the space in each generation is used at t, and the JVM reports the

used sizes as yused(p, t) and oused(p, t).

Metrics estimated by the manager: Besides the above metrics, we also need to estimate some

values that are not directly available. First, the space used in the young and old generation of a

JVM is further divided into live and dead objects. The manager estimates the total size of those

objects, which we denote with ŷlive(p, t), ŷdead(p, t), ôlive(p, t) and ôdead(p, t). We use x̂ to indicate

that a value x is estimated by the manager. Second, the manager needs to estimate p’s heap growth,

ˆgrw(p, t), before the next timestep, where ˆgrw(p, t) = ŷused(p, t+δt)−yused(p, t). Finally, to model

the impact of a GC, the manager needs to know how much memory a GC will free, and how much

time it will take. Since the target of a GC is the set of all objects in the generation(s) undergoing

the GC, we use yobj(p, t) to denote the set of all the objects in the young generation and similarly

oobj(p, t) for the old generation.1 ĝcy(yobj(p, t)) and ĝco(oobj(p, t)) are then the estimated times for

1yobj(p, t) is the union of all the live and dead objects in the young generation of p at t, similarly to oobj(p, t).

51

Value Meaning

ylimit(p, t) Size limit of the young gen

olimit(p, t) Size limit of the old gen

yused(p, t) Total used space in the young gen

oused(p, t) Total used space in the old gen

ŷlive(p, t) Total size of live objects in the young gen

ôlive(p, t) Total size of live objects in the old gen

ŷdead(p, t) Total size of dead objects in the young gen

ôdead(p, t) Total size of dead objects in the old gen

ˆgrw(p, t) Estimated heap growth until next timestep

ĝcy(yobj(p, t)) Time to perform a young collection

ĝco(oobj(p, t)) Time to perform an old collection

Table 3.1: Runtime metrics reported by JVM p or estimated by the manager at timestep t. x̂

indicates that x is estimated. “gen” is short for generation.

a young and an old GC. We describe how the manager estimates these metrics in Section 3.2.3.

Table 3.1 summarizes the notation. Since t is the only used timestep, we omit t and only use p

as the argument in the rest of the paper when the context is clear.

Space of Possible Actions

There are four types of actions that the manager can choose for each JVM: allowing the JVM

to grow by asking the operating system for more memory, reducing the memory assigned to the

JVM by performing a garbage collection and recycling space,2 pausing the JVM if it cannot either

grow or recycle enough memory, or as a last resort, killing a JVM to release its entire memory.

The manager performs an action for every JVM at each timestep. An action a on a JVM p has

value, value(p, a), with a minimum amount of memory needed for p’s young and old generations,

(ycap(p, a) and ocap(p, a)). We denote the time to perform a on p with time(p, a), and the size of

2The recycled memory is always reclaimed by the OS.

52

the newly available space made by a with space(p, a). The cost of an action is the amount of time

needed to acquire a given amount of space, or time(p,a)
space(p,a)

. The manager uses this ratio to compare and

choose actions.

The detailed set of Actions is as follows:

• GROW: Let the JVM grow to continue query execution. In order to reserve space for the

growth, the manager must allocate ycap(p, GROW) = yused(p) + ˆgrw(p) to the young generation

and ocap(p, GROW) = ŷlive(p) + oused(p) to the old generation. We reserve extra space in the old

generation for prospective promotions to preserve the possibilities of having all types of GCs in

the future. The cost is the time it takes to request and access the new space, which depends on

the size of the space change given by: ycap(p, GROW) + ocap(p, GROW)− ylimit(p)− olimit(p). Under

normal circumstances, this will be the commonly selected action until space becomes tight and

JVMs must start garbage collection or must pause before being able to grow again.

• YGC: Trigger a young generation GC. The JVM needs at least the current used space, yused(p),

for the young generation, and ŷlive(p) +oused(p) for the old generation to avoid a promotion failure.

The cost is the GC time ĝcy(yobj(p)), and we expect memory of size ŷdead(p) to be recycled.

• FGCp: Trigger a full GC by first performing a young generation collection to promote live

objects to the old generation then performing a GC on the old generation. Similar to YGC, we need

at least yused(p) and ŷlive(p) + oused(p) for the young and old generations respectively. The cost is

the GC time ĝcy(yobj(p)) + ĝco(oobj(p)) and the space to be recycled is ŷdead(p) + ôdead(p).

• FGCc: Trigger a full GC by first performing a GC on the whole heap, then trying to promote

young generation live objects if possible, without changing the total heap size. Free space from the

young generation after the first GC gets shifted to the old generation to make space for copying.

Different from FGCp, we only need yused(p) and oused(p) for the young and old generation since

the promotion is not mandatory. However, more GC time is needed since the full collection is

now performed on both generations instead of only the old generation. We assume that the time

grows proportionally to the size of live objects and use ĝcy(yobj(p)) + ĝco(oobj(p)) ∗ (ŷlive(p) +

ôlive(p))/ôlive(p) as the GC time estimate. The memory to be recycled is also ŷdead(p) + ôdead(p).

53

• NOOP: Do nothing to the JVM, keep the current limits ylimit(p) and olimit(p). As a consequence,

the JVM is expected to pause since it cannot either grow or recycle enough memory by doing

garbage collection.

• KILL: Kill the JVM immediately. As a consequence, the query running in this JVM will fail.

FGCp, which promotes first, is the default behavior in OpenJDK. However, the promotion may

fail if the old generation does not have enough free space to absorb young generation live objects,

and when it happens, JVM spends much time on copying the live objects back, so that the young

generation remains the same as it was before the promotion. In other words, triggering FGCp while

expecting a promotion failure is not cost effective. However, when memory is scarce, the manager

may not be able to allocate extra space to avoid the promotion failure. In this case, we need a GC

which can still recycle space without increasing the limits. We solve this problem by implementing

another full GC procedure, FGCc: We first collect both generations, then shift young generation free

space to the old generation to keep the total heap limit unchanged. A young GC is then performed if

there is enough space for promoting.

Table 3.2 summarizes the properties of all actions. os(m) denotes the time to access new memory

of size m. We obtain its value by running a calibration program since this value changes for different

systems and settings. Figure 3.2 illustrates the effect of all the actions except for NOOP and KILL,

which have the obvious effects.

We define the value of an action with three attributes, where only one of them is set to a non-zero

value. For NOOP and KILL, we set the corresponding attributes to 1. For other actions, we use their

cost, or time/space efficiency, as the value: i.e., how much time the action needs per unit of space

that it makes available. Then for an action a on a VM p, its value value(p, a) is defined as:
value(p, a).cost =

time(p, a)

space(p, a)
,

for GROW, YGC,

FGCp, FGCc,

value(p, a).NOOP = 1, for NOOP,

value(p, a).KILL = 1, for KILL,

With the above definition, our manager can favor actions by comparing these three attributes in a

54

Action a ycap(p,a) ocap(p,a) space(p,a) time(p,a)

GROW
yused(p)

+ ˆgrw(p)
ŷlive(p) + oused(p)

ycap(p, a) + ocap(p, a)

−ylimit(p)− olimit(p)
os(space(p, a))

YGC yused(p) ŷlive(p) + oused(p) ŷdead(p) ĝcy(yobj(p))

FGCp yused(p) ŷlive(p) + oused(p) ŷdead(p) + ôdead(p)
ĝcy(yobj(p))

+ĝco(oobj(p))

FGCc yused(p) oused(p) ŷdead(p) + ôdead(p)

ĝcy(yobj(p))

+ĝco(oobj(p)) ∗ r,

r = ŷlive(p)+ôlive(p)
ôlive(p)

NOOP ylimit(p) olimit(p)

KILL 0 0

Table 3.2: Per-generation size limit requirements, sizes of created space, and time taken for each

action a in Actions on JVM p at the current timestep. os(m) is the time to access memory of size m.

Other symbols are defined in Table 3.1.

certain order, as we describe in Section 3.2.2.

Memory Allocation Algorithm

Next, we discuss the allocation algorithm, which allocates memory to the JVMs by performing

actions on them at each timestep. We model the problem as a 0-1 knapsack problem. The capacity

of the knapsack is the total amount of memory, and the items are actions performed on JVMs. Each

action has a value and a minimum space requirement as described in Table 3.2. The goal is to

maximize the total item value in the knapsack without exceeding its capacity.

The 0-1 knapsack problem is known to be NP-complete with a pseudo-polynomial dynamic

programming solution [66]. Let optN,M denote the value of the best scheme for allocating memory

of size M to the first N JVMs, p1 · · · pN . If a JVM pi is undergoing a GC, the manager skips it to

wait for the GC to complete. Otherwise, it derives opti,j by enumerating possible actions on pi and

picking the one that leads to the largest value for opti,j . We define the sum of two values as the sum

55

of their three attributes, then the state transition function is defined as:

opti,j =

 opti,j if opti,j > opti−1,j−m + v,

opti−1,j−m + v otherwise,

where v = value(pi, a), a ∈ Actions, i ∈ [1, N], j ∈ [0,M].

To choose between two values, we first check which one has a lower value for attribute KILL,

then fewer NOOPs to reduce pausing time, then a smaller time/space ratio. The one with fewer KILL,

then fewer NOOP, then smaller time/space ratio, has a higher value. To be precise, given two values

a and b, we define a > b as:

bool operator>(const Value& a,

const Value& b) {

if a.KILL < b.KILL return true

if a.NOOP < b.NOOP return true

if a.cost < b.cost return true

return false

}

The complexity of the dynamic programming is O(N ∗M), where N is the number of JVMs

and M is the total amount of memory. On modern servers, M can be large if the memory-size units

are fine-grained, which would prevent the manager from making fast decisions. At the same time,

allocating memory at fine granularity is unnecessary. To enable fast memory-allocation decisions,

we define U as the unit of memory allocation, and any allocation is represented as a multiple of U .

We discuss two ways of setting U : as a constant or as a dynamically computed variable based on the

current heap state, and evaluate their impact on performance in Section 3.3.

Algorithm 2 and Algorithm 3 show the detailed allocation algorithms. Function ALLOCATE

allocates memory of size M across the list of JVMs, P , at the current timestep, and it returns

the best allocation scheme, actbest, which is a vector of actions for each p ∈ P . The algorithm

works as follows: First, we find all the JVMs that are not undergoing a GC as P − PINGC to

compute their actions. Because the algorithm allocates memory as increments of U , but ylimit(p)

56

and olimit(p) of a JVM p at the current timestep may not be increments of U when U is a dynamic

variable, we do not include NOOP in Algorithm 3. Instead, we consider all the combinations of

P − PINGC as potential PNOOP (line 4) and use P ′ = P − (PINGC ∪ PNOOP) to denote the remaining

JVMs. The remaining memory to be allocated is of size M ′ (line 7). We then apply Algorithm 3

on P ′ and memory of size M ′ (= K units of size U). Function KNAPSACK returns the best solution

with its value. The generation size limits and value of an action on a JVM are computed as

in Table 3.2. The size limits are aligned to increments of U by function align(size, U) defined as:

align(size, U) = ceiling(size/U). For GC actions, we defined a constant mingcsave to avoid

GCs that only recycle a negligible amount of space. We derive act from the transition actions trans

and return them together with the value. They are then merged with PNOOP and PINGC to get the final

allocation. We maintain the best allocation and its value across all the powersets. In the end, if the

best allocation only contains NOOP actions, we pick some JVMs to kill to make progress. In this

work, we pick the query that occupies the largest amount of memory and kill all its JVMs, and we

leave other strategies as future work.

3.2.3 Estimating Runtime Values

The last piece of ElasticMem is the models that estimate JVM values that are necessary for

memory allocation decisions yet not directly available as indicated in Table 3.1.

Heap Growth

To allocate memory to a JVM for the next timestep, the memory manager needs to estimate its

memory growth. Different approaches are possible. In this paper, we adopt a simple approach. To

estimate the heap growth of JVM p at timestep t, ˆgrw(p, t), the manager maintains the maximum

change in the young generation’s usage during the past b timesteps. To be precise, we define:

ˆgrw(p, t) = max |yused(p, t′)− yused(p, t′− δt)|, t′ ∈ [t− b ∗ δt, t]. In our experiments, we set b = 3

empirically. We show in Section 3.3 that this value yields good performance.

57

Algorithm 2 The scheduling algorithm: allocates memory of size M across the list of JVMs P , returns the

allocation scheme.
1: function ALLOCATE(P,M)

2: valuebest = actbest = None

3: PINGC = {p ∈ P, p is undergoing a GC}

4: for PNOOP ∈ power set of P − PINGC do

5: actp = NOOP, p ∈ PNOOP

6: P ′ = P − (PINGC ∪ PNOOP)

7: M ′ = M −
∑

p∈PINGC∪PNOOP
(ylimit(p) + olimit(p))

8: Compute U , let K = M ′/U

9: act′, value′ = Knapsack(P ′,K, U)

10: actp = act′p, p ∈ P ′

11: value.cost = value′.cost, value.KILL = value′.KILL

12: value.NOOP = size of PNOOP

13: if value > valuebest then

14: valuebest = value, actbest = act

15: if actbest contains only NOOP then

16: Pick Pkill ⊆ P , let actbestp = KILL, p ∈ Pkill

17: return actbest

GC Time and Space Saving

The GC time and space saving depend primarily on the number and total size of the live and

dead objects in the collected region. Unfortunately, getting such detailed statistics is expensive, as

we need to traverse the object reference graph similarly as in a GC. Paying such a cost for each

JVM at every prediction defeats the purpose of reducing GC costs in the first place.

We observe, however, that a query operator’s data structures and their update patterns determine

the state of live and dead objects, which determines GC times and the amount of reclaimable

memory. Our approach is thus to monitor the state of major data structures in query operators,

58

Algorithm 3 The knapsack problem: given the list of JVMs P and K memory units of size U , returns the

best allocation and its value.
1: function KNAPSACK(P,K,U)

2: N = size of P

3: opt0,j = 0, j ∈ [0,K]

4: for i← 1, N do

5: for j ← 0,K do

6: for a ∈ [GROW, YGC, FGCc, FGCp, KILL] do

7: if a ∈ [YGC, FGCc, FGCp] and

8: space(pi, a) < mingcsave then continue

9: yunit = align(ycap(pi, a), U)

10: ounit = align(ocap(pi, a), U)

11: if opti−1,j−yunit−ounit is valid then

12: v = opti−1,j−yunit−ounit + value(pi, a)

13: if v > opti,j then

14: opti,j = v, transi,j = (a, yunit + ounit)

15: Derive actp of each p ∈ P from optN,K and transN,K

16: return act, optN,K

collect statistics from them as features, and use these features to build models. While there are many

operators in a big data system, most keep their state in a small set of data structures, for example,

hash tables. So instead of changing the operators, we wrap data structures with the functionality

to report statistics, and instrument them during query execution to get per-data structure statistics.

There are many large data structures, but in data analytics systems, the most commonly used ones

by operators with large in-memory state, such as join and aggregate, are hash tables. In this paper,

we focus on the hash table data structure. To get predictions for the whole query, we first build

models for one hash table, then compute the sum of per-hash-table predictions as the prediction

for the whole query. Our approach, however, can easily be extended to other data structures and

59

Feature Meaning

nt Total # of processed tuples

ntd Delta # of processed tuples since the last GC

nk Total # of distinct keys in the hash table

nkd Delta # of distinct keys since the last GC

numlong # of long columns

numstr # of String columns

sumstr Avg. sum of lengths of all String columns

Table 3.3: Features collected from a hash table.

operators.

Table 3.3 lists the statistics that we collect for a hash table. A hash table stores tuples consist of

columns. A tuple has a key defined by some columns and a value formed by the remaining columns.

We collect the number of tuples and keys in a hash table in both generations (both the total and the

delta since the previous GC), since new objects are put in the young generation only until a GC.

These features are nt, ntd, nk and nkd. The schema also affects memory consumption. In particular,

primitive types, such as long, are stored internally using primitive arrays (e.g. long[]) in many

systems that optimize memory consumption. However, data structures with Java object types, such

as String, cannot be handled in the same way, as their representations have large overhead. So

we treat them separately by introducing features for primitive types (numlong) and String types

(numstr and sumstr). The overhead of getting these values from hash tables is negligible. We then

build machine learning models to predict the GC times and the total size of live and dead objects as

specified in Table 3.1.

To build models, our first approach to collect training examples is to randomly trigger GCs

during execution to collect statistics. The models built from them, however, yielded poor predictions

for test points that happen to fall in regions with insufficient training data. As a second approach, we

collected training data using a coarse-grained multidimensional grid with one dimension per feature.

The examples were uniformly distributed throughout the feature space but they all had the same

60

small set of distinct feature values, the values from the grid. As a result, predictions were excellent

for values on the grid but poor otherwise. Using a fine-grained grid, however, is too expensive since

the feature space has eight dimensions. For example, if we divide each dimension in four, the total

number of grid points is (4 + 1)7 = 78, 125. Assuming that collecting one data point requires 30

seconds, we need 78, 125/2/60 ≈ 651 machine hours. Our final approach is thus to combine the

previous two: We first collect data using a coarse-grained grid to ensure uniform coverage of the

entire feature space, then for each grid cell, we introduce some diversity by collecting two randomly

selected data points inside of it. The union of the grid and the random points is the training set. To

collect a data point for a hash table, we run a query with only that hash table and a synthetically

generated dataset as the input. This approach enables us to precisely control the feature values

when we trigger a GC. We then can use any off-the-shelf approach to build a regression model. In

our implementation, we use the M5P model [167, 217] from Weka [99] since it gives us the most

accurate predictions overall. We evaluate our models in Section 3.3.2.

