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1 Introduction
How does one optimally extract information from data Sn = z1, ..., zn ∼i.i.d. P

1.1 Complexity
There are two sources to understand and measure complexity.

1. Statistical complexity: samples

2. Computational complexity: flops, gradient evaluations, optimization, computer science

Question: How does everything work under high dimensional settings?

Example 1.1. Mean estimation and Shrinkage
Suppose you get to observe Snx1, ..., xn ∼ N (µ,Σ). Your goal is to estimate µ.
One solution is just to compute the mean that

x̄n =
1

n

n∑
i=1

xi

But in what sense x̄n is a good estimation? A: Mean squared error defined as

EPn ||x̄n − µ||22 =
tr(Σ)

n

Is there a better estimator?
Simple answer: NO! Because the sample mean is minimax-optimal that

inf
x̂n

sup
µ

ESn∼N (µ,Σ)||x̂n − µ||22 ≥ c
tr(Σ)

n

But a more complicated answer is “yes”.
Suppose for simplicity Σ = I.
Consider bias-variance decomposition that

E||x̂n − µ||22 = E||x̂n − Ex̂n||22 + ||Ex̂n − µ||22

However, in high dimensions, it pays to trade bias for variance!!

Definition 1.2. x̂n strictly dominates x̃n if

E||x̂n − µ||2 ≤ E||x̃n − µ||2, ∀µ

and there exists µ0 s.t.
E||x̂n − µ0|| < E||x̃n − µ0||2.

Then x̃n is called inadmissable.

Theorem 1.3. x̄n is inadmissable if and only if d ≥ 3.
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To show this Theorem, let’s define the famous James-Stein skrinkage estimator that

xJSn =

(
1− σ2(d− 2)

n||x̄||2

)
x̄n

The intuition behind is that in high dimensions, the ball has much larger volumn given radius σ
√
d. There-

fore, it pays to shrink x to reduce the variance. In high-dimension, it pays a lot to achieve unbiasedness.

Proof. We compute the MSE of JS estimator that

E||xJSn − µ||22 =
σ2d

n
− σ2

n
(d− 2)2E

[
σ2/n

||x̄n||2

]
≤ σ2d

n
− σ2(d− 2)2

n(d− 2 + n
σ2 ||µ||2)

Example 1.4. Compressed sensing
Suppose we get to observe

y = Ax#,

where A ∈ Rm×d is a Gaussian random matrix and x# ∈ Rd has at most s nonzero entries.
Our goal is to recover x#.
From convex optimization, we can do in the following way that

min
x
||x||1

Ax = y

As soon as m < s log
(
d
s

)
, with high probability, x# is the unique solution.

A geometric reason is that x# solves the optimization problem if and only if

ker(A) ∩ {v : ||x# + v|| ≤ ||x#||1} = {0}

Q: What is the probability that a random subspace intersects a convex cone trivially?

2 Basic Probability
Definition 2.1. Expectation and variance. Let X be a random variable on probability space. The expectation

E[X]

Conditional expectation,
E[X|Y ]

and Variance
V ar(X) = E(X − EX)2 = E[X2]− E[X]2

Definition 2.2. Moment generating function is defined as

mX(t) = E[etX ], t ∈ R.

Definition 2.3. Denote the Lp norm as

||X||p = (E[|Xp|])1/p

Definition 2.4. Banach space is
Lp = {X : ||X||p <∞}

Remark 2.5. L2 is a Hilbert space.
We denote

〈X,Y 〉2 = E[XY ], ||X||2 =
√
〈X,X〉 =

√
E[X2]

The covariance

cov(X,Y ) = E ([X − E[X]][Y − E[Y ]])

= 〈X − E[X], Y − E[Y ]〉
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2.1 Important Distributions
1. Uniform distribution

2. Gaussian distribution

3. Rademacher distribution
p(x = 1) = p(x = −1) =

1

2

4. Bernoulli(p)

5. Poisson λ

2.2 A few basic facts
Definition 2.6. A family (X1, ..., Xk) is independent if

P [Xi ∈ Ei,∀i = 1, ..., k] =

k∏
i=1

P [Xi ∈ Ei]

Remark 2.7. [Linearlity of expectation]

E[
∑

ciXi] =

k∑
i=1

EXi

Remark 2.8. [Linearlity of variance] If X1, ..., Xk are pairwise independent, then

V ar(

k∑
i=1

Xi) =

k∑
i=1

V ar(Xi)

Remark 2.9. [Tower rule]

E[X] = E[E[X|Y ]]

Lemma 2.10. [Markov inequality] For any non-negative X and t > 0, we have

P[X ≥ t] ≤ EX
t

Proof. We see

EX = EX1{x≥t} + EX1{x<t}

≥ tE{x≥t}
= tP[X ≥ t]

3 Concentration Inequalities

3.1 Chernoff Bound
Let X1, ..., Xn be r.v.’s with EX = 0. The question is: how big is |

∑
Xi| typically?

