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Abstract

Although current evaluation of question-
answering systems treats predictions in isola-
tion, we need to consider the relationship be-
tween predictions to measure true understand-
ing. A model should be penalized for answer-
ing “no” to “Is the rose red?” if it answers
“red” to “What color is the rose?”. We propose
a method to automatically extract such impli-
cations for instances from two QA datasets,
VQA and SQuAD, which we then use to eval-
uate the consistency of models. Human evalu-
ation shows these generated implications are
well formed and valid. Consistency evalua-
tion provides crucial insights into gaps in ex-
isting models, and retraining with implication-
augmented data improves consistency on both
synthetic and human-generated implications.

1 Introduction

Question-answering (QA) systems have become
popular benchmarks for AI systems, as they re-
quire the ability to comprehend and employ com-
plex reasoning about the question and the associ-
ated context. In order to really excel in machine
comprehension (Rajpurkar et al., 2016), for exam-
ple, models need to understand the entities, coref-
erences, and relations in the paragraph, and align
them to the information need encoded in the ques-
tion. Similarly, Visual Question Answering (An-
tol et al., 2015) requires not only perception abili-
ties (fine-grained recognition, object detection), but
also “higher level reasoning” about how the ques-
tion is related to the visual information, common-
sense reasoning, knowledge based reasoning, and
the understanding of location/color/size attributes.

However, recent work has shown that popular
benchmarks have crucial limitations in their ability
to test reasoning and comprehension. For example,
Weissenborn et al. (2017) show that models can
do well in the SQuAD dataset by using heuristic

(a) Input image from the
VQA dataset.

How many birds? A: 1

Is there 1 bird? A: no
Are there 2 birds? A: yes
Are there any birds? A: no

(b) Model (Zhang et al., 2018)
provides inconsistent answers.

Kublai originally named his eldest son, Zhenjin, as the
Crown Prince, but he died before Kublai in 1285.

(c) Excerpt from an input paragraph, SQuAD dataset.

Q: When did Zhenjin die? A: 1285

Q: Who died in 1285? A: Kublai

(d) Model (Peters et al., 2018) provides inconsistent answers.

Figure 1: Inconsistent QA Predictions: Models that
are accurate for questions from these datasets (first row
in (b) and (d)) are not able to correctly answer follow-
up questions whose answers are implied by the original
question/answer. We generate such questions automati-
cally, and evaluate existing models on their consistency.

lexical and type overlap between the context and
the question. Biases have also been observed in
the popular VQA dataset, e.g. answering questions
starting with “Do you see a ...” with “yes” results
in 87% accuracy, and “tennis” is the correct answer
for 41% of questions starting with “What sport is ...”
(Goyal et al., 2017).

While there are laudable efforts to try to dimin-
ish such biases (Rajpurkar et al., 2018; Goyal et al.,
2017), they do not address a fundamental evalua-
tion question: it is not only individual predictions
that matter, but also whether multiple answers re-
flect a consistent and coherent model. For example,
in Figure 1, models answer original questions cor-
rectly but answer follow-up questions in an incon-
sistent manner, which indicates they do not really
understand the context or the questions (e.g. simul-
taneously predicting 0, 1, and 2 birds in Figure 1b).

mailto:marcotcr@microsoft.com
mailto:guestrin@cs.uw.edu
mailto:sameer@uci.edu


In this paper, we propose evaluation for QA sys-
tems that measures the extent to which model pre-
dictions are consistent. We first automatically gen-
erate new question-answer pairs that are implied
by existing instances from the dataset (such as the
ones in Figure 1). We use this generated dataset
to evaluate models by penalizing them when their
predictions are not consistent with these implica-
tions. Human evaluation verifies that the generated
implications are valid and well formed when com-
pared to original instances, and thus can be used
to evaluate and gain insights into models for VQA
and SQuAD. Finally, we propose a simple data aug-
mentation procedure that results in models nearly
as accurate as the original models on the original
data, while being more consistent when measured
by our implications and by human generated impli-
cations (and thus expected to generalize better in
the real world).

