Measures, Integration, Convergence Note by Jon Wellner

Scribe: Mars Gao

October 22, 2022

1 Measures

Definition 1.1. [σ -algebra]. A non-void class \mathcal{A} of subsets of Ω is a σ -algebra if

 $A, A_1, A_2, \dots \in \mathcal{A} \Rightarrow \cup_1^\infty A_n \in \mathcal{A}.$

Definition 1.2. A (finitely additive) measure is a function $\mu : \mathcal{A} \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and $\mu(\sum A_n) = \sum \mu(A_n)$ for countable (finite) disjoint sequences A_n in \mathcal{A} .

Definition 1.3. A measure space is a triple $(\Omega, \mathcal{A}, \mu)$ with \mathcal{A} a σ -field and μ a measure.

Theorem 1.4. [Caratheodory Extension Theorem] A measure μ on a field C can be extended to a measure on the minimal σ -field $\sigma(C)$ over C. If μ is σ -finite on C, then the extension is unique and is also σ -finite.

Definition 1.5. A measure μ on \mathbb{R} assigning finite values to finite intervals is called a Lebesgue-Stieltjes measure.

Definition 1.6. A function F on \mathbb{R} which is finite, increasing, and right continuous is called a generalized distribution function

$$F(a,b] \equiv F(b) - F(a)$$

Theorem 1.7. [Correspondence theorem] The relation

$$\mu((a,b]) = F(a,b]$$

establishes a one-to-one correspondence between Lebesgue-Stieltjes measures μ on $\mathcal{B} = \mathcal{B}_1$ and equivalence classes of generalized df's.

2 Measurable Functions and Integration

Definition 2.1. $X: \Omega \to \mathbb{R}$ is measurable if $[x \in B] = X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{A}$ for all $B \in \mathcal{B}_1$.

Proposition 2.2. Suppose that $\{X_n\}$ are measurable. Then so are $\sup_n X_n, -X_n, \inf_n X_n, \liminf_n X_n, \limsup_n X_n$ and $\lim_n X_n$.

Proposition 2.3. Let X, Y be measurable. Then $X \pm Y, XY, X/Y, X^+ \equiv X\mathbf{1}_{[X \ge 0]}, |X|, g(X)$ for measurable g are all measurable.

Proposition 2.4. (Elementary properties) Suppose that $\int Xd\mu$, $\int Yd\mu$ and $\int Xd\mu + \int Yd\mu$ exist. Then: (i) $\int (X+Y)d\mu = \int Xd\mu + \int Yd\mu$, $\int cXd\mu = c \int Xd\mu$

(ii) $X \ge 0$ implies $\int X d\mu \ge 0$; $X \ge Y$ implies $\int X d\mu \ge \int Y d\mu$; and X = Y a.e. implies $\int X d\mu = \int Y d\mu$.

(iii) (integrability) X is integrable if and only if |X| is integrable, and either implies that X is a.e. finite. $|X| \leq Y$ with Y implies X integrable; X and Y integrable implies that X + Y is integrable.

Theorem 2.5. (Monotone convergence theorem). If $0 \leq X_n \nearrow X$, then $\int X_n d\mu \to \int X d\mu$.

Theorem 2.6. (Fatou's Lemma) If $X_n \ge 0$ for all n, then $\int \underline{\lim} X_n d\mu \le \underline{\lim} \int X_n d\mu$,

Definition 2.7. A sequence X_n converges almost everywhere, denoted $X_n \to_{q.e.} X$, if $X_n(\omega) \to X(\omega)$ for all $\omega \in \Omega \setminus N$ where $\mu(N) = 0$. Note that $\{X_n\}$, X, are all defined on one measure space (Ω, \mathcal{A}) . If μ is a probability measure, $\mu = P$ with $P(\Omega) = 1$, we will write as a.s.

Corollary 2.8. Let $\{X_n\}, X$ be finite measurable functions. Then $X_n \rightarrow_{a.e.} X$ if and only if

$$\mu\left(\bigcap_{n=1}^{\infty}\cup_{m=n}^{\infty}|X_m-X|\ge 0\right)=0$$

for all $\epsilon > 0$. If $\mu(\Omega) < \infty$, $X_n \rightarrow_{a.e.} X$ if and only if

$$\mu\left(\bigcup_{m=n}^{\infty} |X_m - X| \ge \epsilon\right) \to 0, \quad as \quad n \to \infty$$

for all $\epsilon > 0$.

Definition 2.9. (Convergence in measure; convergence in probability) A sequence of finite measurable functions X_n converge in measure to a measurable function X, denoted $X_n \to_{\mu} X$, if

$$\mu\left(\left[|X_n - X| \ge \epsilon\right]\right) \to 0$$

for all $\epsilon > 0$. If μ is a probability measure, $\mu(\Omega) = 1$, call $\mu = P$, write $X_n \to_{\mu} X$, and say X_n converge in probability to X.

Proposition 2.10. Let X_n 's be finite a.e.

(i) If $X_n \to_{\mu} X$ then there exist a subsequence $\{n_k\}$ such that $X_{n_k} \to_{a.e.} X$. (ii) If $\mu(\Omega) < \infty$ and $X_n \to_{a.e.} X$, then $X_n \to_{\mu} X$.

Theorem 2.11. (Dominated Convergence Theorem) If $|X_n| \leq Y$ a.e. with Y integrable, and if $X_n \to_{\mu} X$ (or $X_n \to_{a.e.} X$), then $\int |X_n - X| d\mu \to 0$ and $\lim \int X_n d\mu = \int X d\mu$.

