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1 Introduction

How does one optimally extract information from data S,, = 21, ..., 2, ~*%% P

1.1 Complexity

There are two sources to understand and measure complexity.

1. Statistical complexity: samples

2. Computational complexity: flops, gradient evaluations, optimization, computer science
Question: How does everything work under high dimensional settings?

Example 1.1. Mean estimation and Shrinkage
Suppose you get to observe S, 1, ..., zn ~ N (1, X). Your goal is to estimate p.
One solution is just to compute the mean that

1 n
n -
=1
But in what sense Z,, is a good estimation? A: Mean squared error defined as

tr(X)

Ep, |[Zn — NH% =

Is there a better estimator?
Simple answer: NO! Because the sample mean is minimax-optimal that

tr(X)

i;lfsupESnNN(u,z)H@n —ull3>e
non

But a more complicated answer is “yes”.
Suppose for simplicity > = I.
Consider bias-variance decomposition that

E||Zn — pll5 = El[Zn — Edn|l5 + |[Edn — plf3
However, in high dimensions, it pays to trade bias for variance!!

Definition 1.2. %, strictly dominates z,, if
EHi NH2 < ]EH:C~ /~L||2 VI
n n 5

and there exists pg s.t.
Ellén — ioll < EllZn — pol |

Then Z,, is called inadmissable.

Theorem 1.3. Z,, is inadmissable if and only if d > 3.



To show this Theorem, let’s define the famous James-Stein skrinkage estimator that
2(d—2
$7{S = <1 - U(_)>$n

The intuition behind is that in high dimensions, the ball has much larger volumn given radius ov/d. There-
fore, it pays to shrink x to reduce the variance. In high-dimension, it pays a lot to achieve unbiasedness.

Proof. We compute the MSE of JS estimator that

o’d o? a?/n
EH%{S - HH% = o ;(d - 2)2E {W]
o%d o%(d —2)?

IN

noon(d=2+ Zlull)

Example 1.4. Compressed sensing
Suppose we get to observe
Yy = Al‘#,

where A € R™*4 is a3 Gaussian random matrix and Ty € R< has at most s nonzero entries.
Our goal is to recover z4.
From convex optimization, we can do in the following way that

min
x
Ar =y

As soon as m < slog (g), with high probability, x4 is the unique solution.
A geometric reason is that x4 solves the optimization problem if and only if

ker(A) N{v: [lzg +of| < [lz4|l1} = {0}

Q: What is the probability that a random subspace intersects a convex cone trivially?

2 Basic Probability

Definition 2.1. Expectation and variance. Let X be a random variable on probability space. The expectation
E[X]

Conditional expectation,
E[X]Y]

and Variance
Var(X) = E(X —EX)? = E[X?] - E[X]?

Definition 2.2. Moment generating function is defined as
mx(t) = Ele'X], teR.
Definition 2.3. Denote the L? norm as
1X 11, = (E[IXP|))*/7

Definition 2.4. Banach space is
LP ={X : |[X]||, < o0}
Remark 2.5. L? is a Hilbert space.
We denote

(X,Y), =E[XY], 1X]l2 = V(X, X) = VE[X?]
The covariance
cov(X,Y) =E (X —E[X]][Y — E[Y])])
= (X —E[X],Y - E[Y])



2.1 Important Distributions
1. Uniform distribution
2. Gaussian distribution

3. Rademacher distribution

1
ple=1)=plz=-1)=
4. Bernoulli(p)
5. Poisson A
2.2 A few basic facts
Definition 2.6. A family (X, ..., X) is independent if
k
PIX; € E;,Vi=1,.. k] = HP[Xi € Ej
i=1

Remark 2.7. [Linearlity of expectation]

E[Z ciXi] = Zk: EX;

Remark 2.8. [Linearlity of variance] If X7, ..., X are pairwise independent, then

Var(zk: X;) = Zk: Var(X;)
i=1 i=1
Remark 2.9. [Tower rule|
E[X] = E[E[X]Y]]
Lemma 2.10. [Markov inequality] For any non-negative X and t > 0, we have
PX > 1] < ETX

Proof. We see

EX = EXl{th} + ]EXl{x<t}
> tE{azZt}
=tP[X > ]

3 Concentration Inequalities

3.1 Chernoff Bound

Let Xy,...,X,, be r.v.’s with EX = 0. The question is: how big is |>_ X;| typically?
In general, this quantity can be O(n). But if Xj,..., X,, are pairwise independen, then using Chebyshev

gives us
Var(X;
p<|§ :Xi\2t> g%

> M/ZVarr(Xﬁ) < %
s

So,

P (’Z X;
Therefore, with high probability,

= 0(Vn),

if Var(X;) = o2.
Question: ,
When ca we expect to replace % by e * or e *'?