2 Related Work

Since QA models often exploit shortcuts to be
accurate without really understanding questions
and contexts, alternative evaluations have been pro-
posed, consisting of solutions that mitigate known
biases or propose separate diagnostic datasets. Ex-
amples of the former include adding multiple im-
ages for which the answer to the same question is
different (Goyal et al., 2017; Zhang et al., 2016), or
questions for which an answer is not present (Ra-
jpurkar et al., 2018). While useful, these do not take
the relationship between predictions into account,
and thus do not capture problems like the ones in
Figure 1. Exceptions exist when trying to gauge
robustness: Ribeiro et al. (2018) consider the ro-
bustness of QA models to automatically generated
input rephrasings, while Shah et al. (2019) evalu-
ate VQA models on crowdsourced rephrasings for
robustness. While important for evaluation, these
efforts are orthogonal to our focus on consistency.

Various automatically generated diagnostic
datasets have been proposed (Weston et al., 2015;
Johnson et al., 2017). While these recognize the
need to evaluate multiple capabilities, evaluation is
still restricted to individual units and thus cannot
capture inconsistencies between predictions, like
predicting that an object is at the same time to the
left and to the right of another object. Furthermore,
questions/contexts can be sufficiently artificial for
models to reverse-engineer how the dataset was
created. An exception contemporaneous with our

(a) Example input image.

Q: What room is this?

A: bathroom

(b) Example (q, a) pair.

Type Cov Example

Logeq 56.8% Is this a bathroom? Yes
Nec 50.2% Is there a bathroom in the picture? Yes
Mutex 34.6% Is this a kitchen? No

(c) Implication types, with coverage and examples.

Figure 2: VQA Implications and examples. Implica-
tions can be generated for 67.3% of the original data.

work is GQA (Hudson and Manning, 2019), where
real images are used, and metrics such as consis-
tency (similar to our own) are used for a fraction
of inputs. Since questions are still synthetic, and
“not as natural as other VQA datasets” (Hudson
and Manning, 2019), it remains to be seen whether
models will overfit to the generation procedure or
to the implications encoded (e.g. many are simple
spatial rules such as “X to the left of Y implies Y
to the right of X”). Their approach is complemen-
tary to ours – they provide implications for ∼54%
of their synthetic dataset, while we generate dif-
ferent implications for ∼67% of human generated
questions in VQA, and ∼73% of SQuAD questions.

3 Generating Implications

Let an instance from a QA datset be represented by
(c, q, a) denoting respectively the context (image or
paragraph), question, and answer (c may be omit-
ted for clarity). We define logical implications as
(c, q, a) → (c, q′, a′) , i.e. an answer a to q implies
that a′ is the answer for question q′ for the same
context. We now present a rule-based system that
takes (q, a) and generates (q, a) → (q′, a′).

Visual QA (q, a) pairs in VQA often have both
positive and negative implications that we encode
into three types of yes/no implications, illustrated
in Figure 2: logical equivalence (Logeq), neces-
sary condition (Nec) and mutual exclusion (Mutex)
(more examples in appendices). To generate such
instances, we use a dependency parser (Dozat et al.,
2017) to recognize root/subject/object and build
the implication appropriately, and to detect auxil-
iary/copula that may need to be moved. Logical
equivalence implications are generated by trans-



forming the original (q, a) into a proposition, and
then asking the “yes-no” equivalent by moving
auxiliary/copula, adding “do” auxiliaries, etc (e.g.
“Who painted the wall? man” → “Did the man paint
the wall? yes”). Necessary conditions are created
via heuristics such as taking numerical answers to
“How many X” questions and asking if there are
any X present (e.g. “How many birds? 1” → “Are
there any birds? yes”), or asking if answer nouns
are in the picture (e.g. bathroom in Figure 2c). We
used WordNet (Miller, 1995) to find antonyms and
other plausible answers (hyponyms of the origi-
nal answer’s hypernym) when generating mutual
exclusion implications, as illustrated in changing
“bathroom” to “kitchen” in Figure 2c. We also used
a 4-gram language model (Heafield et al., 2013) to
smooth implication questions (e.g. adding “the”,
“a”, etc before inserting the original answers into
implication questions).

