MA 581 Notes: Mathematics of Data Science

Instructor: Dmitriy Drusvyatskiy
Scribe: Mars Gao

October 25, 2022

1 Introduction

How does one optimally extract information from data $S_{n}=z_{1}, \ldots, z_{n} \sim^{\text {i.i.d. }} \mathcal{P}$

1.1 Complexity

There are two sources to understand and measure complexity.

1. Statistical complexity: samples
2. Computational complexity: flops, gradient evaluations, optimization, computer science

Question: How does everything work under high dimensional settings?
Example 1.1. Mean estimation and Shrinkage
Suppose you get to observe $S_{n} x_{1}, \ldots, x_{n} \sim \mathcal{N}(\mu, \Sigma)$. Your goal is to estimate μ.
One solution is just to compute the mean that

$$
\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

But in what sense \bar{x}_{n} is a good estimation? A: Mean squared error defined as

$$
\mathbb{E}_{P_{n}}\left\|\bar{x}_{n}-\mu\right\|_{2}^{2}=\frac{\operatorname{tr}(\Sigma)}{n}
$$

Is there a better estimator?
Simple answer: NO! Because the sample mean is minimax-optimal that

$$
\inf _{\hat{x}_{n}} \sup _{\mu} \mathbb{E}_{S_{n} \sim \mathcal{N}(\mu, \Sigma)}\left\|\hat{x}_{n}-\mu\right\|_{2}^{2} \geq c \frac{\operatorname{tr}(\Sigma)}{n}
$$

But a more complicated answer is "yes".
Suppose for simplicity $\Sigma=I$.
Consider bias-variance decomposition that

$$
\mathbb{E}\left\|\hat{x}_{n}-\mu\right\|_{2}^{2}=\mathbb{E}\left\|\hat{x}_{n}-\mathbb{E} \hat{x}_{n}\right\|_{2}^{2}+\left\|\mathbb{E} \hat{x}_{n}-\mu\right\|_{2}^{2}
$$

However, in high dimensions, it pays to trade bias for variance!!
Definition 1.2. \hat{x}_{n} strictly dominates \tilde{x}_{n} if

$$
\mathbb{E}\left\|\hat{x}_{n}-\mu\right\|^{2} \leq \mathbb{E}\left\|\tilde{x}_{n}-\mu\right\|^{2}, \forall \mu
$$

and there exists μ_{0} s.t.

$$
\mathbb{E}\left\|\hat{x}_{n}-\mu_{0}\right\|<\mathbb{E}\left\|\tilde{x}_{n}-\mu_{0}\right\|^{2} .
$$

Then \tilde{x}_{n} is called inadmissable.
Theorem 1.3. \bar{x}_{n} is inadmissable if and only if $d \geq 3$.

To show this Theorem, let's define the famous James-Stein skrinkage estimator that

$$
x_{n}^{J S}=\left(1-\frac{\sigma^{2}(d-2)}{n\|\bar{x}\|^{2}}\right) \bar{x}_{n}
$$

The intuition behind is that in high dimensions, the ball has much larger volumn given radius $\sigma \sqrt{d}$. Therefore, it pays to shrink x to reduce the variance. In high-dimension, it pays a lot to achieve unbiasedness.

Proof. We compute the MSE of JS estimator that

$$
\begin{aligned}
\mathbb{E}\left\|x_{n}^{J S}-\mu\right\|_{2}^{2} & =\frac{\sigma^{2} d}{n}-\frac{\sigma^{2}}{n}(d-2)^{2} \mathbb{E}\left[\frac{\sigma^{2} / n}{\left\|\bar{x}_{n}\right\|^{2}}\right] \\
& \leq \frac{\sigma^{2} d}{n}-\frac{\sigma^{2}(d-2)^{2}}{n\left(d-2+\frac{n}{\sigma^{2}}\|\mu\|^{2}\right)}
\end{aligned}
$$

Example 1.4. Compressed sensing
Suppose we get to observe

$$
y=A x_{\#},
$$

where $A \in \mathbb{R}^{m \times d}$ is a Gaussian random matrix and $x_{\#} \in \mathbb{R}^{d}$ has at most s nonzero entries.
Our goal is to recover $x_{\#}$.
From convex optimization, we can do in the following way that

$$
\begin{gathered}
\min _{x}\|x\|_{1} \\
A x=y
\end{gathered}
$$

As soon as $m<s \log \left(\frac{d}{s}\right)$, with high probability, $x_{\#}$ is the unique solution.
A geometric reason is that $x_{\#}$ solves the optimization problem if and only if

$$
\operatorname{ker}(A) \cap\left\{v:\left\|x_{\#}+v\right\| \leq\left\|x_{\#}\right\|_{1}\right\}=\{0\}
$$

Q: What is the probability that a random subspace intersects a convex cone trivially?

