Chapter 4, Hypothesis testing
In estimation theory, we have efficiency \ln testing, we have power.
QMD is important because
(1) relaxes some condi's to show asymp normality
(2) will give us in LeCam theory Local asymptotic normally (LANN)

+ Le cam II \Rightarrow Power calculation framework!
Framenosk

$$
\begin{aligned}
& x_{1}, \ldots, x_{n} \stackrel{i n}{\sim} P_{\theta} \in\left\{P_{\theta^{\prime}}, \theta^{\prime} \in \Perp\right\} \\
& H_{0}: \theta \in \Perp 0 \subset \Theta \\
& \text { against } \\
& H_{1}: \theta \in|\Perp|\left(\otimes_{0}=()_{1}\right.
\end{aligned}
$$

(1) A test/tert-function

$$
\phi_{n}: x^{n} \longmapsto[0,1]
$$

represents a (randomized) test:
(a) For randomized test, ϕ_{n} outputs the probability to reject Ho not need
(b) For decerminiscric tests, $\phi_{n} \in\{0,1\}_{\text {reject }}$
(2) For any given $\theta, \pi_{n}(\theta)$ is defined as:

$$
\pi_{n}(\theta):=\mathbb{E}_{\underline{\theta}}\left[{\underset{S}{P_{\theta}}}_{\phi_{n}\left(X_{1}, \ldots, X_{n}\right)}^{X_{1}}\right]
$$ and is called power function of ϕ_{n}

(3) ldeally, we wish

$$
\sup _{\theta \in \mathbb{D}_{0}} \pi_{n}(\theta) \leqslant \alpha
$$

$$
\theta \in \otimes_{0}
$$

But in general, this is nearly impossible because it is a non-asymptotic control.
Instead, we can pick asymptotically valid as a criterion.
(i) Uniformly asymptotic valid
$\operatorname{limsinp}_{n \rightarrow \infty} \sup _{\theta \in Q_{0}} \pi_{n}(\theta) \leq \alpha$ (strong) $n \rightarrow \infty \quad \theta \in \oplus 0, \backslash$ usually need to put to non-asymp.

* (i') Poinouisely asymp valid $\sup \limsup \pi_{n}(\theta) \leqslant \alpha$ $\theta \in \otimes_{0} \quad x \rightarrow \infty$
only need to think vic dist.
$\limsup _{n \rightarrow \infty} \pi_{n}(\theta) \leq \alpha, \forall \theta \in()_{0}$
(weak)
(4) The power/efficiency of a test on concerns
$\pi_{n}\left(\theta_{1}\right)$ for $\theta_{1} \in \otimes_{1}$.
Three famous tests:
(1) Wald's test
(2) Likelihood ratio test parametric model
(3) Score test

Framework for the above 3 tests: (a)* $\theta=(\psi, \eta)$ nuisance parameter \uparrow parameter of interest

$$
\theta \in \mathbb{R}^{d}, \psi \in \mathbb{R}^{m}, \eta \in \mathbb{R}^{d-m}
$$

remark: if $m=d$, then $\psi=\theta$.

* $\omega=T \times N$
where $T \subset \mathbb{R}^{m}, N \subset \mathbb{R}^{d-m}$
* θ is an interior point of (\#).
(b) $\otimes_{0}=\{\theta=(\psi, \eta)=\underset{\text { NOT }}{\text { very restrictive }} \underset{\text { veparactization }}{\psi=0}\}$
* if $m=d$, then $\Psi_{0}=\{\theta=0\}$ and the corresponding to is called a simple null hypothesis.
* If $m<d$, no would have multiple elements, and the corresponding t_{0} is called a composite null hypothesis.

Wald test:
Goal: Ho: $\varphi=0$
Strategy:
(1) estimate ψ based on the MLE

$$
\hat{\theta}=(\hat{\psi}, \hat{\eta})
$$

(2) reject tho if the "magnitude" of $\hat{\psi}$ is too large.

Implementations we need to determine the threshold of rejection
In other words, get the limiting dist, of $\hat{\psi}$ under \mathbb{D}_{0}.

