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1 Measures
Definition 1.1. [σ-algebra]. A non-void class A of subsets of Ω is a σ-algebra if

A,A1, A2, ... ∈ A ⇒ ∪∞1 An ∈ A.

Definition 1.2. A (finitely additive) measure is a function µ : A → [0,∞] such that µ(∅) = 0 and µ(
∑
An) =∑

µ(An) for countable (finite) disjoint sequences An in A.

Definition 1.3. A measure spase is a triple (Ω,A, µ) with A a σ-field and µ a measure.

Theorem 1.4. [Caratheodory Extension Theorem] A measure µ on a field C can be extended to a measure on the
minimal σ-field σ(C) over C. If µ is σ-finite on C, then the extension is unique and is also σ-finite.

Definition 1.5. A measure µ on R assigning finite values to finite intervals is called a Lebesgue-Stieltjes measure.

Definition 1.6. A function F on R which is finite, increasing, and right continuous is called a generalized distri-
bution function

F (a, b] ≡ F (b)− F (a)

Theorem 1.7. [Correspondence theorem] The relation

µ((a, b]) = F (a, b]

establishes a one-to-one correspondence between Lebesgue-Stieltjes measures µ on B = B1 and equivalence classes
of generalized df’s.

2 Measurable Functions and Integration
Definition 2.1. X : Ω→ R is measurable if [x ∈ B] = X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ A for all B ∈ B1.

Proposition 2.2. Suppose that {Xn} are measurable. Then so are supnXn,−Xn, infnXn, lim inf Xn, lim supXn

and limXn.

Proposition 2.3. Let X,Y be measurable. Then X ± Y,XY,X/Y,X+ ≡ X1[X≥0], |X|, g(X) for measurable g are
all measurable.

Proposition 2.4. (Elementary properties) Suppose that
∫
Xdµ,

∫
Y dµ and

∫
Xdµ+

∫
Y dµ exist. Then:

(i)
∫

(X + Y )dµ =
∫
Xdµ+

∫
Y dµ,

∫
cXdµ = c

∫
Xdµ

(ii) X ≥ 0 implies
∫
Xdµ ≥ 0; X ≥ Y implies

∫
Xdµ ≥

∫
Y dµ; and X = Y a.e. implies

∫
Xdµ =

∫
Y dµ.

(iii) (integrability) X is integrable if and only if |X| is integrable, and either implies that X is a.e. finite.
|X| ≤ Y with Y implies X integrable; X and Y integrable implies that X + Y is integrable.

Theorem 2.5. (Monotone convergeence theorem). If 0 ≤ Xn ↗ X, then
∫
Xndµ→

∫
Xdµ.

Theorem 2.6. (Fatou’s Lemma) If Xn ≥ 0 for all n, then
∫
limXndµ ≤ lim

∫
Xndµ ,

Definition 2.7. A sequence Xn converges almost everywhere, denoted Xn →q.e. X, if Xn(ω) → X(ω) for all
ω ∈ Ω\N where µ(N) = 0. Note that {Xn}, X, are all defined on one measure space (Ω,A). If µ is a probability
measure, µ = P with P (Ω) = 1, we will write as a.s.
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Corollary 2.8. Let {Xn} , X be finite measurable functions. Then Xn →a.e. X if and only if

µ (∩∞n=1 ∪∞m=n |Xm −X| ≥ 0) = 0

for all ε > 0. If µ(Ω) <∞, Xn →a.e. X if and only if

µ (∪∞m=n |Xm −X| ≥ ε)→ 0, as n→∞

for all ε > 0.

Definition 2.9. (Convergence in measure; convergence in probability) A sequence of finite measurable functions
Xn converge in measure to a measurable function X, denoted Xn →µ X, if

µ ([|Xn −X| ≥ ε])→ 0

for all ε > 0. If µ is a probability measure, µ(Ω) = 1, call µ = P , write Xn →µ X, and say Xn converge in
probability to X.

Proposition 2.10. Let Xn’s be finite a.e.
(i) If Xn →µ X then there exist a subsequence {nk} such that Xnk

→a.e. X.
(ii) If µ(Ω) <∞ and Xn →a.e. X, then Xn →µ X.