3.3 Evaluation

We evaluate the performance of our memory manager and the accuracy of our models. We

perform all experiments on Amazon EC2 using r3.4xlarge instances. We do not set swap space

to avoid performance degradation due to virtual memory swapping. We execute TPC-H queries [29]

on Myria [213], a shared-nothing data management and analytics system written in Java. The

TPC-H queries are written in MyriaL, which is Myria’s declarative query language, and they are

publicly available at [30]. We modify or omit several queries because MyriaL does not support some

language features, such as nulls and ORDER BY. The final set consists of 17 TPC-H queries: Q1-Q6,

Q8-Q12, and Q14-19. To experiment with a broad range of query memory consumption, we execute

each query on two databases with scale factors one and two.

61

3.3.1 Scheduling

We first compare our elastic manager (Elastic) against the original JVM with fixed maximum

heap size (Original). For Original, we assume that each running JVM gets an equal share of the

total memory. We pick 4 memory-intensive TPC-H queries, Q4, Q9, Q18, and Q19, and execute

each on two databases, which leads to a total of 8 queries. In all experiments, we execute these 8

queries on one EC2 instance together with our memory manager. All data points are averages of

five trials, and we report the minimal and maximal values as floating error bars. Each run of the

allocation algorithm takes about 0.15 seconds.

We empirically set the constant mingcsave from Algorithm 3 to 30 MB. The value of the

function os(m) is obtained by running a calibration program, which asks the operating system for

memory of size m using mmap and accesses it using variable assignments. We take the system time

as os(m). For r3.4xlarge, we get os(m) = 0.35s ∗ m
1 GB . We set the interval between timesteps,

δt, to 0.5 seconds except in Section 3.3.1, where we compare different values of δt. In order to

avoid query hanging due to frequent GCs that do not recycle much memory, we kill a query after 8

minutes if it is still running. Based on our observation, 8 minutes is long enough for any query to

complete with a reasonable amount of memory.

One extreme of Original is serial execution where queries are executed one at a time, while

the other extreme is to execute all queries simultaneously. The former approach requires the least

amount of memory for all queries to complete but takes longer time, while the latter finishes all

queries the fastest when memory is sufficient, however may fail more queries when memory is

scarce. We vary the degree of parallelism (DOP) for Original to compare these alternatives. To

make it fair for Elastic, we also introduce a variant of Elastic, which allows executions to be delayed

by resubmitting killed queries serially after all queries either complete or get killed. We call this

variant Elastic-Resubmit. To avoid livelocks, we only resubmit each killed query once, and each

resubmitted query runs only by itself. We leave resubmitting multiple queries simultaneously as

future work.

Another important parameter is the size of the memory increment unit U . The value of U can

62

Total Memory (GB)
10 15 20 25 30 40 50 70 90

0

500

1000

1500

2000

El
ap

se
d

Ti
m

e
(s

)

4 4

7
8

2 4
5

6

8 8

46
8 8

8

58 8

8

7 5
8 8

8

7 6
8 8

8

8 8 8

8

8
7

8 8

8

8
7

8 8

8

8 8

Elastic-Resubmit, U=1/12
Elastic, U=1/12

Original, DOP=1
Original, DOP=4

Original, DOP=8

Figure 3.4: Average elapsed times and # of completed queries (labeled on top of each bar).

be either fixed or derived in real time. We test fixed sizes of 100 MB, 500 MB, and 1000 MB, and

variable sizes as 1/8, 1/12, and 1/16 of the total free space at the current timestep.

Scheduling Simultaneous Queries

First, we submit all queries at the same time. Figure 3.4 shows the elapsed times, together

with the numbers of completed queries while varying the total memory size. The elapsed times

are the times for all queries to complete. In this figure, we use U=1/12 as the representative of

our elastic manager because it provides the best overall performance across all experiments. We

further discuss the performance of different values of U in Figure 3.5. When memory is abundant

(≥ 20 GB), both Elastic managers yield more completed queries and also shorter elapsed times than

all the three Original variants. When memory is scarce (≤ 15 GB) and only suffices to execute one

query at a time, for 15 GB, Elastic-Resubmit is able to complete all queries with less time than

Original, DOP=1. For 10 GB, it only misses one query with a slightly longer time comparing to

DOP=1. Based on our observation, the query failed because our manager needs to allocate memory

as increments of U , however U is not sufficiently fine-grained. The overhead of elapsed time is

due to the elastic method striving to accommodate all queries together before degrading to serial

execution. As a proof of concept, we calculate the in-memory sizes of dominant large hash tables of

the 8 queries and find that the sum of them is about 14 GB. This experiment shows the advantage of

63

0.2
0.4
0.6
0.8

G
C

 T
im

e
R

at
io

Total Memory (GB)
10 15 20 25 30 40 50 70 90

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60
0.80

Q
ue

ry
 T

im
e

R
at

io

GC Time
GC Time GC Time

GC Time GC Time
GC Time GC Time

GC Time
GC Time

20
40
60
80

R
SS

 (G
B

)

Elastic, U=1/8
Elastic, U=1/12

Elastic, U=1/16
Elastic, U=500MB

Elastic, U=1000MB
Original, DOP=8

Figure 3.5: Relative total query time improvement ratio (top) and GC time improvement ratio (mid-

dle) for Elastic over Original, DOP=8, and resident set size, RSS (bottom).

using the elastic manager: it automatically adjusts the degree of parallelism, enabling the system to

get high-performance while avoiding out-of-memory failures when possible.

In Figure 3.5, we further drill down on the performance of different variants of our approach.

We seek to determine which variant yields the greatest performance improvement compared with

non-elastic memory management. Because the elapsed times of Original, DOP=1 are significantly

longer than the other two variants, we use Original, DOP=8 as the baseline in this experiment, which

also brings fair comparison with our approach. We measure performance in terms of total query

execution time, which is the sum of the per-query execution times, and total GC time, the sum of

64

the GC times of all queries. Figure 3.5 shows the relative improvement percentages in total query

execution time and GC time of Elastic over Original, DOP=8, for different values of U , and also the

actual physical memory usage (resident set size, RSS).3 Higher bars indicate greater improvements.

When memory is scarce (≤ 15 GB), Elastic with variable values of U (1/8, 1/12 and 1/16) takes

longer to execute each query because it strives to finish more queries than Original, DOP=8, as

shown previously in Figure 3.4. When memory is abundant (≥ 20 GB), for any of the values of

U , Elastic outperforms Original, DOP=8 on both total query time and GC time. The percentage

improvements are between 10% and 30% for query time and 40% to 80% for GC time. We observe

that it is caused by Original, DOP=8 triggering GCs that do not recycle much space especially in late

stages for large queries but being unable to shift memory quota from small queries, while Elastic

can dynamically allocate memory across all queries. The improvement ratios of query time decrease

after 70 GB because GC time takes a less portion of query time when memory is abundant. To show

the maximum improvement that we can achieve by reducing GC time to zero, we also show the

ratios of total GC time to query time in the top subfigure as a reference. Finally, the bottom subfigure

shows that our elastic manager is also able to utilize a larger fraction of available physical memory

to save on GC time and query time. Importantly, all values of U , especially the three variable ones,

yield similar performance indicating that careful tuning is not required.

Scheduling Queries with Delays

To better simulate a real cluster, instead of issuing all the queries at the same time, we submit

the above 8 queries with delays. Each query is submitted 30 seconds later than the previous one.

Figure 3.6 shows the elapsed times and the numbers of completed queries. The patterns are similar

to the experiment above with no delay (Figure 3.4), but also different as Elastic can finish the

same number of queries with less time when memory is scarce (10 GB), and always beats all

variants of Original in terms of both query completion and elapsed time. This is due to the memory

flexibility that ElasticMem has: the number of simultaneously running queries is lower when delay

3We define the improvement percentage as (x− y)/x, where x is the value of Original and y is the value of Elastic.

65

Total Memory (GB)
10 15 20 25 30 40 50 70 90

0

500

1000

1500

El
ap

se
d

Ti
m

e
(s

)

45

7 8

2 4
5

8

7

8

46
8 8

8

5
8 8

8

7 5
8 8

8

7 6
8 8

8

8
6

8 8

8

8 8 8

8

8
7

8 8

8

8 8

Elastic-Resubmit, U=1/12
Elastic, U=1/12

Original, DOP=1
Original, DOP=4

Original, DOP=8

Figure 3.6: Average elapsed times and # of completed queries (labeled on top of each bar) with 30

seconds delay.

is introduced, so Elastic is able to finish more queries faster, while Original stays the same.

Timestep Interval

Finally, we evaluate the sensitivity of the approach to different values of δt varying from 0.1, 0.5,

or 1 second for U=500MB and U=1/12. We find that when memory is scarce, 0.5 seconds slightly

outperforms others by completing more queries with less time, although in general the three δts

yield similar performance, which indicates that the approach is not sensitive to small differences

when using variable sizes of U and thus careful tuning is not necessary. We omit details due to space

constraints.

3.3.2 GC Models

An important component of ElasticMem is its models that predict the GC time and the space

that will be freed (Section 3.2.3). We evaluate its models in this section. We limit the training

space to 12 million tuples and 12 million keys for a hash table, with the schema varying from 1

to 7 long columns and 0 to 8 String columns with a total of 0 to 96 characters. This training

space is large enough to fit all hash tables from TPC-H queries. As described in Section 3.2.3, we

collect approximately 1080 grid points and 1082 random points together as the training set. We also

collect a test set of 7696 data points by randomly triggering GC for the 17 TPC-H queries on both

66

Test Set
CV TPC-H

5
10
20

50
100

R
A

E
(%

)

y_live
y_dead
o_live
o_dead
gc_y
gc_o

Figure 3.7: GC Model accuracies on 10-fold cross validation and random TPC-H test set.

databases.

We set the JVM to use one thread for GC (-XX:ParallelGCThreads=1) because we observe

that the JVM is not always able to distribute work evenly across multiple GC threads. We do not use

thread-local buffers (-XX:-UseTLAB). We let the JVM always sweep live objects to the beginning

of the old generation after each collection (-XX:MarkSweepAlwaysCompactCount=1) instead

of every few collections to reduce GC cost variance. Among several models available in Weka [99],

we pick the M5P model with default settings for its overall accuracy. M5P is a decision tree where

leaves are linear regressions [167, 217]. We use relative absolute error (RAE) to measure the

prediction accuracies.4

Figure 3.7 shows the results for both doing 10-fold cross validation on the training set and testing

on the random TPC-H test set. For cross validation, the predictions yield RAEs below 5% for every

value except odead. For testing, both ydead and odead cannot be predicted well, while all others have

RAEs lower than 25%. This is because that the size of dead objects is not strongly correlated with

the objects in data structures. Fortunately, the fact that the sum of dead and live objects is the total

used size gives us a way to avoid predicting ydead and odead. Instead, we let ŷdead = yused − ŷlive
and ôdead = oused − ôlive, where yused and oused can be obtained precisely. Overall, the prediction

error rates are low and, as we showed in Section 3.3.1, suffice to achieve good memory allocation

decisions.

4The RAE of a list of predictions Pi and corresponding real values Ri is defined as:
∑n

i=1 |Pi−Ri|/
∑n

i=1 |R−Ri|.

67

3.4 Summary

We presented ElasticMem, an approach for the automatic and elastic memory management

for big data analytics applications running in shared-nothing clusters. Our approach includes a

technique to dynamically change JVM memory limits, an approach to model memory usage and

garbage collection cost during query execution, and a memory manager that performs actions on

JVMs to reduce total failures and run times. We evaluated our approach in Myria and showed that

our approach outperformed static memory allocation both on query failures and execution times.

68

Chapter 4

Deluceva: DELTA-BASED NEURAL NETWORK INFERENCE FOR FAST
VIDEO ANALYTICS

As we introduced in Section 1.4, modern data analytics involves not only traditional business

data, but also more diverse data types such as images and videos. Additionally, recent advances in

deep learning have made this type of image/video processing the mainstream approach for vision

analytics.

Given the increasing availability of high-qualify, large-scale image datasets [15, 24, 131, 142]

and high-performance computing devices, a large set of neural network models that perform various

vision tasks on individual images have recently been developed. Common tasks include object

classification [106, 119, 189, 198, 199], object tracking [79, 92, 160, 195], and object detection [68,

114, 144, 171, 172]. Some models are already superior to humans in both accuracy and speed [174].

As a result, many video analysis approaches [105,124,125,171] apply image models directly to each

video frame and then further process per-frame results. This type of approaches is easy to develop

as any out-of-the-box image model can be applied directly to a video. However, the cost of running

image models for each frame is high and continues to grow as models become more complex and

inputs become larger. For example, representative object detection models run at speeds from less

than one frame [172] to 90 frames [171] per second on high-end GPUs with low-resolution inputs

(e.g., 300×300). Higher resolution images and larger models are needed for more accurate and

complex analysis [114], such as for detecting small obstacles in autonomous driving [67] as many

accidents are caused by road debris or hazardous cargo [26, 31].

To improve efficiency, we develop a new approach to enabling more efficient analytics on

real-world video streams. We focus on deep learning analytics and use object detection as concrete

workloads. Our approach is based on two key observations. First, consecutive video frames are

69

often similar to each other. This property is in fact used by most video encoding formats (e.g.,

H.265 [194]). Computing resources are thus wasted on processing large amounts of data that are

similar or even identical to previously processed data. Second, many vision tasks are tolerant to

small amounts of noise. Our key idea is thus to make deep networks incremental and approximate:

First, we modify deep networks to get them to perform inference using as input only changes in

pixel values between consecutive frames rather than entire frames. Second, our approach processes

only changes that are sufficiently significant to reduce computation load for insignificant “noise”

that does not notably affect model output. Incremental processing has been used in many contexts in

database systems, including incremental view maintenance [96,98,168,173] and semi-naive datalog

evaluation [50, 96, 208]. We apply this idea to video stream processing with deep networks.

The above two observations have also been utilized by other work. NoScope [124], for example,

filters input video frames using a difference detector, which computes the distance between two

consecutive frames and only passes a frame when the distance is above a fixed threshold. NoScope

focuses only on binary classification problems, such as: “is there any car in this frame or not?” It

first runs a smaller specialized neural network model, which is selected among a set of candidate

models that have different structures and are pre-trained offline, to get the result as a confidence

score for a frame passed by the difference detector. The reference model is called only when the

confidence is within a pre-defined range (i.e., neither too high nor too low). Our approach, however,

is different. First, our goal is to design an adaptive system that can process dynamically changing

input online without much offline training and hyper-parameter tuning overhead; second, we aim

at generating the same output as the reference model, no matter how complex its result is, instead

of only focusing on binary classification problems; third, our delta-based optimization technique

applies to not only the input frames but also operators inside of a model, therefore it can be used to

reduce computation load for any convolutional neural network models, including both specialized

models and reference models. A system such as NoScope may use our approach to further improve

its performance.

In this chapter, we present Deluceva, a system that accelerates neural network evaluation for

video analytics using delta-based inference. Figure 4.1 shows the overall architecture of Deluceva.

70

Dynamic	
Tuning

ResultModel	
Generation

Filtering	
percentage

…

Frame	1 Frame	2	– Frame	1

Delta-based
model

Figure 4.1: The architecture of Deluceva. A video stream is decomposed into a list of frames and

evaluated on a variant of a pre-trained model. Starting with an initial filtering percentage, a delta-

based model variant is generated, in which operators can operator on either deltas (orange) or actual

values (white). A frame is evaluated on the delta-based model, and its result is used to tune the filtering

percentage, which affects model generation for the next frame. Except the first frame, only the deltas

between consecutive frames are processed. The process repeats iteratively.

It takes a video stream as input and evaluates it on a reference model pre-trained for tasks such as

object detection on images. To process deltas, Deluceva automatically generates a delta-based model

variant that has the same high-level structure and weights as the reference model but can operate on

deltas. The video stream is decomposed into a series of frames. The first frame is fully evaluated to

initialize the system, but for later frames, only deltas between two consecutive frames are sent to

the pipeline. Inside the model, an operator may take deltas (orange) as input or actual values (white)

and only sends significant deltas to its downstream operators that may also take takes as input. Such

an operator is called a delta-based operator in contrast to its variant that operates on actual values.

The type of an operator is determined by our tuning algorithm according to two factors: the filtering

percentage, a value computed at the end of the previous evaluation that determines which deltas to

consider significant, and the operator’s performance characteristics. Finally, the model output is

evaluated, and its error serves as feedback to tune the filtering percentage for future frames. The

process repeats iteratively.

71

The Deluceva design raises several technical challenge. First, we need to develop a method

that automatically transforms a deep network into one that processes delta-frames instead of full

frames, and does so efficiently. For this, we need to enable deep networks to process sparse, delta-

based tensors. While there exist efficient libraries for sparse linear algebra [73, 74, 97], we observe

that we can achieve better performance by developing more specialize operators that leverage the

specific characteristics of deep learning, such as kernel depths. Our first contribution is thus to

design and implement several sparse tensor operators specialized for deep networks, including

sparse convolution and a filtering operator that builds a histogram and filters deltas according to the

filtering percentage (Section 4.2).

The second important challenge lies in automatically deciding when changes in individual

pixel values characterize as a significant delta. We develop and evaluate two approaches to solving

this problem (Section 4.3). First, we model the problem as a proportional-integral controller and

dynamically adjust the filtering percentage based on the observed output errors. We do so in a way

that keeps overhead low while ensuring high output quality. Second, we model the problem as a

learning problem and develop a linear model that predicts what changes are significant based on the

content of a delta frame.

Third, it is well-known that sparse operators, outperform their dense counterparts only if their

input is sufficiently sparse. Therefore, we show how to generate a neural network model variant that

consists of mixed-type (dense or sparse) operators and we derive a simple criterion for choosing

what type of operator to use (Section 4.4).