$8 \operatorname{cep} 1$. under regularity cond. QMD, Lipschict, cont.

$$
\sqrt{n}(\hat{\theta}-\theta) \Rightarrow N\left(0, I_{\theta}^{-1}\right)
$$

Step2.

$$
\sqrt{n}(\hat{\psi}-\psi) \Rightarrow N\left(0, A_{\theta}^{-1}\right)
$$

linean algebra $\geqslant \mathbb{R}^{m \times m}$

$$
\begin{aligned}
& I_{\theta}=\left[\begin{array}{ll}
I_{0,11} & I_{0,2} \\
\frac{I_{0,21}}{I_{0}^{\prime \prime}} & I_{0,22}
\end{array}\right] \\
& \Rightarrow y_{\theta}^{-1}=\left[\begin{array}{cc}
A_{\theta}^{-1} & * \\
* & *
\end{array}\right]
\end{aligned}
$$

nhere $A_{\theta}=I_{\theta, 1}-I_{\theta, 22} I_{\theta, 22}^{-1} I_{\theta, 21}$
Sep 3 Under $H_{0} \oplus_{0}, \psi=0$, i.e.

$$
\frac{\sqrt{n} \widehat{\psi}_{n} \Rightarrow N\left(0, A_{\theta}^{-1}\right)}{\text { limicing null dose }}
$$

Seep 4. Reject H_{0} by noticing

$$
\sqrt{n} A_{\theta}^{1 / 2} \hat{\psi}_{n} \Rightarrow N\left(0, I_{m}\right)
$$

$n \hat{\psi}_{n}^{\top} A \theta \hat{\psi_{n}} \Longrightarrow x^{2}(m)$ Ho cont.

$$
\mathrm{V}^{11} \hat{\theta} \xrightarrow{P} \theta \stackrel{\emptyset}{\Rightarrow} A_{\theta} \xrightarrow{P} A_{\theta}
$$

$$
n \hat{\psi}_{n}^{\top} A_{\hat{\theta}} \hat{\psi}_{n} \Rightarrow x^{2}(m)
$$

we reject H_{0} if

$$
n \hat{\psi}_{n}^{\top} A \hat{\theta} \hat{\psi}_{n}
$$

is larger than $(1-\alpha) \times 100 \%$ quartile of $X^{2}(\mathrm{~m})$.
Nov /30
Likelihood Ratio Test (LRT)

$$
D_{K L}\left(\begin{array}{ll}
P_{\theta} & , \\
P_{\theta_{0}}
\end{array}\right) \text { in } \theta_{0} \text { is an element }
$$

true data generating parameter
is uniquely minimized at $\theta_{0}=\theta$
The LRT will regear H_{0} if inf $D_{K L}\left(P_{\theta}, P_{\theta_{0}}\right)$ is too large.

Define estimator of

$$
\frac{D_{K L}\left(P_{\theta}, P_{\theta_{0}}\right)}{\| \longleftarrow \text { please verify }}
$$

$$
P_{\theta}\left[l_{\theta}-l_{\theta_{0}}\right]
$$

by replacing
(1) P_{θ} by P_{n}
(2) θ by the $M L E \hat{\theta}$
(\longleftarrow the unrestricted MLE maximizing $P_{n} l_{\theta}$ over $\theta \in \Perp$)
This yields

$$
\operatorname{Pn}\left[l_{\hat{\theta}}-l_{\theta_{0}}\right]
$$

en the end, to estimate

$$
\inf _{\theta_{0} \in \mathbb{Q}_{0}} \operatorname{Pn}\left[l_{\hat{\theta}}-l_{\theta_{0}}\right]
$$

it es equivalent to estimating

$$
P_{n} l_{\hat{\theta}}-\sup _{\theta_{0} \in \mathbb{D}_{0}} P_{n} l_{\theta_{0}} \text { restricted } M L E .
$$

$$
=P_{n} l_{\hat{\theta}}-P_{n} l_{\hat{\theta}_{0}}
$$

where

$$
\hat{\theta}_{0}=\left(0_{m}, \hat{\eta}_{0}\right)
$$

We in l reject Ho if $P_{n} l_{\hat{\theta}}-P_{n} l_{\hat{\theta}_{0}}$ is too large.

Implementation

$$
L_{n}:=2 n \cdot P_{n}\left[l_{\hat{\theta}}-l_{\hat{\theta}_{0}}\right]
$$

Note: $L_{n} \geqslant 0$
Po decide the limiting mill dist (LND) of L_{n} :
Seep 1, We apply Taylor to L_{n} :

$$
\begin{aligned}
L_{n} & =2 \sum_{i=1}^{n}\left[l_{\hat{\theta}}\left(x_{i}\right)-l_{\hat{\theta}_{0}}\left(x_{i}\right)\right] \\
& =-2 \sum_{i=1}^{n}\left[l_{\hat{\theta}_{0}}\left(x_{i}\right)-l_{\hat{\theta}}\left(x_{i}\right)\right] \\
& =-2 \cdot\left(\hat{\theta}_{0}-\hat{\theta}\right)^{\top} \sum_{i=1}^{n} l_{\hat{\theta}}\left(x_{i}\right) \\
& -{ }_{-n}\left(\hat{\theta}_{0}-\hat{\theta}\right)^{\top}\left[\sum_{\frac{1}{n}=1}^{n} \ddot{l}_{\hat{\theta}_{n}}\left(x_{i}\right)\right]\left(\hat{\theta}_{0}-\hat{\theta}\right)
\end{aligned}
$$

