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Abstract

Recognizing objects being manipulated in hands can
provide essential information about a person’s activities
and have far-reaching impacts on the application of vision
in everyday life. The egocentric viewpoint from a wearable
camera has unique advantages in recognizing handled ob-
jects, such as having a close view and seeing objects in their
natural positions. We collect a comprehensive dataset and
analyze the feasibilities and challenges of the egocentric
recognition of handled objects.

We use a lapel-worn camera and record uncompressed
video streams as human subjects manipulate objects in
daily activities. We use 42 day-to-day objects that vary in
size, shape, color and textureness. 10 video sequences are
shot for each object under different illuminations and back-
grounds. We use this dataset and a SIFT-based recogni-
tion system to analyze and quantitatively characterize the
main challenges in egocentric object recognition, such as
motion blur and hand occlusion, along with its unique con-
straints, such as hand color, location prior and temporal
consistency. SIFT-based recognition has an average recog-
nition rate of 12%, and reaches 20% through enforcing tem-
poral consistency. We use simulations to estimate the upper
bound for SIFT-based recognition at 64%, the loss of ac-
curacy due to background clutter at 20%, and that of hand
occlusion at 13%. Our quantitative evaluations show that
the egocentric recognition of handled objects is a challeng-
ing but feasible problem with many unique characteristics
and many opportunities for future research.

1. Introduction
Monitoring human activity is at the heart of professions

such as elder care, worker training and lifestyle coaching.
Recent interests in automated support for these occupations
have spurred research in developing perception-based sys-
tems that are capable of monitoring a variety of day-to-day
activities in detail. The requirement for detail and vari-
ety means that traditional vision-based activity recognition,
which focuses on body kinematics and location, is insuf-

Figure 1. Recognition of handled objects in egocentric video. We
use a wearable video camera to capture a continuous view from
the user and to recognize the objects being manipulated in hands.

ficient. On the other hand, recent work in the ubiquitous
computing and AI communities [11, 30] based on wireless
sensors suggests that the identity and manipulation of ob-
jects used may serve as robust, detailed indicators for a large
variety of daily activities from brushing teeth to medication.

Although wireless sensors have yielded promising re-
sults in detecting object use, it is often infeasible to attach
sensors to objects. Vision based object-use detection, which
does not need per-object instrumentation, is therefore at-
tractive. The recent work of [32] highlighted the poten-
tial of object-use tracking using a wall-mounted camera for
kitchen tasks. Using fixed environmental cameras, however,
is problematic in many respects. First, installing (multiple)
environmental cameras is often unacceptable both for aes-
thetic and economic reasons. Second, people’s bodies may
often occlude the objects being manipulated. Third, impor-
tant details of objects may be indistinct because objects are
far from camera. A promising way to counter all these is-
sues is to allow the user to wear the camera: an egocentric
camera looking out from the chest towards the hands should
find many of the above problems inherently easier than an
environmental camera would.

Egocentric vision has been extensively studied [19, 28,
21, 5, 15, 6] in many contexts such as face recognition, ges-
ture recognition, visual SLAM or virtual reality. Object
recognition from a wearable camera typically detects am-
bient or static objects in the environment[27, 20]. The pio-
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neering work in handled-object recognition from egocentric
video is that of Mayol and Murray [18]. They show the fea-
sibility of detecting handled objects to summarize context
using a 5-object, 600-frame dataset. The limited complexity
of this early dataset is not sufficient to address the variety of
challenges in using a wearable camera, such as limited op-
tics and resolution, illumination variation, motion and blur,
hand occlusion, pose change or background clutter.

We have collected a large dataset to investigate the feasi-
bility of identifying handled objects from egocentric video
in real-life settings. Using a high-quality wearable video
camera, we have collected 10 sequences each of 42 day-to-
day objects being handled in a manner typical for each ob-
ject (Figure 1). The footage is high resolution (1024x768),
24-bit color at 15 frames per second, with 100, 000 frames
total. The objects vary significantly in size, shape, tex-
tureness, specularity and rigidity. The video shots vary in
illumination and background clutter. We believe that our
dataset provides a comprehensive, realistic and challenging
benchmark for identifying object use in daily activities.

