
Chapter 5: Minimaxity
·Suppose we observe WW drawn from a

dist. P belonging to a statistical model (p.

↳We'll be most interested in setting
P= c "with a "denosing the n-fold
product measure of diss &

·Based on data realization , we take action

a - A
↳ We've consider a collection of decision rules
Tin ->S

· The quality of an action a is judged by
loss tune. 2:8x<-> R.

· The quality of a decision rule, the risk
which corresponds to the expected loss:

RCT, P) =SrL(T(w), P) dP(w)
21: Point estimation

The objective is estimate (CP) (R.
↳Eg.i P=d", and (P) = SxdQ(x)

If ((a,p) = [a-(P1)" is the squared error loss



then
RCT,P) =JST(W) - E(P))" dP(w)

is the mean-squared error

EX2: Estimating a regression function-

- We observe a lid copies of (X,Y) -&

with support on XXI and we wish to estimate

the fame.
fo:x * Ea(Y(X=x)

- The action space is a collection of funss
mapping X to IR.

- We may consider an integrated squared enor

loss:
L (a, p) = (<a(x) - fo(x>3"dv(x)

The corresponding risk is known as the

mean integrated squared error.

Recall from 581, performance of decision rule
can be judged by its maximal risk:

sup RCT,PS
↑eS

A minimax estimator minimioss the
maximal risk.



-

allenge: Deriving a rimax estimates is
efeed an intractable problem.

·enarateoutionaltyin derive the minimax
estimator, we'll instead look to find estimator
that achieves minimax optimal rate.
For now, consider the case P= ceM

For each n, let in denote the collection of
allowed decision rules,

In many problems, the risk is always

non-negative, and

int sup R(T,0"), 0
TETn OtQ

Focus on these decision problems here.

A sea of decision rules (in), is called
minimax rate optimal if the following:

inf sup R) T, 0"
TeTn OtO(8) limit(n) > 0

acR



·rauptest.ceCineTrsup RCTn,Q

if the numerator is ofthe form C,nt and
denominath is of the form 22nd and

(*) holds if a =B.

roblem: We can't typically devieve the

form of the momentor or demometer of11,

Sot: Find bounds on them.

Later in this course, we'll derivence

upper bounds on the maximal risk of
particular estimate sea STnSnE,

↳ That is, we'll find [Unt. site

sup RCT. (Y) Wn

In this chapter, we'll devine lower bounds
-

on the minimax risk, of the form
inf sup

*IT, (") > Lu
TETa



Once we have 9Ln), SUn),

CASomesticis,assigninUn

Hence, to show (8), it suffices to show

lisingatree

Lower bounds 9 Ln3nE

int sup RCT, P) <, L

Recall from 581: For any prion I on , the
-

Bayss risk of a decision rule + is given by

~ (T,π) = fR(T,P) dπ(P)

-

Samman For any decision prob, with ruleT,

sup R(T,P) > sup r(T, π)
P A

Proof: ET, sup over Up is lower bounded by2

supR(T,4)>r(T,π)

Taking sup, gives the result.



The i For any decision prob,-

int sup RCT,P(>sup nt r(T,T
T P
- --

minimax risk Bayes risk under
LIP,

Proof: The max-min ineq, yields
-

inf sup w(T. i) - auto intn(, π)
TA

combine this way the preceeding for.

int sup RCT.P) > sit into (T,
W

Note: The above implies that, for any print,

inf sup RCT,P) > Ent n(T, TTP

Method #1 for deriving minimax tower bonads;
Le Cam's method,



CLeCam): Let R be a risk fame, defined
according to some non-negative loss,

For any Pi, PetSP,

int sup RCT,P) > d(P), P2) (1p,1Palls
↳+d(P,,P2) exp[-kL(P.,P2],

where

"discrepancy" d(P1,P2) =aint(L(a, P1) + 2(a,P21]
"testing 11p, 1P2111 =1min [ap(), d(w) drlw- Iaffinity

*L(P.,P2) = Slug(w) dP,(w) P,<<PcS
+ N O,W,

ark: Understanding discrepancy,
We'll look at the discrepancy in 2 cases,

altestimationwillsquaredeven
los

and the loss
is((a,p) =2a- E(p)))
A little calculus shows that

d(P,,P2) = ent[L(a,P1) + L(a,Pz)]



= (F(P1) - E(P2)]*

b) Estimating a func w./ integrated squared
error loss. Say P= C", the action space is a
convex subset of the space of funcs, mapping
from Xto 1, and

L(a,P)= ([a(x) - falxI] "dv(X)
In this case,

d(P,,P2) =( [fa(x) - for(x))dv(x)
where D1 = 0, 1, P2=0c.

mark: Understanding the testing affinity

Statistically, we can show that given a
draw from Pj, J = 21,23 is unknown, the

difficulty of identifying the value of j
is quantified by the testing affinity.