In general, this quantity can be O(n). But if X1, ..., Xn are pairwise independen, then using Chebyshev
gives us

P
(
|
∑

Xi| ≥ t
)
≤
∑
V ar(Xi)

t2

So,

P

(∣∣∣∑Xi

∣∣∣ ≥ λ√∑V arr(Xi)

)
≤ 1

λ2

Therefore, with high probability, ∣∣∣∑Xi

∣∣∣ = O(
√
n),

if V ar(Xi) = σ2.
Question:
When ca we expect to replace 1

λ2 by e−λ or e−λ
2

?
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Example 3.1. [Motivating example] Consider if we wish to control that

P

[
sup
i∈I

Xi ≥ t
]
≤
∑
i∈I

P [Xi ≥ t]

If |I| is huge, need P [Xi ≥ t]
E.g. the control of supx∈X

∣∣Ezf(x, z)− 1
n

∑
f(x, zi)

∣∣ which is an empirical process.

The Chernoff method is described in the following.
Let X be r.v. with µ = EX <∞. Then, for all λ ≥ 0, we have

P [X − µ ≥ t] = P
[
eλ(X−µ) ≥ eλt

]
By Markov ≤ Eeλ(X−µ)

eλt

This derives that

logP [X − µ ≥ t] ≤ inf
λ≥0

{
logEeλ(X−µ) − λt

}
= − sup

λ≥0

{
λt− logEeλ(X−µ)

}
Define any function ϕ : R→ R ∪ {+∞}, the Fenchle conjugate is defined as

ϕ∗(t) = sup
λ
{λt− ψ(λ)}

Let’s look at the main example

ψX(λ) = logEeλ(X−µ)

For all λ ∈ R, observe from Jensen

ψX(λ) = logEeλ(X−µ) ≥ E log eλ(X−µ) = 0

So when λ < 0 and t > 0, we have
λt− ψ(λ) ≤ 0 = 0− ψ(0)

Therefore, for t ≥ 0, the equality holds.

ψ∗X(t) = sup
λ≥0
{tλ− ψ(λ)}

We arrive at the Chernoff bound that

P [X − µ ≥ t] ≤ exp (−ψ∗X(t))

where ψX(λ) = log
(
Eeλ(X−µ)

)
.

Example 3.2. Let X ∼ N (µ, σ2). Then,
Eeλ(X−µ) = e

σ2λ2

2

Then,

ψ∗X(t) = sup
λ
λt− σ2λ2

2
=

t2

2σ2

Therefore,
P [X ≥ µ+ t] ≤ exp

(
−t2/2σ2

)
, ∀t > 0
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3.2 Sub-Gaussian Random variable
Definition 3.3. [Sub-Gaussian variable] Define X with mean µ is sub-Gaussian with parameter σ > 0 if

Eeλ(X−µ) ≤ eσ
2λ2

2 , ∀λ ∈ R.

If X is sub-gaussian, so is −X. We have the tail bound that

P [|X − µ| ≥ tσ] ≤ 2e−t
2/2

Lemma 3.4. [Bounded random variable] Suppose X is supported on [a, b]. Then X is b−a
2 sub-Gaussian.

Proof. Set y = X − µ and define
f(λ) = log (E exp(λy))

Then,

f ′(λ) =
Ey exp(λy)

E exp(λy)

f ′′(λ) =
Ey2 exp(λy)

E exp(λy)
−
[
Ey exp(λy)

E exp(λy)

]2

Define a measure dm = exp(λy)dy
E exp(λy)

Then,

f ′′(λ) = V arm(y)

= inf
t

[
(y − t)2

]
≤ E

[
(y − a+ b

2
)2

]
=

(b− a)2

4

Finally, using Tylor’s theorem, we know

f(λ) = f(0) + f ′(0)λ+
1

2
f ′′(λ̃)λ2

We could further know that

f(λ) ≤ 0 + 0 +
1

2

(b− a)2

4
λ2

Lemma 3.5. [Sum rule] Suppose Xi are independent σi-sub-Gaussian, then∑
Xi is

√∑
σ2
i -sub-Gaussian

From here, we have the corollary which is the famour Hoeffding inequality.