Example 3.1. [Motivating example| Consider if we wish to control that
PsupXiZt]g PlX;, >t
EASUEVLEL
If || is huge, need P [X; > {]
E.g. the control of sup,cx |E.f(z,2) — 1 3 f(«,2;)| which is an empirical process.

The Chernoff method is described in the following.
Let X be r.v. with 4 = EX < co. Then, for all A > 0, we have

PX—u>t]=P [eA(X*“) > e)‘t}

EerMX—w)
By Markov < eT
e
This derives that
log P[X —p=1t] < inf {log EerX—H) )\t}

= —sup {)\t — log Ee/\(x_“)}
A>0

Define any function ¢ : R — R U {400}, the Fenchle conjugate is defined as
(1) =sup {AL — (M)}
Let’s look at the main example

Px(\) = log EeMX—1)
For all A € R, observe from Jensen
Yx(\) = log EeMX—#) > Elog XX =1 = 0

So when A < 0 and ¢ > 0, we have
M — $(3) <0 =0 - (0)

Therefore, for ¢t > 0, the equality holds.
Px (t) = sup {tA — ¥ ()}
A>0
We arrive at the Chernoff bound that
PIX —p>1t] <exp (-9 (1))
where thx (\) = log (Ee*X =) .

Example 3.2. Let X ~ N (p,0?). Then,

o222
EerX 1) = %3

Then,

§ o2N\2 2
Vx () = Slip)\t Ty T .2
Therefore,
P[X > p+t] <exp(—t*/20%), Vt>0



3.2 Sub-Gaussian Random variable
Definition 3.3. [Sub-Gaussian variable| Define X with mean x is sub-Gaussian with parameter o > 0 if
o2x2
Ee X —#) <e =2, VAIeR.
If X is sub-gaussian, so is —X. We have the tail bound that
PlIX — p| >to] <2172
Lemma 3.4. [Bounded random variable] Suppose X is supported on [a,b]. Then X is b_Ta sub-Gaussian.

Proof. Set y = X — p and define
f(A) = log (Eexp(Ay))
Then,

/iy Eyexp(\y)
F= E exp(\y)

W=7 exp(Ay) E exp(\y)

exp(Ay)dy
E exp(Ay)

_ Ey?exp(ly) {Ey exp(Ay)}2

Define a measure dm =
Then,

Finally, using Tylor’s theorem, we know

1 -
FO) = £(0) + f(O)X + §J””(/\)>\2
We could further know that

1(b—a)?

< 1 2
FO) S0+04 52

Lemma 3.5. [Sum rule] Suppose X; are independent o;-sub-Gaussian, then

Z X, is \/Z o2 -sub-Gaussian
From here, we have the corollary which is the famour Hoeffding inequality.

Corollary 3.6. [Hoeffding]. Suppose X1,..., X, are independent with EX; = p; and these X;’s are o;-sub-

Gaussian. Then )

t

) > < _
PE 0 = ) 2 o] <o {5 }

Additionally, if u; = p, o; = o, then

P [Z(Xi —p) > tU\/ﬁ} < exp{—t;}

It turns out the indepence in Hoeffding can be weakened to martingale difference sequences.