with $\hat{\theta}_{n}$ between $\hat{\theta}$ and $\hat{\theta}_{0}$.
Since $\hat{\theta}$ is the MLE, we have

$$
\sum_{i=1}^{n} \dot{l}_{\hat{\theta}}\left(x_{i}\right)=0
$$

\Rightarrow the first order term $=0$

$$
\Longrightarrow L_{n}=-\sqrt{n}\left(\hat{\theta}_{0}-\hat{\theta}\right)\left[P_{n} \ddot{e}_{\tilde{\theta}_{n}}\right] \sqrt{n}\left(\hat{\theta}_{0}-\hat{\theta}\right)
$$

Seep 2. Under Ho, both $\hat{\theta}_{0}$ and $\hat{\theta}$ should satisfy

$$
\begin{aligned}
& \overrightarrow{\theta_{0}} \xrightarrow{\hat{\theta}_{n}} \theta, \hat{\theta} \\
& \Rightarrow \ddot{\theta}_{\hat{\theta}_{n}} \xrightarrow{p} \ddot{l}_{\theta}
\end{aligned}
$$

under smoothness
continuity
of l_{0}

$$
\begin{aligned}
\Rightarrow P_{n} & \ddot{l_{\theta}} \tilde{\theta}_{n} \xrightarrow{P} P_{\theta} \ddot{l}_{\theta}=-I_{\theta} \\
\Rightarrow L_{n} & =\left[\sqrt{n}\left(\hat{\theta}_{0}-\hat{\theta}\right)^{\top}\right] I_{\theta}\left[\sqrt{n}\left(\hat{\theta}_{0}-\hat{\theta}\right)\right]+o_{p}(1) \\
\text { if } \theta & \in \mathbb{H} . \\
& =\left[\sqrt{n} I_{\theta}\left(\hat{\theta}_{0}-\hat{\theta}\right)^{\top}\right] I_{\theta}^{-1}\left[\sqrt{n} I_{\theta}\left(\hat{\theta}_{0}-\hat{\theta}\right)\right]+o_{p}(1)
\end{aligned}
$$

Stop 3.

$$
\hat{\theta}-\theta=I_{\theta}^{-1}\left(P_{n}-P_{\theta}\right) \dot{l}_{\theta}+o_{p}(1 / \sqrt{n})
$$

MLE asymp. line expansion

$$
\begin{aligned}
& \text { If } \theta \in \theta_{0}, \hat{\theta}_{0}-\theta=\binom{0}{\hat{\eta}-\eta} \\
& \quad \text { with } \hat{\eta}_{0}-\eta=I_{\theta, 22}^{-1}\left(P_{n}-P_{\theta}\right) \dot{l}_{\theta, 2}+o_{p}(1 / \sqrt{n}) \\
& \Rightarrow \sqrt{n} I_{\theta}\left(\hat{\theta}_{0}-\hat{\theta}\right) \\
& =\sqrt{n} I_{\theta}\left(P_{n}-P_{\theta}\right)\left(\left[\begin{array}{c}
0 \\
I_{\theta, 22}^{-1} l_{\theta, 2}
\end{array}\right]-I_{\theta}^{-1} \dot{l}_{\theta}\right)+o_{p}(1)
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{n}\left(P_{n}-P_{\theta}\right)\left[\begin{array}{c}
-\left(l_{\theta, 1}-I_{\theta, 12} I_{\theta, 22}^{-1} \dot{l}_{\theta, 2}\right) \\
0
\end{array}\right]+o_{p}(1) \\
& \Rightarrow \sqrt{n} I_{\theta}\left(\hat{\theta}_{0}-\hat{\theta}\right) \Rightarrow\left[\begin{array}{c}
V \\
0
\end{array}\right]
\end{aligned}
$$

where $V \sim N\left(0, A_{\theta}\right)$

$$
\Rightarrow L_{n} \Rightarrow\left[V_{1}^{\top} 0\right] I_{\theta}^{-1}\left[\begin{array}{l}
V \\
0
\end{array}\right]
$$

$$
\underset{\text { please verify it }}{\sim} \chi^{2}(m)
$$

Score test:
Idea: $P_{\theta} i_{\theta}=0$ (under QMD)
\Rightarrow If H_{0} is true,

$$
\begin{aligned}
& P_{\theta} \dot{l}_{(0, \eta)}=0 \\
\Rightarrow & P_{n} \dot{l}_{(0, \eta)} \approx 0 \\
\Rightarrow & Z_{n}\left(\hat{\theta}_{0}\right)==\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \dot{l}_{\hat{\theta}_{0}}\left(x_{i}\right)
\end{aligned}
$$