2 Basic Probability

Definition 2.1. Expectation and variance. Let X be a random variable on probability space. The expectation

$$
\mathbb{E}[X]
$$

Conditional expectation,

$$
\mathbb{E}[X \mid Y]
$$

and Variance

$$
\operatorname{Var}(X)=\mathbb{E}(X-\mathbb{E} X)^{2}=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

Definition 2.2. Moment generating function is defined as

$$
m_{X}(t)=\mathbb{E}\left[e^{t X}\right], \quad t \in \mathbb{R} .
$$

Definition 2.3. Denote the L^{p} norm as

$$
\|X\|_{p}=\left(\mathbb{E}\left[\left|X^{p}\right|\right]\right)^{1 / p}
$$

Definition 2.4. Banach space is

$$
L^{p}=\left\{X:\|X\|_{p}<\infty\right\}
$$

Remark 2.5. L^{2} is a Hilbert space.
We denote

$$
\langle X, Y\rangle_{2}=\mathbb{E}[X Y], \quad\|X\|_{2}=\sqrt{\langle X, X\rangle}=\sqrt{\mathbb{E}\left[X^{2}\right]}
$$

The covariance

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =\mathbb{E}([X-\mathbb{E}[X]][Y-\mathbb{E}[Y]]) \\
& =\langle X-\mathbb{E}[X], Y-\mathbb{E}[Y]\rangle
\end{aligned}
$$

2.1 Important Distributions

1. Uniform distribution
2. Gaussian distribution
3. Rademacher distribution

$$
p(x=1)=p(x=-1)=\frac{1}{2}
$$

4. Bernoulli(p)
5. Poisson λ

2.2 A few basic facts

Definition 2.6. A family $\left(X_{1}, \ldots, X_{k}\right)$ is independent if

$$
P\left[X_{i} \in E_{i}, \forall i=1, \ldots, k\right]=\prod_{i=1}^{k} P\left[X_{i} \in E_{i}\right]
$$

Remark 2.7. [Linearlity of expectation]

$$
\mathbb{E}\left[\sum c_{i} X_{i}\right]=\sum_{i=1}^{k} \mathbb{E} X_{i}
$$

Remark 2.8. [Linearlity of variance] If X_{1}, \ldots, X_{k} are pairwise independent, then

$$
\operatorname{Var}\left(\sum_{i=1}^{k} X_{i}\right)=\sum_{i=1}^{k} \operatorname{Var}\left(X_{i}\right)
$$

Remark 2.9. [Tower rule]

$$
\mathbb{E}[X]=\mathbb{E}[\mathbb{E}[X \mid Y]]
$$

Lemma 2.10. [Markov inequality] For any non-negative X and $t>0$, we have

$$
\mathbb{P}[X \geq t] \leq \frac{\mathbb{E} X}{t}
$$

Proof. We see

$$
\begin{aligned}
\mathbb{E} X & =\mathbb{E} X \mathbf{1}_{\{x \geq t\}}+\mathbb{E} X \mathbf{1}_{\{x<t\}} \\
& \geq t \mathbb{E}_{\{x \geq t\}} \\
& =t \mathbb{P}[X \geq t]
\end{aligned}
$$

3 Concentration Inequalities

3.1 Chernoff Bound

Let X_{1}, \ldots, X_{n} be r.v.'s with $\mathbb{E} X=0$. The question is: how big is $\left|\sum X_{i}\right|$ typically?
In general, this quantity can be $\mathcal{O}(n)$. But if X_{1}, \ldots, X_{n} are pairwise independen, then using Chebyshev gives us

$$
P\left(\left|\sum X_{i}\right| \geq t\right) \leq \frac{\sum \operatorname{Var}\left(X_{i}\right)}{t^{2}}
$$

So,

$$
P\left(\left|\sum X_{i}\right| \geq \lambda \sqrt{\sum \operatorname{Varr}\left(X_{i}\right)}\right) \leq \frac{1}{\lambda^{2}}
$$

Therefore, with high probability,

$$
\left|\sum X_{i}\right|=\mathcal{O}(\sqrt{n})
$$

if $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$.
Question:
When ca we expect to replace $\frac{1}{\lambda^{2}}$ by $e^{-\lambda}$ or $e^{-\lambda^{2}}$?

Example 3.1. [Motivating example] Consider if we wish to control that

$$
P\left[\sup _{i \in I} X_{i} \geq t\right] \leq \sum_{i \in I} P\left[X_{i} \geq t\right]
$$

If $|I|$ is huge, need $P\left[X_{i} \geq t\right]$
E.g. the control of $\sup _{x \in X}\left|\mathbb{E}_{z} f(x, z)-\frac{1}{n} \sum f\left(x, z_{i}\right)\right|$ which is an empirical process.

The Chernoff method is described in the following.
Let X be r.v. with $\mu=\mathbb{E} X<\infty$. Then, for all $\lambda \geq 0$, we have

$$
\begin{aligned}
P[X-\mu \geq t] & =P\left[e^{\lambda(X-\mu)} \geq e^{\lambda t}\right] \\
\text { By Markov } & \leq \frac{\mathbb{E} e^{\lambda(X-\mu)}}{e^{\lambda t}}
\end{aligned}
$$

This derives that

$$
\begin{aligned}
\log P[X-\mu \geq t] & \leq \inf _{\lambda \geq 0}\left\{\log \mathbb{E} e^{\lambda(X-\mu)}-\lambda t\right\} \\
& =-\sup _{\lambda \geq 0}\left\{\lambda t-\log \mathbb{E} e^{\lambda(X-\mu)}\right\}
\end{aligned}
$$