We carry out an empirical analysis of this dataset and
provide quantitative characterizations of egocentric handled
object recognition. We discuss major challenges such as
scale and textureness variation, motion blur and hand occlu-
sion. We also identify unique constraints such as skin color,
object and hand location priors and temporal consistency.
We report benchmarking results of a SIFT-based recogni-
tion system and quantify the challenges of occlusion and
background clutter through simulated experiments.

2. Related Work
Cameras have long been used in wearable computing

for various applications. A series of projects by Pentland
and his associates are early examples. Starner [29] inves-
tigated how to identify gestures made by social partners.
Schiele [27] examined detecting ambient objects and re-
trieving media memories. Choudhury [22] showed how
to combine face recognition and voice recognition to iden-
tify conversation partners. Clarkson [5] used spectral tech-
niques on video and synchronized sensor data to identify
routines in daily life. A lot of progress has been made on
visual SLAM where location and environmental structure
are simultaneously estimated from egocentric video, with
recent successes including [6, 24]. Many of these efforts
can be viewed as in line with the active vision paradigm [2].

In the ubiquitous and pervasive computing communities,
inferring the activities of a user is an important and popular
problem and has been extensively studied, often using alter-
native sensors such as accelerometers [14, 12] or GPS [16].
Environmental cameras for detecting the manipulation of
special pointing devices in instrumented environments have
been investigated in the human-computer interaction com-
munity [31, 15]. Object-use provides rich information about

a user’s daily activities wel beyond that from accelerome-
ters or locations. Several works [23, 11, 30] investigated
the use of tiny wireless sensors affixed to objects and had
been successful in detecting handled objects and activities.

It is a challenging but attractive approach using vision
to recognize objects being manipulated by a user. The re-
cent work of [32] recognized handled objects and associ-
ated kitchen tasks from a fixed wall-mounted camera. The
use of an environmental camera restricted its applicability to
monitor relatively small areas. Mayol and Murray [18] first
studied the detection of handled objects using a wearable
camera toward event detection and summarization. They
recognized objects using color histograms and tested on a
small dataset of 5 objects and 600 frames. We clearly need
a much larger dataset to investigate the feasibilities of ego-
centric recognition of handled objects and activities.

Object recognition is a central problem in vision and has
seen a huge amount of progress in the recent years [25],
with highly influential works including [17, 3, 4, 9, 33]. One
key to this success is the availability of large comprehen-
sive datasets and rigorous benchmarking evaluations. Cal-
tech 101 [8] is very popular and one of the first large-scale
benchmarks for category-level recognition using Internet
photos. PASCAL [7] is another popular recognition chal-
lenge with a smaller number of categories but more chal-
lenging instances. LabelMe [26] brings annotation tools
online and gathers together community contributions.

We believe we are the first to establish a comprehen-
sive and realistic dataset for the egocentric recognition of
handled everyday objects and benchmark it on state-of-the-
art recognition techniques. There are several prior empir-
ical studies that are particularly relevant. [27] presented
an early example of wearable object recognition using re-
ceptive field histograms, tested on a dataset of 103 objects
with clean, centered views. [32] used a wall-mounted cam-
era and tested with 33 everyday objects and 3 videos. The
GroZi dataset [20] consisted of 120 grocery products and
11000 images captured in situ in grocery stores.

3. A Benchmark for Egocentric Recognition of
Handled Objects

The theme of this work is the collection and analysis of
a dataset for egocentric recognition of handled object. We
mount a PointGrey Grasshopper Firewire camera on a sub-
ject’s left shoulder, pointing downward at the area in front
of the body. The camera is fixed with a tripod and a lapel
so that it moves (mostly) rigidly with the body. We capture
and store uncompressed 24-bit RGB video at 1024x768, 15
frames per second. The data rate is 35.4 MB/sec, stretching
the limit of the sustained write rate of a single hard-drive. A
4-disk RAID-0 configuration is used to ensure smooth data
transfer and to avoid frame drops. To battle motion blur, we
set the shutter speed between 1/50 and 1/100.