Proposal : to use the test statistics

$$
S_{n}:=\left[Z_{n}\left(\hat{\theta}_{0}\right)\right]^{\top} I_{\hat{\theta}_{0}}^{-1}\left[Z_{n}\left(\hat{\theta}_{0}\right)\right]
$$

with $\hat{\theta}_{0}$ is argmax $P_{n} l_{\theta_{0}}$

$$
\theta_{0} \in \mathbb{巴}_{0}
$$

Limiting dist?
lt remains to decide the limiting null diss.

$$
\Rightarrow Z_{n}\left(\hat{\theta}_{0}\right) \stackrel{H_{0}}{\Longrightarrow}\left[\begin{array}{l}
v \\
0
\end{array}\right] \quad \text { with } V \sim N(0, A \theta)
$$

$$
\Rightarrow S_{n} \Rightarrow x^{2}(m)
$$

$$
\begin{aligned}
& Z_{n}\left(\hat{\theta}_{0}\right)=Z_{n}\left(\hat{\theta}_{0}\right)-\sqrt{n} P_{O} e_{\hat{\theta}_{0}} \\
& +\sqrt{n} P_{\theta} e_{\widehat{\theta}_{0}} \\
& =\sqrt{n}\left(P_{n}-P_{\theta}\right) \dot{e}_{\theta_{0}} \\
& +\sqrt{n} P_{\theta} e_{\partial_{0}}-\sqrt{n} P_{\theta} e_{\theta} \geqslant 0 \\
& =\sqrt{n}\left(P_{n}-P_{\theta}\right) e_{\theta} \leftarrow c L T \\
& +\sqrt{n}\left(P_{\theta} e_{\hat{\theta}_{0}}-P_{\theta} i_{\theta}\right) \text {. }
\end{aligned}
$$

Remark: (Comparison of the three)

$$
x_{(n)}^{\alpha_{0}}\left\{\begin{array}{l}
W_{n}=n \hat{\psi}^{\top} A \hat{\theta} \hat{\psi} \\
L_{n}=2 n P_{n}\left[e_{\hat{\theta}}-l_{\hat{\theta}_{0}}\right] \\
S_{n}=\left[z_{n}\left(\hat{\theta}_{0}\right)^{\top}\right] I_{\hat{\theta}_{0}}^{-1} z_{n}\left(\hat{\theta}_{0}\right)
\end{array}\right.
$$

Under H_{0} [Ingle's book]

$$
\begin{aligned}
& W_{n}-L_{n}=o_{p}(1) \\
& L_{n}-S_{n}=o_{p}(1) \\
& S_{n}-W_{n}=o_{p}(1)
\end{aligned}
$$

For computation
(i) Sn is only based on $\hat{\theta}_{0} \in(1)$ ALE
(ii) $W_{n} \cdots \hat{\theta}$

Chap 4.2 Local Power analysis
$\lim _{n \rightarrow \infty} \frac{\pi_{n}(\theta)}{1} \leqslant \alpha, \quad \forall \theta \in(4)$ Epointomse as size contra]
$\lim _{h \rightarrow \infty} \frac{\pi_{n}(\theta) \text { to be as large as possible }}{\hat{T} \text { pone n }}$ $\uparrow_{\text {pome }} \forall \theta \in \otimes_{1}$.

If we think about the asymp power

$$
\lim _{n \rightarrow \infty} \pi_{n}(\theta), \theta \in \otimes_{1}
$$

and if we consider $\theta \in \Theta 1$ above to be fixed, then usually yow will get every reasonable (even unreasonable tests satisfy:
(i) $\forall \theta^{*} \in \operatorname{Di}_{0}, \quad \pi_{n}(\theta) \rightarrow 0$ asymp, $n \rightarrow \infty$
(ii) $\forall \theta \in()_{1}, \quad \pi_{n}(\theta) \rightarrow 1 \quad n \rightarrow \infty$ fixed
Example Let me think about in the previous Wald/LRT/Scose lest framework.

$$
\sqrt{n}(\hat{\psi}-\psi) \Rightarrow N\left(0, A_{\theta}^{-1}\right)
$$

Let's think about an alternative to Wald:
reject H_{0} \& $\|\hat{\psi}\|>n^{-1 / 4}$ < over conservative lneisitirely too conservative
However, we can show
(i) $\forall \theta \in(\theta) 0$,

$$
\xrightarrow{\pi_{n}(\theta)} \xrightarrow{n \rightarrow \infty} 0
$$

$P f: F i \forall t$, for n large enough,
we have

$$
\begin{aligned}
\text { we have } \\
\begin{aligned}
\pi_{n}(\theta) & =P_{\theta}\left(\|\hat{\psi}\|>n^{-1 / 4}\right) \\
& =P_{\theta}\left(\sqrt{n}\|\hat{\psi}\|>n^{1 / \psi}\right) \\
& \leqslant P_{\theta}(\sqrt{n}\|\hat{\psi}\|>t)
\end{aligned}
\end{aligned}
$$