Define any function $\varphi: \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}$, the Fenchle conjugate is defined as

$$
\varphi^{*}(t)=\sup _{\lambda}\{\lambda t-\psi(\lambda)\}
$$

Let's look at the main example

$$
\psi_{X}(\lambda)=\log \mathbb{E} e^{\lambda(X-\mu)}
$$

For all $\lambda \in \mathbb{R}$, observe from Jensen

$$
\psi_{X}(\lambda)=\log \mathbb{E} e^{\lambda(X-\mu)} \geq \mathbb{E} \log e^{\lambda(X-\mu)}=0
$$

So when $\lambda<0$ and $t>0$, we have

$$
\lambda t-\psi(\lambda) \leq 0=0-\psi(0)
$$

Therefore, for $t \geq 0$, the equality holds.

$$
\psi_{X}^{*}(t)=\sup _{\lambda \geq 0}\{t \lambda-\psi(\lambda)\}
$$

We arrive at the Chernoff bound that

$$
P[X-\mu \geq t] \leq \exp \left(-\psi_{X}^{*}(t)\right)
$$

where $\psi_{X}(\lambda)=\log \left(\mathbb{E} e^{\lambda(X-\mu)}\right)$.
Example 3.2. Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Then,

$$
\mathbb{E} e^{\lambda(X-\mu)}=e^{\frac{\sigma^{2} \lambda^{2}}{2}}
$$

Then,

$$
\psi_{X}^{*}(t)=\sup _{\lambda} \lambda t-\frac{\sigma^{2} \lambda^{2}}{2}=\frac{t^{2}}{2 \sigma^{2}}
$$

Therefore,

$$
P[X \geq \mu+t] \leq \exp \left(-t^{2} / 2 \sigma^{2}\right), \quad \forall t>0
$$

3.2 Sub-Gaussian Random variable

Definition 3.3. [Sub-Gaussian variable] Define X with mean μ is sub-Gaussian with parameter $\sigma>0$ if

$$
\mathbb{E} e^{\lambda(X-\mu)} \leq e^{\frac{\sigma^{2} \lambda^{2}}{2}}, \quad \forall \lambda \in \mathbb{R} .
$$

If X is sub-gaussian, so is $-X$. We have the tail bound that

$$
P[|X-\mu| \geq t \sigma] \leq 2 e^{-t^{2} / 2}
$$

Lemma 3.4. [Bounded random variable] Suppose X is supported on $[a, b]$. Then X is $\frac{b-a}{2}$ sub-Gaussian. Proof. Set $y=X-\mu$ and define

$$
f(\lambda)=\log (\mathbb{E} \exp (\lambda y))
$$

Then,

$$
\begin{gathered}
f^{\prime}(\lambda)=\frac{\mathbb{E} y \exp (\lambda y)}{\mathbb{E} \exp (\lambda y)} \\
f^{\prime \prime}(\lambda)=\frac{\mathbb{E} y^{2} \exp (\lambda y)}{\mathbb{E} \exp (\lambda y)}-\left[\frac{\mathbb{E} y \exp (\lambda y)}{\mathbb{E} \exp (\lambda y)}\right]^{2}
\end{gathered}
$$

Define a measure $d m=\frac{\exp (\lambda y) d y}{\mathbb{E} \exp (\lambda y)}$ Then,

$$
\begin{aligned}
f^{\prime \prime}(\lambda) & =\operatorname{Var}_{m}(y) \\
& =\inf _{t}\left[(y-t)^{2}\right] \\
& \leq \mathbb{E}\left[\left(y-\frac{a+b}{2}\right)^{2}\right] \\
& =\frac{(b-a)^{2}}{4}
\end{aligned}
$$

Finally, using Tylor's theorem, we know

$$
f(\lambda)=f(0)+f^{\prime}(0) \lambda+\frac{1}{2} f^{\prime \prime}(\tilde{\lambda}) \lambda^{2}
$$

We could further know that

$$
f(\lambda) \leq 0+0+\frac{1}{2} \frac{(b-a)^{2}}{4} \lambda^{2}
$$

Lemma 3.5. [Sum rule] Suppose X_{i} are independent σ_{i}-sub-Gaussian, then

$$
\sum X_{i} i s \sqrt{\sum \sigma_{i}^{2}} \text {-sub-Gaussian }
$$

From here, we have the corollary which is the famour Hoeffding inequality.
Corollary 3.6. [Hoeffding]. Suppose X_{1}, \ldots, X_{n} are independent with $\mathbb{E} X_{i}=\mu_{i}$ and these X_{i} 's are σ_{i}-subGaussian. Then

$$
P\left[\sum\left(X_{i}-\mu_{i}\right) \geq t\|\sigma\|_{2}\right] \leq \exp \left\{-\frac{t^{2}}{2}\right\}
$$

Additionally, if $\mu_{i}=\mu, \sigma_{i}=\sigma$, then

$$
P\left[\sum\left(X_{i}-\mu\right) \geq t \sigma \sqrt{n}\right] \leq \exp \left\{-\frac{t^{2}}{2}\right\}
$$

It turns out the indepence in Hoeffding can be weakened to martingale difference sequences.