Finally, we implement our approach in TensorFlow [39] and evaluate it on three representative

object detection models and six videos. Our approach dynamically adjusts the filtering percentage

and generates model variants. The evaluation shows that our approach outperforms the original

model inference by up to 79% in terms of total compute resources while keeping object detection

errors, measured using F1 scores, below 0.1 (Section 4.5). In summary, we make the following

contributions:

• We show how to accelerate neural network model inference for video analytics through incre-

mental processing. We design and implement several efficient sparse tensor operators including

72

convolution and a new filter operator (Section 4.2).

• We develop algorithms to dynamically adjust the amount of computation for video analysis

models using either a PI controller or a machine learning model (Section 4.3).

• We show how to generate a neural network model variant that consists of mixed-type (dense or

sparse) operators and present an approach to automatically selecting the operator variant to use

(Section 4.4).

• We evaluate our approach on three representative object detection models implemented in

TensorFlow [39] and six videos and demonstrate significant performance gains compared to the

current approach, which processes frames independently (Section 4.5).

Although we focus on object detection models in this work, our approach is applicable to other

applications based on convolutional neural networks.

4.1 Background

We review neural network models, particularly object detection models, for image and video

analysis.

Computer vision and neural networks: The history of computer vision dates back to the

1960s. Classic techniques use image-specific or task-specific features, such as SIFT [147] and

HoG [228]. Many later methods [82, 88, 89, 203] are built on top of these classic techniques.

More recently, models based on neural networks have become the state-of-the-art for computer

vision tasks. A neural network consists of many connected operators that simulate human neurons.

Each operator takes and processes inputs (as neurostimulation) and generates outputs, both are

usually high-dimensional tensors. For vision tasks, convolutional neural networks are commonly

used because convolution effectively combines local information. Besides convolution, common

operators include rectifier linear unit (ReLU), which is used as the neuron activation function, and

pooling, which reduces input and output sizes by performing local aggregations such as max.

Figure 4.2 illustrates the approach with a highly simplified convolutional neural network con-

sisting of a few representative operators. The shape of an operator’s output tensor is determined

73

1 2
-1 0
1 2
-1 0

0 1 2
1 1 0
2 0 1

c0 1 2
1 1 0
2 0 1

Conv
(Stride=(1,1))

Kernel

c0 1 -2
1 -1 0
2 0 1

1 2
-1 0

1 -3
-3 -1

ReLU
1 0
0 0

MaxPool
(2×2)

1

Input

…
…

Figure 4.2: A slice of an example convolutional neural network model with a few representative

operators. Conv applies the 2×2×3 kernel to each 2×2×3 sub-input-tensor. ReLU outputs max(0, v)

for each input scalar v. MaxPool outputs the maximum of each 2× 2 sub-input-tensor.

by the input tensor and the operator. At the first layer, the input tensor usually contains the image

pixel values (or images if batched) in different color channels (e.g., RGB). The convolution operator

applies the 2 × 2 × 3 kernel to each 2 × 2 × 3 sub-input-tensor and outputs their inner product.

Moving the inner product within the input tensor with strides of (1, 1), the convolution generates

an output tensor with shape 2 × 2. ReLU, which serves as the neuron activation function in this

example, outputs max(0, v) for each input scalar v. The pooling operator MaxPool, with a 2× 2

kernel size, outputs the maximum of each 2× 2 sub-input-tensor. Although not directly shown in

the figure, in the end, neurons at the highest layer with the most significant activations are used to

generate model outputs.

Deep neural networks: A neural network is deep if it has many layers. Compared to earlier

methods, deep neural networks require more computation since a model usually contains many layers

of expensive operations such as convolutions. This amount of computation used to be unaffordable,

but thanks to advances in modern computing devices, it is now possible to train and evaluate

these models within a reasonable amount of time. Deep neural networks are powerful because

they can enumerate all potential features corresponding to every small local region and derive

high-level features from combinations of those low-level features. Different from previous methods

in which features are manually designed for certain tasks, in deep neural networks, important

features for a certain task are automatically chosen from a large space of possible features through

74

gradient-descent-based training on large datasets. Deep neural networks have been shown to perform

extremely well on image-based object classification and object detection tasks [88,132,144,189,198].

Object Detection Models: The detection of objects present in images (or video frames) consists

of two tasks: object localization and object classification. Many object detection models have

recently been proposed [68, 88, 89, 144, 171, 172, 181]. Although they have different architectures

and levels of accuracy, in general, they share the same objectives of: extracting features from raw

images, proposing regions that may contain objects of interest, and performing object classification

within those regions. As the first step, an established convolution neural network architecture [106,

112, 119, 132, 189, 198] is usually used as the feature extractor. For the latter two objectives, some

models treat localization and classification as two steps [88,89,172,181], while others [68,144,171]

combine them into one for fast inference.

Model Inference: Because of the success of neural network models on images, most video anal-

ysis approaches apply image models directly to each video frame [105,124,125,171,192]. However,

when evaluating image models, people care more about accuracy than speed. In competitions such

as ImageNet [15] and COCO [142], accuracy is the only metric of interest. Recently, there have

been models developed specifically for fast inference [68, 112, 144, 171], and people have noticed

the importance of inference speed [114]. However, much room remains for optimization if we aim

at analyzing large numbers of high-resolution video streams using complex models.

4.2 Delta-Based Models

The key idea behind Deluceva is to accelerate model inference over video streams by eliminating

unnecessary computations. We model a video as a stream of frames and leverage the observation

that neighboring frames in videos are similar to each other. Instead of processing full frames, we

take the differences in pixel values between adjacent frames and only send those delta tensors to

a new type of delta-based model for inference. Internally, delta tensors are filtered and processed

by delta operators. Figure 4.3 illustrates the approach. Given a model, the top row shows inference

performed on one frame, Frame 2, using the original model. The second and third rows show

the delta-based approach. The first frame, Frame 1, is processed using our modified delta-based

75

Frame	2	– Frame	1

Frame	1

=

+

Model	
(original)

Frame	2

Model	
(delta)

Model	
(delta)

OpOp

Sparse	Operator	Unit

… …

Figure 4.3: Example incremental network. First row: model inference for Frame 2 using the original

model. Second and third rows: adding the outputs of the delta-based model for Frame 1 and (Frame

2 - Frame 1). On right: Inside of the delta-base model, operators are either dense (gray) or sparse

(orange), and they work with either delta (orange) or non-delta (gray) tensors. The internal structure

of a sparse operator unit is presented in Section 4.4.

model, in which state is kept internally as necessary. Subsequent frames are then processed by

sending deltas between two consecutive frames to the model. The output of the delta-based model is

combined with the output produced so far to form the output for the latest frame.

The delta-based model may consist of both delta and non-delta operators. Formally, we define

an operator to be a delta operator if it takes delta tensors as input and produces delta tensors as

output. We denote a delta operator as opd and its non-delta variant as op. When evaluating a frame

Fi, each operator takes one or more input tensors and generates one or more output tensors. If Ii

and Ii+1 are the inputs of the original variant op when evaluating two consecutive frames Fi and

Fi+1, then we define opd as:

opd(Ii+1 − Ii) = op(Ii+1)− op(Ii), (4.1)

where Ii+1 − Ii is the delta tensor.

76

A naive approach to implementing the above type of delta operators would be to encode their

inputs and outputs using a dense representation, where a delta tensor is an n-dimensional array

filled with either zeros or delta values. This encoding enables the direct use of common tensor

operators that process dense inputs and produce dense outputs. However, processing deltas encoded

as dense tensors does not save any computation because zero-valued deltas are still being processed.

Instead, we need efficient operator implementations that operate on delta inputs that contain fewer

values than the dense tensors. Specifically, we require the above delta operator to take a sparse

representation of deltas as input, and its time complexity to be linear in its input size, to benefit from

our delta-based processing approach.

While the conceptual idea is simple, the key technical challenge lies in efficient implementation

and integration with existing deep learning libraries. The literature on efficient sparse-dense linear

algebra is extensive. In particular, sparse-dense matrix multiplication is a key operation, and many

libraries [73, 74, 97] have highly optimized implementations. The optimizations can be grouped

into several categories including: sparse matrix compression using structures such as blocks and

triangles [86, 117, 136, 211], register-level and cache-level blocking [117, 166, 200, 206, 222], and

SIMD vectorization on modern architectures that support vector instructions [211, 222]. However,

the integration of these optimizations with popular deep learning libraries is currently limited. In

this work, we use TensorFlow [39] as our reference framework. While TensorFlow does provide

sparse versions of some operations such as matrix multiplication, it does not have efficient sparse

versions of other key operations, such as convolution for example.

To address this limitation, we implement new sparse operators. Our goal is to use simple

optimizations, so as to facilitate the implementation of large numbers of sparse operators, yet ensure

their efficiency to yield improvement over their dense counterparts. In this section, we present our

design for the sparse convolution operator in detail as it is one of the most widely used and most

expensive operators. As we show later in Section 4.5.1, convolutions are the most frequent operators

and account for the majority of inference time in all three object detection models that we evaluate.

Other common operators can be similarly implemented.

Convolution is usually implemented using multidimensional matrix multiplication since ten-

77

sors are multidimensional arrays. Particularly, sparse convolution has sparse matrix-dense matrix

multiplication at its core. However, when the stride is less than the kernel size, each input scalar

is involved in multiple kernel applications, so we need an additional costly transformation (called

image-to-column (im2col) in some libraries [14]) to duplicate and rearrange input scalars before

using matrix multiplication. Due to its overhead, it is not always efficient to implement sparse

convolution using sparse matrix multiplication. In this section, we introduce two designs of the

sparse convolution operator, one is for running on CPUs and the other is for GPUs.

For the CPU implementation, we were able to obtain better performance by implementing a

sparse convolution operation directly rather than relying on TensorFlow’s sparse matrix operations.

Our implementation leverages the key observation that, in deep networks, the kernel tensor of a

convolution has a depth dimension for stacking multiple kernels, so we can use this dimension to

trigger SIMD vectorization and achieve high performance, competitive with dense implementations.

The right half of Figure 4.4 shows the internal structure of our sparse convolution operator (we

discuss the left-hand side of the figure in the next section). It takes a sparse tensor, which consists

of a list of indices and values, as input. Each pair of (index, value) represents a scalar. An input

scalar contributes to multiple positions of the output tensor, which are determined by the kernel

shape. 1 In this example, the kernel size is 2 × 2, and two kernels are stacked to form the depth

dimension of the kernel tensor. The output tensor has the same depth as the kernel tensor. Each

input scalar s maps to one or few positions of the kernel and output tensor, each mapping leads to

two vectors, the kernel vector k and the output vector o, as shown in Figure 4.4. The computation

(o = s× k + o) is done using two vector operations: scalar-vector multiplication and vector-vector

addition. The complexity of processing one scalar is then linear in the kernel tensor depth. In order

to vectorize both operations, we use multidimensional arrays to store both the kernel and the output

tensor and align both arrays to ensure that the compiler generates vector instructions for them. If

there are nk kernels and the degree of vectorization is d, then the number of instructions per scalar

1Other factors are strides and padding. We assume strides to be one and no padding in this case and omit their
discussion for simplicity.

78

Ii+1-Ii
Filter

Sparse	Convolution

Indices,	
Values

abs

Accum.
deltas

Kernel

・ + +k o

Figure 4.4: A filter operator followed by a sparse convolution operator. The filter takes a dense

form of delta values, builds a histogram on inputs together with accumulated values, keeps smaller

values in its state according to a filtering percentage, and sends larger values out as a list of indices

and values. The sparse convolution operator takes the list as input and updates its output tensor for

each input scalar using vector instructions. The time complexity of processing one scalar is linear in

the kernel depth.

is d2× nk/de. 2 As a result, the output tensor is in dense format. In Section 4.5.1, we evaluate our

sparse convolution implementation and characterize when it outperforms its dense counterpart.

We find, however, that leveraging im2col is important for an efficient sparse convolution

implementation for GPUs. Because of the high degree of computing parallellism, it is important to

avoid simultaneous atomic writes to the same memory location by multiple GPU threads. Therefore,

for each output scalar of a sparse convolution, we assign a GPU thread to be fully responsible

for computing its value to avoid having atomic operations scattered across multiple threads. As a

prerequisite step, im2col gathers corresponding input values for each output scalar.

Figure 4.5 shows our design for sparse convolution on GPUs. The implementation has two

steps. The first step is a parallel im2col on the sparse input tensor, which stores the output into an

intermediate tensor. The intermediate tensor is divided to multiple regions, each holds input values

for one output scalar. Each input scalar may have impact on multiple output scalars and thus be

copied to multiple regions. In the second step, each thread responsible for computing one output

scalar collects data from the corresponding region and performs an inner product between the input

2The last instruction may not be a vector instruction if nk is not divisible by d.

79

… …

… …Kernel

Intermediate	
Tensor

im2col
Thread

・

+

Sparse	Convolution

Indices,	
Values

Figure 4.5: The internel structure of the sparse convolution operator for GPUs. The first

step is parallel im2col on the sparse input tensor, which outputs to an intermediate tensor

divided to multiple regions, each holds input values for one output scalar. In the second step,

each GPU thread computes one output scalar by performing an inner product on the input

tensor and the kernel tensor.

tensor and the kernel tensor. We evaluate our implementation in Section 4.5.1.

Other operators can similarly be implemented. Some operators also need to maintain state. For

example, ReLU outputs max(0, v) for each input scalar v, where v can be the actual value of a

neuron activation, instead of the delta between two activations, in the original model. When ReLU

is used in our delta-based model with its input being a delta tensor, it needs to maintain an internal

state consisting of the accumulated deltas to operate on the actual values instead of deltas. Because

of the overhead of maintaining and updating state, some operators may not have simple efficient

delta-based variants and may thus be most efficient in their original non-delta-based, dense format.

Our approach supports such cases as we describe further in Section 4.4.

4.3 Dynamic Tuning

To improve inference time, our approach goes beyond the idea of processing delta frames:

It processes delta pixel values only once those values have significantly changed. Otherwise, it

accumulates changes to pixel values until they pass the significance threshold. This approach further

reduces the amount of processing done for individual frames and we describe it in this section.

80

The significance threshold is expressed as a percentage value: i.e., the percentage of delta

values that should be accumulated in internal state. We choose to use percentage values because the

absolute values depend on the content of the video itself. That percentage value is determined by

our dynamic tuning algorithm that we describe later in this section.

First, we assume the significance threshold to be given and describe the filtering step. To filter

away insignificant changes, we insert special filter operators in front of expensive operators,

such as convolution, in the deep network. Filters keep deltas values below the significance threshold

in their internal state, and only output large delta values. The left half of Figure 4.4 illustrates the

internal structure of the filter operator. The operator takes delta values as input and updates

its internal state of accumulated deltas. It then builds a histogram on the absolute values of the

accumulated deltas. It uses that histogram to translate the percentage of delta values to retain into an

absolute delta-value threshold. It then uses that threshold to keep smaller delta values in its state

and send the remaining, larger values, to the downstream operator. Each filter can have its own

filtering percentage, but in this work, we assume that there is one global filtering percentage that is

used by all filter operators for simplicity.

The filtering percentage affects both the model output quality and the inference time. As a

motivating example, Figure 4.6 shows how different filtering percentages lead to different results.

Both frames are from the same video, but one of the boats in Frame 1 leaves the picture in Frame 2.

The model successfully identifies two boats in Frame 1, which is the expected result. For Frame

2, we expect only one boat to be recognized. Now we evaluate Frame 2 based on states generated

by Frame 1 using deltas. The first row uses a high filtering percentage, so most deltas are kept

internally and only a small portion of significant deltas from each sparse operator have affected

the final output. Since the previous output has two boats, in this case the model still thinks that the

left boat exists and reports two boats. This indicates that the filtering percentage is too high. The

second row uses a low filtering percentage, so most deltas have impacted the output. The model

successfully recognizes that there is only one boat. However, its runtime, compared to the first

row’s runtime, is higher because more data needs to be processed. This example demonstrates how

we want to balance between accuracy and speed. We would like to filter out as many insignificant

81

Conv …

Conv …

Frame	1 Frame	2

Frame	2	– Frame	1

Ground	truths:

1s

5s

90%

20%
Figure 4.6: Effect of significance threshold on inference quality in a delta-model. Ground truth for

Frame 1: two boats, Frame 2: one boat. The first row uses a higher filtering percentage and has a

lower runtime but an inaccurate output. The second row uses a lower filtering percentage and has a

higher runtime but an accurate output.

deltas as possible, while meeting a minimum desired quality threshold. In the rest of this section,

we present two approaches for finding and updating that threshold.

Model Output Quality: We can measure the quality of a model by comparing its output with

the ground truth. One way of getting the ground truth is to get humans to annotate videos, but this

approach does not scale. We seek an automated process instead and use the output of the original

dense model as the ground truth. Of course, acquiring that ground truth during video processing

will be expensive and our approach takes that cost into account.

The output of an object detection model consists of a set of recognized objects, each marked

with a bounding box and a class label. Given two model outputs, we say that two objects from each

are the same if they have the same class label and the difference between their bounding boxes is

within a threshold. Using this definition, and the output of the original dense model, we can compute

a precision, p, and a recall, r, for our delta-model. We can then define the error metric using the F1

82

score:

F1 = 2 · p · r/(p+ r). (4.2)

A higher F1 score means that our system produces results more similar to the ground truth.

But, as a trade-off, it usually means that the filtering percentage is lower so that more deltas are

processed. On the other hand, a higher percentage makes our system faster, but we risk producing

less accurate results. Because of the impact of the filtering percentage on F1, we can treat the F1

score as a function of percentage F1(p). F1(0) = 1.0 because our model outputs exactly the same

results as the original model; And F1(p) <= F1(0) for any p ∈ [0, 100] since any filtering will

likely bring the F1 score down.