Theorem 3.7. [Azuma] Let X1, ..., X,, be r.v.’s with
E(X;|Xi—1,....,X1) = E(X;|X;-1)

and N
E (eXp()‘Xi)‘Xi_l, ...,Xl) < TN /2

Then, > X; is ||o||2-subGaussian.
Proof. Set S, = > X;. Then

Eexp (Asn) =E [exp()‘Snfl)E [exp(AXn”le 8] anl]]
< TN 2R exp(ASp—1)

< ollol3r?/2

3.3 Sub-exponential random variable

Example 3.8. Let z ~ A(0,1). Let’s compute

+o0
E {e/\(ZQ—l)] _ 1 / A1) a2 /2
V2T J oo

= iras
+o00 if A>

N N

Definition 3.9. [Sub-exponential] Define X with mean p is sub-exponential with parameters (v, «) if
E [eMX—M)} < N2y < L.
!
Back to the example 3.8, we see that

-2
E[AF D] < S <2 <y

T V1I=-2)
So, 22 is (2, 4)-subexponential.
Theorem 3.10. [Sub-exponential tail bound] Let X be subexponential with (v,«). Then

et/ if |t <v?/a

PIX—u>tl <
[ nztl s {e‘t/m , otherwise

Proof. Back to Chernoff.
log P[X — p>t] < =k (t)

where 1 x (\) = log Ee*X =) This quantity, we have

dx () = log BeMX 1)
B {V2A2/2 if A < 1/a

400 , otherwise

Theorem 3.11. [Bernstein] Let X be subexponential with parameter (v,«) and mean p. Then

«

Pix-zdszen|-(5aL) .

Lemma 3.12. [Sum rule] X; are (v1, «;)-subexponential, then

ZXi is (|loll2, ||al|eo) -subExponential



Theorem 3.13. [Bernstein for summation] Let X; are (v1,a;)-subexponential with mean pu; = EX;

P V”""[ 1<||f||f||al|f|oo>}

Theorem 3.14. [Improved Bernstein for bounded RVs| Suppose | X — p| < b, E(X — p)? = o2. Then,

A2o2 1
EeMX—1) < 7 VI -
¢ <o\ gy ) TN >

Therefore,

t2
Pl X —ul>t| <2 -
15 4l 2 1 < 2000 (- 535

Proof. Using Taylor expnsion:

0 k
]Ee)\(Xfu) _ Z)\kE(X — /J“)

k!
k=0

Mo?  IMNE(X — p)F
JJFZ ( 1)

2 k!
k=3

2 52pk—2 )\ k—2
<1+Z/\ b )\

<1+ﬁ#
= 2 1—b[\|

<e 2202 1
R
=S\ T T T

Follow from Chernoff, by setting A = st € [0, 7]

This is superior to Hoeffding when o < b.

3.4 Application: Dimensionality Reduction

Given uq,usg, ..., Uy, € R? with m < d, can we map ui,.us, ..., Um to a lower dimensional space with low

distortion?

Theorem 3.15. [Johnson-Lindenstrauss| Fiz ¢,6 € (0,1), a set U C R% of m points and a number n >

16 log(

'm,2
TT). Let X € R"*4 consist of i.i.d. N'(0,1) entries. Then with probability 1 — &, the map f(u) =

satisfies

N FORYI0

I <l+4+e¢ VYu,veU
[lu —l[3

Proof. Observe that

i < “W>2

d.d. N(0,1)

This gives rise to

52 is (2y/n,n) — subExponential

Using Bernstein,

So for any 4, j, we have

L Xy

vn



)12
P |:||f(uz u])2||2 ¢ [1 —e1 +6} < 2677162/8
(i = w3

Take the union bound over (7;) pairs, we have

2(m> e 8 < mPee 8 = 4,
5 <

O

Question 3.16. What if m = oo but U only has a few “degree of freedom”? Next, we will look at concentration
of f(x1,...,xn) where f is a “well-behaved” function and x1, ..., z, are independent r.v’s.

Bounded differences inequality (McDiarmid) So far, we have focused on n concentration of the average
% Z?:l Xi.
Remark 3.17. [Useful insight]| As long as f(x1, ..., z,) depends weakly on individual x;, the concentration holds!