SQuAD Since the answers need to be spans in the
paragraph, we cannot generate the same kinds of
implications (e.g. yes/no questions are not suitable).
Instead, we use the QA2D system of Demszky et al.
(2018) to transform a (q, a) into declarative form d,
and then use the dependency parse of d to extract
questions about the subject (Subj), direct object
(Dobj), adjectival modifiers (Amod), or preposi-
tional phrases (Prep) (Table 1). To decide which
WH-word to introduce, we use a NER tagger (Hon-
nibal and Montani, 2017) coupled with heuristics,
e.g. if the answer is “in DATE” or “in LOC”, the
WH-words are “when” and “where”, respectively.

Evaluating consistency We want the generated
implications to meet the following criteria: (1) the
questions are well formed, (2) the answers are cor-
rect, and (3) the implication is valid, i.e. if we gen-
erate an implication (q, a) → (q′, a′), an answer
a to q really implies that a′ is the answer to q′. If
these are met (Section 4), we can evaluate the con-
sistency of a large fraction of predictions in these
datasets (67.3% of VQA and 73.2% of SQuAD) by
taking (q, a) instances predicted correctly by the
model, generating implications (q, a) → (q′, a′),
and measuring the frequency at which the model
predicts the generated questions correctly.

4 Experiments

In this section, we assess the quality of the gener-
ated (q′, a′) pairs, measure consistency of models
for VQA and SQuAD, and evaluate whether data

Type Cov Example

Subj 29.3% When did Zhenjin die? 1285
→Who died in 1285? Zhenjin

Dobj 10.0% When did Denmark join the EU? 1972
→What did Denmark join in 1972? the EU

Amod 29.7% When did the Chinese famine begin? 1331
→ Which famine began in 1331? Chinese

Prep 46.1% Who received a bid in 1915? Edison
→When did Edison receive a bid? 1915

Table 1: SQuAD Implication types and examples.
Implications cover 73.2% of the original data.

(a) VQA (b) SQuAD

Figure 3: Quality of implications (q′, a′) and original
(q, a) as judged by workers: grammaticality and natu-
ralness of questions, and correctness of answers.

augmentation with implications can improve the
consistency of existing models.

4.1 Quality of Implications
We randomly select 100 generated implications
and original instances for each dataset, and ask 5
different crowd workers on Amazon Mechanical
Turk to rate each question for grammaticality and
naturalness on a scale of 1 to 5 (following Demszky
et al. (2018)). We also ask workers to evaluate the
correctness of the answer given the question and
context (image or paragraph). The results presented
in Figures 3a and 3b show that the average scores
on all criteria are nearly indistinguishable between
original instances and the generated implications,
which indicates that implication questions are well
formed and answers are correct.

4.2 Validity of Implications
In order to check if (q, a) really implies (q′, a′) (i.e.
check if the implication is valid), we show workers
the (q, a) without the context and ask them to an-
swer the implication question q′ assuming the orig-
inal answer a is correct. If (q, a) → (q′, a′), work-
ers should be able to answer q′ correctly even in the
absence of the image or paragraph. As an example,
the answer to the implication question in Figure
4a should be “yes” for any image, if the original



Original Q: How many zebras are there? A: 4

Implication Q: Are there any zebras?
Control Q: Is this scene taken in the wild?

(a) Example from the VQA dataset.

Original Q:Which IPCC author criticized the TAR?
A: Richard Lindzen

Implication Q: What did Richard Lindzen criticize?
Control Q: Who responded to Lindzen’s criticisms?

(b) Example from the SQuAD dataset.

Figure 4: Testing the validity of implications: given
an original (q, a) pair, humans should be able to deduce
the answer for the implication question without context,
but not necessarily for the control question.