Corollary 3.6. [Hoeffding]. Suppose X1, ..., Xn are independent with EXi = µi and these Xi’s are σi-sub-
Gaussian. Then

P
[∑

(Xi − µi) ≥ t||σ||2
]
≤ exp

{
− t

2

2

}
Additionally, if µi = µ, σi = σ, then

P
[∑

(Xi − µ) ≥ tσ
√
n
]
≤ exp

{
− t

2

2

}
It turns out the indepence in Hoeffding can be weakened to martingale difference sequences.
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Theorem 3.7. [Azuma] Let X1, ..., Xn be r.v.’s with

E (Xi|Xi−1, ..., X1) = E (Xi|Xi−1)

and
E (exp(λXi)|Xi−1, ..., X1) ≤ eσ

2
i λ

2/2

Then,
∑
Xi is ||σ||2-subGaussian.

Proof. Set Sn =
∑
Xi. Then

E exp (λSn) = E [exp(λSn−1)E [exp(λXn)|X1, ..., Xn−1]]

≤ eσ
2
nλ

2/2E exp(λSn−1)

≤ e||σ||
2
2λ

2/2

3.3 Sub-exponential random variable
Example 3.8. Let z ∼ N (0, 1). Let’s compute

E
[
eλ(Z2−1)

]
=

1√
2π

∫ +∞

−∞
eλ(x2−1)e−x

2/2dx

=

{
e−λ√
1−2λ

if λ ≤ 1
2

+∞ if λ > 1
2

Definition 3.9. [Sub-exponential] Define X with mean µ is sub-exponential with parameters (ν, α) if

E
[
eλ(X−µ)

]
≤ eν

2λ2/2, ∀|λ| ≤ 1

α
.

Back to the example 3.8, we see that

E
[
eλ(z2−1)

]
≤ e−λ√

1− 2λ
≤ e4λ2/2, |λ| < 1

4

So, z2 is (2, 4)-subexponential.

Theorem 3.10. [Sub-exponential tail bound] Let X be subexponential with (ν, α). Then

P [X − µ ≥ t] ≤

{
e−t

2/2ν2

, if |t| ≤ ν2/α

e−t/2α , otherwise

Proof. Back to Chernoff.
logP [X − µ ≥ t] ≤ −ψ∗X(t)

where ψX(λ) = logEeλ(X−µ). This quantity, we have

ψX(λ) = logEeλ(X−µ)

=

{
ν2λ2/2 , if |λ| ≤ 1/α

+∞ , otherwise

Theorem 3.11. [Bernstein] Let X be subexponential with parameter (ν, α) and mean µ. Then

P [|X − µ| ≥ t] ≤ 2 exp

[
−
(
t2

ν2
∧ t

α

)
/2

]
.

Lemma 3.12. [Sum rule] Xi are (ν1, αi)-subexponential, then∑
Xi is (||σ||2, ||α||∞) -subExponential
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Theorem 3.13. [Bernstein for summation] Let Xi are (ν1, αi)-subexponential with mean µi = EXi

P
[∣∣∣∑ (Xi − µi)

∣∣∣ ≥ t] ≤ 2 exp

[
−1

2

(
t2

||ν||22
∧ t

||α||∞

)]
.

Theorem 3.14. [Improved Bernstein for bounded RVs] Suppose |X − µ| ≤ b, E(X − µ)2 = σ2. Then,

Eeλ(X−µ) ≤ exp

(
λ2σ2

2(1− b|λ|)

)
, ∀|λ| > 1

b
.

Therefore,

P [|X − µ| ≥ t] ≤ 2 exp

(
− t2

2(σ2 + bt)

)
Proof. Using Taylor expnsion:

Eeλ(X−µ) =

∞∑
k=0

λk
E(X − µ)k

k!

= 1 +
λ2σ2

2
+

∞∑
k=3

λkE(X − µ)k

k!