Theorem 2.11. (Dominated Convergence Theorem) If |Xn| ≤ Y a.e. with Y integrable, and if Xn →µ X (or
Xn →a.e. X), then

∫
|Xn −X| dµ→ 0 and lim

∫
Xndµ =

∫
Xdµ.

Definition 2.12. Let X be a finite measurable function on probability space (Ω,A, P ) (so that P (Ω) = 1). Then
X is called a random variable and

PX(B) ≡ P (X ∈ B) = P ({ω ∈ Ω : X(ω) ∈ B})

for all B ∈ B is called the induced probability distribution of X (on R). Thus (R,B, PX) is a probability space.

Theorem 2.13. (Theorem of the unconscious statistician.) If g is a finite measurable function from R to R, then∫
Ω

g(X(ω))dP (ω) =

∫
R
g(x)dPX(x) =

∫
R
g(x)dFX(x).

Proposition 2.14. (Interchange of integral and limit or derivative.) Suppose that X(ω, t) is measurable for each
t ∈ (a, b).

(i) If X(ω, t) is a.e. continuous in t at t0 and |X(ω, t)| ≤ Y (ω) a.e. for |t− t0| < δ with Y integrable, then∫
X(·, t)dµ is continuous in t at t0.
(ii) Suppose that ∂

∂tX(ω, t) exists for a.e. ω, all t ∈ (a, b), and
∣∣ ∂
∂tX(ω, t)

∣∣ ≤ Y (ω) integrable a.e. for all
t ∈ (a, b)

∂

∂t

∫
Ω

X(ω, t)dµ(ω) =

∫
Ω

∂

∂t
X(ω, t)dµ(ω)

3 Absolute Continuity, Radon-Nikodym Theorem, Fubini’s Theorem
Definition 3.1. The measure ν defined by

ν(A) ≡
∫
A

Xdµ =

∫
Ω

1AXdµ

is said to have density X w.r.t. µ.

Definition 3.2. If µ, ν are two measures on (Ω,A) s.t. µ(A) = 0 implies ν(A) = 0 for any A ∈ A, then ν is said
to be absolutely continuous w.r.t. µ, and we could write ν � µ. We also say that ν is dominated by µ.

Theorem 3.3. (Radon-Nikodym theorem.) Let (Ω,A, µ) be a σ-finite measure space, and let ν be a measure on
(Ω,A) with ν � µ. Then there exists a measurable function X ≥ 0 such that ν(A) =

∫
A
Xdµ for all A ∈ A. The

function X ≡ dν
dµ is unique in the sense that if Y is another such function, then Y = X a.e. w.r.t. µ. X is called

the Radon-Nikodym derivative of ν w.r.t. µ.
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Corollary 3.4. (Change of Variable Theorem.) Suppose that ν, µ are σ-dinite measures defined on a measure space
(Ω,A) with ν � µ, and suppose that Z is a measurable function such that

∫
Zdν is well-defined. Then for all

A ∈ A, ∫
A

Zdν =

∫
A

Z
dν

dµ
dµ

Proposition 3.5. (Scheffe’s theorem.) Suppose that νn(A) =
∫
A
fndµ, that ν(A) =

∫
A
fdν where fn are densities

and νn(Ω) = ν(Ω) <∞ for all n, and that fn → f a.e. µ. Then

sup
A∈A
|νn(A)− ν(A)| = 1

2

∫
Ω

|fn − f | → 0.

Theorem 3.6. (Fubini-Tonelli theorem.) Suppose that f : X× Y→ R is X × Y-measurable and f ≥ 0. Then∫
Y
f(x, y)dν(y) is X −measurable∫

Y
f(x, y)dν(y) is X −measurable

and ∫
X×Y

f(x, y)dπ(x, y) =

∫
X

{∫
Y
f(x, y)dν(y)

}
dµ(x) =

∫
Y

{∫
X
f(x, y)dµ(x)

}
dν(y).

If f ∈ L1(π) (so
∫
X×Y |f | dπ <∞), then the above equation holds.
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