VQA SQuAD

Impl Control Impl Control

#Answered 99% 13% 95% 4%
#Correct|Answered 97% 77% 97% 50%

Table 2: Validating Implications: Crowd evaluation
of the validity of implications, where the first row indi-
cates how often workers provide an answer, while the
second row indicates the precision of their answers.

(q, a) holds. For control purposes, we also include
question-answer pairs asked of the same context
from the dataset, expecting that workers would not
be able to answer these without the original context
most of the time (Figure 4a provides an example
where a reasonable guess can be made, which is
not true in Figure 4b). We take the same 100 im-
plications from the previous experiment and add
100 control questions, each evaluated by 5 workers.
Workers are instructed to abstain from answering
if the original (q, a) does not give them enough
information to answer q′ or the control question.
For each question, we evaluate the worker major-
ity answer w.r.t. the implication or control answer.
The results in Table 2 are quite positive: workers
almost always provide the correct answer a′ to our
implication question q′ when given only the orig-
inal (q, a) pair and no additional context, which
indicates the implication is valid. On the other
hand, workers under-predict and are inaccurate for
the control questions, which is expected since there
is no necessary logical connection between (q, a)
and the control question.

4.3 Evaluating Consistency of QA Models

Having concluded that our generated implications
are high quality and typically valid, we proceed
to use them to evaluate the logical consistency of
models. For VQA, we evaluate the SAAA baseline
(Kazemi and Elqursh, 2017), a recent model with
a counting module (Count; Zhang et al., 2018),
and bilinear attention networks (BAN; Kim et al.,
2018). For SQuAD, we evaluate bidaf (Seo et al.,
2017), bidaf with ELMO embeddings (bidaf+e;
Peters et al., 2018), rnet (Wang et al., 2017), and
Mnemonic Reader (mnem; Hu et al., 2018). All
models are trained with available open source code
with default parameters.

The results for VQA are presented in Table 3.
Note that more accurate models are not necessarily
more consistent, and that all models are particularly
inconsistent in the Mutex category. One specific
category of Mutex that affects all models was ask-
ing the equivalent n+1 questions when the answer
is a number n, e.g. “How many birds? 1” implies
“Are there 2 birds? no”. SAAA, Count, and BAN
had, respectively, 35.3%, 22.4% and 32.2% con-
sistency in this category even though Count has
a module specific for counting (implications are
binary yes/no questions, and thus random guess-
ing would give 50% consistency). This is probably
because the original dataset contains numbers in
12.3% of answers, but only in 0.3% of questions,
thus models learn how to answer numbers, but not
how to reason about numbers that appear in the
question. Evaluating consistency in this case is
useful for finding gaps in models’ understanding,
and similar insights can be reached by considering
other violated implications.

For SQuAD (Table 4), we consider a prediction
as consistent if it had any overlap with the implied
answer. Again, models with different accuracies
do not vary as much in consistency. All models
are less consistent on direct object implications.
Interestingly, ∼12% of questions in the training
data have the WH-word in the direct object subtree
(e.g. “Who did Hayk defeat?”), while 53% are in
the subject subtree (e.g. “Who is Moses?”), which
may warrant further investigation.

All models had average consistency lower or
equal to 75%, which indicates they do not possess
real comprehension of the concepts behind many
of their correct predictions. Besides surfacing this,
consistency evaluation provides clues as to poten-
tial sources of such problems, such as the lack of



Model Acc LogEq Mutex Nec Avg

SAAA 61.5 76.6 42.3 90.2 72.7
Count 65.2 81.2 42.8 92.0 75.0
BAN 64.5 73.1 50.4 87.3 72.5

Table 3: Consistency of VQA Models.

Model F1 Subj Dobj Amod Prep Avg

bidaf 77.9 70.6 65.9 75.1 72.4 72.1
bidaf+e 81.3 71.2 69.3 75.8 72.8 72.9
rnet 79.5 68.5 67.0 74.7 70.7 70.9
mnem 81.5 70.3 68.0 75.8 71.9 72.2

Table 4: Consistency of SQuAD Models.

questions with numbers in VQA.