(a)

(b)
Figure 2. We collect a large dataset of egocentric handled-object
recognition. (a) 42 everyday objects with large variations in size,
shape, color and textureness. (b) We take 10 video shots of each
object, with large variations in illumination and scene background.

We use a list of 42 objects commonly found in every-
day life, with examples including: a milk bottle, a cereal
box, a plastic wrap, a lunch box, a water cup, a garden scis-
sor, a stapler, and a digital camera. We collect data from
two subjects in five environments, with distinctively differ-
ent backgrounds and illuminations. The objects are shown
in Figure 2(a), and examples of the environmental settings
are shown in Figure 2(b).

To expedite the process the data is not collected “in-situ”
or from complete daily activities. We simulate these activ-
ities and instruct the subjects to handle the objects as they
would have in real life. From example, for a water cup, the
subject will simulate the activity of holding and drinking
from the cup; for a plastic wrap, the subject will pick up the
wrap box and tear off a piece of the wrap from the box.

The total amount of video data we have collected is about
120 minutes or 100, 000 frames, of which about 70, 000
frames contain objects, about 1600 per object. We have also
taken clean exemplar photos of the objects under varying
poses (as in Figure 2(a)), averaging 13.1 per object. In ad-
dition, 420 frames are annotated with groundtruth segmen-
tations of object vs background, and 40 frames are marked
with segmentations of hand vs background.

We focus on the identification of known objects, leav-
ing the issue of category-level recognition for future work.
Our main reasons are as follows: (1) identification is a good
starting point for the egocentric recognition of handled ob-
jects and is challenging enough in real-life settings; (2) it
is reasonable to assume that, in everyday life, most of the
object instances we interact with are familiar; (3) intra-
category variation is a topic for generic object recognition
research and not unique to the egocentric viewpoint.
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Figure 3. SIFT-based multi-class SVM classification on the 42-
object dataset. Shown here are the recognition rate for each object.
The graph shows huge variations in accuracy, ranging from over
50% for easy objects (e.g. cereal box) to mere chance 3% for hard
objects (e.g. toothbrush or plastic spoon).

3.1. Benchmarking SIFT-based Recognition

We use a standard SIFT-based system, following the ap-
proach in [17], as the baseline to evaluate our dataset. Let
{pi = (yi, xi), Di} be the set of SIFT keys and their de-
scriptors in a frame, and let

{
p̃j = (ỹj , x̃j), D̃j

}
be the

SIFT keys in an clean exemplar image. We find initial
matchings between the features using SIFT distance and the
ratio test, requiring the distance of the best match to be at
most 0.6 of the second best match. In the set of initially
matched features, we use RANSAC to search for the best
perspective correspondence, i.e. the fundamental matrix F
that allows most points to satisfy the epipolar constraint

[yi xi 1] F [ỹj x̃j 1]T = 0 (1)

Having obtained the best F, we go back and verify the SIFT
matching, accepting those matches that fail the ratio test but
are consistent with F.

With the set of final matched features Di and D̃j , we
convert distances between their SIFT descriptors to a scalar
similarity score between the test image and the exemplar:

S =
∑

exp
(
−α‖Di − D̃i‖

)
(2)

For each exemplar z, we obtain a similarity Sz . The simi-
larities {Sz}, after normalized to zero mean and unit vari-
ance (and capping at 4), are the input to a multi-class SVM
classifier [1], which for m classes trains an all-pair set of
m(m − 1)/2 binary SVMs and use voting for prediction.

The benchmarking results of this system are shown in
Figure 3, with an average recognition rate of 12.0%. Com-
paring to a random chance of 2.4%, this result of 12.0% is
reasonable but far from perfect, illustrating the challenges
of our dataset and that of the egocentric recognition prob-
lem. As a comparison, we have also run the pyramid match-
ing algorithm [9, 13] with the hierarchical clustering of
SIFT features into words. The average accuracy there is
11.1%, comparable to that of our SIFT-based system.



4. Deconstructing Egocentric Recognition
Egocentric recognition of handled objects is a challeng-

ing problem that has many of its unique characteristics. The
collection and analysis of our dataset has confirmed several
well-known challenges and opportunities:

• Limited by form factor and cost, egocentric video is
typically poor in quality comparing to photos. One
would have to strike balances between shutter speed
and sensor noise, or between resolution and frame rate.