Pc(w)

7A



1P11P211 = (min [p.,P23d
-

· Consider a testTin ->< 1,23

We'll quantify performance of the
decision rule + via misclassificate

enri(+)= Etp, [A[T(w) =23]
+EPx[19T(w) =13]

Observe that

2CT)= f[p,(w) 19T(w) =2)
+P2(2)AST (w) =13] dr(w)

->S[mio SP, (w), Pr(w)3
[A[T(w) =23
+19T(r) = 1)5dvlu)

=Smin(P., P2) du
- 11p11P2l18

The lower bound is achieved by

T*(w) =argma Pc (w)



mark: l1p, 1Pellg =1- TV(P., P2),
where TV(P1,P2)= sup (P. (A)

- PCLASN

=
o main Thmi (Le Cam

Lett denote a uniform prior over
[P1, P2), that isπ(P1) =π(P2) =2

For any rule T,

r(+, t) =ESL[T(N), PCT Pa(w) dr(w) T(Pd)
= JZLCT(W), P() ((w)] dr(n)
> If min[P. (w), Pz(w)

[ELIT(w), P()] drew
->ISmin <p, (w), 42(n) 3

[intEL(a, P()]dr
=Id(P), P2) (Ipirp2ll8



Why we also need other lower bounding
techniques?

-In certain cases. Le Cam will provide
a rate- optimal lower bound
↳In fact, this is the case for prob. 2 Hod,
which concerns estimation of a smooth

density at a point No.

- Inother cases, he cam can't give a areen

↳This is the case when the goal is to

estimate a smooth regression June in terms

of the mean integrated squared error,



#

(Fano's method) <
Set be a risk fame, defined according

to some non-negative loss 1. For N2, 3,
Pi, P2...., PNEC and define
Di=mind(Pj.PK) = min inf(L(a,P()
j +K Ltk a

+L(a,Pk)]
p = +*PC (uniformanceone over

p,...,Pxx)

int sup R(T.P) > (1-EKLCPE

>[ItaeL(Pa
R

I
=(1- ctsi

where K = maKL(PY, OK)



RansvTheincreaseswherein the same.
↳K decreases and N. remain the same

↳1 increases and N, K remains the same

Moreover, adding a dist, to a set

[P1.Pz...., PN]
· N+ +

· Y--
· 1+ +

Pof: (Fano)
Let it denote a uniform prior on
P1. .... PN. For any rule T, we have
that
w(T,π) =+zSLCT(w), P((P((w) dr(w)

(2) ->tfAGLIT(W), PC) <,E TPluidrs
where we've used that(c. 1993(
for all C. y = b

y↑·- u/

-e



Continuing Egn. (2),

(3)w(T,π)- (1 -FHA,P()<3
Pi(w) dr(w)]-

#oa()
For each w,

E1(L1+(N), Pac3Pd(w)
= (maPd(w)] LST(M),Pa<)
It suffices to show 1 = 1.

② [manPa(wL(a,P()()
NTS =1



To show

(D) sipEA[L(a,Pac1.
it will be useful to define nazmin(L1a,Px+(1a,1
#
:y

=intla i. YRava,
Fix an action a. We'll show that

A9L(a,Pj),a =
ea/ How many pointsare at the left?

2a,8it Laps) LiaP1)S
3

↓(a,P2)

L(a,P2)

0 L(a,) Laps) LiaP1)

Also, because HE1a,

=AL(a,Py)>)ct9L1a,p()c
taking a sup over all actions on the left



Plug into (3),
(4)
r(T,h) >(1-tSmayPz(n] drew
On slide 23, we show that

mayPa(n) ploghtEPawsgEe
2

=>IrnayPg (n) driw)

actiikL(Po,>
=>

# It may POCUS] drIn)EnKCRTlogN

plug in (4),

w(T,H), EaNEYkLT7



<x. Aimimaslower bound for estimating
->

a smooth regressionfuns.