By CMT,
Ho
$\sqrt{n}\|\hat{\psi}\| \Rightarrow\|z\|$ with $Z_{n} \sim N\left(0, A_{\theta}^{-1}\right)$

$$
\begin{aligned}
\Rightarrow \operatorname{limssup} \pi_{n}(\theta) & \leqslant \limsup P_{\theta}(\sqrt{n}\|\hat{\varphi}\|>t) \\
& =P(\|z\|>t) \\
\text { if } t \rightarrow \infty & =0
\end{aligned}
$$

(2) For any fined $\theta \in B_{1}$,

$$
\pi_{n}(\theta) \xrightarrow{n \rightarrow \infty} 1
$$

$P f$

$$
\begin{aligned}
& 1 \geqslant \pi_{n}(\theta) \\
& =P_{\theta}\left[\|\hat{\psi}\|>n^{-1 / 4}\right] \\
& \geqslant P_{\theta}\left[\|\psi\|-\|\hat{\psi}-\psi\|>n^{-1 / 4}\right] \\
& =P_{\theta}\left[\frac{n^{1 / 4}\|\psi\|-n^{1 / 4}\|\hat{\psi}-\psi\|}{(1)}>1\right]
\end{aligned}
$$

\forall fixed $\theta \in \otimes_{1}, \psi>0$ so that
(i) $n^{\frac{1}{4}}\|\psi\| \rightarrow \infty$
(ii) $n^{1 / 2}\|\hat{4}-4\| \Rightarrow N(0, \cdots)$ implies that

$$
\underbrace{n^{-\frac{1}{4}}}_{O(1)} \underbrace{n^{\frac{1}{2}}\|\hat{\psi}-\psi\|}_{O_{p}(1)}=o_{p}(1)
$$

$$
n \rightarrow \infty
$$

$\Theta 1$.
which means

$$
\operatorname{lin} \pi_{n}(\theta)=1
$$

We shouldn't consider previous goal all in asymp.
This motivates the new framework of local power analysis:

$$
\begin{aligned}
& H_{0}: \theta \in \oplus 0 \\
& x_{1}, x_{2}, \cdots, x_{n} \sim P_{\theta}
\end{aligned}
$$

$$
H_{1, n}=\theta_{n} \in(2) 1
$$

$$
x_{1}, x_{2}, \ldots, x_{n} \sim P_{\theta_{n}}
$$

local alternative

$$
\theta_{n}=\theta_{0}+\frac{h}{\sqrt{n}}
$$

the critical local alternative seq.
Goal: to contend the size and maximize the local pow

$$
\lim _{n \rightarrow \infty} \pi_{n}\left(\theta_{n}\right)
$$

[rote: ${ }^{n \rightarrow \infty}$ under LPA framework, $\lim \frac{\pi_{n}\left(\theta_{n}\right)}{\|\Psi\|>n^{-14}}=0 \quad$ power $]$
Q: To use LPA, we need limiting diss.
of $\pi_{n}\left(\theta_{n}\right)$ with a changing seq. of $P_{\theta_{n}}$?
We have known a lot of arymp diss, under fixed P_{Q}.

Le Cam's change of measure cain
(1) Finder $P_{\theta_{0}}$
(2) If we know $\frac{d P_{\theta_{0}+i \sqrt{n}}<\theta_{n}}{d P_{\theta_{0}}}$ under $P_{\theta_{0}}$
(3) $\left(\int, \frac{d P_{\theta}+\omega \sqrt{n}}{d P_{\theta_{0}}}\right)$ under $P_{\theta_{0}}$

Then we know the asymp, diss of σ under $P_{8_{0}+i \sqrt{n}}$
\uparrow le cam's third Lemma
Qi why Le Cam's third Lemma makes sense?
$A=$ For fixed P and Q, and $Q<P$. then \forall event A,

$$
\begin{aligned}
Q(A) & =\int \mathbb{1}(z \in A) Q(d z) \\
& =\int \mathbb{1}(z \in A) \frac{d Q^{(2)}}{d P} P(d z)^{1}
\end{aligned}
$$

However, the above huerstic is flawed, that is, Le Cam's 3rd Lemma is asymp. dies.!