• Occlusion is a prevalent problem in egocentric video.
Objects are being handled and are always occluded by
the user’s hands to varying degrees. Occlusion can be
detrimental to recognition, especially for small objects.

• Everyday environments are often cluttered, filled with
objects that may or may not be relevant to our task at
hand. Figure-ground separation is non-trivial because
the camera always moves and shakes with our body.

On the other hand, the egocentric setting has many interest-
ing characteristics that help solve the recognition problem:

• The egocentric viewpoint is unique and provides
strong constraints on location and scale. We manipu-
late objects in front of our body, making objects appear
close to the center, at roughly a fixed distance.

• Hands are always present next to the objects. Skin
color is known to be distinctive and can be very useful
in locating the hands and in finding the objects.

• Egocentric data come in as continuous video streams.
Video analysis can play an important role, helping both
to separate scene background from moving objects and
to improve recognition accuracy by enforcing the tem-
poral consistency of labeling.

In the rest of the section, we will use our dataset,
groundtruth labels and the SIFT-based recognition system
to empirically quantify these challenges and opportunities.

4.1. Challenges in egocentric recognition

Scale and texture variations. Our dataset covers a wide
range of everyday objects. They vary significantly in scale
and textureness. The object list includes very small objects
(e.g. AA-battery, < 3cm) and large ones (e.g. water filler,
> 30cm). This leads to a large variation in apparent ob-
ject scale. Hand-marked object segmentations are used to
compute object sizes. We show the empirical distribution
of object scale in Figure 4(a). The variation is large, cover-
ing about two orders of magnitude, with the largest at 69%
area of the entire frame, and the smallest at 0.9%.

We also measure the textureness of the objects, by com-
puting the average number of SIFT features detected in the
clean exemplar photos, shown in Figure 4(b). There is also
a large variation in how much texture we find in each ob-
ject. Some objects, such as the water filler, lack texture and
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Figure 4. Object variations: (a) object size, with an average area of
105 pixels or 14% of the frame area; (b) textureness, measured by
the average number of SIFT features detected in clean exemplars.
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Figure 5. The impact of frame resolution: we downsize our video
(from 1024x768) and evaluate the SIFT-SVM classification. (a)
The average number of SIFT features detected, decreasing with
image size. (b) Recognition rate relative to that of full-resolution,
which stays about the same and does not decrease with resolution.

only host a small number of SIFT features. Half (21) of the
objects in the dataset have an average number of SIFT fea-
tures below 50. Lack of texture leads to poor SIFT-based
classification on these objects.

Frame resolution is a major concern for egocentric
video, as one cannot afford a resolution as high as that of
modern photos. Is resolution a bottleneck for recognition
performance? We empirically study the resolution issue by
subsampling the original frames to a smaller size and eval-
uating our SIFT-based system on the subsampled frames.
We experiment with four resolutions: full (1024x768), 0.7
(717x538), half (512x384), and 0.35 (359x269).

Figure 5(a) shows the average number of SIFT features
for each resolution. The number drops with the resolution,
as fine-scale features are now below the threshold and not
detected. Somewhat surprisingly, the performance of the
SIFT-based system does not drop with the resolution. Fig-
ure 5(b) shows the classification accuracy relative to the
full-resolution case, based on 1/10th of the training/testing
data. We see that even at size 0.35, where the number of
SIFT features is greatly reduced, the classification perfor-
mance is close to that on full-resolution. These experiments
indicate that resolution is not a bottleneck.

Motion blur is another major concern in egocentric
video. Lighting is typically limited, especially in-door, and
hands can move rapidly when handling objects. Does man-
ual shutter (1/100) solve the motion blur problem? How
much motion blur is there in the dataset?

We empirically analyze motion blur using blind image
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Figure 6. The analysis of motion blur: (a) examples of the non-
parametric blur kernel estimated with maximum likelihood; (b) the
amount of blur detected; (standard deviation of the blur kernel); (c)
the orientation of motion blur, showing peaks at 45-degrees.

deconvolution. We use the standard maximum likelihood
method [10] to estimate a non-parametric blur kernel for
each image with groundtruth object mask, using the fore-
ground object only (Figure 6(a)). We can then estimate the
amount of blur (standard deviation of the blur kernel along
the major axis) as well as the orientation of blur.