4.4 Data Augmentation with Implications

We propose a simple data augmentation technique:
for each (q, a) in the training set, add a generated
implication (q′, a′) if one exists. We evaluate the
consistency of models trained with augmentation
on held-out implications, to check whether they
generalize to unseen generated implications. Fur-
ther, to verify if augmentation improves consis-
tency “in the wild”, we collect new implications
from Mechanical Turk by showing workers (q, a)
pairs without context (image or paragraph), and
asking them to produce new (q′, a′) that are implied
by (q, a) for any context. For VQA, we restrict a′

to be yes / no, while for SQuAD we filter out all
a′ that are not present in the original paragraph,
resulting in a total of 3, 277 unique implication an-
notations for VQA and 1, 027 for SQuAD. While
workers sometimes create implications similar to
ours, they also include new patterns; implications
that contain negations (all models are very inconsis-
tent on these), word forms for numbers (e.g. “one”),
comparatives (“more”, “less”), and implications
that require common sense, such as (“What type of
buses are these? double decker”→“Do the buses
have 2 levels? yes”). The results are presented in
Table 5. Accuracy on the validation set remains
comparable after augmentation, while consistency
on both generated and worker-provided implica-
tions improves across models and tasks. We also
evaluate SAAA on the GQA dataset (Hudson and
Manning, 2019) (Count and BAN use features that
are not allowed in GQA): while accuracy is com-
parable (41.4% before augmentation, 40.4% after),
consistency goes up significantly (59.3% before,
64.7% after). These results indicate that data aug-
mentation is useful for increasing consistency with

Model Validation Consistency Consistency
Accuracy (rule-based) (crowdsourced)

V
Q

A SAAA 61.5 60.8 72.7 94.4 73.0 75.6
Count 65.2 64.8 75.0 94.1 73.8 77.3
BAN 64.5 64.6 72.4 95.0 72.3 77.9

SQ
uA

D bidaf 77.9 76.4 72.1 79.1 68.2 70.9
bidaf+e 81.3 80.7 72.9 81.2 70.7 70.6
rnet 79.5 79.5 70.9 79.8 66.5 68.1
mnem 81.5 81.3 72.2 81.5 68.7 73.9

Table 5: Data Augmentation: Accuracy (F1
for SQuAD) and consistency results before and
after data augmentation . Consistency (rule-based) is

computed on our generated implications, while (crowd-
sourced) is computed on crowdsourced implications.

a small trade off in accuracy. We leave more so-
phisticated methods of enforcing consistency (e.g.
in models themselves) for future work.

5 Discussion

We argued that evaluation of QA systems should
take into account the relationship between predic-
tions rather than each prediction in isolation, and
proposed a rule-based implication generator which
we validated in crowdsourcing experiments. The
results of this approach are promising: consistency
evaluation reveals gaps in models, and augment-
ing training data produces models that are more
consistent even in human generated implications.
However, data augmentation has its limitations: it
may add new biases to data, and it cannot cover all
the different implications or ways of writing ques-
tions. Ideally, we want models to be able to reason
that “What color is the rose? Red” implies “Is the
rose red? Yes” without needing to add every possi-
ble implication or rephrasing of every (q, a) to the
training data. We hope that our work persuades oth-
ers to consider the importance of consistency, and
initiates a body of work in QA models that achieve
real understanding by design. To support such
endeavours, generated implications for VQA and
SQuAD, along with the code to generate them and
for evaluating consistency of models, is available
at https://github.com/marcotcr/qa consistency.

Acknowledgments

We would like to thank Sara Ribeiro, Julian
Michael, Tongshuang Wu, Tobias Schnabel, and
Eric Horvitz for helpful discussions and feedback.
This work was funded in part by the NSF award
#IIS-1756023.

https://github.com/marcotcr/qa_consistency


References
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-

garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In International Conference on Computer
Vision (ICCV).

Dorottya Demszky, Kelvin Guu, and Percy Liang. 2018.
Transforming question answering datasets into nat-
ural language inference datasets. arXiv preprint
arXiv:1809.02922.

