
Learning Large Scale Common Sense Models of Everyday Life

William Pentney
Department of Computer Science & Engineering

University of Washington
bill@cs.washington.edu

Matthai Philipose
Intel Research Seattle

matthai.philipose@intel.com

Jeff Bilmes
Department of Electrical Engineering

University of Washington
bilmes@ee.washington.edu

Henry Kautz
Department of Computer Science

University of Rochester
kautz@cs.rochester.edu

Abstract

Recent work has shown promise in using large, publicly avail-
able, hand-contributed commonsense databases as joint mod-
els that can be used to infer human state from day-to-day sen-
sor data. The parameters of these models are mined from the
web. We show in this paper that learning these parameters
using sensor data (with the mined parameters as priors) can
improve performance of the models significantly. The pri-
mary challenge in learning is scale. Since the model com-
prises roughly 50,000 irregularly connected nodes in each
time slice, it is intractable either to completely label observed
data manually or to compute the expected likelihood of even
a single time slice. We show how to solve the resulting semi-
supervised learning problem by combining a variety of con-
ventional approximation techniques and a novel technique
for simplifying the model called context-based pruning. We
show empirically that the learned model is substantially bet-
ter at interpreting sensor data and an detailed analysis of how
various techniques contribute to the performance.

Introduction
Sensor-based methods for inferring the state of people and
their environment have a variety of applications such as el-
der care management (Wilson et al. 2005) and institutional
workflow management. A system that could tell whether an
elderly person living alone has a cold, has taken medication
or is depressed, for instance, could substantially reduce the
financial burden of care. A key challenge in building such
systems is the need for models that relate low-level sensor
signals (e.g., vision) to high-level concepts (e.g., depres-
sion). The conventional approach to acquiring such mod-
els is to apply machine learning techniques to labeled sensor
data, given a “structure” prior on the dependencies between
variables. The structure itself is often provided by applica-
tion developers in a manual fashion. However, if many of the
tens of thousands of aspects of daily life are to be tracked,
the variables and their relationships amount to a “common-
sense” encoding of daily life, and manual specification be-
comes impractical for a single individual.

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Fortunately, common sense does not vary much across
time, people or contexts, so that once captured, it can be
re-used many times. Well-known efforts such as Cyc (Lenat
& Guha 1990) and OpenMind/OMICS (Gupta & Kochen-
derfer 2004) have therefore devoted themselves to accumu-
lating and codifying commonsense information about daily
life. Using these databases for interpreting real-world sensor
data presents two challenges:

• How should ground terms in the database (e.g.,
use(knife)) be mapped to sensor signals (e.g., pix-
els)?

• How should errors, uncertainty and conflict within the
database be represented and handled during reasoning?

The recent work of Pentney et al. (2006) on the SRCS
(State Recognition using Common Sense) system provides
an interesting viewpoint. First, since emerging dense sen-
sor networks (Tapia, Intille, & Larson 2004; Fishkin, Phili-
pose, & Rea 2005) can directly report high-level object-use
data, and since the OMICS database is grounded extensively
in terms of object use, SRCS provides a commonsense in-
terpretation of the world by connecting dense sensors to a
model representing the OMICS database. Second, SRCS
attaches weights automatically mined from the web to re-
lations in OMICS and uses these weights to provide a soft
interpretation of the relations in the database. In particular,
it converts the database into a large dynamic probabilistic
graphical model where the mined weights become feature
weights. The resulting system uses OMICS automatically to
interpret real-world activity data with modest success.

In restricting itself to using web-mined feature weights,
SRCS omits a more conventional approach to obtaining the
weights, that of learning the weights using observed data.
This paper shows that it is both feasible and useful to aug-
ment the weights using machine learning techniques on ob-
served data. Learning is challenging because of the size,
complexity and scope of the SRCS graphical model. The
model is a dynamic model that reasons over thousands of
time steps with a roughly 50,000 node graph at each time
step. Unlike graphs representing images in computer vision,
for instance, the graph has extremely non-uniform structure
and a large fraction of hidden nodes. Finally, given that the

graph represents a wide variety of random variables about
the state of the world at each step (from peoples’ emotions
to the state of their roof) it is realistic to expect manual la-
beling of no more than a very small fraction of the nodes
at each time step. The end result is a very large semi-
supervised learning problem (Zhu 2005) over a mixed di-
rected/undirected probabilistic graphical model.