The next step is to find a good filtering percentage for the next frame given the error metric. We

set a constant, tF1 , as our target for F1 score. Our goal is to find the highest filtering percentage that

produces an F1 score no lower than the target, and we call it the target percentage. Interestingly,

we observe, that dense models do not always output correct results. In some cases, an object being

recognized by a dense model on the previous frame is ignored on the subsequent frame even if the

two frames are similar. In some cases, our sparse model is still able to recognize the object because

it processes only large-enough deltas. We posit that this is because the dense model is sensitive to

noise while our sparse model works as a noise filter. This observation means that aiming for an

F1 score of 1.0 is not necessarily desirable. In our experiments, we find that F1 = 0.8 yields good

results.

The Ideal Approach: As baseline, we first describe an approach that finds the optimal target

percentage for each frame by processing the frame using both the original dense model and the new

delta-model. This approach enables us to determine an upper bound on the performance gains that

we could observe for a given model and video combination.

The key idea of the approach is to first process a frame with the original dense model to get

the ground truth. The approach then performs a binary search on the percentage target. For each

threshold value that it tests, it records the resulting F1 measure. The optimal target percentage is the

lowest value that exceeds the desired F1 metric.

F1 and the filtering percentage p have an implicit relationship: higher ps usually bring lower F1

83

scores while lower ps usually lead to higher F1 scores. The function F1(p) is not guaranteed to be

monotonic, because a model may output more objects even when fewer deltas are being processed.

However, based on our observation, monotonicity generally holds. So in this work, we empirically

assume its monotonicity and use binary search to find the target percentage. An alternate solution

would be to try all p values exhaustively.

This Ideal Approach is, of course, impractical because it processes each frame with both the

original dense and our new delta-model. Additionally, it performs binary search on the percentage

target, which requires several evaluations of our delta-model. Assuming the search stops when the

length of the current search interval is below 1%, then the binary search needs 7 model evaluations.3

We use the Ideal Approach as a reference point and develop two others approaches to find the

target percentage with a small overhead. The first one models the problem as a control problem

and uses PI controller (Section 4.3.1) to adjust the ratio dynamically. The second one trains a

machine learning model offline and uses the model to predict the target percentage for future frames

(Section 4.3.2). We present both approaches in the rest of this section.

4.3.1 PI Controller

In this approach, we model the problem of finding the target percentage as a control problem.

In a control system, a controller monitors a controlled process variable and compares it with a set

point. The error between the process variable and the set point is applied as feedback to adjust the

output of the controller, in order to make the controlled variable close to its set point in a dynamic

environment.

Among all common controllers, proportional–integral controller (PI controller) is a representative

controller mechanism widely used in control systems. 4 At each time t, it calculates an error value

e(t) and uses a function with two terms: a proportional term and an integral term, to determine the

3In our implementation, we do binary search by starting with the percentage of the previous frame, instead of 50%.
The overhead is reduced but still larger than one model evaluation.

4A more general form is a proportional-integral–derivative (PID) controller, but the derivative term is known to be
sensitive to noise [25]. We omit the derivative term in this work.

84

future controller output. Formally, the controller output at time t, CO(t), is defined as:

CO(t) = Kp · e(t) +Ki ·
∫ t

0

e(t), (4.3)

where Kp and Ki are two parameters that need to be tuned. The controller output thus depends on

the instantaneous error observed in the last time-step and on the errors accumulated over time.

In our case, our goal is to keep the F1 score close to the target tF1 (the set point). Our time

is discrete since we adjust the target percentage between frames. Specifically, we set the filtering

percentage for frame t+ 1, P (t+ 1), to be:

P (t+ 1) = Pbias +Kp · e(t) +Ki ·
t∑

k=1

e(k), (4.4)

where e(t) = F1(P (t))−tF1 and Pbias is a constant that enables our system to start from a reasonable

target percentage as it processes the first frames.

One known issue of PI controllers is reset windup. When the system decides on a controller

output that exceeds the controller’s maximum (or minimum) output, it may take a long time (or

never) for the system to reach the set point since the controller is not capable of producing the

desired value. During this period, large errors may accumulate and the integral term may continue to

grow with no limit. In our case, the range of the controller output P , is [0, 100]. Since F1(0) = 1.0

and tF1 ∈ [0, 1], reset windup does not happen on the lower end. But, it may happen on the higher

end since it is possible to have F1(100) > tF1 . For example, when the current frame is exactly the

same as the previous one and the previous output matches the ground truth, we have F1(100) = 1.0

because the result is still the same as the ground truth even if we do not process any new data. We

solve this issue using a standard solution: We do not integrate the error e(t) if the controller output

has exceeded its maximum, i.e., P (t) > 100. Certainly, when a filtering percentage is actually used

to generate a deep network, we always truncate it to be within [0, 100].

Using a PI controller brings overhead. The overhead comes from running the original model to

get the ground truth for a frame. Since we only adjust the percentage when we have a new error, we

want to calibrate frequently enough such that the filtering percentage is changed on time but the

overhead is small. In order to make this approach faster than directly running the original model,

85

we only do one calibration every few frames and amortize the cost over them. As we show later

in Section 4.5.2, the calibration frequency is an important factor of the overall performance: Higher

frequencies have larger cost but may produce more accurate results, while lower frequencies lead to

higher errors in some cases.

4.3.2 Machine Learning Model

Another approach to setting the target percentage is to predict it by using a machine learning

model. Intuitively, when two frames are mostly the same, it is safe to set the percentage to be high

since we expect most neuron activations to be similar. On the other hand, when the delta between

two frames is large, we may need to lower the percentage to make sure changes are reflected in the

model output. The key idea of our approach is thus to extract features from the delta-frame and

use those features to predict a target percentage for the new frame. Additional features may also be

useful, in particular, we include the previous predicted target percentage for the previous frame.

We thus develop a machine learning model for predicting the target percentage for each frame.

We include two types of features: the predicted percentage for the previous frame and several

statistics computed over the delta pixels between the previous and the current frame. Since many

moving objects do not occupy a whole frame, to better capture local changes, we divide the image

into several overlapping tiles and collect statistics from each. Specifically, we compute the absolute

values of pixel differences in a tile and use the sum and the max as the features of the tile.

The model needs to be trained on frames with known target percentages. However, as presented

above, finding the optimal target percentage is expensive, so we perform the training offline: We take

a short video snippet and compute, for each frame, the target percentage using the Ideal Approach

together with the features for the model. We train a linear model. Formally, If an image is divided

into R× C tiles, the length of the feature vector w is 2 ·R · C + 1. The model outputs:

P (t+ 1) = xT
t+1 ·w + b, (4.5)

where b is the bias and xt+1 is the feature values of frame t + 1. We get the values of w and b

by minimizing the root-mean-squared error on the training set. Same as before, P (t + 1) is later

86

truncated to be within [0, 100]. There exist other models, but as we show later in Section 4.5.4, a

linear model is sufficient for predicting target percentages.

The major drawback of this approach is the large overhead of getting the training data as it

requires computing the target percentages using the Ideal Approach, which performs a binary search

on possible percentage values. If we amortize the cost over the frames being evaluated, then this

approach is only faster than running the original model if we train the model on a short video clip

and use it to evaluate a much longer video.

We denote with f the training-to-test factor, which is the number of training frames over test

frames, and experiment with different f values. As we show later in Section 4.5.4, the size of the

training set is important: The model produces incorrect predictions when the training set does not

contain enough frames; However, the amortized cost is high if the training set is too large. As the

video stream changes (e.g., day turns into night), retraining is also necessary to achieve good results.

We present the detailed evaluation results in Section 4.5.4.

4.4 Mixed Network

The final component of our approach is the end-to-end delta-model: Given the original model,

we construct a model variant that processes deltas efficiently. A straight forward solution would

be to replace all dense operators in the original model with their delta-based, sparse variants. This

approach, however, is not always possible and, when possible, is not always the most efficient

solution. Instead, our approach is to mix sparse and dense operators and construct a mixed network.

The first reason to not always use a fully delta-based network is that we may not have a sparse

version for a less common operator. Another more important reason is that a sparse operator can

sometimes be slower than its dense alternative even when its input is filtered according to a high

filtering percentage. We observe that there are two key issues that may have negative impact on the

performance of our sparse operators.

The first one is the need to have the actual values instead of only deltas. We use the Rectifier

function (ReLU), which takes an input tensor t and outputs max(0, t), as an example. Since ReLU

outputs the larger one between 0 and the actual value, only knowing the delta is not enough. We

87

need to reconstruct the actual values by adding deltas and the previous values together, which takes

a few more instructions per delta input.

The other issue is vectorization. In a dense ReLU, the max can be done using vector instructions.

However, in a sparse ReLU, in order to get the actual values, we need to do index lookups to add

deltas to previous values. This operation is not always vectorizable. Some modern architectures

support instruction sets such as Intel’s Advanced Vector Extensions 2 (AVX2) and 512 (AVX-512),

which have vector instructions for scattering and/or gathering between memory and registers using

indices, but others may not have support for it. Even in these instruction sets, scatter and gather have

much larger latencies than other basic operations. In summary, we may lose the significant speedup

if index lookup is required for an implementation.

Fortunately, convolution is an operator that may benefit from sparse inputs. Since convolution is

a linear function, it produces the delta of the outputs of two convolutions by performing convolution

on the delta of its input directly without the need to maintain its previous state. It is also possible to

vectorize its computation on the depth of the kernel even when we cannot vectorize index lookups,

as we described in Section 4.2. But other operators, such as pooling and normalization, have similar

issues as ReLU since they all need current values and are not always vectorizable if the input is

sparse.

To address the above challenge, our approach is to mix sparse and dense operators to construct

the delta-based network. To connect the two types of operators, we need to convert between current

values and deltas. We implement two special operators: d2c for converting deltas to current values

and c2d for converting current values to deltas. These two operators, together with filter, are

inserted by our algorithm when needed to connect sparse and dense operators and to filter out

insignificant deltas. 5 We call a sparse operator, together with the other three operators, a sparse

operator unit, which is used to compare against its dense version. Figure 4.7 shows a sparse operator

unit together with its dense variant.

Given the current filtering percentage, for each operator in the model, we decide if the dense

5c2d and d2c can be removed when two consecutive operators are both sparse or both dense.

88

Filtering	percentage	=	90	
Cut-off	percentage	=	80

D2C
State

Op
(sparse)FilterC2D…

State

…

Op	(dense)

Sparse	Operator	Unit

Figure 4.7: An operator’s dense variant and its sparse operator unit. The sparse operator unit is

chosen as the faster implementation in this case since its cut-off percentage (80) is lower than the

filtering percentage (90). It is further connected with other operators in the network.

alternative or the sparse operator unit should be used. The decision is made according to the opera-

tor’s runtime characteristics: We profile both variants using different filtering percentages and find

the percentage that makes their runtimes close to each other. We call it the cut-off percentage. The

mixed network is then generated accordingly: We use the sparse operator unit for an operator if the

current filtering percentage is over its cut-off percentage, otherwise we use its dense implementation.

For example, in Figure 4.7, the sparse variant is selected because the filtering percentage is 90 and

the cut-off percentage of this operator is 80, which indicates that the sparse version is expected to

be faster that the dense variant. We present the results in Section 4.5.1.

4.5 Evaluation

We evaluate Deluceva using three object detection models implemented in TensorFlow [39].

All experiments are done on Amazon EC2 r3.2xlarge instances. We evaluate all models using

one thread on one CPU to most accurately compare performance differences between approaches

without variance due to the TensorFlow scheduler. We exclude the time of TensorFlow’s graph

optimization from each evaluation.

The three models are summarized in Table 4.1. Each model is built on a network architecture

designed for object detection and uses a neural network model as the feature extractor. More

89

Name Architecture Feature Extractor Size # of FLOPs

Time

(Original,

Fully Delta)

ssd-vgg SSD VGG-16 Small 123.4B 3.6s, 7.6s

frcnn-res FRCNN ResNet-101 Medium 550.6B 16.2s, 39.8s

frcnn-incep FRCNN Inception-ResNet-V2 Large 1395.0B 41.2s, 187.4s

Table 4.1: The three object detection models used in the experiments.

specifically, as introduced in Section 4.1, for network architectures, SSD [144] combines region

proposition and object classification into one step, while FRCNN [172] treats them as two steps

using two sub-networks. The feature extractor networks include VGG-16 [189], ResNet-101 [106],

and Inception-Resnet-V2 [197]. The model sizes are from small to large, and their total numbers of

floating point operations are listed. We also provide two inference times as references: the time to

run the original model (Original) and the time to run our generated delta-based model (Fully Delta),

where every convolution operator is replaced by a sparse operator with its filtering percentage set

to zero (i.e., processing all deltas). We use [28] as the reference implementation for ssd-vgg and

TensorFlow’s object detection API [114] as the reference for the two FRCNN models.

For training and test data, we capture six 10-minute videos from three YouTube live streams,

each has two videos taken at different times. Their information is listed in Table 4.2. We take a

snapshot every second from each video to generate frames. All frames are converted to 300×300

pixels in png format.

4.5.1 Delta-Based Network

Although there are many neural network operators, the most common ones are of the following

types: convolution, activation function (e.g., ReLU), pooling (e.g., max pooling), and normalization

(e.g., batch normalization). Based on our observations, convolution usually dominates runtime. To

verify this intuition, we study the runtime distribution of the different operator types in the three

models. Figure 4.8 shows the detailed statistics of three major operators: convolution, max pooling,

90

Stream Time Abbrv.
Avg. # of Objects of Interest

Typical Objects
ssd-vgg frcnn-res frcnn-incep

Jackson

Hole [17]

Evening je 3.85 8.25 4.40
cars, people,

traffic lights

Night jn 0.15 5.12 0.49 cars

Venice [33]
Day vd 5.07 9.60 5.78 boats, people

Night vn 0.53 1.00 0.41 boats, people

Kusatsu [20]
Day kd 4.05 11.31 7.42 cars, people, buses

Night kn 0.49 3.19 2.04 cars, people

Table 4.2: The six videos used in the experiments. Each video is 10 minutes long and has a resolution

of 300×300.

ReLU, and also other operators. Each bar shows the total runtime of one operator type in one model,

and the number of operator instances in the model is shown on top of each bar. As the figure shows,

convolution takes most of the runtime and is thus important to optimize, while other operators do not

have large performance impact. Because of the overhead and platform-dependent performance as

we introduced in Section 4.4, we use the original implementation for all operators and only consider

replacing convolution with sparse operator units.

Next, we evaluate the performance of our sparse convolution operator. We compare its runtime

against the runtime of the original implementation, which takes a dense tensor as input. The sparse

convolution’s input is a list of delta indices and values filtered by a filter operator, we vary the

filtering percentage to evaluate the impact of input size on runtime. For image processing, both the

input tensor and the kernel are usually four-dimensional tensors with shape [# of batches, # of rows,

of columns, depth]. In the three models that we test, the numbers of rows and columns range from

1 to 600 for the input tensor and 1 to 7 for the kernel. Depths vary from 1 to 2080, and the number

of batches is either 1 or 300 (as the number of proposed regions).

Figure 4.9 shows the runtimes of the sparse convolution operators over the corresponding dense

ones as we vary the filtering percentage. Each curve represents one unique convolution operator. We

91

Model
ssd-vgg frcnn-res frcnn-incep

0

10

20

30

40

Ti
m

e
(s

)

3623
35

5 101

109

1124 244 253

249

5

Max Pooling ReLU Convolution Others

Figure 4.8: Total runtimes of common operators in the three models. The total number of each oper-

ator in each model is labeled on top of each bar. Convolution dominates runtime, other operators do

not have large performance impact.

0 10 20 30 40 50 60 70 80 90 100
Filtering Percentage (%)

0
2
4
6
8
10

Re
la

ti
ve

 R
un

ti
m

e
O

ve
r D

en
se

 (X
)

Figure 4.9: Relative runtimes of sparse convolution over dense convolution with different filtering

percentages. Each line represents one convolution. The runtime is mostly linear to the input size for

each convolution, but different convolution may have different slopes. The crossover range is between

75% and 93%.

treat two convolution operators as duplicates if they have exactly the same parameters, including

input tensor shape, kernel shape, stride, and padding. The runtime of a specific sparse convolution is

mostly linear in its input size. However, the slopes of these linear functions are different for different

convolutions. This is because many factors besides input size affect runtime, including the total

92

memory size used by the operator, cache misses, and register loads/stores. Our implementation does

not target any specific optimizations besides vectorization. Other optimization are possible. For

example, the GEMM-based (GEneral Matrix to Matrix Multiplication) level 3 Basic Linear Algebra

Subprograms (BLAS) [123] is carefully designed to reduce data traffic in a memory hierarchy by

blocking. We leave these additional optimizations for future work. Since different convolutions have

different performance characteristics, our approach is to profile each shape independently instead of

building a unified model for all possible shapes. To be as fast as the original dense implementation,

we need to filter out 75% to 93% of the input data for a sparse convolution operator. Although the

percentages are high, as we show later in this section, we are able to have significant performance

gains with our prototype implementation.

The next experiment is to find the cut-off percentages for each sparse convolution unit with

a unique shape. We profile each unit and compare it with the corresponding dense convolution.

Figure 4.10 shows the cut-off percentages for sparse convolution units in the three models and also

the runtime breakdown for the operators inside each unit (D2C, Filter, Sparse Convolution, and

C2D). A cut-off percentage of 90 means that we need to filter out 90% of the deltas to make a sparse

convolution unit as fast as a dense convolution. Most of the cut-off percentages are below or close to

90, but there are a few from frcnn-res and frcnn-incep that are above 90. These convolutions

mostly have a large input tensor with a low-depth kernel, so that filter is expensive while the time

saved by filtering out deltas does not dominate total execution time of the operator. The overhead of

filter is caused by our implementation: We scan the input tensor multiple times, including one

scan to build the histogram, which is not vectorized. This overhead becomes a dominant factor in

these cases. Additional optimizations are also possible for the filter operator, but we leave them for

future work. However, as we show later in Section 4.5.2, having these cut-off percentages is already

enough to significantly accelerate model inference.