≤ 1 +

∞∑
k=2

λ2σ2bk−2λk−2

2 · 3 · · · k

≤ 1 +
λ2σ2

2

1

1− b|λ|

≤ exp

(
λ2σ2

2

1

1− b|λ|

)
Follow from Chernoff, by setting λ = t

bt+σ2 ∈ [0, 1
b ]

This is superior to Hoeffding when σ � b.

3.4 Application: Dimensionality Reduction
Given u1, u2, ..., um ∈ Rd with m � d, can we map u1, .u2, ..., um to a lower dimensional space with low
distortion?

Theorem 3.15. [Johnson-Lindenstrauss] Fix ε, δ ∈ (0, 1), a set U ⊆ Rd of m points and a number n >
16 log(m

2

σ )

ε2 . Let X ∈ Rn×d consist of i.i.d. N (0, 1) entries. Then with probability 1− δ, the map f(u) = 1√
n
Xu

satisfies

1− ε ≤ ||f(u)− f(v)||22
||u− v||22

≤ 1 + ε, ∀u, v ∈ U

Proof. Observe that

||Xu||22
||u||22

=

n∑
i=1

〈
Xi,

u
||u||

〉2

i.i.d. N (0, 1)

This gives rise to
||Xu||22
||u||22

is (2
√
n, n)− subExponential

Using Bernstein,

P

[∣∣∣∣ ||Xu||22n||u||22
− 1

∣∣∣∣ > ε

]
≤ 2 exp

[
−
(
nε2

8
∧ nε

8

)]
= 2 exp

[
−
(
nε2

8

)]
So for any i, j, we have
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P

[
||f(ui − uj)||22
||ui − uj ||22

/∈ [1− ε, 1 + ε]

]
≤ 2e−nε

2/8

Take the union bound over
(
m
2

)
pairs, we have

2

(
m

2

)
e−nε

2/8 ≤ m2e−nε
2/8 = δ.

Question 3.16. What if m =∞ but U only has a few “degree of freedom”? Next, we will look at concentration
of f(x1, ..., xn) where f is a “well-behaved” function and x1, ..., xn are independent r.v’s.

Bounded differences inequality (McDiarmid) So far, we have focused on n concentration of the average
1
n

∑n
i=1Xi.

Remark 3.17. [Useful insight] As long as f(x1, ..., xn) depends weakly on individual xi, the concentration holds!

Theorem 3.18. [McDiarmid] Suppose that f : Xn → R has the bounded difference property that
∃L1, L2, ..., Ln such that

|f(x1, ..., xk, ..., xn)− f(x1, ..., x
′
k, ...xn)| ≤ Lk, ∀x, x′ ∈ Xn.

Then, for independent rv’s X = (x1, ..., xn), we have

P [|f(X)− Ef(X)| > t] ≤ 2e
− 2t2

||L||22

Proof. We will use the martingale method.
Define

y0 = Ef(X) and yi = E[f(X)|x1, ..., xi]

We observe that

yi = y0 +

i−1∑
j=0

(yj+1 − yj) = y0 +

i∑
j=1

Dj

Further, we see

E [yi|x1, ..., xi−1] = E [E [f(X)|x1, ..., xi] |x1, ..., xi−1]

= E [f(X)|x1, ..., xi−1]

= yi−1

Therefore, we know that

E [yi − yi−1|x1, ..., xi−1] = E [Dj+1|x1, ..., xi−1] = 0

Then, we can compute that

E
[
eλ(f(x)−E[f(x)])

]
= E

[
eλ(yn−y0)

]
= E

[
eλ

∑n
j=1Dj

]
= E

[
eλ(yn−1−y0)eλDn

]
= E

[
eλ(yn−1−y0)E

[
eλDn |x1, x2, ..., xn−1

]]
Let x′ 6= x be another random sample from xi that x

′

i ∼iid xi. Then,

E
[
eλDi |x1, ..., xi−1

]
= E

[
eλ(yi−yi−1)|x1, ..., xi−1

]
= E

[
eλE[f(X)−f(X′)|x1,,,.xi]|x1, ..., xi−1

]
(Jensen) ≤ E

[
eλ(f(X)−f(X′))|x1, ..., xi−1

]
≤ e

λ2L2
1

8
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Therefore, in total, we see
E
[
eλ(f(X)−Ef(X))

]
≤ eλ

2

8 ||L||
2
2

Then, apply Chernoff, we have

P [|f(X)− Ef(X)| > t] ≤ 2e
− 2t2

||L||22

3.5 Lipschitz transformation of Gaussians
Theorem 3.19. Let X1, ..., Xn ∼iid N (0, 1) and let F : Rn → R be L-Lipschitz:

|F (x)− F (y)| ≤ L||x− y||2, ∀x, y ∈ Rn

Then,

F (X)− EF (X) is
πL√

2
− subGaussian

To show the theorem above, we need the following exercise.