Although general approaches to semi-supervised learn-
ing of graphical models do exist, solving large problems
requires considerable sophistication in exploiting problem
structure in practice. In this light, this paper makes three
main contributions. First, it formulates the commonsense
model learning problem as maximum likelihood estimation
on a graphical model with mined priors, and applies a variety
of existing techniques to make learning tractable. Second,
it presents a simple novel technique called context-based
pruning to speed up inference substantially. Context-based
pruning captures the intuition that we may be able to asso-
ciate with sets of observations a subset of variables (called
a context) that are likely to be affected by these observa-
tions. By identifying, and avoiding reasoning about, irrel-
evant contexts, it may be possible to substantially reduce
the number of variables considered during inference. Third,
it provides a detailed evaluation that shows that learning is
both reasonably fast and improves the SRCS model signif-
icantly, and that many of our design choices contribute sig-
nificantly to this result. To our knowledge, this work is the
first to show how to improve a large common sense database
by observing sensor data of human activity.

Preliminaries
The model on which we perform learning is a slight vari-
ation of the SRCS model (Pentney et al. 2006). We are
given a set of observations o = o1, o2, ...or ; in our context,
these observations will be Boolean random variables. We
wish to infer the state of a set of queries s = s1, s2, ...sn−r,
also Boolean random variables, for a given slice of time t.
Collectively, we will speak of the state of the observations
and queries as the set of variables x = x1,x2, ...xn, where
x1...xr = o1, ...or and xr+1...xn = s1, ...sn−r, and the set
of the observations and queries at some specific point in time
t as the state vector xt = x1t ,x2t ,x3t ...xnt .

We assume that we have a set of weighted proposi-
tional Horn clauses (c1, q1), (c2, qm), . . . (cm, qm), where
each clause ci is a relation over Boolean variables about
the state of the environment, weighted by quality score
qi in [0,1]. For instance, the clause used(bowl) →
action(make cereal) may have weight 0.9, and rep-
resent the proposition “if the bowl is being used, the user is
making cereal.”

Given a set of Horn clauses, we produce a probabilistic
graphical model designed to model the state of the environ-
ment over time. As in SRCS, time slice t may be modeled
with a Markov random field, in which xt will represent the
state of the world at t. Some of the variables xit can be
grounded in actual observations; if we can observe the use
of a bowl at time t, for instance, the variable representing
used(bowl) may be provided as evidence. In a slight
deviation for SRCS (which produces one feature per Horn

clause), we represent each Horn clause ci by two binary-
valued feature functions φi(xci) and φm+i(xci), where xci

is the set of all variables xj which appear in ci. The func-
tion φi(xci) is a positive feature, and set to 1 if all variables
in xci are true (i.e. both the left and right sides of the Horn
clause are true, and thus ci is satisfied), and 0 otherwise. The
function φm+i(xci), conversely, is a negative feature and set
to 1 if the assignment to xci violates the Horn clause and 0
otherwise. We assign weight λi = qi to positive feature
φi(xci), and λm+i = −qi to negative feature φm+i(xci).
For simplicity, we may sometimes refer to φi(x), where x is
an entire state vector; this should be read as φi(x̂ci), where
x̂ci is the assignment imposed on xci by x̂. The full set of
all such feature functions φ = φ1, φ2, ...φ2m will represent
the relationships between different variables at time t.

We follow SRCS in modeling in how variables xt change
over time. For simplicity, we will assume that, given that
xit−1 = p, xit = p with some fixed probability σp.
This is represented with another set of feature functions
ψ = {ψ1, ψ2, ...ψn}, where ψi is a function of (xit−1 , xit),
ψi(p, p) = σp, and ψi(p, q) = 1 − σp where p ∈ {0, 1},
p �= q. Intuitively, this simplifying model means that, given
no other evidence, variables will remain in the state they are,
but with declining probability over time.

The probability of the state xt given the state xt−1 as evi-
dence may be calculated in this model as

P (xt|xt−1) =
1

Zxt−1

exp((
∑

i

λiφi(xt))+
∑

i

μiψi(xt,xt−1))

where Zxt−1 =
∑

xt
exp((

∑
i λiφi(xt)) +∑

i μiψi(xt,xt−1)) is a normalizing constant
summing all assignments to xt given xt−1, and
(λ, μ) = ((λ1, λ2, ...λ2m), (μ1, μ2, ...μn)) represent
parameters on the features ψ, φ. This distribution factorizes
with respect to a mixed directed/undirected graph with
directed links between adjacent time slices.