Theorem 3.7. [Azuma] Let X_{1}, \ldots, X_{n} be r.v.'s with

$$
\mathbb{E}\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)=\mathbb{E}\left(X_{i} \mid X_{i-1}\right)
$$

and

$$
\mathbb{E}\left(\exp \left(\lambda X_{i}\right) \mid X_{i-1}, \ldots, X_{1}\right) \leq e^{\sigma_{i}^{2} \lambda^{2} / 2}
$$

Then, $\sum X_{i}$ is $\|\sigma\|_{2}$-subGaussian.
Proof. Set $S_{n}=\sum X_{i}$. Then

$$
\begin{aligned}
\mathbb{E} \exp \left(\lambda S_{n}\right) & =\mathbb{E}\left[\exp \left(\lambda S_{n-1}\right) \mathbb{E}\left[\exp \left(\lambda X_{n}\right) \mid X_{1}, \ldots, X_{n-1}\right]\right] \\
& \leq e^{\sigma_{n}^{2} \lambda^{2} / 2} \mathbb{E} \exp \left(\lambda S_{n-1}\right) \\
& \leq e^{\|\sigma\|_{2}^{2} \lambda^{2} / 2}
\end{aligned}
$$

3.3 Sub-exponential random variable

Example 3.8. Let $z \sim \mathcal{N}(0,1)$. Let's compute

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda\left(Z^{2}-1\right)}\right] & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{\lambda\left(x^{2}-1\right)} e^{-x^{2} / 2} d x \\
& = \begin{cases}\frac{e^{-\lambda}}{\sqrt{1-2 \lambda}} & \text { if } \lambda \leq \frac{1}{2} \\
+\infty & \text { if } \lambda>\frac{1}{2}\end{cases}
\end{aligned}
$$

Definition 3.9. [Sub-exponential] Define X with mean μ is sub-exponential with parameters (ν, α) if

$$
\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \leq e^{\nu^{2} \lambda^{2} / 2}, \quad \forall|\lambda| \leq \frac{1}{\alpha}
$$

Back to the example 3.8, we see that

$$
\mathbb{E}\left[e^{\lambda\left(z^{2}-1\right)}\right] \leq \frac{e^{-\lambda}}{\sqrt{1-2 \lambda}} \leq e^{4 \lambda^{2} / 2}, \quad|\lambda|<\frac{1}{4}
$$

So, z^{2} is (2,4)-subexponential.
Theorem 3.10. [Sub-exponential tail bound] Let X be subexponential with (ν, α). Then

$$
P[X-\mu \geq t] \leq \begin{cases}e^{-t^{2} / 2 \nu^{2}} & , \text { if }|t| \leq \nu^{2} / \alpha \\ e^{-t / 2 \alpha} & , \text { otherwise }\end{cases}
$$

Proof. Back to Chernoff.

$$
\log P[X-\mu \geq t] \leq-\psi_{X}^{*}(t)
$$

where $\psi_{X}(\lambda)=\log \mathbb{E} e^{\lambda(X-\mu)}$. This quantity, we have

$$
\begin{aligned}
\psi_{X}(\lambda) & =\log \mathbb{E} e^{\lambda(X-\mu)} \\
& = \begin{cases}\nu^{2} \lambda^{2} / 2 & , \text { if }|\lambda| \leq 1 / \alpha \\
+\infty & , \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem 3.11. [Bernstein] Let X be subexponential with parameter (ν, α) and mean μ. Then

$$
P[|X-\mu| \geq t] \leq 2 \exp \left[-\left(\frac{t^{2}}{\nu^{2}} \wedge \frac{t}{\alpha}\right) / 2\right]
$$

Lemma 3.12. [Sum rule] X_{i} are $\left(\nu_{1}, \alpha_{i}\right)$-subexponential, then

$$
\sum X_{i} \text { is }\left(\|\sigma\|_{2},\|\alpha\|_{\infty}\right) \text {-subExponential }
$$

Theorem 3.13. [Bernstein for summation] Let X_{i} are $\left(\nu_{1}, \alpha_{i}\right)$-subexponential with mean $\mu_{i}=\mathbb{E} X_{i}$

$$
P\left[\left|\sum\left(X_{i}-\mu_{i}\right)\right| \geq t\right] \leq 2 \exp \left[-\frac{1}{2}\left(\frac{t^{2}}{\|\nu\|_{2}^{2}} \wedge \frac{t}{\|\alpha\|_{\infty}}\right)\right] .
$$

Theorem 3.14. [Improved Bernstein for bounded RVs] Suppose $|X-\mu| \leq b, \mathbb{E}(X-\mu)^{2}=\sigma^{2}$. Then,

$$
\mathbb{E} e^{\lambda(X-\mu)} \leq \exp \left(\frac{\lambda^{2} \sigma^{2}}{2(1-b|\lambda|)}\right), \forall|\lambda|>\frac{1}{b}
$$

Therefore,

$$
P[|X-\mu| \geq t] \leq 2 \exp \left(-\frac{t^{2}}{2\left(\sigma^{2}+b t\right)}\right)
$$

Proof. Using Taylor expnsion:

$$
\begin{aligned}
\mathbb{E} e^{\lambda(X-\mu)} & =\sum_{k=0}^{\infty} \lambda^{k} \frac{\mathbb{E}(X-\mu)^{k}}{k!} \\
& =1+\frac{\lambda^{2} \sigma^{2}}{2}+\sum_{k=3}^{\infty} \frac{\lambda^{k} \mathbb{E}(X-\mu)^{k}}{k!} \\
& \leq 1+\sum_{k=2}^{\infty} \frac{\lambda^{2} \sigma^{2} b^{k-2} \lambda^{k-2}}{2 \cdot 3 \cdots k} \\
& \leq 1+\frac{\lambda^{2} \sigma^{2}}{2} \frac{1}{1-b|\lambda|} \\
& \leq \exp \left(\frac{\lambda^{2} \sigma^{2}}{2} \frac{1}{1-b|\lambda|}\right)
\end{aligned}
$$

Follow from Chernoff, by setting $\lambda=\frac{t}{b t+\sigma^{2}} \in\left[0, \frac{1}{b}\right]$
This is superior to Hoeffding when $\sigma \ll b$.