The sol'n will give us two things.
(1) Local asymp, normality

$$
\frac{d P_{\theta+\frac{n}{\pi}}}{d P_{\theta_{0}}} \stackrel{P_{\theta_{0}}}{\Longrightarrow} \mathcal{P}(\cdot, \cdot)
$$

(2) Le Cam's 1 st Lemma

Logic:
(1) Goal : to study the power of any test
(2) Fired alternative doesn't give us anything.
Instead, we have to study $\pi\left(\theta_{n}\right)$ with $\theta_{n} \xrightarrow{n \rightarrow \infty} \theta_{0} \in \otimes_{0}$
local alternative seq.
(3) To study $\pi\left(\theta_{n}\right)$, it is equiv. to building the limning diss of under the local alternative $P_{\theta_{1, n}}$.
Le Cam's third Lemma
(a) if P and Q are two prob, meas., then
(1) If we know P
(2) If we know $\frac{d Q}{d P}(Q \ll P)$ then we know Q,
(b) However, we have to examine/study asymp, version of (a):
(bi) QI What is the asymp, version of a, c
$\left\{P_{n}\right\}_{n \geqslant 1}$ and $\left\{Q_{n}\right\}_{n \geqslant 1}$
We say they ane contiguvery Def [Contigmey]

We say $\left\{Q_{n}\right\}$ is contigreors
w,,$t_{1}\left\{P_{n}\right\}$, written as
$Q_{n} \Delta P_{n}$ if
\forall seq. of events $\left\{A_{n}\right\}$, we have
$P_{n}\left(A_{n}\right) \xrightarrow{n \rightarrow \infty} 0$ must imply $\operatorname{Qn}\left(A_{n}\right) \xrightarrow{n \rightarrow \infty} 0$.

The approach to verify contiguity is Le Cam's Inset Lemma.
To prepare for 1 st Lemma, some knowledge 1. [Lebesgue decomposition Thu].
\forall measures μ, ν,
\exists unique measures ν^{a} and ν^{\perp} sit.
(1) $\nu=\nu^{a}+\nu^{c}$
(2) $\nu^{a} \ll \mu$
(3) $\nu^{\perp} \perp \mu\left(\nu^{\perp}(A)>0 \Leftrightarrow \mu(A)=0\right.$ $\left.\nu^{\perp}(A)=0 \Leftrightarrow \mu(A) \gg\right)$
2. The following 3 cords ane equiv.
(1) $Q \ll P$
(2) $\int L(z) P(d z)=1$ for
$L=\frac{d Q^{a}}{d P}$
(3) $Q=Q^{a}$

Lemma (Le (am Sst)
The following four are equiv D :
(a) $Q_{n} \Delta P_{n}$
(b) $L_{n}:=\frac{d Q_{n}^{a}}{d P_{n}} \stackrel{P_{n}}{\Rightarrow} V$ along a subseq. of $\{1,2,3, \cdots\}$

$$
\mathbb{E}[v]=1
$$

cc) $\frac{d P_{n}{ }^{9}}{d Q_{n}} \stackrel{Q_{n}}{\Longrightarrow} U$ along a subseq of

$$
\{1,2,3, \cdots\}
$$

$$
P(U>0)=1
$$

(d) For any see of fane.

$$
f_{n}=Z_{n} \rightarrow \mathbb{R}
$$

where $f_{n}\left(Z_{n}\right)=o_{p_{n}}(1)$

$p f$ is not required.

Tho, $1 f L_{n}:=\frac{d \theta_{n}}{d P_{n}}$ satisfies

$$
\log L_{n} \xrightarrow{P_{n}} \Rightarrow N\left(\mu, \theta^{2}\right) \text { and } \ln _{n} \Delta P_{n}
$$

then $\mu=-\theta^{2} / 2$. such ones is called to satisfy local asymp, normality
[HW will show

$$
\begin{aligned}
& Q_{n}=P_{\theta_{0}+\frac{n}{n}}^{\otimes n} \\
& P_{n}=P_{\theta_{0}}^{\otimes n}
\end{aligned}
$$

will give a $\angle A N$ seq.]
Prof. Based on List Lemma (b):

$$
L_{n} \xrightarrow{P_{n}} V \underset{V \sim \log \operatorname{Normal}\left(\mu, \theta^{2}\right)}{\text { with }}
$$

and we know

$$
\mathbb{E}[V]=\exp \left(\mu+\theta^{2} / 2\right)
$$

Then $Q_{n} \Delta P_{n}$ imply $\mathbb{E}[V]$

$$
\therefore \mu=-\theta^{2} / 2 .
$$

(c) Lemma (Le Cam Ord Lemma) $\operatorname{Let}\left(\mathbb{1}\left\{P_{n}\right\rangle,\left\{Q_{n}\right\}\right.$ are prob, meas, s.t. ${ }^{\text {test }} \triangle Q_{n} \triangle P_{n}$
(2) Tn: $Z_{n} \rightarrow \mathbb{R}^{d}$ be the tors statistics.
Then, if

$$
\left(\begin{array}{l}
T_{n} \\
L_{n} \\
1
\end{array}\right)_{D_{n}^{a}} \stackrel{P_{n}}{\longrightarrow}\binom{T}{V}
$$

$$
\frac{\| d Q_{n}^{a}}{d P_{n}}
$$

then \forall event $A \subset \mathbb{R}^{d}$, letting

$$
R(A):=\mathbb{E}[\mathbb{1}\{T \in A\} \cdot V]
$$

we have
(1) $R(\cdot)$ is a prob. meas.
(2) $T_{n} \xrightarrow{Q_{n}} R$

Prong. Lett to you....