A primary challenge in providing accurate inference us-
ing this model is the discovery of a good set of parameters
(λ, μ). In SRCS, the qi were found from Google searches,
with the intention of giving higher scores to those predicates
which represent more significant relationships, and low or
zero scores to those that provide little useful information.
Once the λi were set to qi and μi to a default high “smooth-
ing value”, SRCS made no effort to re-estimate parameters
λ or μ. In contrast, we use these initial values of the parame-
ters as priors that aid in re-estimating them given additional
labeled data.

Learning
To improve the model used, we attempt to optimize the
model λ, μ for maximum log-likelihood based on train-
ing data. That is, given an actual trace of observed states
x̂ = x̂1, x̂2, ..., x̂d and some prior on the state of the envi-
ronment x̂0, we wish to optimize the value P (x̂); we will do
this by instead optimizing LL(λ, μ) = log P (x̂|λ, μ). The
distribution reflected by our model possesses the Markov

property, so log P (x̂|λ, μ) =
∑d

t=1 logP(x̂t|x̂t−1, λ, μ).
The gradient of LL with respect to each λj is

∂LL

∂λj
=

∑

t

φj(x̂t) +
∑

x̂ci

P(x̂ci)φj(x̂ci)

and with respect to each μj is

∂LL

∂μj
=

∑

t

ψj(x̂t, x̂t−1)+
∑

xit
,xit−1

P(xit ,xit−1)ψj(xit ,xit−1)

The second terms of these equations are equal to
E(φj(x̂)) and E(ψj(x̂)), respectively, and may be calcu-
lated efficiently by computing the marginal probabilities of
each x̂ci using the well-known belief propagation (BP) algo-
rithm (Pearl 1988). We may then optimize LL by finding the
model parameters (λ, μ) for which the gradient is zero using
stochastic gradient descent (SGD) methods. SGD optimiza-
tion has been shown to be effective for optimization of con-
ditional random fields in other contexts (Vishwanathan et al.
2006). It should be noted that while some other researchers
have found the L-BFGS algorithm to be effective for opti-
mization (Sutton, Rohanimanesh, & McCallum 2004), we
found SGD to provide much faster convergence in our ex-
periments.

Let ∇θk(x) be the gradient of the likelihood function on
training instance x under model θk. The standard SGD al-
gorithm begins with an initial model θ0 = (λ, μ) and itera-
tively updates the model by selecting a single training exam-
ple x, calculating the gradient ∇θk−1(x), and updating the
model with the equation

θk = θk−1 − ηk∇θk−1(x)
where ηk is the gain factor for iteration k. We select train-

ing instances for each iteration by selecting a random permu-
tation of an entire set of traces and proceeding through this
permutation, one iteration per trace. The gain factor controls
the rate of convergence of SGD, and much research has been
concerned with effective selection and iterative updating of
ηk. We begin with η1 = .1 and follow a technique simi-
lar to that of (Y.Lecun et al. 1998) for gain selection. Our
algorithm typically ran for 500-550 iterations.

In practice, we will probably not have access to a fully la-
beled data trace x̂; providing correct labels for every query
about the state of the world at every point in a period of
time can be quite expensive, if not impossible. We will thus
assume that each slice x̂i may be only partially labeled (per-
haps very sparsely so), with some set of variables yt unla-
beled at each t. The computation of each term in LL is then

log P (x̂t|x̂t−1) = log[
∑

ŷt

exp((
∑

i

λiφi(x̂t|ŷt))+

∑

i

μiψi(x̂t|ŷt , x̂t−1|ŷt−1))] − logZx̂t−1

= log Zx̂t−1,x̂t\yt
− log Zx̂t−1

where x̂t|ŷt is the partial assignment x̂t with the
unlabeled variables set to ŷt. Unfortunately, both

log Zx̂t−1,x̂t\yt
and log Zx̂t−1 can be prohibitively expen-

sive to calculate, even with many standard approximation
techniques such as MCMC. To efficiently calculate an ap-
proximation to both log Zx̂t−1,x̂t\yt