3.4 Application: Dimensionality Reduction

Given $u_{1}, u_{2}, \ldots, u_{m} \in \mathbb{R}^{d}$ with $m \ll d$, can we map $u_{1}, . u_{2}, \ldots, u_{m}$ to a lower dimensional space with low distortion?

Theorem 3.15. [Johnson-Lindenstrauss] Fix $\epsilon, \delta \in(0,1)$, a set $U \subseteq \mathbb{R}^{d}$ of m points and a number $n>$ $\frac{16 \log \left(\frac{m^{2}}{\sigma}\right)}{\epsilon^{2}}$. Let $X \in \mathbb{R}^{n \times d}$ consist of i.i.d. $\mathcal{N}(0,1)$ entries. Then with probability $1-\delta$, the map $f(u)=\frac{1}{\sqrt{n}} X u$ satisfies

$$
1-\epsilon \leq \frac{\|f(u)-f(v)\|_{2}^{2}}{\|u-v\|_{2}^{2}} \leq 1+\epsilon, \quad \forall u, v \in U
$$

Proof. Observe that

$$
\frac{\|X u\|_{2}^{2}}{\|u\|_{2}^{2}}=\sum_{i=1}^{n} \frac{\left\langle X_{i}, \frac{u}{\|u\|}\right\rangle^{2}}{i . i . d . \mathcal{N}(0,1)}
$$

This gives rise to

$$
\frac{\|X u\|_{2}^{2}}{\|u\|_{2}^{2}} \text { is }(2 \sqrt{n}, n)-\text { subExponential }
$$

Using Bernstein,

$$
\begin{aligned}
P\left[\left|\frac{\|X u\|_{2}^{2}}{n\|u\|_{2}^{2}}-1\right|>\epsilon\right] & \leq 2 \exp \left[-\left(\frac{n \epsilon^{2}}{8} \wedge \frac{n \epsilon}{8}\right)\right] \\
& =2 \exp \left[-\left(\frac{n \epsilon^{2}}{8}\right)\right]
\end{aligned}
$$

So for any i, j, we have

$$
P\left[\frac{\left\|f\left(u_{i}-u_{j}\right)\right\|_{2}^{2}}{\left\|u_{i}-u_{j}\right\|_{2}^{2}} \notin[1-\epsilon, 1+\epsilon]\right] \leq 2 e^{-n \epsilon^{2} / 8}
$$

Take the union bound over $\binom{m}{2}$ pairs, we have

$$
2\binom{m}{2} e^{-n \epsilon^{2} / 8} \leq m^{2} e^{-n \epsilon^{2} / 8}=\delta
$$

Question 3.16. What if $m=\infty$ but U only has a few "degree of freedom"? Next, we will look at concentration of $f\left(x_{1}, \ldots, x_{n}\right)$ where f is a "well-behaved" function and x_{1}, \ldots, x_{n} are independent r.v's.

Bounded differences inequality (McDiarmid) So far, we have focused on n concentration of the average $\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
Remark 3.17. [Useful insight] As long as $f\left(x_{1}, \ldots, x_{n}\right)$ depends weakly on individual x_{i}, the concentration holds!
Theorem 3.18. [McDiarmid] Suppose that $f: X^{n} \rightarrow \mathbb{R}$ has the bounded difference property that
$\exists L_{1}, L_{2}, \ldots, L_{n}$ such that

$$
\left|f\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{k}^{\prime}, \ldots x_{n}\right)\right| \leq L_{k}, \quad \forall x, x^{\prime} \in X^{n}
$$

Then, for independent rv's $X=\left(x_{1}, \ldots, x_{n}\right)$, we have

$$
P[|f(X)-\mathbb{E} f(X)|>t] \leq 2 e^{-\frac{2 t^{2}}{\|L\|_{2}^{2}}}
$$

Proof. We will use the martingale method.
Define

$$
y_{0}=\mathbb{E} f(X) \text { and } y_{i}=\mathbb{E}\left[f(X) \mid x_{1}, \ldots, x_{i}\right]
$$

We observe that

$$
y_{i}=y_{0}+\sum_{j=0}^{i-1}\left(y_{j+1}-y_{j}\right)=y_{0}+\sum_{j=1}^{i} D_{j}
$$

Further, we see

$$
\begin{aligned}
\mathbb{E}\left[y_{i} \mid x_{1}, \ldots, x_{i-1}\right] & =\mathbb{E}\left[\mathbb{E}\left[f(X) \mid x_{1}, \ldots, x_{i}\right] \mid x_{1}, \ldots, x_{i-1}\right] \\
& =\mathbb{E}\left[f(X) \mid x_{1}, \ldots, x_{i-1}\right] \\
& =y_{i-1}
\end{aligned}
$$