Lemma (Le Cam's Bod Lemma, user friendly) if in the above setting, we know

$$
\binom{T}{\log V} \sim N\left(\binom{\mu}{-\frac{\theta^{2}}{2}},\left[\begin{array}{cc}
\tau & \tau \\
\tau^{\top} & \theta^{2}
\end{array}\right]\right)
$$

then

$$
\begin{gathered}
e_{n} \\
\text { inch should be compared }
\end{gathered} \stackrel{Q_{n}}{\Rightarrow} N\left(\mu+\tau, \sum_{\text {to }}\right)
$$

which should be compared to

$$
T_{n} \stackrel{P_{n}}{\Longrightarrow} N(\mu, \Sigma)
$$

Pf, Using version 1, we have

$$
\begin{aligned}
\overline{(1) R}(A) & =\mathbb{E}\left[\mathbb{1}_{A}(T) \cdot V\right] \\
& =\mathbb{E}\left[\mathbb{1}_{A}(T) \cdot \mathbb{E}[V \mid T]\right]
\end{aligned}
$$

(2) $\log V \mid T \sim N(\cdot, \cdot)$
(3) $\mathbb{E}[V \mid T]=\exp (\cdots \cdot)$
(4) $R(A)=\int_{A} \downarrow d \lambda(t)$

$$
=\int_{A} \operatorname{density}(N(\mu+\tau, \Sigma)) d \lambda
$$

(5) It thus shows
$R(\cdot)$ is prob, meas, of $N(\mu+\tau, \Sigma)$
Next, we will use Ord Lemma to analyse the local power of Wald test.
(1) We know $T_{n} \xrightarrow{P_{0}}$ a certain dist, $X^{(}(\mathrm{m})$
(2) LAN gives us $\log \frac{d P_{P_{0}+t / 3}}{d P_{\theta_{0}}} \Rightarrow N(\cdot, \cdot)$
(3) Tn is based on $\hat{\theta}_{n}$, and "ALE"

$$
\begin{aligned}
& \hat{\theta}_{n}=\frac{1}{\sqrt{n}} \sum \cdot+o_{P_{\theta_{0}}}(1) \\
& \log \frac{d P_{\theta_{0}}+n / n}{d P_{\theta_{0}}}=\frac{1}{\sqrt{n}} \sum++o_{p_{\theta_{0}}}(1)
\end{aligned}
$$

(4) $\left(\begin{array}{l}\binom{\left(\hat{\theta}_{n}-\theta_{0}\right)}{\log \frac{d P_{\theta_{0}}+N \sqrt{n}}{}}=\frac{1}{\sqrt{n}}\binom{\sum \theta_{0}}{\sum \cdot}+\theta_{\theta_{0}}(1)\end{array}\right.$
P_{0}

$$
N(\cdot, \cdot)
$$

(5) Using Le Cam 3 rd

$$
\left.\sqrt{n}\left(\theta_{n}-\theta_{n}\right) \stackrel{P_{\theta_{2}}+\sqrt{n}}{=}\right)(\cdot,-)
$$

Thm. [MLE under $\left.P_{\theta_{0}+W / n}\right]$
Assume
(1) θ is an interion point of (11);
(2) $\theta \in 巴 0$
(3)

$$
\begin{aligned}
& \theta \in \Perp 0 \\
& P_{n}=P_{\theta} \otimes n<n I 2 D R V_{s} \sim P_{\theta} \\
& Q_{n}=P_{\theta+n}
\end{aligned}
$$

(4) $\left\{P_{\tilde{\theta}}: \tilde{\theta} \in \otimes>\right\}$ is $Q M D$ at θ;
(5) Io is invertible;
(6) $\tilde{\theta} \mapsto I_{\tilde{\theta}}$ is cont at θ;
(7) $\begin{gathered}\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)= \\ \text { MLE }^{I_{\theta}^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \dot{l}_{\theta}\left(x_{i}\right)} \frac{\sqrt{n}+o_{p_{n}}(1)}{I_{\theta}^{-1} P_{n} l_{\theta}}\end{gathered}$

Condusion:

$$
\left.\begin{array}{l}
\text { dusion : } \\
(1) \sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \stackrel{a_{n}}{\Longrightarrow} N P_{\theta}+1 / \sqrt{n} \\
\\
\hline
\end{array}, I_{\theta}^{-1}\right)
$$