and Zx̂t−1 , we use the
Bethe free energy approximation technique, described in
(Yedidia, Freeman, & Weiss 2004). This technique approxi-
mates the value of log Zx̂t−1 using marginal probabilities of
the variables xit and feature functions φj , ψj , and this ap-
proximation takes the form

log Zx̂t−1 =
∑

x̂t

−[
∑

φj

P (φj) log λjφj(x̂t)+

∑

ψj

P (ψj) log μjψj(x̂t, x̂t−1) −
∑

φj

P(φj) logP(φj)+

∑

ψj

P (ψj) log P (ψj)] +
∑

j

(dj − 1)
∑

k

P (x̂kt) log P (x̂kt)

where dk is the degree of variable xk, or the number of
features φj and ψj dependent upon xk. Since the marginals
can generally be calculated correctly and efficiently using
BP on the entire model with no variables fixed, this can
be computed efficiently for learning, and we have generally
found it to be a good approximation in practice. Similarly,
the Bethe approximation of log Zx̂t−1,x̂t\yt

may be calcu-
lated by performing BP with the variables fixed by x t and
xt−1 clamped to the appropriate values.

To improve our optimization procedure, we make two
more changes. First, it should be noted that our optimization
procedure may result in overfitting. To limit this, we actually
optimize the function RLL(λ, μ) = LL(λ, μ) − N(λ, μ),
where N(λ, μ) is a Gaussian function of the vector (λ, μ)
with mean zero and variance η (set to 5 in practice). This
term penalizes excessively large weights in the vectors λ and
μ. We then have ∂RLL

∂λj
= ∂LL

∂λj
− λj

η and ∂RLL
∂μj

= ∂LL
∂μj

− μj

η ,
and may optimize as described.

Second, in practice, because true instances of variables
are relatively rare, the optimization procedure may favor a
model which is disproportionately likely to label variables
as false. We thus give more weight to certain slices contain-
ing true instances of queries that are less frequently true in
the training data. For the labeled query variables q1...ql, let
tqi be the number of true appearances of q i in a timeslice in

the training data x̂ = x̂1...x̂d, and α(qi) = d−tqi

tqi
. In learn-

ing, we then weight the term P (x̂t|x̂t−1) by multiplying it
by

∑l
j=1 1qj ,iα(qj) where 1qj ,i is 1 if qj is labeled true in xi

and 0 otherwise. This gives more weight to a slice if it con-
tains true instances of a query, particularly if true instances
of that query are uncommon.

Discovering Context
While one can perform inference on a full double timeslice
graph with BP to infer the probability of the state of the en-
vironment, it can be computationally quite expensive. In
(Pentney et al. 2006) this issue was resolved through prun-
ing the graph to a subgraph G ′, defined by the union of all

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

...

t=1 t=2 t=3 t=4

Figure 1: Example of our dynamic graphical model with
use of context for inference. Shaded nodes represent obser-
vations, and are true when black; the dashed regions are the
observations’ contexts. When observations are true, features
in those observations’ contexts are applied to that timeslice.
The directed arrows represent the temporal features between
slices.

 1

 10

 100

 1000

 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

Nu
mb

er
 of

 sl
ice

s

Pct. of total features in feature set

no. of slices

Figure 2: Distribution of sizes of feature sets over time slices
with context-based pruning.

breadth-first traversals to a depth d on each fact p i (in the pa-
per, d = 2); this eliminates a large number of the nodes and
features in the graph. While this is an effective technique,
it requires foreknowledge of what predicates one wishes to
query over before constructing the graph.

To improve efficiency in another manner, we take advan-
tage of intuition about the structure of our graph. Our col-
lection of everyday commonsense predicates contains many
predicates whose respective states are likely to be mostly un-
related. For example, if we observe that a kitchen implement
has been used, this is unlikely to affect the state of the bath-
room sink, whose intuitive “context” is different. Thus, if
observations relating to the bathroom sink have not changed
at this time as well, it is unlikely that the bathroom sink will
be affected by the new observations this time slice. Given
this intuition, we seek to partition the timeslice graph into
subgraphs based on the features defined upon the graph. We
refer to this as context-based pruning.