Therefore, we know that

$$
\mathbb{E}\left[y_{i}-y_{i-1} \mid x_{1}, \ldots, x_{i-1}\right]=\mathbb{E}\left[D_{j+1} \mid x_{1}, \ldots, x_{i-1}\right]=0
$$

Then, we can compute that

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda(f(x)-\mathbb{E}[f(x)])}\right] & =\mathbb{E}\left[e^{\lambda\left(y_{n}-y_{0}\right)}\right] \\
& =\mathbb{E}\left[e^{\lambda \sum_{j=1}^{n} D_{j}}\right] \\
& =\mathbb{E}\left[e^{\lambda\left(y_{n-1}-y_{0}\right)} e^{\lambda D_{n}}\right] \\
& =\mathbb{E}\left[e^{\lambda\left(y_{n-1}-y_{0}\right)} \mathbb{E}\left[e^{\lambda D_{n}} \mid x_{1}, x_{2}, \ldots, x_{n-1}\right]\right]
\end{aligned}
$$

Let $x^{\prime} \neq x$ be another random sample from x_{i} that $x_{i}^{\prime} \sim^{i i d} x_{i}$. Then,

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda D_{i}} \mid x_{1}, \ldots, x_{i-1}\right] & =\mathbb{E}\left[e^{\lambda\left(y_{i}-y_{i-1}\right)} \mid x_{1}, \ldots, x_{i-1}\right] \\
& =\mathbb{E}\left[e^{\lambda \mathbb{E}\left[f(X)-f\left(X^{\prime}\right) \mid x_{1},,, x_{i}\right]} \mid x_{1}, \ldots, x_{i-1}\right] \\
(\text { Jensen }) & \leq \mathbb{E}\left[e^{\lambda\left(f(X)-f\left(X^{\prime}\right)\right)} \mid x_{1}, \ldots, x_{i-1}\right] \\
& \leq e^{\frac{\lambda^{2} L_{1}^{2}}{8}}
\end{aligned}
$$

Therefore, in total, we see

$$
\mathbb{E}\left[e^{\lambda(f(X)-\mathbb{E} f(X))}\right] \leq e^{\frac{\lambda^{2}}{8}\|L\|_{2}^{2}}
$$

Then, apply Chernoff, we have

$$
P[|f(X)-\mathbb{E} f(X)|>t] \leq 2 e^{-\frac{2 t^{2}}{\|L\|_{2}^{2}}}
$$

3.5 Lipschitz transformation of Gaussians

Theorem 3.19. Let $X_{1}, \ldots, X_{n} \sim^{\text {iid }} \mathcal{N}(0,1)$ and let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be L-Lipschitz:

$$
|F(x)-F(y)| \leq L\|x-y\|_{2}, \quad \forall x, y \in \mathbb{R}^{n}
$$

Then,

$$
F(X)-\mathbb{E} F(X) \text { is } \frac{\pi L}{\sqrt{2}}-\text { subGaussian }
$$

To show the theorem above, we need the following exercise.
Exercise 3.20. Suppose that (X, Y) are jointly normal. Then, X and Y are independent iff

$$
\mathbb{E}[X Y]=\mathbb{E} X \mathbb{E} Y
$$

Proof. We can assume WLOG:
$L=1, \mathbb{E} F\left(X_{1}, \ldots, X_{n}\right)=0, F$ is C^{\prime}-smooth (otherwise approximate). Let Y be an independent realization of X. Then

$$
\begin{aligned}
\mathbb{E} \exp (\lambda F(X)) & =\mathbb{E} \exp (\lambda F(X)) \cdot 1 \\
& \leq \mathbb{E} \exp (\lambda F(X)) \mathbb{E} \exp (-\lambda F(Y)) \\
& =\mathbb{E} \exp (\lambda(F(X)-F(Y)))
\end{aligned}
$$

We write $F(X)-F(Y)$ that

$$
F(X)-F(Y)=\int_{0}^{\pi / 2}(F \circ \gamma)^{\prime}(\theta) d \theta
$$

where $\gamma(\theta)=Y \cos (\theta)+X \sin (\theta)$.
Note here that

$$
\dot{\gamma}(\theta)=-Y \sin (\theta)+X \cos (\theta)
$$

So, $(\gamma(\theta),(\theta))$ jointly normal with $\operatorname{Cor}(\gamma(\theta), \dot{\gamma}(\theta))=0$.
The proof is a little bit beyond my understanding so I will understand it later.
Recall if X_{1}, \ldots, X_{n} are independent σ-subGaussian with $\mathbb{E} X_{i}=\mu$. The Hoeffding implies that $\hat{x}=\frac{1}{n} \sum x_{i}$ satisfies

$$
P[|\hat{x}-\mu| \leq t] \geq 1-2 \exp \left(-\frac{n t^{2}}{2 \sigma^{2}}\right)
$$

or equivalently

$$
P\left[|\hat{x}-\mu| \leq \sqrt{\frac{2 \sigma^{2} \log (2 / \rho)}{n}}\right] \geq 1-\rho .
$$