We also evaluate the GPU implementation of our sparse convolution unit. Similarly, Figure 4.11

shows the runtimes of the sparse convolution operators over dense ones with different filtering

percentages, and Figure 4.12 shows the cut-off percentages of each unit, on a NVIDIA Tesla K40c

GPU. Most sparse convolution units have relative runtimes over dense convolutions by a factor of

93

Model
ssd-vgg frcnn-res frcnn-incep

50 60 70 80 90
Cut-off Percentage

50 60 70 80 90
Cut-off Percentage

50 60 70 80 90
Cut-off Percentage

0

1

2

3

Ti
m

e
(s

)

C2D D2C Filter Sparse Conv

Figure 4.10: The cut-off percentages of sparse convolution units in the three models on CPU. Each

bar represents one convolution unit. Each color represents the runtime of one operator in a unit.

0 10 20 30 40 50 60 70 80 90 100

Filtering Percentage (%)

0
10
20
30
40

Re
la

ti
ve

 R
un

ti
m

e
O

ve
r D

en
se

 (X
)

Figure 4.11: Relative runtimes of sparse convolution over dense convolution with different filtering

percentages on a GPU. Each line represents one convolution. The crossover range is between 73% and

98%.

20 or below, while a few ones reside between 20 to 45. The crossover range for cut-off percentages

is between 73% to 98%. Compared to the CPU version, the GPU implementation has higher relative

runtimes over dense, but we still get positive savings in many cases. We believe further optimizations

remain possible and leave it for future work.

94

50 55 60 65 70 75 80 85 90 95 100
Cut-off Percentage

0.00

0.05

0.10

0.15
Ti

m
e

(s
)

ssd-vgg
frcnn-res
frcnn-incep

Figure 4.12: The cut-off percentages of sparse convolution units in the three models on a GPU. Each

point represents the total runtime of one convolution unit.

4.5.2 End-to-end comparison

We first compare our system to running the original model on end-to-end experiments with each

model and video combination. We evaluate each method (Ideal, PI controller, and machine learning)

with different parameters on each video and record the average per-frame runtime and F1 error,

where tF1 = 0.8. We use the runtimes of the original model as references. Figure 4.13 shows the

results. On the y-axis, we show the relative percent savings in execution time, which is the fraction

of execution time saved compared with running the original dense model. The x-axis shows the F1

errors. Due to space constraints, we only select two representative variants for PI controller and

machine learning model respectively. We discuss other variants in Section 4.5.3 and Section 4.5.4.

First, as the figure shows, Deluceva improves execution time by up to 79%, 57%, and 22%

on the three models respectively with low F1 errors below 0.1. As a reference, as we later show

in Figure 4.15, the Ideal Approach improves execution time by up to 76%, 53%, and 26% on the

three models (with F1 errors equal to zero), which shows that our automated approach achieves close

to the same savings as Ideal with low F1 errors. The savings and errors vary for different video and

model combinations due to their different properties. For example, videos with smaller inter-frame

deltas (e.g., jn) typically benefit from larger execution time savings, and the performance of the

95

Model
ssd-vgg frcnn-res frcnn-incep

0.0 0.2 0.4
Avg. F1 Error

0.0 0.2 0.4
Avg. F1 Error

0.0 0.2 0.4
Avg. F1 Error

-50

0

50

Av
g.

 P
ct

. o
f S

av
in

g

ML, f=1/10
ML, f=1/50

PI, c=5, Kp=0.5, Ki=0.3
PI, c=20, Kp=0.4, Ki=0.2

je jn kd kn vd vn

Figure 4.13: Overall performance of the PI controller and machine learning model on each model

and video. Each color represents one variant. Each shape represents one video. Percentages of run-

time saving and F1 errors are shown. Y axis: percentages of runtime saving. X axis: F1 errors. In

general, variants that save more also have larger errors, and machine learning variants have either

larger errors or smaller savings than PI controller variants. Overhead largely impact both methods:

PI controller variants with smaller calibration frequency c have less saving and less error, same to

machine learning variants with larger factor f .

largest model (frcnn-incep) improves least due to the overhead of convolutions with large input

tensors and low-depth kernels, and the cost of filter, as we discussed in Section 4.5.1. For the

machine-learning-based techniques, variants that save more also have larger errors due to overly

high predicted target filtering percentages, while variants with smaller errors tend to choose overly-

conservative target percentages. Overhead largely impacts both methods. PI controller variants with

higher calibration frequency (smaller c) achieve lower savings due to the overhead, but the errors

are lower as well. Machine learning model variants with larger training-to-test factor f have larger

96

5
10

Co
un

t

PI, c=5, Kp=0.3, Ki=0.1
PI, c=5, Kp=0.4, Ki=0.2
PI, c=5, Kp=0.5, Ki=0.3
PI, c=10, Kp=0.3, Ki=0.1
PI, c=10, Kp=0.4, Ki=0.2
PI, c=10, Kp=0.5, Ki=0.3

PI, c=20, Kp=0.3, Ki=0.1
PI, c=20, Kp=0.4, Ki=0.2
PI, c=20, Kp=0.5, Ki=0.3
PI, c=50, Kp=0.3, Ki=0.1
PI, c=50, Kp=0.4, Ki=0.2
PI, c=50, Kp=0.5, Ki=0.3

ML, f=5
ML, f=10
ML, f=20
ML, f=50
ML, f=100

-100

0

100
Pc

t.
 o

f S
av

in
g

0.1
0.2
0.3
0.4

F1
 E

rr
or

Figure 4.14: Overall performance of each method on all models and videos. Each point represents the

result for one model and video combination. First row: percent savings. Second row: F1 error. Third

row: the number of (model, video) pairs that have positive savings and F1 errors lower than 0.2. PI

controller variants have larger savings, smaller F1 errors, and lower variance compared to machine

learning variants.

overheads, especially on the two larger models frcnn-res and frcnn-incep, where f = 10

have negative savings in many cases. Overall, PI controller variants have relatively more robust

performance, similar savings and smaller errors than machine learning variants.

Next, we evaluate the robustnesses of all the variants of each method across all models and

videos. We first show, in Figure 4.14, the distribution of runtime savings (first row) and F1 errors

(second row) of each variant over all models and videos. Each point represents one model variant

and video combination. The results show that the machine learning model generally has higher F1

errors with larger variance than PI controller variants, and their runtime savings are either lower

97

than or close to the PI controller with larger variance in some cases. PI controller variants, on the

other hand, have positive savings, smaller variance, and lower F1 errors. Lower values of c lead to

slightly larger overheads and lower savings, while higher values of c generate higher F1 variances.

Another way to evaluate a method is to count the number of (model, video) pairs that have

positive savings and low F1 errors. Specifically, we filter out evaluations that have a negative saving

or an F1 error higher than 0.2 and then count the remained (model, video) pairs for each variant.

The third row of Figure 4.14 shows the counts, where each color represents one variant. In general,

PI controller variants have larger counts than machine learning variants. Among the PI controller

variants, the ones with larger c perform better, which we think is caused by the negative savings

due to larger overheads. In summary, we find that PI controller variants with a medium calibration

frequency generally have good overall performance. As a representative method, a PI controller with

(c = 20, Kp = 0.5, Ki = 0.3) has large savings (median 23%), low F1 errors (median 0.09), low

variance (standard deviation 0.06 for both saving and F1), and large number of stable evaluations

(15).

4.5.3 PI Controller

While previous experiments show that the PI controller performs well overall with a variety of

parameter settings, we study the sensitivity of parameter tuning in more detail in this section. The

PI controller has three parameters: the calibration frequency c, the weight of the proportional term

Kp, and the weight of the integral term Ki. As above, we compare the performance of different

PI controller settings to running the original model. Figure 4.15 show the average percent runtime

savings and the F1 errors for all video and model combinations. We also show the results of the

Ideal Approach as reference.

Overall, we observe that the PI controller is not overly sensitive to parameter settings. We

observe the greatest sensitivity for large values of c, which means infrequent calibration. In those

cases, we also observe that variants that save more on runtime also have higher F1 errors due to

overly large predicted target percentages. In general, the saving of the best parameter combination

is close to the saving of the Ideal Approach. In the best case, the PI controller achieves up to 65%

98

Model / Dataset
ssd-vgg

je jn kd kn vd vn
frcnn-res

je jn kd kn vd vn
frcnn-incep

je jn kd kn vd vn

0

50

Av
g.

 P
ct

. o
f S

av
in

g

0.0

0.1

0.2

0.3

Av
g.

 F
1

Er
ro

r

I
I

I I
I

I

I

I

I I
I

I I I I I I
I

PI, c=5, Kp=0.3, Ki=0.1
PI, c=5, Kp=0.4, Ki=0.2
PI, c=5, Kp=0.5, Ki=0.3

PI, c=10, Kp=0.3, Ki=0.1
PI, c=10, Kp=0.4, Ki=0.2
PI, c=10, Kp=0.5, Ki=0.3

PI, c=20, Kp=0.3, Ki=0.1
PI, c=20, Kp=0.4, Ki=0.2
PI, c=20, Kp=0.5, Ki=0.3

PI, c=50, Kp=0.3, ki=0.1
PI, c=50, Kp=0.4, Ki=0.2
PI, c=50, Kp=0.5, Ki=0.3

Figure 4.15: Impact of PI controller parameter values. Each color represents one combination of

(c, Kp, Ki). The Ideal Approach (I) is displayed as reference lines. First row: average percentages of

runtime saving. Second row: average F1 errors. Higher frequencies (lower values of c) have less savings

and lower errors and are less sensitive to Kp and Ki. The saving of the best parameter combination is

close to the saving of the Ideal Approach in most cases.

runtime savings (e.g., (c=20, Kp=0.3, Ki=0.1) using ssd-vgg on jn).

The calibration frequency c has a large impact on saving and error. Higher frequencies (i.e.,

smaller cs) bring more overhead and thus reduce savings (even causing negative savings in some

cases using larger models) but also lower errors as a trade-off, and the impact of different values of

Kp and Ki become relatively insignificant. On the other hand, when c is large, the system is more

sensitive to the values of Kp and Ki. For example, when c is 50, different combinations of Kp and

Ki have savings and errors scattered in larger ranges for (frcnn-incep, kd) and (ssd-vgg, vn).

We attribute this variance to the system having fewer opportunities to react to changing conditions.

Due to space constraint, we only show three pairs of (Kp, Ki) for each c in Figure 4.15. We

have experimented with other (Kp, Ki) pairs and observed a similar pattern with larger variances

when c is large. This experiment indicates that, when c is large and the values of Kp and Ki have

99

Model
ssd-vgg frcnn-res frcnn-incep

0.05

0.10

0.15

Te
st

 E
rr

or
 (R

M
SE

)

je jn kd kn vd vn

Figure 4.16: RMSEs of 10-fold cross validation of the target percentage model on the six videos using

the three object detection models. All errors are lower than 0.17.

significant impact, video-and-model-specific parameter tuning is necessary if we want to find the

best combination.

Importantly, for small-to-medium c values, the PI controller produces consistent results indepen-

dent of the exact settings of the other two tunable parameters. We further observe that medium c

values (e.g., 10) achieve both low sensitivity to parameter tuning and strong performance both in

terms of runtime saving and F1 error. This is important because it means that the system can use a

reasonable calibration frequency and avoid a potentially expensive parameter tuning phase.

4.5.4 Target Percentage Model

In this subsection, we first evaluate the target percentage model independently by cross validation,

then we show how different training videos may affect the model prediction for a given video.

Similarly, one important decision to make for using machine learning is the training-to-test factor f .

We then evaluate how different values of f impact performance of the machine learning approach.

Specifically, as introduced in Section 4.3.2, we divide a 300×300 frame into 5×5 overlapping blocks,

each has size 100×100. The training is done using TensorFlow’s GradientDescentOptimizer.

We set the learning rate to 0.01 and run 1000 iterations. The error metric is root-mean-squared error

(RMSE).

We first cross-validate the model. Figure 4.16 shows the 10-fold cross validation results of the

100

Model / Test Video
ssd-vgg

je jn kd kn vd vn
frcnn-res

je jn kd kn vd vn
frcnn-incep

je jn kd kn vd vn

0.2

0.4

0.6

Te
st

 E
rr

or
 (R

M
SE

)

Different Stream (Max) Same Stream
Figure 4.17: The test errors of the target percentage model trained and tested on different videos.

Errors are higher when trained and tested on different videos from the same stream (orange), and

much higher on videos from different streams (blue).

model on the six videos using the three object detection models. All errors are lower than 0.17,

indicating that a linear model is good enough for predicting target percentages.

However, a model trained on one video may not work well on another, even when they are

from the same stream. To evaluate, we train the target percentage model on one video and test it on

different videos. Figure 4.17 shows the results. We distinguish training and test videos that are from

the same stream but taken at different times (orange bars) and from different streams (blue bars).

Among training videos from different streams, we only show the one with the largest error due to

space constraints.

The models trained and tested on different videos from the same stream have higher test errors

compared to Figure 4.16. If the model is trained and tested on videos from different streams, in

most cases the errors are much higher, such as 0.65 when frcnn-res is trained on vn and tested

on kd. However, there are also cases where all models have similar errors no matter which training

video is used (e.g., ssd-vgg on jn and vn). We observe that in these cases, the test video usually

has a smaller number of recognizable objects, as shown in Table 4.2, where a model that constantly

predicts a high filtering percentage would work well. However, it does not always indicate that the

101

Model / Dataset
ssd-vgg

je jn kd kn vd vn
frcnn-res

je jn kd kn vd vn
frcnn-incep

je jn kd kn vd vn

-100

0

100

Av
g.

 P
ct

. o
f S

av
in

g

0.0

0.2

0.4

Av
g.

 F
1

Er
ro

r

I
I

I I I
I

I
I

I I I
I I I I I I I

f=1/5 f=1/10 f=1/20 f=1/50

Figure 4.18: Impact of the training-to-test factor f on the target percentage model. Each color rep-

resents one value of f . The Ideal Approach (I) is displayed as reference lines. First row: average

percentages of runtime savings. Second row: average F1 errors. Larger values of f have lower savings

and lower errors with smaller variances than smaller values of f .

model trained on another video predicts perfectly, since a predicted percentage larger than 100 will

be adjusted to 100.

This evaluation gives us a few insights. First, model training is stream-dependent. Using a model

trained on a different stream may lead to large errors. Second, even when training and testing on the

same stream, larger errors still occur if the training frames and test frames have distinct properties

affected by factors such as time. This suggests that retraining is necessary if the environment changes

significantly.

Finally, we evaluate the impact of the training-to-test factor f . As discussed in Section 4.3.2, in

order to reduce the overhead, we need to train on fewer frames and test on more frames. Figure 4.18

shows the results of evaluating the six videos using models trained on the same videos. The training

frames are picked from the beginning of each video and the evaluation frames are picked from the

end such that they do not overlap. Each color represents a value of f , and we also show the results

of the Ideal Approach. The first row shows the percent saving on runtime, and the second row shows

the F1 errors.

102

As in previous experiments, greater runtime savings usually mean higher F1 errors. When f is

large, the machine learning approach has less or even negative improvement in runtime on large

models. When f is small, the overhead is less but the F1 errors are, in some cases, much larger

than with small values of f (e.g., frcnn-incep on je). In order to understand how f affects the

predicted target percentages and thus affects savings and errors, we also investigate the values of

the predictions before being truncated into the [0, 100] window. We observe that when f is small

(1/50 or 1/100), which means that training set is much smaller than the test set, the model tends to

either overshoot (> 100) or undershoot (< 0). Smaller percentages give us more accurate results but

slower runtimes and sometimes negative savings. When f is large, the predicted filtering percentages

are reasonably between 0.8 and 1.0. However, the percent runtime savings are less because of the

overhead. These results show that a medium f is good for the machine learning model to avoid both

large overhead and instability.

4.6 Summary

Deluceva is a system that optimizes live-video analysis using deep learning by applying in-

cremental and approximate computation techniques. Our approach includes (1) a new method

for incremental deep network inference with new, specialized operators; (2) two algorithms to

dynamically adjust the amount of data processed to minimize runtime subject to achieving a target

quality, and (3) a new method to generating mixed networks with sparse and dense operators. Exper-

iments on three real models and six videos show that our prototype system can achieve significant

performance gains up to 79% with F1 errors below 0.1.

103

Chapter 5

RELATED WORK

In this chapter, we cover the literature of large-scale data analytics, especially relevant work in

the context of the following directions.

5.1 Related Work on Recursive Datalog Evaluation Engines

Adaptive query processing: The Eddy query processing mechanism [48] dynamically reorders

operators in a query plan. It detects places where the reordering can happen, and routes tuples

iteratively through operators based on costs. In contrast, our work focuses on query plans that are

static but have loops.

Iterative MapReduce: MapReduce [71] and Hadoop [221] are known to be inefficient for

iterative applications and several systems have been developed to address this limitation including

HaLoop [55] and Twister [75]. Besides supporting iterations, PrIter [227] also provides the ability to

prioritize the execution of subsets of data. OptIQ [163] uses program analysis to detect loop-variant

data and evaluate it incrementally. [41] observes that recursive tasks only deliver output at the end

and thus increases the cost of fault-tolerance. In contrast to our work, systems that extend Hadoop

can only support synchronous iterations.

Synchronous-only systems: Beyond MapReduce, multiple systems have been designed for

iterative applications and have introduced their own programming models. Some of them focus on

graph applications, while others have more general programming models. In Pregel [152], a program

consists of iterations, and in each iteration vertices can receive messages from the previous iteration,

update states, and send messages out. Pregelix [56], which is built on top of Hyracks [52], is similar

to Pregel but also supports both in-memory and out-of-core workloads efficiently. GraphX [91] is a

graph processing framework built on top of Spark [225], a distributed in-memory dataflow engine.