Figure 6(b) and (c) show the empirical distributions of
the blur. We find that most motion blurs are small, with the
peak at sigma = 2 pixels; the distribution also has a heavy
tail with large blurs occurring up to 10 pixels. Interestingly,
the orientation distribution also has two peaks, roughly at
45o and 135o. These two directions may arise from how the
subjects move certain objects (e.g. cups and coke cans).

Occlusion-by-hand occurs in every instant as we ma-
nipulate objects. We measure the degree of occlusion as
follows: our groundtruth object segmentation marks object
boundaries even when they are occluded, and gives us the
total 2D area of the object in the scene. To estimate how
much of the object is occluded by the hands, we build a
mixture-of-Gaussian hand color classifier and classify the
pixels into hand vs non-hand (object). (More details of the
hand color classifier are discussed in the next section.)

We find out that the hand color detector works reason-
ably well and suffices for our purpose, as we only need a
crude estimate of hand occlusion. Figure 7(a) shows the
empirical distribution of the occlusion ratio, hand area over
total object area. It is approximately log normal, with the
expected occlusion ratio around 20%, and the standard de-
viation about a factor of 2. Figure 7(b) shows the average
occlusion ratio for individual objects, which varies signif-
icantly depending on both the object size and the manners
we interact with these objects.

4.2. Opportunities in egocentric recognition

Hand color is an important cue for handled objects as
we perform most activities with hands, and skins color
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Figure 7. We combine groundtruth segmentation and hand-color
model (Gaussian mixture) to calculate the occlusion ratio. (a) The
distribution of the occlusion ratio. (b) The average occlusion ratio
per object, with large variations across objects.
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(a) (b)
Figure 8. We use mixture-of-Gaussian models, trained from
groundtruth, to detect hand colors. (a) Hand color detection is
reasonably good but not perfect. (b) Precision-recall curves evalu-
ating the performance of hand color detection, training from hands
of the same subject or those of a different subject.

is known to be robust. We use the standard mixture-of-
Gaussian model for hand color, in HSV space, with 10 com-
ponents. Groundtruth segmentations of the hands (from 40
frames) are used to both train and evaluate the models.

Figure 8(a) shows a few examples of the Gaussian mix-
ture hand color detection. Figure 8(b) shows precision-
recall curves for the mixture model, trained from hands of
the same subject (different environmental settings) or those
of a different subject. The precision-recall curves confirm
our observation, that color works reasonably well, but far
from perfect, with average precision around 50%. A sim-
ple color model cannot address many complications in real-
life video, such as illumination, saturation, or the presence
of near-skin-color objects. Detecting and tracking hands in
these videos may prove plausible yet highly non-trivial.

On the other hand, we manipulate objects in the front
of our body, so the canonical viewpoint of the egocen-
tric camera provides strong information about where hands
and objects are without having to track hands. Figure 9(a)
shows the location prior for objects, where we take the
groundtruth object segmentations and average their spatial
support. Objects indeed tend to appear at the lower center
region of the frame, and only rarely toward the periphery.
Similarly, Figure 9(b) shows the prior distribution of hand
location. Without enough hand segmentations, we compute
the hand color probabilities using the HSV mixture model



(a) (b)
Figure 9. Location prior: (a) empirical distribution of object lo-
cation, averaged from groundtruth segmentations; (b) empirical
distribution of hand location, averaged from hand color detection.

(Figure 8) and average them. We clearly see two hands in
the frame, with a bigger left hand because it is closer to the
camera on the left shoulder. Such prior information can be
of great help for detecting and tracking objects and hands.

Motion is another important characteristic of our prob-
lem as we take as input a continuous video stream. The
camera constantly moves, and the hands undergo complex
motions. On the other hand, we assume the background
is static, based on the observation that egocentric camera
points downward from the user’s body and are subject to
only minor interference from moving objects (e.g. people).