Most variables, at any given point in time, are false. Given
an observation o represented by random variable x i, it is our
goal to find an appropriate set of nodes Co which are most
likely to become true as a result of o being true. To find
these nodes, we calculate the point-wise mutual information
between each xi and o for true values of xi o in a training
set x̂. The point-wise mutual information between x i and
o for values x̂i and ô in x̂ is calculated as PMI(x̂i, ô) =
log P (xi=x̂i,o=ô)

P (xi=x̂i)P (o=ô) .

If xi and o are both fully labeled in the training data, these
values may be computed in the training data x̂ by counts,
i.e. P (xi = x̂i, o = ô) = 1

d1x̂i,ô, where 1x̂i,ô = 1 if xi =
x̂i and o = ô and 0 otherwise. However, xi might not be
labeled in the training data. In this case, we may estimate
PMI(x̂i, ô) by estimating P (xi = x̂i, o = ô), P (xi = x̂i)
and P (o = ô). We estimate these values by performing BP
on our existing model with all labeled xi fixed appropriately.

To find the context of an observation o, we then select
a threshold εo and let the context of o be Co = {xi :
PMI(xi, o) > εo}. In our experimental environment,
which contained 24 distinct observations, the size of the re-
sulting contexts ranges from a couple of nodes to several
thousand. This technique permits the pruning of many fea-
tures from the graph at each timeslice that are unlikely to
carry meaningful information about queries based on obser-
vations, and many nodes which are not sufficiently relevant
to any possible observation may be pruned from the graph.

We produce a set of contexts C = (Co1 , Co2 , ...Cor) for
the full set of observations by calculating each Coi based on
the training data as described. Let ζ(C) = {φi : xci ⊂ C},
Ot be the set of all observations oi set to true in assignment
xt, and ζxt = ζ(

⋃
oi∈Ot

Coi). To perform inference, we
then compute the probability

P (xt|xt−1) =
1

Zxt−1,ζxt

exp((
∑

i,φi∈ζxt

λiφi(xt))+

(
∑

i

μiψi(xt,xt−1)))

Note that here the normalizing constant Zxt−1,ζxt
is de-

pendent on both xt−1 and ζxt . To summarize, here we are
performing inference over the same graphical model as in
our initial model, only with all features φi dependent upon
nodes that are not in the context of the observations true at
time t removed from the model. The features between time
slices t − 1 and t for each node remain in the equation. As
with the initial model, we use BP to efficiently approximate
the marginals of xt in this model.

Under this scheme, contexts whose variables are more
highly correlated are produced. Intuitively, this corre-
sponds to the discovery of subsets of predicates which have
strong relationships with each other, and likely share a
similar real-life context (e.g. random variables relating to
kitchen implements are likely to be more correlated with
location(kitchen)).

Figure 1 depicts context-based pruning. Different time
slices, as the figure shows, will have different feature sets,
and sometimes even have no features in ζxt within the times-
lice. In Figure 2, we plot the sizes of ζxt as a percentage of
total graph features over the time slices in our experimental
data. The average number of features, not including tempo-
ral features, used for inference at each time slice was ≈ 725,
compared with 89,356 for the full, unpruned model.

Experiments
In our experimental evaluation, we will try to answer each
of the following questions: (1) Do learning techniques help

No. Method Learn Prec Recall Acc F-measure Train time Inf. time
1 Full graph No 10.84% 30.12% 78.84% 15.94 - 8:13
2 d = 2 No 24.85% 51.34% 81.81% 33.48 - 2:42
3 d = 2 FL/SGD 19.12% 45.87% 83.47% 26.99 39:38 2:41
4 d = 2 Bethe/SGD 69.31% 43.53% 94.87% 53.47 54:52 2:41
5 Context No 16.43% 72.18% 73.58% 26.76 - 1:12
6 Context Bethe/SGD 36.66% 53.28% 90.76% 42.87 43:13 1:12

Figure 3: A comparison of inference methods by accuracy, precision, recall, and F-measure.

 0

 0.2

 0.4

 0.6

 0.8

 1

xwvutsrqponmlkjihgfedcba

Pe
rce

nta
ge

Queries

Precision
Recall

F-measure

Figure 4: Precision, recall, and F-measure numbers for each query with learning and inference on the graph pruned to d = 2.

in state prediction, and how? (2) How does learning help on
unlabeled queries? (3) What sort of queries can we predict
well? (4) How much does context-based pruning help with
scaling? (5) Does PMI-based context-based pruning help?