Can we achieve similar guarantee without subGaussian assumption with a different estimator \hat{x} ?
Theorem 3.21. [Mediam of means] Consider $X \in \mathbb{R}$ with $\mathbb{E} X=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$. Let X_{1}, \ldots, X_{n} be i.i.d. realizations of X subdivide into $k=18 \log \left(\frac{1}{\rho}\right)$ bins and form the empirical means \hat{x}_{j} for $j=1, \ldots, k$. Then $\hat{x}=\operatorname{median}\left(\hat{x}_{1}, \ldots, \hat{x}_{k}\right)$ satisfies

$$
P\left[|\hat{x}-\mu| \leq \sqrt{\frac{54 \sigma^{2} \log (1 / \rho)}{n}}\right] \geq 1-\rho
$$

Proof. By Chebyshev,

$$
P\left[\left|\hat{x}_{i}-\mu\right| \geq \sqrt{\frac{3 \sigma^{2} k}{n}}\right] \leq \frac{\sigma^{2} k / n}{3 \sigma^{2} k / n}=\frac{1}{3}, \quad \forall i
$$

By Hoeffding

$$
P\left[\frac{1}{k} \sum_{i=1}^{k} \mathbf{1}\left\{\left|\hat{x}_{i}-\mu\right| \geq \sqrt{\frac{3 \sigma^{2} k}{n}}\right\}>\frac{1}{2}\right] \geq 1-\exp \left(-\frac{k}{18}\right) .
$$

We can know that

$$
|\hat{x}-\mu| \leq \sqrt{\frac{3 \sigma^{2} k}{2 n}}
$$

In this case, \hat{x} depends on the confidence level ρ.

4 Random vectors in High Dimensions

- Concentration of the norm
- Isotropy
- Similarity of Normal and Spherical
- Sub-Gaussian and Sub-Exponential random vectors.

Two main results we'll prove in this chapter

- Sub-Gaussian vectors are concentrated around a sphere.
- Two independent isotropic subGaussian random vectors are nearly orthogonal in high dimensions.

We will next investigate the behavior of random vectors in high dimensions!!!

Concentration of the norm Let $X=\left(X_{1}, \ldots, X_{d}\right) \in \mathbb{R}^{d}$ have independent σ-subGaussian coordinates with

$$
\mathbb{E} X_{i}=0 \text { and } \mathbb{E} X_{i}^{2}=1
$$

What should we expect for

$$
\|X\|_{2}^{2} \text { and }\|X\|_{2}
$$

Lemma 4.1. Suppose y is σ-subGaussian. Then y^{2} is $\left(\sigma, 4 \sigma^{2}\right)$ subexponential.
Proof. [Sketch]
Step 1: Estimate $\mathbb{E}\left[|y|^{r}\right] \leq r 2^{r / 2} \sigma^{r} \Gamma\left(\frac{r}{2}\right)$ using $\mathbb{E}\left[|y|^{r}\right]=\int_{0}^{\infty} P\left[|y|>t^{1 / r}\right] d r$.
Step 2: Use Taylor expansion that

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda\left(y^{2}-\mathbb{E} y^{2}\right)}\right] & \leq 1+\sum_{r=2}^{\infty} \lambda^{r} 2^{r+1} \sigma^{2 r} \\
& \leq 1+\frac{8 \lambda^{2} \sigma^{4}}{1-2 \lambda \sigma^{2}} \\
& \leq \exp (\ldots)
\end{aligned}
$$

Corollary 4.2. Let $X=\left(X_{1}, \ldots, X_{d}\right) \in \mathbb{R}^{d}$ have independent σ-subGaussian coordinates with

$$
\mathbb{E} X_{i}=0 \text { and } \mathbb{E} X_{i}^{2}=1
$$

Then $P\left[\left|\|X\|_{2}^{2}-d\right| \geq t d\right] \leq 2 \exp \left(-\frac{d}{4 \sigma^{2}}\left(t \wedge t^{2}\right)\right)$ which is just

$$
P\left[\left|\left|\left|X \|_{2}-\sqrt{d}\right| \geq t \sqrt{d}\right] \leq 2 \exp \left(-\frac{d t^{2}}{4 \sigma^{2}}\right)\right.\right.
$$

Proof. We see $\|X\|_{2}^{2}$ that

$$
\|X\|_{2}^{2}=\sum_{i=1}^{d} X_{i}^{2}
$$

This is the sum of d random Chi-square samples. We see that (i) $\mathbb{E}\|X\|_{2}^{2}=d$ and (ii) $\|X\|_{2}^{2}$ is $\left(\sigma \sqrt{d}, 4 \sigma^{2}\right)$ subexponential.

Using Bernstein, we see that

$$
P\left[\left|\frac{1}{d}\right|\left|X \|_{2}^{2}-1\right| \geq t\right] \leq 2 \exp \left[-\frac{d}{4 \sigma^{2}}\left(t \wedge t^{2}\right)\right]
$$

Observe that $\forall z \geq 0$, we have

$$
|z-1| \geq t \rightarrow\left|z^{2}-1\right| \geq \min \left(t, t^{2}\right)
$$

So

$$
\begin{aligned}
P\left[\left|\frac{1}{\sqrt{d}}\|X\|_{2}-1\right| \geq t\right] & \leq P\left[\left|\frac{1}{d}\right|\left|X \|_{2}^{2}-1\right| \geq t^{2} \wedge t\right] \\
& \leq 2 \exp \left(-\frac{d t^{2}}{4 \sigma^{2}}\right)
\end{aligned}
$$

