Chapter 2.
References:
\longrightarrow chap. 24 rd
$\rightarrow \operatorname{Sec} 6.3$ All of Stats.

- We obscene X_{1}, \ldots, X_{n} ind Q
- Let $F(x)=Q\{X \leqslant x\}$ denote the coff $f(x)$ denote the density.
- Our goal: Estimate f at a point x_{0}.
- Given that $\left.f\left(x_{0}\right)=\frac{d}{d x} F(x) \right\rvert\, x=x_{0}$ we might consider estimating $f\left(x_{0}\right)$ w.l a plug-estimaton

$$
\hat{f}\left(x_{0}\right)=\frac{d}{d x} \hat{F} \vec{x}\left(x=x_{0}\right.
$$

- One way to estimate F is via the empirical $C D F$

$$
\text { (1) } \quad \hat{F}\left(x_{0}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{x_{i} \leq x_{0}\right\}
$$

- We know that this is a "good" estimator of CDF

$$
L E g: \sqrt{n}\left[\hat{F}\left(x_{0}\right)-F\left(x_{0}\right)\right] \leadsto N\left(0, \theta^{2}\right)
$$

- But: Estimating $f\left(x_{0}\right)$ via (1) turns out to be a very bad idea

A lot of things will be 0 .
A better one will lead us to KDE

- Another option uses that

$$
f\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{F\left(x_{0}+h\right)-F\left(x_{0}-h\right)}{2 h}
$$

and so, when h is small $\frac{F\left(x_{0}+h\right)-F\left(x_{0}-h\right)}{2 h}$

- This suggests an estimator

$$
\begin{aligned}
\hat{f}_{h}\left(x_{0}\right) & =\frac{\hat{F}\left(x_{0}+h\right)-\hat{F}\left(x_{0}-h\right)}{2 h} \\
& =\frac{1}{2 n h} \sum_{i=1}^{n} \mathbb{1}\left\{x_{0}-h<x_{i} \leqslant x_{0}+h\right\} \\
\left(a_{1} s_{1}\right) & =\frac{1}{n h} \sum_{i=1}^{n} \frac{1}{2} \mathbb{1}\left\{\frac{\left|x_{i}-x_{0}\right|}{h} \leqslant \mathbb{1}\right\} \notin
\end{aligned}
$$

$$
\hat{f}_{h}(x)
$$

Note: This estimate of f is not smooth.
Question: Can we define a smoother estimate of f ? Ans : Yes!

- Let $K: \mathbb{R} \rightarrow \mathbb{R}$ be a kernel, that is, a function satisfying $\int K(u) d u=1$.
Def: An s th order kernel is a kernel K that satisfies

$$
\begin{aligned}
& \int u^{r} k(u) d u=0 \text { for } r=1,2, \ldots, s-1 \\
& \left|\int u^{s} k(u) d u\right|<\infty
\end{aligned}
$$

\longrightarrow If K is symmetric about zeno, $[K(m)=K(-m)]$ then K is always at least a 2 nd ordo kernel ($s=2$)
\longrightarrow Using higher order kernds $(s>2)$ can lead to estimators with lower bias.

Genera form of the KDE
For $h>0$,

$$
\begin{aligned}
\hat{f}_{h}\left(x_{0}\right) & :=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x_{i}-x_{0}}{h}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} K_{h}\left(\frac{x_{i}-x_{0}}{h}\right)
\end{aligned}
$$

where $K_{h}(n)=\frac{1}{h} K\left(\frac{u}{h}\right)$

Example of kernels:

1) Uniform : $K(u)=\frac{1}{2} \mathbb{1}\{|u| \leq 1\}$
2) Epanechniko : $K(u)=\frac{3}{4}\left(1-u^{2}\right) \underset{\text { bounded }}{1}\{|u| \leq 1\}$
3) Gaussian $: K(u)=\frac{1}{\sqrt{2 \pi}} \operatorname{esp}\left(-u^{2} / 2\right)$

Note: All of these kernels are 2nd-orden.
Nice fact: If K is non-negative, then for any $h>0$, \hat{f}_{h} is a PDF

$$
\begin{aligned}
& \int \frac{1}{n h} \sum_{i=1}^{n} k\left(\frac{x_{i}-x_{0}}{h}\right) d x \\
= & \frac{1}{n} \sum \int \frac{1}{n} k\left(\frac{x_{i}-x_{0}}{h}\right) d x \quad\left(u=\frac{x_{i}-x}{h}\right) \\
= & \frac{1}{n} \sum_{i=1}^{n} \int k(u) d u=1
\end{aligned}
$$