Exercise 3.20. Suppose that (X,Y ) are jointly normal. Then, X and Y are independent iff

E [XY ] = EXEY

Proof. We can assume WLOG:
L = 1, EF (X1, ..., Xn) = 0, F is C ′-smooth (otherwise approximate). Let Y be an independent realization

of X. Then

E exp (λF (X)) = E exp (λF (X)) · 1
≤ E exp (λF (X))E exp (−λF (Y ))

= E exp (λ (F (X)− F (Y )))

We write F (X)− F (Y ) that

F (X)− F (Y ) =

∫ π/2

0

(F ◦ γ)
′
(θ)dθ

where γ(θ) = Y cos(θ) +X sin(θ).
Note here that

γ̇(θ) = −Y sin(θ) +X cos(θ)

So, (γ(θ), (θ)) jointly normal with Cor (γ(θ), γ̇(θ)) = 0.

The proof is a little bit beyond my understanding so I will understand it later.
Recall if X1, ..., Xn are independent σ-subGaussian with EXi = µ. The Hoeffding implies that x̂ = 1

n

∑
xi

satisfies

P [|x̂− µ| ≤ t] ≥ 1− 2 exp

(
− nt

2

2σ2

)
or equivalently

P

[
|x̂− µ| ≤

√
2σ2 log(2/ρ)

n

]
≥ 1− ρ.

Can we achieve similar guarantee without subGaussian assumption with a different estimator x̂?

Theorem 3.21. [Mediam of means] Consider X ∈ R with EX = µ and V ar(X) = σ2. Let X1, ..., Xn be i.i.d.
realizations of X subdivide into k = 18 log

(
1
ρ

)
bins and form the empirical means x̂j for j = 1, ..., k. Then

x̂ = median(x̂1, ..., x̂k) satisfies

P

[
|x̂− µ| ≤

√
54σ2 log(1/ρ)

n

]
≥ 1− ρ
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Proof. By Chebyshev,

P

[
|x̂i − µ| ≥

√
3σ2k

n

]
≤ σ2k/n

3σ2k/n
=

1

3
, ∀i

By Hoeffding

P

[
1

k

k∑
i=1

1

{
|x̂i − µ| ≥

√
3σ2k

n

}
>

1

2

]
≥ 1− exp

(
− k

18

)
.

We can know that

|x̂− µ| ≤
√

3σ2k

2n

In this case, x̂ depends on the confidence level ρ.

4 Random vectors in High Dimensions
• Concentration of the norm

• Isotropy

• Similarity of Normal and Spherical

• Sub-Gaussian and Sub-Exponential random vectors.

Two main results we’ll prove in this chapter.

• Sub-Gaussian vectors are concentrated around a sphere.

• Two independent isotropic subGaussian random vectors are nearly orthogonal in high dimensions.

We will next investigate the behavior of random vectors in high dimensions!!!

Concentration of the norm Let X = (X1, ..., Xd) ∈ Rd have independent σ-subGaussian coordinates with

EXi = 0 and EX2
i = 1

What should we expect for
||X||22 and ||X||2

Lemma 4.1. Suppose y is σ-subGaussian. Then y2 is
(
σ, 4σ2

)
subexponential.

Proof. [Sketch]
Step 1: Estimate E [|y|r] ≤ r2r/2σrΓ

(
r
2

)
using E [|y|r] =

∫∞
0
P
[
|y| > t1/r

]
dr.

Step 2: Use Taylor expansion that

E
[
eλ(y

2−Ey2)
]
≤ 1 +

∞∑
r=2

λr2r+1σ2r

≤ 1 +
8λ2σ4

1− 2λσ2

≤ exp (...)