4.1 Isotropic vectors

Recall for $X \in \mathbb{R}^{d}$, covariance

$$
\operatorname{cov}(X)=\mathbb{E}\left[(X-\mu)(X-\mu)^{T}\right]
$$

where $\mu=\mathbb{E}[X]$.
Definition 4.3. A random vector $X \in \mathbb{R}^{d}$ with $\mathbb{E} X=0$ is isotropic if

$$
\Sigma(X)=\mathbb{E}\left[X X^{T}\right]=I_{d}
$$

Remark 4.4. If $\Sigma=\Sigma(X)$ is invertible, then $z:=\Sigma^{-1 / 2}(X-\mu)$ is isotropic.
Lemma 4.5. X is isotropic iff

$$
\mathbb{E}\langle X, y\rangle^{2}=\|y\|_{2}^{2}, \quad \forall y \in \mathbb{R}^{d}
$$

Proof. X is isotropic

$$
\begin{gathered}
\text { iff } \mathbb{E} X X^{T}=I_{d} \\
\text { iff } y^{T} \mathbb{E} X X^{T} y=y^{T} y \\
\text { iff } \mathbb{E} y^{T} X X^{T} y=\|y\|_{2}^{2} \\
\text { iff } \mathbb{E}\langle X, y\rangle^{2}=\|y\|_{2}^{2}
\end{gathered}
$$

Thus, if $\mathbb{E} X=0$, then X is isotropic iff marginal $\left\langle X, \frac{y}{\|y\|}\right\rangle$ has unit variance $\forall y \in \mathbb{R}^{d}$.
Lemma 4.6. Let $X \in \mathbb{R}^{d}$ be isotropic. Then $\mathbb{E}\|X\|_{2}^{2}=d$. Moreover, if X and y are two independent isotropic vectors, then

$$
\mathbb{E}\langle X, y\rangle^{2}=d
$$

Proof. First,

$$
\|X\|_{2}^{2}=X^{T} X=\operatorname{tr}\left(X X^{T}\right)
$$

Therefore,

$$
\mathbb{E}\|X\|_{2}^{2}=\operatorname{tr}\left(I_{d}\right)=d
$$

Nest,

$$
\begin{aligned}
\mathbb{E}\langle X, y\rangle^{2} & =\mathbb{E}_{y}\left[\mathbb{E}_{X}\langle X, y\rangle^{2} \mid y\right] \\
& =\mathbb{E}_{y}\left[\|y\|_{2}^{2}\right] \\
& =d
\end{aligned}
$$

Let X and Y be independent and isotropic. Then we see $\|X\| \sim \sqrt{d},\|y\| \sim \sqrt{d}$ and $\left\langle\frac{X}{\|X\|}, \frac{y}{\|y\|}\right\rangle \sim \frac{1}{\sqrt{d}}$. Can be rigorous by assuming light tails.

4.1.1 Examples of isotropic Random Variables

1. Spherical uniform RV. $X \sim \operatorname{Unif}\left(\sqrt{d} S^{d-1}\right)$.
2. Symmertic Bernoulli: $X \sim \operatorname{Unif}\left(\{-1,1\}^{d}\right)$
3. Any vector $X=\left(X_{1}, \ldots, X_{d}\right)$ where X_{i} are independent, zero mean, unit variance.
4. Coordinate $\operatorname{Unif}\left(\left\{\sqrt{d} e_{i}\right\}_{i=1}^{d}\right)$
5. Gaussian $g=\left(g_{1}, \ldots, g_{d}\right) \sim \mathcal{N}\left(0, I_{d}\right)$. Recall this means g_{i} are i.i.d. $\mathcal{N}(0,1)$.

The density of the Gaussian is

$$
p(x)=\prod_{i=1}^{d} p_{i}(x)=\prod_{i=1}^{d} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x_{i}^{2}}{2}}=\frac{1}{(2 \pi)^{n / 2}} e^{-\frac{\|x\|^{2}}{2}} .
$$

After applying a random rotation matrix, the standard multivariate Gaussian is still standard multivarriate Gaussian.

Exercise 4.7. Let $g \sim \mathcal{N}\left(0, I_{d}\right)$. Then $r:=\|g\|_{2}$ and $\theta=\frac{g}{\|g\|_{2}}$ are independent random variables and $\theta \sim U n i f\left(S^{d-1}\right)$.

Definition 4.8. X is \mathbb{R}^{d} is σ-subGaussian if $\langle X, u\rangle$ is σ-subGaussian $\forall u \in S^{d-1}$.
Example 4.9. Let $X=\left(X_{1}, \ldots, X_{d}\right)$ be RV with independent σ-subGaussian X_{i}. Then X is σ-subGaussian.

1. $\mathcal{N}\left(0, I_{d}\right)$ is 1-subGaussian.
2. Unif $\left(\{-1,1\}^{d}\right)$ is 1 -subGaussian.
3. Unif $\left(\left\{\sqrt{d} e_{i}\right\}_{i=1}^{d}\right)$ is σ-subGaussian with $\sigma \asymp \sqrt{\frac{d}{\log d}}$
4. Unif $\left(\sqrt{d} S^{d-1}\right)$ is c-subGaussian for a constant c.

5 Introduction to Statistical Inference