Steadying $\hat{f}_{h}\left(x_{0}\right)$:
We now study the performance of $\hat{f}_{h}\left(x_{0}\right)$ as an estinnater of $f\left(x_{0}\right)$.
We'll quawity the performance in terms of the MSE:

$$
\begin{aligned}
\mathbb{E}\left(\left\{\hat{f}_{h}\left(x_{0}\right)-f\left(x_{0}\right)\right\}^{2}\right] & =\left\{\widehat{\left.\mathbb{E}\left[\hat{f}_{h}\left(x_{0}\right)\right]-f\left(x_{0}\right)\right\}^{2}}\right. \\
& +\frac{\operatorname{var}\left[\hat{f}_{h}\left(x_{0}\right)\right]}{\text { variance }}
\end{aligned}
$$

Here, we'll suppose that f belongs to (β, L) Holder class $w, \beta=2$, and $L>0$.
\rightarrow Note: AU of the calculations we do still go through of the restriction of f to a mhd of X_{0} is $(\beta, L)-H 0^{\prime}(d e r$.
Recall: Saying that f is $(2, L)$ Holder means thor

$$
\left|f^{\prime}\left(x_{1}\right)-f^{\prime}\left(x_{2}\right)\right| \leq L\left|x_{1}-x_{2}\right| \forall x_{1}, x_{2}
$$

We focus on the case where the kernel K is;
\rightarrow bounded
\rightarrow non-negative
$\rightarrow 2^{\text {nd }}$ order
\rightarrow bounded support
We've going to see that choosing a small banduidch $h>0$ yields low bias and high variance and viceversa.

Bias of KDE
Recall: Bias $=\mathbb{E}\left[\hat{f}_{h}\left(x_{0}\right)\right]-f\left(x_{0}\right)$

$$
\begin{aligned}
\mathbb{E}\left[\hat{f}_{h}\left(x_{0}\right)\right] & =\frac{1}{n h} \sum_{i=1}^{n} \mathbb{E}\left[K\left(\frac{x_{i}-x_{0}}{h}\right)\right] \\
(i d) & =\frac{1}{h} \mathbb{E}\left[K\left(\frac{x_{i}-x_{0}}{h}\right)\right] \quad\left(u=\frac{x_{i}-x_{0}}{h}\right) \\
& =\frac{1}{h} \int K\left(\frac{x_{1}-x_{0}}{h}\right) f\left(x_{1}\right) d x_{1} \\
& =\int K(u) f\left(x_{0}+u h\right) d u
\end{aligned}
$$

Recalling $\int K(u) d u=1$, and so

$$
\begin{aligned}
\text { Bias } & =\mathbb{E}\left[\hat{f}_{h}\left(x_{0}\right)\right]-f\left(x_{0}\right) \\
& =\int k(u)\left[f\left(x_{0}+u h\right)-f\left(x_{0}\right)\right] d u
\end{aligned}
$$

By the mean-value Than, we know there exists
$\widetilde{x}_{\text {uh }}$ sunn that
$A=u h f^{\prime}\left(\tilde{x}_{n h}\right)$
Hence

2ndorder

$$
\begin{aligned}
\text { Bias } & =\int K(u) u h f^{\prime}\left(\tilde{x}_{u n}\right) d u \\
& =\int^{\int K(u) u h f^{\prime}\left(x_{0}\right)^{d u}}+\int K(u) u h\left[f^{\prime}\left(\tilde{x}_{u n}\right)-f^{\prime}\left(x_{0}\right)\right]_{l_{n}}
\end{aligned}
$$

$$
=h f^{\prime}\left(x_{0}\right) \int(k(u) u) d u
$$

$$
=0
$$

Hence

$$
\mid \text { Bias }\left|=\left|\rho k(u) n h\left[f^{\prime}\left(\widetilde{x_{u h}}\right)-f^{\prime}\left(x_{0}\right)\right] d u\right|\right.
$$

Jensen $\leqslant h \int k(u)|u|\left|f^{\prime}\left(\tilde{x}_{u n}\right)-f^{\prime}\left(x_{0}\right)\right| d u$

$$
\begin{aligned}
& \underset{(\text { Lipschive })}{H_{\text {Oil }}(d a n} \leqslant L h(u)|u|\left|\widetilde{x_{u n}}-x_{0}\right| d u \\
& \left|x_{u n}-x_{0}\right| \leqslant L h^{2} \underbrace{\int k(u) u^{2} d u}_{\sigma k^{2}} \\
& =L \sigma_{k}^{2} h^{2}
\end{aligned}
$$