We focus on the motion or temporal correspondence of
the SIFT features detected in each frame. We use the same
SIFT matching algorithm as in Section 3.1, between frames
that are close in time, based on SIFT distances and the ratio
test. We find two sets of matchings: one per-feature match-
ing, where we only apply the ratio test and do not use any
model model; and one consistent-motion matching, where
we enforce the epipolar constraint to find feature matchings
from a single perspective motion (as in Eq. 1). Figure 10(a)
and (b) show examples of these two matchings. Note that
not all matched features in (b) are in (a): once we obtain a
RANSAC estimate for the fundamental matrix, we accept
all matches that are consistent with this motion, even those
that fail the ratio test. To accommodate both foreground
and background motions, We extract two motion layers by
sequentially estimating two fundamental matrices.

In Figure 10 (c,d) we show the percentage of features that
are matched between two nearby frames, varying with the
distance in time (1 to 6 frames apart). We use groundtruth
object segmentations to compute the percentage for both
foreground features and background features. As expected,
the foreground motions are fast and complex, and only a
small percentage of the features can be reliably matched
across time, with 27% for adjacent frames, and 9% for 6
frames apart (1/3 second at 15 fps). In comparison, the
background is static and moves slowly, and a much higher
percentage of features can be matched across time, with
51% for adjacent and 32% for 6 frames apart.

Comparing the results in (c) (no motion model) and (d)
(perspective motion), we observe that enforcing a consis-
tent motion improves background feature matching, allow-

(a) (b)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

time step

pe
rc

en
ta

ge
 o

f S
IF

T
 fe

at
ur

es
 m

at
ch

ed

 

 

foreground

background

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

time step

pe
rc

en
ta

ge
 o

f S
IF

T
 fe

at
ur

es
 m

at
ch

ed

 

 

foreground

background

(c) (d)
Figure 10. Matching SIFT features across frames: (a) SIFT fea-
tures matched individually using the ratio test, red dots indicating
the feature location and blue lines the displacement. (b) Features
matched in a single motion layer by enforcing the epipolar con-
straint. (c) The percentage of features individually matched, for
both foreground and background regions. (d) The percentage of
features matched with the epipolar constraint.

ing many features to match without passing the ratio test.
The percentage of matched features increases, especially
for longer-range matching (from 32% to 41% at distance
6). The effect is much smaller in the foreground case.

Finally, we exploit the continuous video setting and eval-
uate the benefit of enforcing the temporal consistency of
labeling. Objects appear continuously in the videos and
do not switch identity from frame to frame. We quantify
this continuity using a simple voting approach: taking the
classification results from the SIFT system, we look at a lo-
cal temporal window of [−K,K] frames, and choose the
majority label in this window. Figure 11(a) shows the aver-
age classification accuracy vs the size of the voting window.
We see that such a simple temporal smoothing greatly im-
proves the performance, from average accuracy 12% with
no smoothing to 20% at a window size of K = 30 (4 sec-
onds). This illustrates the potential of temporal consistency.

In Figure 11(b) we show the per-class accuracy compar-
ison of single-frame detection (12% average) to temporal
smoothing (20% average). It is interesting to see that how
aggressive temporal smoothing (K = 30) biases toward the
easy and dominating objects, improving accuracy of many
objects by a two-fold, while ignoring the hard cases. The
hard objects, with per-frame labeling close to random, are
smoothed out because their labels are rare and far apart.

4.3. Simulations for performance analysis

In this section we use simulated experiments to analyze
potential recognition accuracies on our dataset. First, we
want to bound the performance of SIFT-based recognition.
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Figure 11. Exploiting temporal consistency of object labels. (a)
Recognition improves when we average labels over a temporal
window (using voting). It consistently improves with window size,
from 12% to 20%. (b) Per-object comparison of single-frame
recognition vs temporal smoothing. Accuracy greatly improves
for most objects, while the hardest ones are “smoothed out”.

We know it cannot be perfect as many objects in our dataset
lack texture. To obtain an “upper bound”, we use the SIFT
recognition system and calculate the leave-one-out recog-
nition rates for the clean exemplar images. The average
accuracy in this case is 63.7%. Considering the lack of tex-
ture and the large variation in viewpoints, 63.7% provides
a reasonable upper bound of how a SIFT-based matching
system may expect to perform.