For our experimental evaluation, we used traces of house-
hold object usage in an experimental setting as worn by three
users while performing various daily activities in a simu-
lated home environment, as used in (Pentney et al. 2006).
A total of approximately 70-75 minutes of data was col-
lected, with traces divided into time slices of 2.5 seconds.
For these activities, a set of 24 variables in the collected
set of queries, such as stateof(cereal,prepared),
were labeled as true or false for each time slice.

To answer question (1), we ran inference algorithms in
different settings, measuring the accuracy of our system in
predicting the value of the 24 queries. Since the majority
(≈93%) of queries are false, and intuitively we are some-
what more interested in being able to predict cases where a
query is true, we also measure precision and recall with re-
spect to labeling the true instances of each query, and com-
pute the F-measure, the harmonic mean of the two values (a
standard measure of effectiveness in information retrieval).
For experiments involving learning, we performed training
on ≈25% of the data using SGD, and performed predic-
tion. We used two versions of learning: one in which we
set all unlabeled values to false, and one in which we find
marginals for unlabeled values using BP. We used MAP es-
timation for prediction in the learned case; when learning
techniques were not used, we used the thresholding tech-
nique used in SRCS to compute predictions from the result-
ing marginal probabilities computed.

Results of our prediction can be seen in Figure 3. In
order by row, this table displays results for prediction (1)
on the full, unpruned model; (2) without learning and with

the graph pruned to depth d = 2 from the selected queries;
(3) with learning by setting all unlabeled values in the (par-
tially labeled) training data to false; (4) with learning using
the Bethe method; (5) using context-based pruning without
learning; and (6) using context-based pruning with learn-
ing using the Bethe method. Note that, due to some slight
changes in the SRCS model, results are slightly different
from (Pentney et al. 2006) for (2), although the same ex-
periment is run in that paper. We see that adding learning to
the system provides notable increases in both accuracy and
F-measure. Using the Bethe approximation for learning pro-
vides far better precision than false-labeled learning; while
faster, false-labeled learning offers an inaccurate depiction
of the relationship between labeled values, and thus learns a
worse model.

To answer (2), we consider the precision, recall, and
F-measure values for each of the 24 queries with learn-
ing added; a plot of each may be seen in Figure 4. As
we can see, performance is somewhat uneven, with some
queries being predicted extremely well and others with less
accuracy. The poor performance of some queries is, in
some cases, due to difficulty in measuring their accuracy
based on use of household objects alone. For instance,
query (o) is the random variable stateof(window,
dirty); while the system can learn to predict a clean
window (i.e. stateof(window, dirty) = false)
based on usage of window cleaner and/or towels, pre-
dicting a dirty window is more difficult and does not
correspond well to any objects used in the data. A
more sophisticated model which takes into account ob-
servations for some period both before and after the cur-
rent timeslice may adequately account for queries such
as these. Similar problems can be seen in queries (d)
(stateof(teeth,clean)), (h) (stateof(cereal,

No learning Learning
Query Acc F-mea Acc F-mea
activity(brushing
teeth)

96.12% 94.11 99.47% 91.19

location(shower) 89.86% 0.00 92.99% 47.48
action(eat) 87.61% 25.36 97.12% 31.81
action(add milk to) 99.04% 0.00 99.04% 0.00
stateof(tea kettle,
hot)

72.26% 31.92 95.97% 55.32

stateof(window,
dirty)

96.89% 0.00 93.47% 5.55

location(greenhouse) 61.65% 33.28 94.87% 65.37
Aggregate 86.20% 31.74 96.13% 51.04

Figure 5: Accuracy and F-measure for inference with model
trained on half (12) of the labeled queries on seven other
queries.

Method Avg. time/slice (s) No. features
full graph 15.576 130642

d = 1 subgraph 2.44 4370
d = 2 subgraph 5.12 24465
d = 3 subgraph 9.38 49825

context discovery 1.08 725 (avg.)

Figure 6: Time for inference per slice for different inference
methods, and the number of features per slice on the model.

prepared)), and (n) (stateof(cereal,eaten)). It
seems that much of the poorer performance can be attributed
to (1) the somewhat subjective labeling of the data (asser-
tions like “the window is clean” can be a matter of judgment
in some cases), (2) gaps in the commonsense knowledge in
the system, and (3) queries that are not well linked to the
relatively coarse observations provided by our system. Im-
provement on these types of queries may demand a more
complex model or supplemental sources of observations.