Definition 2.12. Let X be a finite measurable function on probability space (Ω, \mathcal{A}, P) (so that $P(\Omega) = 1$). Then X is called a random variable and

$$P_X(B) \equiv P(X \in B) = P\left(\{\omega \in \Omega : X(\omega) \in B\}\right)$$

for all $B \in \mathcal{B}$ is called the induced probability distribution of X (on \mathbb{R}). Thus $(\mathbb{R}, \mathcal{B}, P_X)$ is a probability space.

Theorem 2.13. (Theorem of the unconscious statistician.) If g is a finite measurable function from \mathbb{R} to \mathbb{R} , then

$$\int_{\Omega} g(X(\omega))dP(\omega) = \int_{\mathbb{R}} g(x)dP_X(x) = \int_{\mathbb{R}} g(x)dF_X(x)$$

Proposition 2.14. (Interchange of integral and limit or derivative.) Suppose that $X(\omega, t)$ is measurable for each $t \in (a, b)$.

(i) If $X(\omega,t)$ is a.e. continuous in t at t_0 and $|X(\omega,t)| \leq Y(\omega)$ a.e. for $|t-t_0| < \delta$ with Y integrable, then $\int X(\cdot,t)d\mu$ is continuous in t at t_0 .

(ii) Suppose that $\frac{\partial}{\partial t}X(\omega,t)$ exists for a.e. ω , all $t \in (a,b)$, and $\left|\frac{\partial}{\partial t}X(\omega,t)\right| \leq Y(\omega)$ integrable a.e. for all $t \in (a,b)$

$$\frac{\partial}{\partial t} \int_{\Omega} X(\omega, t) d\mu(\omega) = \int_{\Omega} \frac{\partial}{\partial t} X(\omega, t) d\mu(\omega)$$

3 Absolute Continuity, Radon-Nikodym Theorem, Fubini's Theorem

Definition 3.1. The measure ν defined by

$$\nu(A) \equiv \int_A X d\mu = \int_\Omega \mathbf{1}_A X d\mu$$

is said to have density X w.r.t. μ .

Definition 3.2. If μ, ν are two measures on (Ω, \mathcal{A}) s.t. $\mu(\mathcal{A}) = 0$ implies $\nu(\mathcal{A}) = 0$ for any $\mathcal{A} \in \mathcal{A}$, then ν is said to be absolutely continuous w.r.t. μ , and we could write $\nu \ll \mu$. We also say that ν is dominated by μ .

Theorem 3.3. (Radon-Nikodym theorem.) Let $(\Omega, \mathcal{A}, \mu)$ be a σ -finite measure space, and let ν be a measure on (Ω, \mathcal{A}) with $\nu \ll \mu$. Then there exists a measurable function $X \ge 0$ such that $\nu(\mathcal{A}) = \int_{\mathcal{A}} X d\mu$ for all $\mathcal{A} \in \mathcal{A}$. The function $X \equiv \frac{d\nu}{d\mu}$ is unique in the sense that if Y is another such function, then Y = X a.e. w.r.t. μ . X is called the Radon-Nikodym derivative of ν w.r.t. μ .

Corollary 3.4. (Change of Variable Theorem.) Suppose that ν, μ are σ -dinite measures defined on a measure space (Ω, \mathcal{A}) with $\nu \ll \mu$, and suppose that Z is a measurable function such that $\int Z d\nu$ is well-defined. Then for all $A \in \mathcal{A}$,

$$\int_{A} Z d\nu = \int_{A} Z \frac{d\nu}{d\mu} d\mu$$

Proposition 3.5. (Scheffe's theorem.) Suppose that $\nu_n(A) = \int_A f_n d\mu$, that $\nu(A) = \int_A f d\nu$ where f_n are densities and $\nu_n(\Omega) = \nu(\Omega) < \infty$ for all n, and that $f_n \to f$ a.e. μ . Then

$$\sup_{A \in \mathcal{A}} |\nu_n(A) - \nu(A)| = \frac{1}{2} \int_{\Omega} |f_n - f| \to 0.$$

Theorem 3.6. (Fubini-Tonelli theorem.) Suppose that $f : \mathbb{X} \times \mathbb{Y} \to \mathbb{R}$ is $\mathcal{X} \times \mathcal{Y}$ -measurable and $f \ge 0$. Then

$$\int_{\mathbb{Y}} f(x,y) d\nu(y) \quad is \quad \mathcal{X} - measurable \\ \int_{\mathbb{Y}} f(x,y) d\nu(y) \quad is \quad \mathcal{X} - measurable$$

and

$$\int_{\mathbb{X}\times\mathbb{Y}} f(x,y)d\pi(x,y) = \int_{\mathbb{X}} \left\{ \int_{\mathbb{Y}} f(x,y)d\nu(y) \right\} d\mu(x) = \int_{\mathbb{Y}} \left\{ \int_{\mathbb{X}} f(x,y)d\mu(x) \right\} d\nu(y) d\mu(x) = \int_{\mathbb{Y}} \left\{ \int_{\mathbb{X}} f(x,y)d\mu(x) \right\} d\nu(y) d\mu(x) d\mu(x) = \int_{\mathbb{Y}} \left\{ \int_{\mathbb{X}} f(x,y)d\mu(x) \right\} d\mu(x) d\mu(x$$

If $f \in L_1(\pi)$ (so $\int_{\mathbb{X}\times\mathbb{Y}} |f| d\pi < \infty$), then the above equation holds.