104

REX [157] provides a programming model that focuses on delivering deltas across iterations. All

these systems focus on synchronous iterative computations.

Systems that also support asynchronous iterations: These systems generally have program-

ming models that are based on message passing between units, such as graph vertices. They typically

provide a set of low-level interfaces for users to implement their own applications. Some of these

systems are specialized for graph processing, such as GraphLab [146] and Grace [212], while

others are more general. Stratosphere [77] focuses on incremental iteration evaluation with different

granularities: superstep for a full iteration and microstep for a single tuple. Naiad [159] proposes a

general-purpose dataflow framework that supports nested loops. epiC [122] adopts the Actor-like

programming model to encapsulate various parallel processing models into one system. To choose

between a synchronous and asynchronous model, PowerSwitch [223] does the first comparison and

comes up with a cost model to guide the switch between the two models. In contrast, our approach

generates query plans from Datalog programs and these plan require only small changes to an

existing shared-nothing system.

Datalog evaluation systems: Several systems focus on evaluating Datalog (with extensions)

or equivalent high-level declarative languages. LogicBlox [21] is a single-machine commercial

system that focuses on Datalog evaluation. In contrast, we focus on a shared-nothing implemen-

tation. GLog [84] provides a language similar to Datalog with extensions, then translates such a

program into MapReduce jobs, which support only synchronous iterations. SociaLite [179, 180] is a

distributed system that evaluates Datalog programs with meet aggregate functions. Asynchronous

execution is supported within each epoch but not for the entire program. More importantly, the

implementation is based on code-generation instead of having a general-purpose query engine.

DeALS [8] is a research project about Datalog evaluation with support for aggregate functions in

recursion with sequential [186], single-machine multi-core [224], and cluster (on Spark [225]) [185]

implementations. Theoretically, the semantics of monotonic aggregation in recursion is investigated

in Ross et al. [173] and DatalogFS [153]. CALM [43] is a set of principles that connect distributed

consistency with logical monotonicity, which leads to the Bloom [43] language. Bloom helps users

identify unnecessary coordination. BloomL [64] is an extension to Bloom [43] with lattices, but

105

without support for asynchronous evaluation on them.

Iterations in scientific workflows: The Orbit [70] operator provides support for the iterative

processing of workflow fragments. In contrast, our work focuses on Datalog programs.

Failure handling: Discussed in Section 2.3.

5.2 Related Work on Memory Management for Cloud Data Analytics

Memory allocation within a single machine: Many approaches focus on sharing memory

across multiple objects on a single machine. Several techniques have queries as the objects: Some [60,

78, 162] allocate buffer space across queries based on page access models to reduce page faults.

Others [53, 165] tune buffer allocation policies to meet performance goals in real-time database

systems. A third set of methods [201] uses application resource sensitivities to guide allocation.

More recently, Narasayya et al. [161] develop techniques to share a bufferpool across multiple

tenants. Several approaches focus on operators within a query. Anciaux et al. [44] allocate memory

across operators on memory-constrained devices. Davison et al. [69] sell resources to competing

operators to maximize profit. Garofalakis et al. [85] schedule operators with multidimensional

resource constraints in NUMA systems. Finally, Storm et al. [193] manage memory across database

system components. Although they share the idea of managing memory for multiple objects with

a global objective function, the problems are restricted to single machines, and they ignore GC.

Salomie et al. [176] move memory across JVMs dynamically by adding a balloon space to OpenJDK

but have no performance models or scheduling algorithms. Ginkgo [110] dynamically manages

memory for multiple Java applications by changing layouts using Java Native Interface. However, it

models performance by profiling specific workloads, while our approach is applicable to arbitrary

relational queries.

Cluster-wide resource scheduling: Some techniques develop models to understand how re-

sources affect the runtime characteristics of applications. Li et al. [140] partition queries on hetero-

geneous machines based on system calibrations and optimizer statistics. Herodotou et al. [107, 108]

tune Hadoop application parameters based on machine learning models built by job profiles. Some

other techniques focus on short-lived requests. Lang et al. [135] schedule transactional workloads

106

on heterogeneous hardware resources for multiple tenants. Schaffner et al. [178] minimize tail

latency of tenant response times in column database clusters. BlowFish [127] adaptively adjusts

storage for performance of random access and search queries by switching between array layers

with different sampling rates based on certain thresholds. In contrast, our focus is relational queries

on Java-based systems with no sampling. To provide a unified framework for resource sharing and

application scheduling, several general-purpose resource managers have emerged [109, 207, 218].

However, they all lack the ability to adjust memory limits dynamically.

Adaptive GC tuning: Cook et al. [65] provide two GC triggering policies based on real-time

statistics, but do not investigate memory management across applications. Simo et al. [187] study

the performance impact of JVM heap growth policies by evaluating them on several benchmarks.

Maas et al. [151] observe that GC coordination is important for distributed applications. They let

users specify coordination policy to make all JVMs trigger GC at the same time under certain

conditions.

Region-based memory management: Another line of work uses region-based memory man-

agement (RBMM) [202] to avoid GC overhead. Broom [90] categorizes Naiad [159] objects into

three types with a region assigned to each. Deca [149] manipulates Spark Scala objects in-memory

representations as byte arrays and allocates pages for them. While RBMM may reduce GC over-

head, it requires that the programmer declare object-to-region mappings and adds complexity to

compilation, without eliminating space safety concerns [100].

5.3 Related Work on Neural Network Inference for Video Analytics

Convolutional neural network (CNN) architectures: Although many vision models have

complex structures, they are mostly built on top of their predecessors [132, 189] with simple

architectures of stacks of common layers such as convolution and pooling, which have been proven

to work well on vision tasks [15, 131, 142]. Some techniques study architectural extremes, such as

very deep [188], shallow [49], or fully convolutional [182] networks. More recently, people have

discovered micro structures that can significantly benefit accuracy [106,119,198,199]. Another trend

is to develop simple, energy-efficient models that can be deployed on mobile devices [112, 170].

107

Object detection models: An object detection model generates two outputs: object bounding

boxes and class labels. Although they have different architectures, they usually use an established

CNN as the raw image feature extractor then perform localization and classification using extracted

features. Different base networks bring different accuracies and runtimes to each architecture [114].

Some [88, 89, 172, 181] treat localization and classification as two steps while others [68, 144, 171]

combine them into one for fast inference.

Vision tasks on videos: For object detection on videos, most approaches apply image object

detection models to each frame [105, 124, 125, 171]. [192] uses Long Short Term Memory (LSTM)

to remember previously detected but partially occluded human faces. For video classification, [126]

proposes several architectures that fuse temporal features at different levels. Object tracking is

another common video analysis task, where object bounding boxes are produced for each frame

given initial boxes. Most state-of-the-art techniques use models based on CNNs. For example, in

the Visual Object Tracking challenge 2017 [130], most top performers [79, 92, 160, 195] use CNNs.

Model sparsity: Many people have worked on reducing the size of models. [57, 111] distill an

ensemble of models into a smaller model without loss of accuracy. Others prune network connections

directly by various techniques, such as training [104], Taylor expansion [158], weight hashing and

sharing [61], Huffman encoding [103], and circulate matrices [63]. XNOR-Net [170] creates models

with binary weights and operators for fast evaluation and memory saving. In contrast to these work

where a pruned model is used for inference with no more change, our system takes a pre-trained

model and prunes it dynamically during model evaluation based on error feedback.

Model cascade: There is always a trade-off between accuracy and speed. Model cascade refers

to a line of techniques that combines a sequence of classifiers/models with different properties

and exit early when possible to improve inference speed. As representative early work, [209]

cascades traditional image processing features by short-circuiting classifiers with confident outputs.

Some techniques focus on specific tasks on images, such as pedestrian detection [58], human

faces detection [139], and facial key point detection [196]. More recently, Shen et al. [183] and

NoScope [124] cascades models from universal ones to specialized ones to avoid using overkilling,

“oracle” models. These approaches require offline training and hyperparameter tuning for a given

108

reference model, while our approach can take any reference model off-the-shelf and deploy it

directly without much offline overhead and is adaptive to dynamic input. Moreover, our approach

can be applied on top of these specialized models to further reduce their inference times.

Video analytics and management systems: Several video database systems have been pro-

posed in early work [45] and also recently [150]. These systems offer traditional database system

features such as declarative SQL-like languages, indexing, image and semantic-based querying,

storage management, and query optimization. Focus [113] is a system for querying objects of

certain classes (e.g., cars) from many days of recorded video with low latency and low cost.

VideoStorm [226] is a video analytics system for live video analysis over large clusters. It focuses

on resource management for video queries to maximize performance on quality and lag. In contrast

to these systems, we focus on accelerating video analytics task by incremental and approximate

processing.

109

Chapter 6

CONCLUSION AND FUTURE DIRECTIONS

Large-scale data analytics is key to modern science, technology, and business development.

Big data systems have emerged rapidly in recent years, but modern data analytics still remains

challenging due to application requirements: users need to analyze vasts amount of data generated

from various sources; analysis efficiency is critical in many scenarios; most big data systems are

built on top of new operating environments, such as clusters and cloud services, where resource

management is important; high-level, feature-rich programming interfaces are required to support a

high variety of data and workload types.

In this dissertation, we presented methods to improve system efficiency for large-scale data ana-

lytics. We investigated the problem in the context of the following three research projects addressing

the same key problem, optimization of analytical query execution, in different ways. Specifically,

these projects focused on runtime optimzation, which considers not only static information that is

available prior to the actual execution, but more importantly, runtime information. We demonstrated,

from these projects, that runtime optimzation can significantly improve overall system performance

in terms of runtime, resource utilization, and application failure.

We first presented a full-stack solution for large-scale recursive relational query evaluation in

shared-nothing engines (Chapter 2). With our approach, users can express their analysis using a

high-level declarative language (a subset of Datalog with aggregate functions). Queries are then

compiled into distributed query plans with termination guarantee and support for multiple execution

models, including synchronous, asynchronous, and prioritized processing. Our approach can be

applied to any existing shared-nothing engine with small extensions. We implemented our approach

in Myria and empirically evaluated the interplay between execution model, failure handling method,

and application property. We found that no single iterative execution strategy outperforms all others;

110

rather, application properties must drive method selection.

Next, we presented ElasticMem, an approach for automatic and elastic memory management of

cloud data analytics applications (Chapter 3). In clouds or clusters, a resource manager schedules

applications to containers with hard memory limits, which requires accurate application memory

usage estimation before launching containers. However, memory estimation for large-scale analytical

applications is difficult, and inappropriate estimate can lead to failures and performance degredation.

ElasticMem avoids pre-execution memory usage estimation by elastically allocating memory across

containers during runtime. It includes a technique to dynamically change JVM memory limits, an

approach to model memory usage and garbage collection cost during query execution, and a memory

manager that performs actions on JVMs to reduce total failures and run times. Our evaluation of the

approach on our prototype implementation showed that ElasticMem outperformed static memory

allocation in terms of query failure, garbage collection time, query execution time, and overall

resource utilization.

Lastly, we presented Deluceva, a system that dynamically optimizes live video analysis using

neural network models by applying incremental and approximate computation techniques (Chap-

ter 4). Many video analysis approaches apply image neural network models directly on each video

frame. While being easy to develop, they do not consider the rich temporal redundancy of videos.

Deluceva accelerates model inference by dynamically selecting sufficiently significant temporal

deltas to process for each video frame. It includes a new method for incremental deep network

inference with specialized operators, two algorithms to dynamically adjust the granularity of deltas

towards a target quality, and a method to generate mixed networks with sparse and dense operators.

The evaluation using our prototype implementation and multiple models and videos as input showed

that Deluceva can significantly improve performance while keeping object detection errors low.

Several interesting research directions remain open for each of the above three projects.

In the problem of recursive query evaluation, an important direction of future work is to develop

a cost-based optimizer to select the least-cost plan for each application, including choosing between

synchronous and asynchronous execution and selecting the pull order for each join operator. Plan

selection can happen before execution, which is similar to traditional static query optimization.

111

Moreover, cost-based plan adjustment during runtime (e.g., an Eddy-style [48] executor) based on

the observed statistics is a more interesting and challenging direction.

In the context of ElasticMem, our primary focus are relational queries running in Java-based

containers and having hash tables as the major large in-memory data structures. Extending our

approach to other data structures, more diverse workloads, and more systems and runtimes is

interesting future work. Another direction is to investigate ElasticMem’s performance on large-scale

cluster deployments, e.g., hundreds of thousands of applications and machines.

For Deluceva, our implementation for sparse convolution operator does not target any spe-

cific optimizations besides vectorization. An interesting future direction is to further optimize its

performance by taking memory hierarchy and blocking techniques into consideration. Additional

optimizations are also possible for the filter operator. Another important direction is to evaluate

Deluceva on GPUs and on other neural network models besides object detction models. Finally, we

want to investigate its performance on mobile and edge devices, where enery consumption, memory

bandwidth, and runtime are all important factors.

112

BIBLIOGRAPHY

[1] Amazon EC2 on-demand instances pricing. https://aws.amazon.com/ec2/pricing/on-
demand/.

[2] Amazon EC2 spot instances. http://aws.amazon.com/ec2/purchasing-options/spot-
instances/.

[3] Amazon Redshift. https://aws.amazon.com/redshift/.

[4] Amazon web service. https://aws.amazon.com/.

[5] Apache flink. http://flink.apache.org/.

[6] Apache Giraph. http://giraph.apache.org/.

[7] Common table expression. https://en.wikipedia.org/wiki/Hierarchical_and_

recursive_queries_in_SQL#Common_table_expression.

[8] Deductive application language system (deals). http://wis.cs.ucla.edu/deals/.

[9] Docker Container. https://www.docker.com/.

[10] Greenplum. http://pivotal.io/big-data/pivotal-greenplum-database.

[11] The Hadoop ecosystem table. http://hadoopecosystemtable.github.io/.

[12] How many CCTV cameras actually are there in the UK? http://www.arc24.co.uk/how-

many-cctv-cameras-are-actually-are-there-in-the-uk/.

[13] How we built Uber engineerings highest query per second service using Go. https://eng.
uber.com/go-geofence/.

[14] im2col. https://www.mathworks.com/help/images/ref/im2col.html.

[15] ImageNet. http://image-net.org/index.

[16] Internet of things. https://en.wikipedia.org/wiki/Internet_of_things.

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
http://aws.amazon.com/ec2/purchasing-options/spot-instances/
http://aws.amazon.com/ec2/purchasing-options/spot-instances/
https://aws.amazon.com/redshift/
https://aws.amazon.com/
http://flink.apache.org/
http://giraph.apache.org/
https://en.wikipedia.org/wiki/Hierarchical_and_recursive_queries_in_SQL#Common_table_expression
https://en.wikipedia.org/wiki/Hierarchical_and_recursive_queries_in_SQL#Common_table_expression
http://wis.cs.ucla.edu/deals/
https://www.docker.com/
http://pivotal.io/big-data/pivotal-greenplum-database
http://hadoopecosystemtable.github.io/
http://www.arc24.co.uk/how-many-cctv-cameras-are-actually-are-there-in-the-uk/
http://www.arc24.co.uk/how-many-cctv-cameras-are-actually-are-there-in-the-uk/
https://eng.uber.com/go-geofence/
https://eng.uber.com/go-geofence/
https://www.mathworks.com/help/images/ref/im2col.html
http://image-net.org/index
https://en.wikipedia.org/wiki/Internet_of_things

113

[17] Jackson Hole live stream. https://www.youtube.com/watch?v=a7jwCYuQarU.

[18] Knapsack problem. https://en.wikipedia.org/wiki/Knapsack_problem.

[19] Kubernetes. http://kubernetes.io/.

[20] Kusatsu live stream. https://www.youtube.com/watch?v=a17vvYJZP0w.

[21] LogicBlox inc. http://www.logicblox.com/.

[22] Mass surveillance in China. https://en.wikipedia.org/wiki/Mass_surveillance_in_
China.

[23] Myria: Big Data as a Service. http://myria.cs.washington.edu/.

[24] The PASCAL visual object classes. http://host.robots.ox.ac.uk/pascal/VOC/.

[25] PID controller. https://en.wikipedia.org/wiki/PID_controller.

[26] The prevalence of motor vehicle crashes involving road debris, united states,
2011-2014. http://exchange.aaa.com/wp-content/uploads/2017/05/RoadDebris_

FACTSHEET-1.pdf.

[27] SDSS SkyServer DR7. http://skyserver.sdss.org/dr7.

[28] Single shot multibox detector in tensorflow. https://github.com/balancap/SSD-

Tensorflow.

[29] TPC-H. http://www.tpc.org/tpch/.

[30] TPC-H queries in MyriaL. https://github.com/uwescience/tpch-myrial.

[31] Traffic safety facts 2015. https://crashstats.nhtsa.dot.gov/Api/Public/

Publication/812384.

[32] Tungsten: memory management and binary processing on Spark. https:

//databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-

to-bare-metal.html.

[33] Venice live stream. https://www.youtube.com/watch?v=vPbQcM4k1Ys.