We attempt to answer (3) by training a model with only 12
of the 24 queries, with the graph pruned to d = 2. This graph
contained seven other labeled queries whose labels were
not given; we test performance on predicting these queries
against that of the model without learning. We see in Fig-
ure 5 that most of the queries have improved accuracy and
F-measure, even though their labels were not given, showing
that our commonsense learning can help improve prediction
of unlabeled variables as well.

We answer (4) by measuring the average time inference
per slice for different inference methods. An example of
the time speedup provided by context-based pruning is given
in Figure 6. Finding contexts imposes a one-time overhead
cost, but improves the efficiency of inference when used for
prediction. Here we compare the average amount of time
spent on inference per timeslice in our full graph; the time
spent on inference per timeslice in a graph pruned with d set
to 1, 2, and 3; and the time spent on inference per times-
lice on a graph pruned via context-based pruning. Inference
using context takes less time than any of these methods, on
average; in a real-life common sense reasoning application,

Method Acc F-mea Time/slice
(d = 2)-based context 79.72% 22.26 1.01

PMI-based context 90.65% 22.98 0.96

Figure 7: PMI-based contexts outperform simple (d = 2)
contexts.

which could conceivably have an even larger number of vari-
ables to reason over, this speedup could be quite useful, even
at the cost of some accuracy.

Finally, to answer (5) and show the value of our tech-
nique for context-based pruning, we test our PMI-based al-
gorithm for context-based pruning against a “dumber” algo-
rithm which merely sets a context for every node by select-
ing every node a depth of d = 2 away from each observation
as its context. We perform learning on 12 of the queries, and
then perform inference to predict all 24. The results are in
Figure 7. We see that our algorithm provides increased accu-
racy in these experiments, suggesting the value of our more
sophisticated context-based pruning technique.

Conclusions
We have presented a system for learning models of the ev-
eryday human environment using statistical techniques and
preexisting common sense data. We have shown that the
learning techniques can provide considerable improvements
in prediction within our model, exceeding previously estab-
lished techniques. We have also presented a technique for
performing discovery of context for common sense infor-
mation using partially labeled data to provide more efficient
inference, and demonstrated the utility of this technique. We
believe this system has strong potential as a means of en-
abling statistical reasoning about the everyday human envi-
ronment on a large scale.

References
Fishkin, K. P.; Philipose, M.; and Rea, A. 2005. Hands-on RFID: Wireless wearables for detecting
use of objects. In ISWC 2005, 38–43.

Gupta, R., and Kochenderfer, M. J. 2004. Common sense data acquisition for indoor mobile
robots. In AAAI, 605–610.

Lenat, D., and Guha, R. V. 1990. Building Large Knowledge-Based Systems: Representation and
Inference in the Cyc Project. Addison-Wesley.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems. Morgan Kauffman.

Pentney, W.; Popescu, A.; Wang, S.; Kautz, H.; and M.Philipose. 2006. Sensor-based understand-
ing of daily life via large-scale use of common sense. In Proceedings of AAAI.

Sutton, C.; Rohanimanesh, K.; and McCallum, A. 2004. Dynamic conditional random fields:
Factorized probabilistic models for labeling and segmenting sequence data. In Proc. of 21st Inter-
national Conference on Machine Learning (ICML).

Tapia, E. M.; Intille, S. S.; and Larson, K. 2004. Activity recognition in the home using simple
and ubiquitous sensors. In Pervasive, 158–175.

Vishwanathan, S.; Schraudolph, N.; Schmidt, M.; and Murphy, K. 2006. Accelerated training of
conditional random fields with stochastic meta-descent. In Proceedings of ICML.

Wilson, D.; Consolvo, S.; Fishkin, K.; and Philipose, M. 2005. In-home assessment of the
activities of daily living of the elderly. In Extended Abstracts of CHI 2005: Workshops - HCI
Challenges in Health Assessment.

Yedidia, J.; Freeman, W.; and Weiss, Y. 2004. Constructing free energy approximations and
generalized belief propagation algorithms. Mitsubishi Electronic Research Labs Technical Report
TR 2002-35.

Y.Lecun; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE 86 (11):2278–2324.

Zhu, X. 2005. Semi-supervised learning literature survey. Computer Sciences TR 1530, University
of Wisconsin, Madison.