(2) $W_{n}:=n \psi_{n}^{\top} A \hat{\theta}_{n} \psi_{n}$

$$
\xrightarrow{\theta_{n}} Y,
$$

whene Y is a non-centered X^{2}

$$
\begin{aligned}
& \text { is a non-centered } x^{2} \\
& \left.x^{2}\left(m, h_{\psi}^{\top} A_{\theta} h_{\psi}\right), h=\left(h_{\psi}\right) h_{\eta}\right)
\end{aligned}
$$

(3) If $h \rightarrow \infty$, then

$$
\pi_{n}\left(\theta+\frac{h}{\sqrt{n}}\right) \longrightarrow 1
$$

if $h \rightarrow 0$, then

$$
\pi_{n}\left(\theta+\frac{h}{\sqrt{n}}\right) \rightarrow \alpha
$$

Remark. Notice P_{θ}

$$
\begin{aligned}
& \text { Remark. } 1\left(\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \stackrel{k}{\Rightarrow} N\left(0, I_{\theta}{ }^{-1}\right)\right. \\
& (2) \sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \underset{P_{\theta+\frac{n}{n}}}{\Rightarrow} N\left(h, I_{\theta}^{-1}\right) \\
\Leftrightarrow & \sqrt{n}\left(\hat{\theta}_{n}-\left(\theta+\frac{n}{\sqrt{n}}\right)\right) \\
\Rightarrow & N r\left(0, I_{\theta}{ }^{-1}\right)
\end{aligned}
$$

$P_{\theta}+\frac{h}{\sqrt{n}}$
I_{n} ocher words, MLE has the property that a shife of DGP $\theta+h / \sqrt{n}$ doesn't change the estimation asymp, dist.

Chap. 4.4 Regular $A L E$ (RALE)
Def. [ALE] μ_{n} is a generic ALE estimating a certain functional

$$
\mu(\theta) \in \mathbb{R}^{m}
$$

if \exists influence func.
$g_{\theta}: \chi \longmapsto \mathbb{R}^{m}$ (imagine Fisher score g me. $)$
sit $P_{\theta} g_{\theta}=0$
and $P_{\theta}\left[g_{\theta} g_{\theta}^{+}\right]$is well-defined, inflemence
st.

$$
\sqrt{t_{1}}\left(\mu_{n}-\mu(\theta)\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{g_{\theta}\left(x_{i}\right)}{M L E, Z_{\theta}^{\prime} \dot{e}_{\theta}}+o_{p_{n}}(1)
$$

a linear term, CLT
Remark we can apply MCLT

$$
\sqrt{n}\left(\mu_{n}-\mu(\theta)\right) \xrightarrow{P_{\theta}} r\left(0, P_{\theta}\left[g_{0} g_{0} T\right]\right)
$$

Def i [Regular $A L E$ (RALE)]
(1) The estimator μ_{n} is said to be RALE is $\forall h \in \mathbb{R}^{(\theta)}$,

$$
\left.\sqrt{n}\left(\mu_{n}-\mu\left(\theta+\frac{n}{\sqrt{n}}\right)\right) \stackrel{P}{P}+\right)_{0},
$$

where Z doesn't depend on h.
(2) μ_{n} is RACE if it is regular and ALE.
Remark. One can tho if μ_{n} is a regular ALE with influence frame. g_{θ}, it must be true then

$$
\begin{aligned}
& { }_{"} \mu(\theta)=P_{\theta}\left(\dot{e}_{\theta} g_{\theta}\right) \\
& \left.\frac{\partial}{\partial \beta^{\prime}} \mu\left(\theta^{\prime}\right)\right|_{\theta=\theta^{\prime}}
\end{aligned}
$$

and in this case, we will say g_{θ} to be the gradient of $\mu(\cdot)$ at θ writ model

$$
\left\{P_{\theta^{\prime}}=\theta^{\prime} \in \Theta\right\}
$$

Result $1=\left[\begin{array}{c}\text { Le cam ard Lemma } \\ A L E \text { of } \mu \\ + \\ L A N\end{array}\right]$

$$
\Longrightarrow \sqrt{n}\left(\mu_{1}-\mu(\theta)\right) \stackrel{P_{\theta+h}}{\Longrightarrow} N(\cdot, \cdot)
$$

Result?, if μ_{n} is $\mathbb{R} A L E$,

$$
\sqrt{n}\left(\mu_{n}-\mu(\theta)\right) \underset{P_{\theta+\frac{n}{n}}^{\Rightarrow}}{\Rightarrow} \frac{N(\cdot, \cdot)}{\frac{\downarrow}{a \text { simpler form }}}
$$