[34] Vertica. https://www.vertica.com/.

https://www.youtube.com/watch?v=a7jwCYuQarU
https://en.wikipedia.org/wiki/Knapsack_problem
http://kubernetes.io/
https://www.youtube.com/watch?v=a17vvYJZP0w
http://www.logicblox.com/
https://en.wikipedia.org/wiki/Mass_surveillance_in_China
https://en.wikipedia.org/wiki/Mass_surveillance_in_China
http://myria.cs.washington.edu/
http://host.robots.ox.ac.uk/pascal/VOC/
https://en.wikipedia.org/wiki/PID_controller
http://exchange.aaa.com/wp-content/uploads/2017/05/RoadDebris_FACTSHEET-1.pdf
http://exchange.aaa.com/wp-content/uploads/2017/05/RoadDebris_FACTSHEET-1.pdf
http://skyserver.sdss.org/dr7
https://github.com/balancap/SSD-Tensorflow
https://github.com/balancap/SSD-Tensorflow
http://www.tpc.org/tpch/
https://github.com/uwescience/tpch-myrial
https://crashstats.nhtsa.dot.gov/Api/Public/Publication/812384
https://crashstats.nhtsa.dot.gov/Api/Public/Publication/812384
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://www.youtube.com/watch?v=vPbQcM4k1Ys
https://www.vertica.com/

114

[35] Vgg16. http://www.cs.toronto.edu/˜frossard/post/vgg16/.

[36] Walmart: Big data analytics at the worlds biggest retailer. https://www.bernardmarr.com/
default.asp?contentID=690.

[37] YouTube statistics. https://www.youtube.com/intl/en-GB/yt/about/press/.

[38] Memory management in the Java HotSpotTMvirtual machine. http://www.oracle.com/

technetwork/java/javase/memorymanagement-whitepaper-150215.pdf, 2006.

[39] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[40] Azza Abouzeid et al. HadoopDB: An architectural hybrid of MapReduce and DBMS
technologies for analytical workloads. In VLDB, 2009.

[41] Foto N. Afrati et al. Mapreduce extensions and recursive queries. In EDBT, 2011.

[42] Sattam Alsubaiee et al. AsterixDB: A scalable, open source BDMS. In VLDB, 2014.

[43] Peter Alvaro et al. Consistency analysis in Bloom: a CALM and collected approach. In
CIDR, 2011.

[44] Nicolas Anciaux, Luc Bouganim, and Philippe Pucheral. Memory requirements for query
execution in highly constrained devices. In Proceedings of the 29th International Conference
on Very Large Data Bases - Volume 29, VLDB ’03, pages 694–705. VLDB Endowment,
2003.

[45] Walid G. Aref, Ann C. Catlin, Jianping Fan, Ahmed K. Elmagarmid, Moustafa A. Hammad,
Ihab F. Ilyas, Mirette S. Marzouk, and Xingquan Zhu. A video database management system
for advancing video database research. In In Proc. of the Int Workshop on Management
Information Systems. Nov, pages 8–17, 2002.

[46] Remzi H. Arpaci-Dusseau. Run-time adaptation in river. ACM Trans. Comput. Syst., 21(1):36–
86, February 2003.

http://www.cs.toronto.edu/~frossard/post/vgg16/
https://www.bernardmarr.com/default.asp?contentID=690
https://www.bernardmarr.com/default.asp?contentID=690
https://www.youtube.com/intl/en-GB/yt/about/press/
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf

115

[47] Remzi H. Arpaci-Dusseau et al. Cluster I/O with river: Making the fast case common. In
IOPADS, 1999.

[48] Ron Avnur et al. Eddies: Continuously adaptive query processing. In SIGMOD, 2000.

[49] Lei Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Proceedings of
the 27th International Conference on Neural Information Processing Systems - Volume 2,
NIPS’14, pages 2654–2662, Cambridge, MA, USA, 2014. MIT Press.

[50] I. Balbin and K. Ramamohanarao. A generalization of the differential approach to recursive
query evaluation. The Journal of Logic Programming, 4(3):259 – 262, 1987.

[51] Stephen Blackburn, Richard E. Jones, Kathryn S. McKinley, and J. Eliot B. Moss. Beltway:
Getting around garbage collection gridlock. In Proceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Berlin, Germany,
June 17-19, 2002, pages 153–164, 2002.

[52] V. Borkar et al. Hyracks: A flexible and extensible foundation for data-intensive computing.
In ICDE, 2011.

[53] Kurt P. Brown, Michael J. Carey, and Miron Livny. Managing memory to meet multiclass
workload response time goals. In Proceedings of the 19th International Conference on Very
Large Data Bases, VLDB ’93, pages 328–341, San Francisco, CA, USA, 1993. Morgan
Kaufmann Publishers Inc.

[54] Paul G. Brown. Overview of scidb: Large scale array storage, processing and analysis. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’10, pages 963–968, New York, NY, USA, 2010. ACM.

[55] Y. Bu et al. HaLoop: Efficient iterative data processing on large clusters. In VLDB, 2010.

[56] Yingyi Bu et al. Pregelix: Big(ger) graph analytics on a dataflow engine. In VLDB, 2014.

[57] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’06, pages 535–541, New York, NY, USA, 2006. ACM.

[58] Zhaowei Cai, Mohammad J. Saberian, and Nuno Vasconcelos. Learning complexity-aware
cascades for deep pedestrian detection. CoRR, abs/1507.05348, 2015.

[59] Surajit Chaudhuri and Vivek Narasayya. Self-tuning database systems: A decade of progress.
In Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB ’07,
pages 3–14. VLDB Endowment, 2007.

116

[60] Chung-Min Chen and Nick Roussopoulos. Adaptive database buffer allocation using query
feedback. In Proceedings of the 19th International Conference on Very Large Data Bases,
VLDB ’93, pages 342–353, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers
Inc.

[61] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen. Com-
pressing convolutional neural networks in the frequency domain. In Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, pages 1475–1484, New York, NY, USA, 2016. ACM.

[62] Perry Cheng and Guy E. Blelloch. A parallel, real-time garbage collector. In Proceedings of
the 2001 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), Snowbird, Utah, USA, June 20-22, 2001, pages 125–136, 2001.

[63] Yu Cheng, Felix X. Yu, Rogério Schmidt Feris, Sanjiv Kumar, Alok N. Choudhary, and
Shih-Fu Chang. Fast neural networks with circulant projections. CoRR, abs/1502.03436,
2015.

[64] Neil Conway et al. Logic and lattices for distributed programming. In SoCC, 2012.

[65] Jonathan E. Cook, Artur W. Klauser, Alexander L. Wolf, and Benjamin G. Zorn. Semi-
automatic, self-adaptive control of garbage collection rates in object databases. In Proceedings
of the 1996 ACM SIGMOD International Conference on Management of Data, SIGMOD
’96, pages 377–388, New York, NY, USA, 1996. ACM.

[66] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, chapter 16, pages 425–427. The MIT Press, 3nd edition, 2009.

[67] C. Creusot and A. Munawar. Real-time small obstacle detection on highways using com-
pressive rbm road reconstruction. In 2015 IEEE Intelligent Vehicles Symposium (IV), pages
162–167, June 2015.

[68] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based fully
convolutional networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems 29, pages 379–387. Curran
Associates, Inc., 2016.

[69] Diane L. Davison and Goetz Graefe. Dynamic resource brokering for multi-user query exe-
cution. In Proceedings of the 1995 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’95, pages 281–292, New York, NY, USA, 1995. ACM.

117

[70] Douglas Ericson M. de Oliveira et al. Orbit: Efficient processing of iterations. In SBBD,
2013.

[71] Jeffrey Dean et al. Mapreduce: Simplified data processing on large clusters. In OSDI, 2004.

[72] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. Garbage-first garbage
collection. In Proceedings of the 4th International Symposium on Memory Management,
ISMM ’04, pages 37–48, New York, NY, USA, 2004. ACM.

[73] Jack Dongarra, Andrew Lumsdaine, Xinhiu Niu, Roldan Pozo, and Karin Remington. Lapack
working note 74: A sparse matrix library in c++ for high performance architectures. Technical
report, Knoxville, TN, USA, 1994.

[74] Iain S. Duff, Michael A. Heroux, and Roldan Pozo. An overview of the sparse basic linear
algebra subprograms: The new standard from the blas technical forum. ACM Trans. Math.
Softw., 28(2):239–267, June 2002.

[75] Jaliya Ekanayake et al. Twister: A runtime for iterative MapReduce. In HPDC, 2010.

[76] Martin Ester et al. A density-based algorithm for discovering clusters in large spatial databases
with noise. AAAI Press, 1996.

[77] S. Ewen et al. Spinning fast iterative data flows. In VLDB, 2012.

[78] Christos Faloutsos, Raymond T. Ng, and Timos K. Sellis. Predictive load control for flexible
buffer allocation. In Proceedings of the 17th International Conference on Very Large Data
Bases, VLDB ’91, pages 265–274, San Francisco, CA, USA, 1991. Morgan Kaufmann
Publishers Inc.

[79] Heng Fan and Haibin Ling. Sanet: Structure-aware network for visual tracking. CoRR,
abs/1611.06878, 2016.

[80] Christoph Feichtenhofer, Axel Pinz, and Richard Wildes. Spatiotemporal residual networks
for video action recognition. In Advances in Neural Information Processing Systems (NIPS),
pages 3468–3476, 2016.

[81] Christoph Feichtenhofer, Axel Pinz, and Richard P Wildes. Spatiotemporal multiplier
networks for video action recognition. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[82] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan. Object
detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach.
Intell., 32(9):1627–1645, September 2010.

118

[83] Michael J. Franklin, Michael J. Carey, and Miron Livny. Global memory management in
client-server database architectures. In Proceedings of the 18th International Conference on
Very Large Data Bases, VLDB ’92, pages 596–609, San Francisco, CA, USA, 1992. Morgan
Kaufmann Publishers Inc.

[84] Jun Gao et al. GLog: A high level graph analysis system using MapReduce. In ICDE, 2014.

[85] Minos N. Garofalakis and Yannis E. Ioannidis. Parallel query scheduling and optimization
with time- and space-shared resources. In Proceedings of the 23rd International Conference
on Very Large Data Bases, VLDB ’97, pages 296–305, San Francisco, CA, USA, 1997.
Morgan Kaufmann Publishers Inc.

[86] Roman Geus and Stefan Röllin. Towards a fast parallel sparse symmetric matrix-vector
multiplication. Parallel Comput., 27(7):883–896, May 2001.

[87] Ahmad Ghazal et al. Adaptive optimizations of recursive queries in teradata. In SIGMOD,
2012.

[88] R. Girshick. Fast r-cnn. In 2015 IEEE International Conference on Computer Vision (ICCV),
pages 1440–1448, Dec 2015.

[89] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Region-based convolutional networks for
accurate object detection and segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(1):142–158, Jan 2016.

[90] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios Vytiniotis, Ganesan
Ramalingam, Manuel Costa, Derek G. Murray, Steven Hand, and Michael Isard. Broom:
Sweeping out garbage collection from big data systems. In 15th Workshop on Hot Topics in
Operating Systems (HotOS XV), Kartause Ittingen, Switzerland, 2015. USENIX Association.

[91] Joseph E. Gonzalez et al. GraphX: Graph processing in a distributed dataflow framework. In
OSDI, 2014.

[92] Daniel Gordon, Ali Farhadi, and Dieter Fox. Re3 : Real-time recurrent regression networks
for object tracking. CoRR, abs/1705.06368, 2017.

[93] Daniel Gordon, Ali Farhadi, and Dieter Fox. Re3 : Real-time recurrent regression networks
for object tracking. CoRR, abs/1705.06368, 2017.

[94] Goetz Graefe. Query evaluation techniques for large databases. ACM Comput. Surv.,
25(2):73–169, June 1993.

119

[95] Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi Kuno, Joseph Tucek, Mark Lillibridge,
and Alistair Veitch. In-memory performance for big data. Proc. VLDB Endow., 8(1):37–48,
September 2014.

[96] Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao Zhou. Datalog and recursive
query processing. Found. Trends databases, 5(2):105–195, November 2013.

[97] Gaël Guennebaud, Benoı̂t Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[98] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views incremen-
tally. In Proceedings of the 1993 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’93, pages 157–166, New York, NY, USA, 1993. ACM.

[99] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H.
Witten. The WEKA data mining software: An update. SIGKDD Explor. Newsl., 11(1):10–18,
November 2009.

[100] Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region inference and garbage
collection. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Lan-
guage Design and Implementation, PLDI ’02, pages 141–152, New York, NY, USA, 2002.
ACM.

[101] Daniel Halperin. Simplifying the configuration of 802.11 wireless networks with effective
snr. CoRR, abs/1301.6644, 2012.

[102] Daniel Halperin et al. Demo of the Myria big data management service. In SIGMOD, 2014.

[103] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149,
2015.

[104] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections
for efficient neural networks. CoRR, abs/1506.02626, 2015.

[105] Wei Han, Pooya Khorrami, Tom Le Paine, Prajit Ramachandran, Mohammad Babaeizadeh,
Honghui Shi, Jianan Li, Shuicheng Yan, and Thomas S. Huang. Seq-nms for video object
detection. CoRR, abs/1602.08465, 2016.

[106] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

120

[107] Herodotos Herodotou, Fei Dong, and Shivnath Babu. No one (cluster) size fits all: Automatic
cluster sizing for data-intensive analytics. In Proceedings of the 2nd ACM Symposium on
Cloud Computing, SOCC ’11, pages 18:1–18:14, New York, NY, USA, 2011. ACM.

[108] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong, Fatma Bilgen
Cetin, and Shivnath Babu. Starfish: A self-tuning system for big data analytics. In In CIDR,
pages 261–272, 2011.

[109] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy
Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained resource sharing
in the data center. In Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI’11, pages 295–308, Berkeley, CA, USA, 2011. USENIX
Association.

[110] Michael R. Hines, Abel Gordon, Marcio Silva, Dilma Da Silva, Kyung Ryu, and Muli Ben-
Yehuda. Applications know best: Performance-driven memory overcommit with ginkgo.
In Proceedings of the 2011 IEEE Third International Conference on Cloud Computing
Technology and Science, CLOUDCOM ’11, pages 130–137, Washington, DC, USA, 2011.
IEEE Computer Society.

[111] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. In NIPS Deep Learning and Representation Learning Workshop, 2015.

[112] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

[113] K. Hsieh, G. Ananthanarayanan, P. Bodik, P. Bahl, M. Philipose, P. B. Gibbons, and O. Mutlu.
Focus: Querying Large Video Datasets with Low Latency and Low Cost. ArXiv e-prints,
January 2018.

[114] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza
Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and Kevin Murphy.
Speed/accuracy trade-offs for modern convolutional object detectors. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

[115] J. Hwang et al. High-availability algorithms for distributed stream processing. In ICDE,
2005.

[116] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database cracking. In Proceedings
of the 3rd International Conference on Innovative Data Systems Research (CIDR), pages
68–78, Asilomar, California, 2007.

121

[117] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. Sparsity: Optimization framework for
sparse matrix kernels. Int. J. High Perform. Comput. Appl., 18(1):135–158, February 2004.

[118] Yannis E. Ioannidis and Stavros Christodoulakis. On the propagation of errors in the size
of join results. In Proceedings of the 1991 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’91, pages 268–277, New York, NY, USA, 1991. ACM.

[119] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

[120] Michael Isard et al. Dryad: distributed data-parallel programs from sequential building blocks.
In EuroSys, 2007.

[121] Joo Seong Jeong, Woo-Yeon Lee, Yunseong Lee, Youngseok Yang, Brian Cho, and Byung-
Gon Chun. Elastic memory: Bring elasticity back to in-memory big data analytics. In
Proceedings of the 15th USENIX Conference on Hot Topics in Operating Systems, HOTOS’15,
pages 3–3, Berkeley, CA, USA, 2015. USENIX Association.

[122] Dawei Jiang et al. epiC: An extensible and scalable system for processing big data. In VLDB,
2014.

[123] Bo Kågström, Per Ling, and Charles van Loan. Gemm-based level 3 blas: High-performance
model implementations and performance evaluation benchmark. ACM Trans. Math. Softw.,
24(3):268–302, September 1998.

[124] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. NoScope:
Optimizing neural network queries over video at scale. Proc. VLDB Endow., 10(11):1586–
1597, August 2017.

[125] Kai Kang, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. Object detection from video
tubelets with convolutional neural networks. CoRR, abs/1604.04053, 2016.

[126] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and
Li Fei-Fei. Large-scale video classification with convolutional neural networks. In Proceed-
ings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’14,
pages 1725–1732, Washington, DC, USA, 2014. IEEE Computer Society.

[127] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. Blowfish: Dynamic storage-
performance tradeoff in data stores. In Proceedings of the 13th Usenix Conference on
Networked Systems Design and Implementation, NSDI’16, pages 485–500, Berkeley, CA,
USA, 2016. USENIX Association.

122

[128] Nodira Khoussainova. Leveraging usage history to enhance database usability. 2012.

[129] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey Ching, Alan
Choi, Justin Erickson, Martin Grund, Daniel Hecht, Matthew Jacobs, Ishaan Joshi, Lenni Kuff,
Dileep Kumar, Alex Leblang, Nong Li, Ippokratis Pandis, Henry Robinson, David Rorke,
Silvius Rus, John Russell, Dimitris Tsirogiannis, Skye Wanderman-Milne, and Michael
Yoder. Impala: A modern, open-source SQL engine for Hadoop. In CIDR, 2015.

[130] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg, Roman Pflugfelder, Luka
Cehovin Zajc, Tomas Vojir, Gustav Hager, Alan Lukezic, Abdelrahman Eldesokey, and
Gustavo Fernandez. The visual object tracking vot2017 challenge results. In The IEEE
International Conference on Computer Vision (ICCV), Oct 2017.

[131] Matej Kristan, Jiri Matas, Aleš Leonardis, Tomas Vojir, Roman Pflugfelder, Gustavo Fer-
nandez, Georg Nebehay, Fatih Porikli, and Luka Čehovin. A novel performance evaluation
methodology for single-target trackers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(11):2137–2155, Nov 2016.

[132] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep
convolutional neural networks. In Proceedings of the 25th International Conference on
Neural Information Processing Systems - Volume 1, NIPS’12, pages 1097–1105, USA, 2012.
Curran Associates Inc.

[133] Haewoon Kwak et al. What is Twitter, a social network or a news media? In WWW, 2010.