Hence, Bias ${ }^{2} \leqslant L^{2} \sigma_{k}^{4} h^{4}$
Variance of the $K D E$

$$
\begin{align*}
& \operatorname{Var}\left(f_{h}\left(x_{0}\right)\right)=\operatorname{var}\left[\frac{1}{n h} \sum_{i=1}^{n} k\left(\frac{x_{i}-x_{0}}{h}\right)\right] \\
& \text { (independence) }=\frac{1}{n^{2} h^{2}} \sum_{i=1}^{n} \operatorname{var}\left[K\left(\frac{x_{i}-x_{0}}{h}\right)\right] \\
& \text { (identical) }=\frac{1}{n h^{2}} \operatorname{var}\left[K\left(\frac{x_{1}-x_{0}}{h}\right)\right] \\
& \leqslant \frac{1}{n h^{2}} \mathbb{E}\left[K\left(\frac{x_{1}-x_{0}}{h}\right)^{2}\right]<\text { lond }{ }^{\text {end }} \\
& =\frac{1}{n h^{2}} \int K\left(\frac{x_{1}-x_{0}}{h}\right)^{2} f\left(x_{1}\right) d x_{1} \quad u=\frac{x_{1}-x_{0}}{h} \\
& =\frac{1}{n h} \int_{\nrightarrow \notin}^{\int K(u)^{2} f\left(x_{0}+u h\right) d u} \tag{2}
\end{align*}
$$

We'll study $\phi \phi$ in what follows:
To do this, well make use of two facts:

1) f is Holder continuous \Rightarrow continuous
2) K has bounded support.

Let $K_{1}=\inf \{u: k(u)>0\}, k_{2}=\sup \{u: k(u)>0\}$.
We have that

$$
\begin{aligned}
A B & =\int k(u)^{2} f\left(x_{0}+u h\right) d u \\
& =\int_{k_{1}}^{k_{2}} k(u)^{2} f\left(x_{0}+u h\right) d u \\
& \leqslant\left[\sup _{u \in\left[k_{1}, k_{2}\right]} f\left(x_{0}+u h\right)\right] \int_{k_{1}}^{k_{2}} k(u)^{2} d u
\end{aligned}
$$

If $h \leqslant 1$, then this shows that

$$
\leqslant \underbrace{\left.\sup _{t \in\left[K_{1}, k_{2}\right]} f\left(x_{0}+t\right)\right] \int_{K_{1}}^{k_{2}} k(u)^{2} d u}_{=: \widetilde{c}}
$$

Hence, we have shown that (by plugging in)

$$
\operatorname{Var}\left(\tilde{f}_{h}\left(x_{0}\right)\right) \leqslant \frac{\tilde{c}}{n h}
$$

Plugging is our bound on the bias ${ }^{2}$ and Variance, we find that MSE

$$
M S E \leq L^{2} \sigma_{K}^{4} h^{4}+\frac{\tilde{c}}{n h}
$$

$$
\begin{gathered}
\text { By setting } \\
L^{2} \theta k h^{4}=\frac{\tau}{n h} \\
\Rightarrow h=C n^{-1 / 5} \\
\therefore M S E \leqslant O\left(n^{-4 / 5}\right)
\end{gathered}
$$

Generalization

1) 1-dimensional setting w/ different amounts of smoothness
If f belongs to $a(\beta, L)$ Holder class, then similar arguments show that

$$
M S E=O\left(n^{-\frac{2 \beta}{2 \beta+1}}\right)
$$

if a kernel has sufficiently high order. We saw this is class w. $/ \beta=2$.

\checkmark smooch density

suftcrently high order. kernel leads to very smooch density which makes xu eosin to be estimated.
2) d-dimensional probs

Suppose x is d-dimensional and we want to estimate $f\left(x_{0}\right)$ at a fixed $x_{0} \in \mathbb{R}^{d}$. $A K D E$ in this setting takes the form

$$
f_{h}\left(x_{0}\right)=\frac{1}{n h^{d}} \sum_{i=1}^{n} \prod_{j=1}^{d} K\left(\frac{x_{i j}-x_{0 j}}{h}\right)
$$

If f is β-times differentible and all partial derivatives up to order β is bounded, then

$$
M S E=O\left(n^{-\frac{2 \beta}{2 \beta+a}}\right)
$$

Note: The dimension d appears in the denominator of exponent

d	$M S E U B$
1	$n^{-0.8}$
2	$n^{-0.67}$
4	$n^{-0.5}$
10	$n^{-0.29}$

One way of thinking about the exponeat on n : If MSE $\simeq n^{-\alpha}$, then, when n is large, to have MSE, you need to collect above $2^{1 / 2}$ more data.