Theorem 3.18. [McDiarmid] Suppose that f : X™ — R has the bounded difference property that
3L, Lo, ..., L, such that

|f(@1, ey Ty oy @) — f(@1,y ey Ty ootp)| < Ly, Va2’ € X7

Then, for independent rv’s X = (x1, ..., x,), we have

22

P|f(X)—Ef(X)| >t] <2 13

Proof. We will use the martingale method.
Define
yo = Ef(X) and y; = E[f(X)|z1, ..., 2]
We observe that - _
vi=vo+ Y (Wis1—y) =v+ > D;
j=0 j=1

Further, we see

Eyilzy, .., vic1] = E[E[f(X)]z1, .., zi] |21, .0y 2i-1]
= ]E [f(X)‘.’Eh ...7£C7;,1]
=Yi—1

Therefore, we know that
Ely; — yi—ilz1, ..., xic1] = E[Djqpal|ee, .y zi-1] =0
Then, we can compute that
E ex\(f(r)flE[f(z)])} —F '6A<ynfyo>}
=K :e’\zg;l D’}

—F _e/\(ynfl_yo)eADn:|

=E |Mun-1-v0)R [e/\D"|xl,x2, ...,xn_l]}

Let 2’ # & be another random sample from z; that z; ~*@ z;. Then,

E [eAD”’

A i —Yi—
xl,...,xi_l] =E |:€ (vi—y 1)|$1,...,$i_1:|

) {eAE[f(X)_f(X/)le7n~$i] 1, ..., xi—l}

(Jensen) <E {e)‘(f(x)*f(xl))knl, vy xi_l}

272
A“LY

<e’®



Therefore, in total, we see
E [AFCO-EFCO)] < (ATIILI3
Then, apply Chernoff, we have

22

P[lf(X) —Ef(X)| > t] <2e 103

3.5 Lipschitz transformation of (Gaussians

Theorem 3.19. Let X1, ..., X,, ~" N(0,1) and let F : R" — R be L-Lipschitz:
[F(z) = F(y)| < Lllx = yll2, Vz,y eR"

Then,

L
F(X)-EF(X)is L\/ﬁ — subGaussian

To show the theorem above, we need the following exercise.

Exercise 3.20. Suppose that (X,Y) are jointly normal. Then, X and Y are independent iff
E[XY] = EXEY

Proof. We can assume WLOG:
L=1,EF(Xy,..,X,) =0, F is C'-smooth (otherwise approximate). Let ¥ be an independent realization
of X. Then

Eexp (AF (X)) =Eexp (AF(X)) -1

<Eexp(AF(X))Eexp (—AF(Y))

— Eexp (A (F(X) — F(Y)))
We write F(X) — F(Y) that

w/2
FX)=F() = [ (Fony 0)i0
where () =Y cos(6) + X sin(6).
Note here that
4(0) = =Y sin(f) + X cos(6)

So, (7v(0), (9)) jointly normal with Cor (y(9),+(6)) = 0. O

The proof is a little bit beyond my understanding so I will understand it later.
Recall if X7, ..., X,, are independent o-subGaussian with EX; = u. The Hoeffding implies that & = % >y
satisfies

nt?
Pllz —ul <t]|>1-2 T
6 -4l <0 21— 20 (-5

or equivalently

PllE—pl < >1-p.

20210g(2/p)]

Can we achieve similar guarantee without subGaussian assumption with a different estimator 7

Theorem 3.21. [Mediam of means| Consider X € R with EX = p and Var(X) = o%. Let Xy, ..., X,, be i.i.d.
realizations of X subdivide into k = 18log (%) bins and form the empirical means ; for j = 1,....;k. Then

i = median(&y, ..., Tx) satisfies

PllE—pl < =1-p

5402 10g(1/pf|



Proof. By Chebyshev,

By Hoeffding

k
1 302k 1 k
P|- 14|z — | >1- —— .
2oz g ()

We can know that

2 < 302k

TR 2n
In this case, & depends on the confidence level p. O

4 Random vectors in High Dimensions

Concentration of the norm

Isotropy
e Similarity of Normal and Spherical

e Sub-Gaussian and Sub-Exponential random vectors.

Two main results we’ll prove in this chapter.
e Sub-Gaussian vectors are concentrated around a sphere.
e Two independent isotropic subGaussian random vectors are nearly orthogonal in high dimensions.

We will next investigate the behavior of random vectors in high dimensions!!!

Concentration of the norm Let X = (X1,..., X;) € R? have independent o-subGaussian coordinates with
EX; =0and EX? =1

What should we expect for ,
1X1ly and [|X]]2

Lemma 4.1. Suppose y is o-subGaussian. Then y? is (0, 402) subezponential.