Next we analyze the impact of occlusion. As shown in
Figure 7, we have a reasonable estimate of how much occlu-
sion occurs in our dataset. We use the estimated log normal
distribution of the occlusion ratio (average 20%, standard
deviation a factor of 1.8) to simulate occlusion on clean ex-
emplars. We randomly choose an occlusion ratio, randomly
choose a projection direction, and remove part of the ob-
ject from the clean exemplars (5500 total). The average
recognition rate in this case is 57.0%. This is lower than
the non-occlusion case 63.7% but not too far a drop.

Similarly we analyze the impact of background clut-
ter using simulations. We pick random background scenes
from the actual dataset (those with no object occurrence)
and overlay clean exemplars on them. We then run the SIFT
matching system, and obtain an average accuracy of 43.2%.
Background clutter results in a 20% drop in accuracy.

We also combine both occlusion and background clut-
ter in the simulation, occluding parts of objects and then
adding a cluttered background. The average accuracy now
drops to 30.3%. Interestingly, occlusion incurs a much
larger decrease in accuracy in the cluttered case than the
non-cluttered case. This confirms that SIFT matching is ca-
pable of handling partial occlusion to a certain extent, and
this capability is reduced where clutter features abound.

Finally, we investigate whether the exemplar set (550 to-
tal) has enough coverage for object pose variation. We
apply the k-medoids algorithm to select subsets of the ex-
emplars, using pair-wise similarity scores (Eq. 2). As ex-
pected, recognition rates drop as we reduce the size of the
exemplar set, for both the full benchmark and that of clean
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Figure 12. (a) Examples of four simulation settings: clean
exemplars, with occlusion, with background, and with occlu-
sion+background. (b) Recognition results for the four cases,
showing how much occlusion and background clutter affect accu-
racy. (c) We use k-medoids to select a subset of exemplar photos.
Recognition rate decreases when we reduce the number of exem-
plars, much more for the case of clean photos.

exemplars. (Figure 12(c)). The effect on the clean exemplar
classification is much larger, from 63.7% of the full set to
25.9% using a subset of 55 exemplars (10%). In compar-
ison the actual benchmark performance drops from 12.0%
to 8.9%. These numbers show that pose coverage is indeed
important, and we don’t really have redundancy with 13.1
exemplars per object. On the other hand, mixed with many
other difficulties, pose variation alone has a minor impact
on benchmark performance.

5. Discussions

We have collected a dataset for the study of egocentric
recognition of handled objects. Th dataset covers 42 every-
day objects, 2 subjects and 5 environmental settings, with a
total of 100, 000 frames at 1024x768 and 24-bit RGB. This
dataset provides a realistic and comprehensive benchmark
for egocentric recognition and confirms many interesting
challenges and opportunities for future research.

Egocentric recognition of handled objects in daily life is
a challenging problem. A standard SIFT-based recognition
system achieves an average accuracy of 12%. Main diffi-
culties include scale and textureness variations, motion blur,
background clutter, and hand occlusion. We have used the
dataset to quantitatively explore the extent of these issues.

The egocentric viewpoint also enjoys unique advantages
and presents many opportunities for progress. We have an-
alyzed the dataset to show that hand color can be reliably
detected, hand and objects appear at near the center of the
view, background motion is consistent, and temporal con-
sistency can readily improve accuracy.

We have used clean exemplars and simulations to esti-
mate the upper bound of SIFT-based recognition, at 64%,
along with the impacts of background clutter (20%) and oc-



clusion 13%. These results clearly suggest three directions
for future research: (1) handling non-textured objects us-
ing edges and contours, such as shapecontext [3]; (2) using
motion and location priors as well as hand color to remove
background clutter; (3) and explicitly modeling occlusion
with hand detection and removal. We believe that egocen-
tric recognition of handled objects is challenging but feasi-
ble, and progress on this problem may soon lead to applica-
tions with far-reaching impacts on our everyday lives.

Acknowledgments. We thank Ali Rahimi for developing
the SIFT-based object identification system (MOCHA).
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