- We observe (Xi,Yi)...., (Xn,Yn) Ino-R

- For each 1, the marginal dist, of Xis

Unit [0, 1]
- Moreover,

Y(x =x v(falx),1)
where

for issmooth - inparticular,
fatF(8.2), where F(B,2) isthe

followingHolder class:

F(B, L) : =Sf:fisl- times differentible
#

and 1 f(l(x)- f()(x2)/=L(x-x-1p
-1)

for all (2,22 <50,1]3guedo1 isthe greatest integer that is
strictly less than B.
Generalized SipschiesClass

Nose:A suffcond, for a fumeI to belong
to <(B.L) isthatIbe (1+1)- times

differentibleand

sap | f
(l+1(x))=L



Our objectiveisto estimate

fo(x) =Ea[Y/x =a]
↳ Performance will be quantifiedby
MISE, arising from the loss
L(a,5," =[a(x) - fa(x))

-

dx

- We'll devine a minimaxtower bound

via Fano method.

↳ To do this, we mustselect a seal
collection(Poi=[4,..., PN] of discs,
in our model,

↓ We're lootingP =0.
- For any 20- 90, 13", we define

fw(X) = mwypy)x),
where here, for a fixed const, his,
we have me [8,Z-1] and

d(X) =(hPK)sym)
Here, forsuff small as o, K isdefined as



-ppaespfaiSASNIR
s

1

-12

The quantity a ischosen thatfor <F(B,2)
for all -t0,173.

Recall

Tw (x) =mwadcX)
fw(X) wi =1

Wz =

Wp=
1

1
W3 = ↓

*----:=
=

I



If, for some I=50,13m, we applied
Fano's method based on the collection
ofdiscs. 9 Pui=Ow:w= [3,
where Qu & has regressionfor, then
we'd find that

-.BCT,P>Xmadcppsot
↑popr)=/Sfwin)-fr(>]=dx
Also, from slide 35,

⑭poprs== .'fw(2) - f0(x)]"dy
Since none bump fame, overlap,

p(x)0k(x) =0 for EX.

Only diagonal terms left,



I [ fw(x) - fv(x)]dx
= zm [wy- va]"/0g(x bounded

↓ compact.

=E.Cun-vaycareinone
man Hamming
=. H(W,V) distance.

plug in and 3 =2", we find
d(PW,pr) =(sh-p+1 H(w,v)

and
(PW,pr)

=
Csnh"p* H(w,0)

Also, since H(W,v) sh, we have the

further lower bound

KL(PW,Pr) <Csnh-p+'m
in

maK L(PW,Pr) =cynh? n



Plug in above, ch=8
+1

intsup R(T,P)-
SimHO,>
n +v

[s- stcnharsise]
Following, think abouttwo choices of
the indexset 1 = 90, 13m

Choice 1:
What iti =90,13"?(ameine thing
In thiscase,

us init (w,v) =1
n+0

log(1 =mlogz
&

Plug is, we have

intsup RLT,P)>hapt.logtsuhiri)e)
↑ P

Two obs
②

1. 18nh8 islarge, then RHS isnegative
4
Not useful at all, +

Hence, we need h=0( n 20+



2. In the best case, the RHS isno more
than ah

Combining these two, we see atbest,
the RHS would give a lower bound
on order of 1/m.
From 581, you mightexpect thislower

bound isloose,
In particular, consider the parameticfan-

fxcF
where 5 =[X -BX =8t10,L)3
f(x) ->I:small class

->
Holden smooth#.

L

1

From lastquarter, you know ML sensifies

-(p - 80) -> N(0,0)
Hence,

-b0)1-x"(1)



and
(v-80)

"
=0p( /n)

Hence, it's reasonable to expectthat

Ear(/(px - pox)dx] =0((n)

Chore:
Question:Is there a subsetonof10,1
for whichla large and Hammingdistance

ofdistinctelements isalso large?

I
-

(1,1,0)
&

(0,0,0) ((,0,0)

Answer:Yes!

-hamor-GilbertLemman

If m>,8, then there exists a subset of of
90,13" sit, (2) islarges, em/8 and

min H(w,v) >m/8
W FVCR



-oie2:E =b,

In thiscase, ourboundgivesthat
intsuRIT,P)>,hept/1-logtesnhar

rent
↓

-stim/1-. ochete)
Chooselargest in possible

-

(m =Lt-1/) we'll approximate this lumenbound④

m=1/h yielding

8B = h2(1-8h - hitin
-
*

- A non-negative?
We now choose h. Forso,
We need his carfor some up.

Leeting h =no, shows that there
exists const 25 sit,

intsup R(T,p)
>Csr

T

For example, ifB =2, we decieved

45rate lower bound on
the minimaxrisk.



Thisbound iseight (in terms ofrates)!