Corollary 4.2. Let X = (X1, ..., Xd) ∈ Rd have independent σ-subGaussian coordinates with

EXi = 0 and EX2
i = 1

Then P
[
|||X||22 − d| ≥ td

]
≤ 2 exp

(
− d

4σ2

(
t ∧ t2

))
which is just

P
[
|||X||2 −

√
d| ≥ t

√
d
]
≤ 2 exp

(
− dt

2

4σ2

)
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Proof. We see ||X||22 that

||X||22 =

d∑
i=1

X2
i

This is the sum of drandom Chi-square samples. We see that (i) E||X||22 = d and (ii) ||X||22 is
(
σ
√
d, 4σ2

)
subexponential.

Using Bernstein, we see that

P

[∣∣∣∣1d ||X||22 − 1

∣∣∣∣ ≥ t] ≤ 2 exp

[
− d

4σ2

(
t ∧ t2

)]
Observe that ∀z ≥ 0, we have

|z − 1| ≥ t→ |z2 − 1| ≥ min(t, t2)

So

P

[∣∣∣∣ 1√
d
||X||2 − 1

∣∣∣∣ ≥ t] ≤ P [∣∣∣∣1d ||X||22 − 1

∣∣∣∣ ≥ t2 ∧ t]
≤ 2 exp

(
− dt

2

4σ2

)

4.1 Isotropic vectors
Recall for X ∈ Rd, covariance

cov(X) = E
[
(X − µ) (X − µ)

T
]

where µ = E [X].

Definition 4.3. A random vector X ∈ Rd with EX = 0 is isotropic if

Σ(X) = E
[
XXT

]
= Id

Remark 4.4. If Σ = Σ(X) is invertible, then z := Σ−1/2 (X − µ) is isotropic.

Lemma 4.5. X is isotropic iff
E 〈X, y〉2 = ||y||22, ∀y ∈ Rd.

Proof. X is isotropic
iff EXXT = Id

iff yTEXXT y = yT y

iff EyTXXT y = ||y||22
iff E 〈X, y〉2 = ||y||22

Thus, if EX = 0, then X is isotropic iff marginal
〈
X, y
||y||

〉
has unit variance ∀y ∈ Rd .

Lemma 4.6. Let X ∈ Rd be isotropic. Then E||X||22 = d. Moreover, if X and y are two independent isotropic
vectors, then

E 〈X, y〉2 = d

Proof. First,
||X||22 = XTX = tr

(
XXT

)
Therefore,

E||X||22 = tr(Id) = d

Nest,

E 〈X, y〉2 = Ey
[
EX 〈X, y〉2 |y

]
= Ey

[
||y||22

]
= d

Let X and Y be independent and isotropic. Then we see ||X|| ∼
√
d, ||y|| ∼

√
d and

〈
X
||X|| ,

y
||y||

〉
∼ 1√

d
. Can

be rigorous by assuming light tails.
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4.1.1 Examples of isotropic Random Variables

1. Spherical uniform RV. X ∼ Unif
(√

dSd−1
)
.

2. Symmertic Bernoulli: X ∼ Unif
(
{−1, 1}d

)
3. Any vector X = (X1, ..., Xd) where Xi are independent, zero mean, unit variance.

4. Coordinate Unif
({√

dei

}d
i=1

)
5. Gaussian g = (g1, ..., gd) ∼ N (0, Id). Recall this means gi are i.i.d. N (0, 1).

The density of the Gaussian is

p(x) =

d∏
i=1

pi(x) =

d∏
i=1

1√
2π
e−

x2i
2 =

1

(2π)n/2
e−
||x||2

2 .

After applying a random rotation matrix, the standard multivariate Gaussian is still standard multivarriate
Gaussian.

Exercise 4.7. Let g ∼ N (0, Id). Then r := ||g||2 and θ = g
||g||2 are independent random variables and

θ ∼ Unif(Sd−1).

Definition 4.8. X is Rd is σ-subGaussian if 〈X,u〉 is σ-subGaussian ∀u ∈ Sd−1.

Example 4.9. Let X = (X1, ..., Xd) be RV with independent σ-subGaussian Xi. Then X is σ-subGaussian.

1. N (0, Id) is 1-subGaussian.

2. Unif
(
{−1, 1}d

)
is 1-subGaussian.

3. Unif
({√

dei

}d
i=1

)
is σ-subGaussian with σ �

√
d

log d

4. Unif
(√

dSd−1
)
is c-subGaussian for a constant c.
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