Proof. [Sketch]
Step 1: Estimate E [|y|"] < r2"/2¢"T (%) using E[jy|"] = [;° P [|y| > t*/"] dr.
Step 2: Use Taylor expansion that

E |:e/\(y27IEy2):| < 1+ Z )\r2r+10,27‘
r=2

8125
1—2X\o2
<exp(...)

<1+

Corollary 4.2. Let X = (X1, ..., Xq) € R? have independent o-subGaussian coordinates with
EX; =0and EX? =1

Then P [|||X||3 — d| > td] < 2exp (—4% (t At?)) which is just

P11l - vl = §2exp< jt)

o2

10



Proof. We see || X||3 that
d
X113 =) X7
i=1

This is the sum of drandom Chi-square samples. We see that (i) E||X||3 = d and (ii) || X||3 is (J\/E7 402)

subexponential.
Using Bernstein, we see that

1
P[5Iz -1 2 o] <2em

(t/\tQ)}

o2

Observe that Vz > 0, we have
|z — 1| >t = [2% — 1] > min(t, t?)
So

1 1
Pl|l—=lIX|l2—1]>t| <P X2—1>t2/\t}
Gt — 1] 2 o] < 7 [|xi -1

<2e p( dtZ)
< [ ———
- 402

O
4.1 Isotropic vectors
Recall for X € R?, covariance
con(X) =B [(X = ) (X = )"
where p = E [X].
Definition 4.3. A random vector X € R? with EX = 0 is isotropic if
2(X)=E[XXT] =1,
Remark 4.4. If ¥ = ¥(X) is invertible, then z := ©71/2 (X — p) is isotropic.
Lemma 4.5. X is isotropic iff )
E(X,y5)° = |y}, VyeRe
Proof. X is isotropic
iffEXXT =1,
iffy"EXX Ty =yTy
if f By' XX Ty = [|yll3
iffE(X,y)" =lyll3
O

Thus, if EX = 0, then X is isotropic iff marginal <X, ﬁ> has unit variance Yy € R? .

Lemma 4.6. Let X € R? be isotropic. Then E||X||2 =d. Moreover, if X and y are two independent isotropic
vectors, then

E <X’ y>2 =d
Proof. First,
IX]3 = X7X = tr (XX7)
Therefore,
E||X|3 =tr(1s) =d
Nest,

E(X,3)* = E, [Ex (X,9)" Iy

=E, [|lyll]
=d
O
Let X and Y be independent and isotropic. Then we see || X|| ~ v/d,||y|| ~ v/d and <ﬁ, Hgil\> ~ %. Can

be rigorous by assuming light tails.

11



4.1.1 Examples of isotropic Random Variables

1.

2.

3.

d
. Coordinate Unu f <{\/gez} )
i=1

Spherical uniform RV. X ~ Unif (\/ﬁSd_1>.

Symmertic Bernoulli: X ~ Unif ({—1, l}d)

Any vector X = (X1, ..., X4) where X, are independent, zero mean, unit variance.

1=

Gaussian g = (g1, -..,94) ~ N (0, I3). Recall this means g; are i.i.d. A(0,1).
The density of the Gaussian is

d
2
2 1 _l=)?
2 2

d
1 _
pe) = i) = 1:[1 V- T @nn©

i=1

After applying a random rotation matrix, the standard multivariate Gaussian is still standard multivarriate
Gaussian.

Exercise 4.7. Let g ~ N(0,1;). Then r := ||g|]2 and § = - are independent random variables and
0 ~ Unif(S4-1).

lgll2

Definition 4.8. X is R? is o-subGaussian if (X, u) is o-subGaussian Vu € S9~1.

Example 4.9. Let X = (Xy,..., X4) be RV with independent o-subGaussian X;. Then X is o-subGaussian.

1. N(0, I4) is 1-subGaussian.

2.

3.

4.

Unif ({717 1}d) is 1-subGaussian.

d
Unif ({\/Eel} 1) is o-subGaussian with o =< \/@

Unif (\/&Sdil) is c-subGaussian for a constant c.

5 Introduction to Statistical Inference
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