Timothy Dozat, Peng Qi, and Christopher D Manning.
2017. Stanford’s graph-based neural dependency
parser at the conll 2017 shared task. Proceedings
of the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
20–30.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the
v in vqa matter: Elevating the role of image under-
standing in visual question answering. In CVPR,
volume 1, page 3.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H Clark,
and Philipp Koehn. 2013. Scalable modified kneser-
ney language model estimation. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), vol-
ume 2, pages 690–696.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Minghao Hu, Yuxing Peng, Zhen Huang, Xipeng Qiu,
Furu Wei, and Ming Zhou. 2018. Reinforced
mnemonic reader for machine reading comprehen-
sion. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, pages 4099–
4106. AAAI Press.

Drew A Hudson and Christopher D Manning. 2019.
Gqa: a new dataset for compositional question an-
swering over real-world images. arXiv preprint
arXiv:1902.09506.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. 2017. Clevr: A diagnostic dataset for com-
positional language and elementary visual reason-
ing. In Computer Vision and Pattern Recognition
(CVPR), 2017 IEEE Conference on, pages 1988–
1997. IEEE.

Vahid Kazemi and Ali Elqursh. 2017. Show, ask, at-
tend, and answer: A strong baseline for visual ques-
tion answering. arXiv preprint arXiv:1704.03162.

Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang.
2018. Bilinear attention networks. In Advances
in Neural Information Processing Systems, pages
1571–1581.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proc. of NAACL.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789.
Association for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In Empirical Meth-
ods in Natural Language Processing (EMNLP).

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging nlp models. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 856–865. Association for Computational Lin-
guistics.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In International
Conference on Learning Representations (ICLR).

Meet Shah, Xinlei Chen, Marcus Rohrbach, and
Devi Parikh. 2019. Cycle-consistency for ro-
bust visual question answering. arXiv preprint
arXiv:1902.05660.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017. Gated self-matching net-
works for reading comprehension and question an-
swering. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 189–198.

Dirk Weissenborn, Georg Wiese, and Laura Seiffe.
2017. Making neural qa as simple as possible but
not simpler. In Proceedings of the 21st Confer-
ence on Computational Natural Language Learning
(CoNLL 2017), pages 271–280.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
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A Implications selected at random: VQA dataset

Context Question/Answers

Original: Where is the fork? A: left of plate

Logeq: Is the fork on the left of the plate? A: yes

Original: What are the men sitting on? A: bench

Logeq: Are the men sitting on the bench? A: yes
Nec: Is there a bench in the picture? A: yes

Original: What is the number on the bus A: 38

Logeq: Is the number on the bus 38? A: yes

Original: What kind of headwater is the man
on the left wearing?

A: headband

Logeq: Is the man on the left wearing a head-
band?

A: yes

Nec: Is there a headband in the picture? A: yes



Context Question/Answers

Original: What is on the top of the clock tower A: cross

Logeq: Is the cross on the top of the clock
tower?

A: yes

Mutex: Is the area on the top of the clock
tower?

A: no

Nec: Is there a cross in the picture? A: yes

Original: Is this a Christian home? A: yes

Mutex: Is this an unchristian home? A: no
Nec: Is this a home? A: yes

Original: What separates the meadow from the
mountains in the background?

A: water

Logeq: Does water separate the meadow
from the mountains in the back-
ground?

A: yes

Original: What color is the couch? A: blue

Logeq: Is the couch blue? A: yes
Mutex: Is the couch orange? A: no
Nec: Is there anything blue in the picture? A: yes

Original: How many toppings are on this
pizza?

A: 2

Logeq: Are 2 toppings on this pizza? A: yes
Mutex: Are 3 toppings on this pizza? A: no
Nec: Are any toppings on this pizza? A: yes

Original: What material is the building in the
back, made of?

A: brick

Logeq: Is the building in the back, made of
brick?

A: yes

Mutex: Is the building in the back, made of
stone?