[134] Douglas Laney. 3D data management: Controlling data volume, velocity, and variety. Tech-
nical report, META Group, February 2001.

[135] Willis Lang, Srinath Shankar, Jignesh M. Patel, and Ajay Kalhan. Towards multi-tenant
performance slos. IEEE Trans. on Knowl. and Data Eng., 26(6):1447–1463, June 2014.

[136] B. C. Lee, R. W. Vuduc, J. W. Demmel, and K. A. Yelick. Performance models for evaluation
and automatic tuning of symmetric sparse matrix-vector multiply. In International Conference
on Parallel Processing, 2004. ICPP 2004., pages 169–176 vol.1, Aug 2004.

[137] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas
Neumann. How good are query optimizers, really? Proc. VLDB Endow., 9(3):204–215,
November 2015.

[138] Jure Leskovec et al. Snap.py: SNAP for Python, a general purpose network analysis and
graph mining tool in Python. http://snap.stanford.edu/snappy, 2014.

http://snap.stanford.edu/snappy

123

[139] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolutional neural network cascade
for face detection. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5325–5334, June 2015.

[140] Jiexing Li, Jeffrey Naughton, and Rimma V. Nehme. Resource bricolage for parallel database
systems. Proc. VLDB Endow., 8(1):25–36, September 2014.

[141] Leonid Libkin and Limsoon Wong. On representation and querying incomplete information
in databases with multisets, 1995.

[142] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common Objects in Context, pages
740–755. Springer International Publishing, Cham, 2014.

[143] Bin Liu, Yali Zhu, and Elke Rundensteiner. Run-time operator state spilling for memory
intensive long-running queries. In Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’06, pages 347–358, New York, NY, USA,
2006. ACM.

[144] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C. Berg. SSD: Single Shot MultiBox Detector, pages 21–37. Springer
International Publishing, Cham, 2016.

[145] Sarah Loebman et al. Big-data management use-case: A cloud service for creating and
analyzing galactic merger trees. DanaC, 2014.

[146] Y. Low et al. Distributed GraphLab: a framework for machine learning and data mining in
the cloud. In VLDB, 2012.

[147] David G. Lowe. Object recognition from local scale-invariant features. In Proceedings of the
International Conference on Computer Vision-Volume 2 - Volume 2, ICCV ’99, pages 1150–,
Washington, DC, USA, 1999. IEEE Computer Society.

[148] Large Synoptic Survey Telescope. http://www.lsst.org/.

[149] Lu Lu, Xuanhua Shi, Yongluan Zhou, Xiong Zhang, Hai Jin, Cheng Pei, Ligang He, and
Yuanzhen Geng. Lifetime-based memory management for distributed data processing systems.
Proc. VLDB Endow., 9(12):936–947, August 2016.

[150] Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula. Optasia: A relational platform for
efficient large-scale video analytics. In Proceedings of the Seventh ACM Symposium on
Cloud Computing, SoCC ’16, pages 57–70, New York, NY, USA, 2016. ACM.

http://www.lsst.org/

124

[151] Martin Maas, Tim Harris, Krste Asanovic, and John Kubiatowicz. Trash day: Coordinating
garbage collection in distributed systems. In 15th Workshop on Hot Topics in Operating
Systems, HotOS XV, Kartause Ittingen, Switzerland, May 18-20, 2015, 2015.

[152] G. Malewicz et al. Pregel: a system for large-scale graph processing. In SIGMOD, 2010.

[153] Mirjana Mazuran, Edoardo Serra, and Carlo Zaniolo. Extending the power of datalog
recursion. The VLDB Journal, 22(4):471–493, August 2013.

[154] Joseph McKendrick. The petabyte challenge: 2011 ioug database growth survey.

[155] Frank McSherry et al. Differential dataflow. In CIDR, 2013.

[156] H. Menon et al. Adaptive Techniques for Clustered N-Body Cosmological Simulations.
ArXiv e-prints, September 2014.

[157] S.R. Mihaylov et al. REX: Recursive, delta-based data-centric computation. In VLDB, 2012.

[158] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convo-
lutional neural networks for resource efficient transfer learning. CoRR, abs/1611.06440,
2016.

[159] Derek G. Murray et al. Naiad: A timely dataflow system. In SOSP, 2013.

[160] Hyeonseob Nam and Bohyung Han. Learning multi-domain convolutional neural networks
for visual tracking. CoRR, abs/1510.07945, 2015.

[161] Vivek Narasayya, Ishai Menache, Mohit Singh, Feng Li, Manoj Syamala, and Surajit Chaud-
huri. Sharing buffer pool memory in multi-tenant relational database-as-a-service. Proc.
VLDB Endow., 8(7):726–737, February 2015.

[162] Raymond Ng, Christos Faloutsos, and Timos Sellis. Flexible buffer allocation based on
marginal gains. In Proceedings of the 1991 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’91, pages 387–396, New York, NY, USA, 1991. ACM.

[163] Makoto Onizuka et al. Optimization for iterative queries on MapReduce. In VLDB, 2013.

[164] Yoav Ossia, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Victor Leikehman, and Avi
Owshanko. A parallel, incremental and concurrent GC for servers. In Proceedings of the
2002 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), Berlin, Germany, June 17-19, 2002, pages 129–140, 2002.

125

[165] Hwee Hwa Pang, Michael J. Carey, and Miron Livny. Managing memory for real-time queries.
In Proceedings of the 1994 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’94, pages 221–232, New York, NY, USA, 1994. ACM.

[166] Ali Pinar and Michael T. Heath. Improving performance of sparse matrix-vector multiplica-
tion. In Proceedings of the 1999 ACM/IEEE Conference on Supercomputing, SC ’99, New
York, NY, USA, 1999. ACM.

[167] Ross J. Quinlan. Learning with continuous classes. In 5th Australian Joint Conference on
Artificial Intelligence, pages 343–348, Singapore, 1992. World Scientific.

[168] Raghu Ramakrishnan, Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. Efficient
incremental evaluation of queries with aggregation. In Proceedings of the 1994 International
Symposium on Logic Programming, ILPS ’94, pages 204–218, Cambridge, MA, USA, 1994.
MIT Press.

[169] Raghu Ramakrishnan, Divesh Srivastava, S. Sudarshan, and Praveen Seshadri. Implemen-
tation of the coral deductive database system. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’93, pages 167–176, New York,
NY, USA, 1993. ACM.

[170] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net:
ImageNet classification using binary convolutional neural networks. CoRR, abs/1603.05279,
2016.

[171] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

[172] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time
object detection with region proposal networks. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems
28, pages 91–99. Curran Associates, Inc., 2015.

[173] Kenneth A. Ross and Yehoshua Sagiv. Monotonic aggregation in deductive databases. In
Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, PODS ’92, pages 114–126, New York, NY, USA, 1992. ACM.

[174] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and
Fei-Fei Li. ImageNet large scale visual recognition challenge. CoRR, abs/1409.0575, 2014.

126

[175] Konstantinos Sagonas, Terrance Swift, and David S. Warren. Xsb as an efficient deductive
database engine. In In Proceedings of the ACM SIGMOD International Conference on the
Management of Data, pages 442–453. ACM Press, 1994.

[176] Tudor-Ioan Salomie, Gustavo Alonso, Timothy Roscoe, and Kevin Elphinstone. Application
level ballooning for efficient server consolidation. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages 337–350, New York, NY, USA, 2013.
ACM.

[177] Mohamed Sarwat et al. Horton+: A distributed system for processing declarative reachability
queries over partitioned graphs. In VLDB, 2013.

[178] Jan Schaffner, Benjamin Eckart, Dean Jacobs, Christian Schwarz, Hasso Plattner, and Alexan-
der Zeier. Predicting in-memory database performance for automating cluster management
tasks. In ICDE, pages 1264–1275. IEEE Computer Society, 2011.

[179] Jiwon Seo et al. Distributed SociaLite: A Datalog-based language for large-scale graph
analysis. In VLDB, 2013.

[180] Jiwon Seo et al. SociaLite: Datalog extensions for efficient social network analysis. In ICDE,
2013.

[181] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann LeCun.
Overfeat: Integrated recognition, localization and detection using convolutional networks.
CoRR, abs/1312.6229, 2013.

[182] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. CoRR, abs/1605.06211, 2016.

[183] Haichen Shen, Seungyeop Han, Matthai Philipose, and Arvind Krishnamurthy. Fast video
classification via adaptive cascading of deep models. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages
2197–2205, 2017.

[184] Yanyan Shen et al. Fast failure recovery in distributed graph processing systems. In VLDB,
2014.

[185] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and Carlo
Zaniolo. Big data analytics with datalog queries on spark. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD ’16, pages 1135–1149, New
York, NY, USA, 2016. ACM.

127

[186] Alexander Shkapsky, Mohan Yang, and Carlo Zaniolo. Optimizing recursive queries with
monotonic aggregates in deals. 2015 IEEE 31st International Conference on Data Engineer-
ing, pages 867–878, 2015.

[187] José Simão and Luı́s Veiga. Adaptability driven by quality of execution in high level virtual
machines for shared cloud environments. Comput. Syst. Sci. Eng., 28(6), 2013.

[188] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

[189] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[190] Sloan Digital Sky Survey. http://cas.sdss.org/.

[191] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller.
Striving for simplicity: The all convolutional net. CoRR, abs/1412.6806, 2014.

[192] Russell Stewart and Mykhaylo Andriluka. End-to-end people detection in crowded scenes.
CoRR, abs/1506.04878, 2015.

[193] Adam J. Storm, Christian Garcia-Arellano, Sam S. Lightstone, Yixin Diao, and M. Surendra.
Adaptive self-tuning memory in db2. In Proceedings of the 32Nd International Conference
on Very Large Data Bases, VLDB ’06, pages 1081–1092. VLDB Endowment, 2006.

[194] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. Overview of the
high efficiency video coding (HEVC) standard. IEEE Trans. Cir. and Sys. for Video Technol.,
22(12):1649–1668, December 2012.

[195] Chong Sun, Huchuan Lu, and Ming-Hsuan Yang. Learning spatial-aware regressions for
visual tracking. CoRR, abs/1706.07457, 2017.

[196] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep convolutional network cascade for facial
point detection. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’13, pages 3476–3483, Washington, DC, USA, 2013. IEEE Computer
Society.

[197] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, Inception-ResNet
and the impact of residual connections on learning. CoRR, abs/1602.07261, 2016.

[198] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. CoRR, abs/1409.4842, 2014.

http://cas.sdss.org/

128

[199] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the Inception architecture for computer vision. CoRR, abs/1512.00567, 2015.

[200] O. Temam and W. Jalby. Characterizing the behavior of sparse algorithms on caches. In
Proceedings of the 1992 ACM/IEEE Conference on Supercomputing, Supercomputing ’92,
pages 578–587, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[201] Priyanka Tembey, Ada Gavrilovska, and Karsten Schwan. Merlin: Application- and platform-
aware resource allocation in consolidated server systems. In Proceedings of the ACM
Symposium on Cloud Computing, SOCC ’14, pages 14:1–14:14, New York, NY, USA, 2014.
ACM.

[202] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Inf. Comput.,
132(2):109–176, February 1997.

[203] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. Selective search
for object recognition. International Journal of Computer Vision, 104(2):154–171, 2013.

[204] University of Washington eScience Institute. http://escience.washington.edu/.

[205] Prasang Upadhyaya et al. A latency and fault-tolerance optimizer for online parallel query
plans. In SIGMOD, 2011.

[206] Brendan Vastenhouw and Rob H. Bisseling. A two-dimensional data distribution method for
parallel sparse matrix-vector multiplication. SIAM Rev., 47(1):67–95, January 2005.

[207] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar,
Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo
Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. Apache
Hadoop YARN: Yet another resource negotiator. In Proceedings of the 4th Annual Symposium
on Cloud Computing, SOCC ’13, pages 5:1–5:16, New York, NY, USA, 2013. ACM.

[208] Laurent Vieille. Recursive axioms in deductive databases: The query/subquery approach. In
Expert Database Conf., 1986.

[209] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.
In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. CVPR 2001, volume 1, pages I–511–I–518 vol.1, 2001.

[210] W. Vogels et al. The design and architecture of the Microsoft Cluster Service - a practical
approach to high-availability and scalability. In FTCS, 1998.

http://escience.washington.edu/

129

[211] Richard Wilson Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels. PhD thesis,
2003. AAI3121741.

[212] Guozhang Wang et al. Asynchronous large-scale graph processing made easy. In CIDR,
2013.

[213] Jingjing Wang, Tobin Baker, Magdalena Balazinska, Daniel Halperin, Brandon Haynes,
Bill Howe, Dylan Hutchison, Shrainik Jain, Ryan Maas, Parmita Mehta, Dominik Moritz,
Brandon Myers, Jennifer Ortiz, Dan Suciu, Andrew Whitaker, and Shengliang Xu. The Myria
big data management and analytics system and cloud services. In CIDR, 2017.

[214] Jingjing Wang and Magdalena Balazinska. Toward elastic memory management for cloud
data analytics. In Proceedings of the 3rd ACM SIGMOD Workshop on Algorithms and
Systems for MapReduce and Beyond, BeyondMR ’16, pages 7:1–7:4, New York, NY, USA,
2016. ACM.

[215] Jingjing Wang and Magdalena Balazinska. Elastic memory management for cloud data
analytics. In 2017 USENIX Annual Technical Conference (USENIX ATC 17), pages 745–758,
Santa Clara, CA, 2017. USENIX Association.

[216] Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. Asynchronous and fault-tolerant
recursive datalog evaluation in shared-nothing engines. Proc. VLDB Endow., 8(12):1542–
1553, August 2015.

[217] Y. Wang and I. H. Witten. Induction of model trees for predicting continuous classes. In
Poster papers of the 9th European Conference on Machine Learning. Springer, 1997.

[218] Markus Weimer, Yingda Chen, Byung-Gon Chun, Tyson Condie, Carlo Curino, Chris Dou-
glas, Yunseong Lee, Tony Majestro, Dahlia Malkhi, Sergiy Matusevych, Brandon Myers,
Shravan Narayanamurthy, Raghu Ramakrishnan, Sriram Rao, Russel Sears, Beysim Sezgin,
and Julia Wang. Reef: Retainable evaluator execution framework. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, SIGMOD ’15, pages
1343–1355, New York, NY, USA, 2015. ACM.

[219] Philippe Weinzaepfel, Zaı̈d Harchaoui, and Cordelia Schmid. Learning to track for spatio-
temporal action localization. CoRR, abs/1506.01929, 2015.

[220] Seth J. White and David J. DeWitt. A performance study of alternative object faulting and
pointer swizzling strategies. In Proceedings of the 18th International Conference on Very
Large Data Bases, VLDB ’92, pages 419–431, San Francisco, CA, USA, 1992. Morgan
Kaufmann Publishers Inc.

130

[221] Tom White. Hadoop: The Definitive Guide. 2009.

[222] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of sparse
matrix-vector multiplication on emerging multicore platforms. In Supercomputing, 2007. SC

’07. Proceedings of the 2007 ACM/IEEE Conference on, pages 1–12, Nov 2007.

[223] Chenning Xie et al. SYNC or ASYNC: Time to fuse for distributed graph-parallel computa-
tion. In PPoPP, 2015.

[224] Mohan Yang, Alexander Shkapsky, and Carlo Zaniolo. Parallel bottom-up evaluation of logic
programs: Deals on shared-memory multicore machines. In ICLP, 2015.

[225] Matei Zaharia et al. Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In NSDI, 2012.

[226] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose, Paramvir Bahl,
and Michael J. Freedman. Live video analytics at scale with approximation and delay-
tolerance. In Proceedings of the 14th USENIX Conference on Networked Systems Design and
Implementation, NSDI’17, pages 377–392, Berkeley, CA, USA, 2017. USENIX Association.

[227] Y. Zhang et al. PrIter: a distributed framework for prioritized iterative computations. In
SoCC, 2011.

[228] Qiang Zhu, Mei-Chen Yeh, Kwang-Ting Cheng, and Shai Avidan. Fast human detection using
a cascade of histograms of oriented gradients. In Proceedings of the 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition - Volume 2, CVPR ’06,
pages 1491–1498, Washington, DC, USA, 2006. IEEE Computer Society.

[229] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. CoRR,
abs/1611.01578, 2016.

	List of Figures
	List of Tables
	Chapter 1: Introduction
	1.1 Application Requirements
	1.2 Asynchronous and Fault-Tolerant Recursive Datalog Evaluation in Shared-Nothing Engines
	1.3 ElasticMem: Elastic Memory Management for Cloud Data Analytics
	1.4 Deluceva: Delta-Based Neural Network Inference for Fast Video Analytics
	1.5 Summary of Contributions and Thesis Outline

	Chapter 2: Asynchronous and Fault-Tolerant Recursive Datalog Evaluation in Shared-Nothing Engines
	2.1 Background
	2.2 Asynchronous Evaluation of Datalog with Aggregation
	2.3 Failure Handling
	2.4 Implementation
	2.5 Evaluation
	2.6 Summary

	Chapter 3: ElasticMem: Elastic Memory Management for Cloud Data Analytics
	3.1 Performance Impact of Automatic Memory Management
	3.2 Elastic Memory Allocation
	3.3 Evaluation
	3.4 Summary

	Chapter 4: Deluceva: Delta-Based Neural Network Inference for Fast Video Analytics
	4.1 Background
	4.2 Delta-Based Models
	4.3 Dynamic Tuning
	4.4 Mixed Network
	4.5 Evaluation
	4.6 Summary

	Chapter 5: Related Work
	5.1 Related Work on Recursive Datalog Evaluation Engines
	5.2 Related Work on Memory Management for Cloud Data Analytics
	5.3 Related Work on Neural Network Inference for Video Analytics

	Chapter 6: Conclusion and Future Directions
	Bibliography