A: no

Nec: Is there a brick in the picture? A: yes



B Implications selected at random: SQuAD dataset

Context: The first commercially viable process for producing liquid oxygen was inde-
pendently developed in 1895 by German engineer Carl von Linde and British
engineer William Hampson.

Original: When was liquid oxygen developed for commercial
use?

A: 1895

Subj: What was developed for commercial use in 1895? A: liquid oxygen
Amod: Liquid oxygen was developed for which use in 1895? A: commercial

Context: In the 1960s, a series of discoveries, the most important of which was seafloor
spreading, showed that the Earth’s lithosphere, which includes the crust and rigid
uppermost portion of the upper mantle

Original: Which parts of the Earth are included in the litho-
sphere?

A: the crust and rigid upper-
most portion of the

Amod: Which portion of the upper mantle are included in
the lithosphere?

A: crust and rigid upper-
most

Amod: The crust and rigid uppermost portion of which man-
tle are included in the lithosphere?

A: upper

Prep: The crust and rigid uppermost portion of what are
included in the lithosphere?

A: upper mantle

Prep: Where are the crust and rigid uppermost portion of
the upper mantle included?

A: lithosphere

Context: Around 1800 Richard Trevithick and, separately, Oliver Evans in 1801 introduced
engines using high-pressure steam; Trevithick obtained his high-pressure engine
patent in 1802.

Original: In what year did Richard Trevithick patent his de-
vice?

A: 1802

Subj: Who patented his device in 1802? A: Richard Trevithick



Context: The average Mongol garrison family of the Yuan dynasty seems to have lived
a life of decaying rural leisure, with income from the harvests of their Chinese
tenants eaten up by costs of equipping and dispatching men for their tours of
duty.

Original: How were the Mongol garrison families earning
money?

A: harvests of their Chinese
tenants

Amod: The Mongol garrison families were earning money
by the harvests of their which tenants?

A: Chinese

Prep: The Mongol garrison families were earning money
by the harvests of what?

A: their Chinese tenants

Context: Of particular concern with Internet pharmacies is the ease with which people,
youth in particular, can obtain controlled substances (e.g., Vicodin, generically
known as hydrocodone) via the Internet..

Original: What is an example of a controlled substance? A: Vicodin

Amod: An example of which kind of substance is Vicodin? A: controlled
Prep: An example of what is Vicodin? A: controlled substance

Context: ...the exterior mosaic panels in the parapet were designed by Reuben Townroe
who also designed the plaster work in the library

Original: Who designed the plaster work in the Art Library? A: Reuben Townroe

Dobj: What did Reuben Townroe design in the Art Library? A: plaster work
Prep: Where did Reuben Townroe design the plaster work? A: Art Library

Context: Combustion hazards also apply to compounds of oxygen with a high oxidative
potential, such as peroxides, chlorates, nitrates, perchlorates, and dichromates
because they can donate oxygen to a fire.

Original: What other sources of high oxidative potential can
add to a fire?

A: compounds of oxygen

Prep: Compounds of what can add to a fire? A: oxygen
Prep: What can compounds of oxygen add to? A: fire



Context: In 1881, Tesla moved to Budapest to work under Ferenc Pusks at a telegraph
company, the Budapest Telephone Exchange.

Original: Which company did Tesla work for in 1881? A: the Budapest Telephone
Exchange

Subj: Who worked for the Budapest Telephone Exchange
in 1881?

A: Tesla

Prep: When did Tesla work for the Budapest Telephone
Exchange?

A: 1881

Context: ...membrane is used to run proton pumps and carry out oxidative phosphorylation
across to generate ATP energy.

Original: What does oxidative phosphorylation do? A: generate ATP energy

Subj: What generates ATP energy? A: oxidative phosphoryla-
tion

Dobj: What does oxidative phosphorylation generate? A: ATP energy

Context: formerly model C schools tend to set much higher school fees than other public
schools.

Original: How do the fees at former Model C schools compare
to those at other schools?

A: much higher

Amod: The fees at former Model C schools compare to those
at which schools by much higher ?

A: other


